
ESSLLI 2014 1

Slide 1

Model Theoretic Phonology

James Rogers (Earlham)

Jeffrey Heinz (Delaware)

Course administration

• Slides with notes are posted on the ESSLLI WIKI:

http://esslli2014.info/wiki/

topics-in-model-theoretic-phonology/ and

http://udel.edu/~heinz/esslli14/

• Questions? Please ask us in class, outside of class, or by email.

– jrogers@cs.earlham.edu

– heinz@udel.edu

ESSLLI 2014 2

Slide 2

Model-Theoretic Phonology

• Models define structures and model theory allows one to study

theories of these structures. What kind of statement can the

theory make and what kind can’t it make?

• Phonology is a linguistics subfield which studies the mental

structures of speech sounds and the pronunciation of words.

What kinds of statements do phonological theories need to

make? What is the right theory of phonology?

• In this course, we study phonological words from a

model-theoretic perspective.

ESSLLI 2014 3

Slide 3

What we cover in this course

Part 1 (Today). Foundations of formal language theory, model

theory and phonology.

Part 2 Patterns of stress and accent, Strictly Local languages, and

learnability.

Part 3 Language families defined with Successor under

Propositional, First-Order and Monadic Second-Order logic.

Part 4 Harmony, Language families defined with Precedence

under Propositional, First-order and Second-order logic.

ESSLLI 2014 4

Slide 4

What we cover in this course (in pictures)

<+1 +1,<

PTLT

SF

MSO
Reg

TSL

LTT

Prop

Restricted

SPSL

FO

SL + SP

LT +PT

Fin

Model theory allows up to map the space of stringsets along two dimension: the nature of
the signature (the horizontal dimension) and the nature of the logic (the vertical dimension).

The lines are illustrate which classes of stringsets properly contain the others (and is
closed under transitivity). So for instance the Locally Threshold Testable class properly
contains the Locally Testable class, which properly contains the Finite class. This is equiv-
alent to saying that any stringset definable with Propositional Logic with Successor word
models is definable with First Order Logic with Successor word models, but not vice versa.

By the end of this course, this diagram will be familiar to you.

Fin Finite
SL Strictly Local
SP Strictly Piecewise
LT Locally Testable
PT Piecewise Testable

LTT Locally Threshold Testable
TSL Tier-based Strictly Local
SF Star Free

Reg Regular

ESSLLI 2014 5

Slide 5
What we do not cover in this course

• Modal logic [PP02, Gra10]

Both of the above cited works apply modal logic in a model-theoretic setting to the study
of phonology and phonological theory.

Modal logic very much complements the logics we cover here, and constitutes the subject
matter of other courses here at ESSLLI.

ESSLLI 2014 6

Slide 6

Prerequisite knowledge

We will assume you have some knowledge of:

• Basic set theory and mathematical notion for functions

∪, ∩, −, ×, P (i.e., powerset), f : A→ B

• Inductive Definitions

• Formal Language Theory

– Regular Expressions

– Grammars, such as Context-Free Grammars

– Automata, such as Finite-State Automata

• Some familiarity with propositional and first-order logic.

With the preliminaries out of the way, let’s get started!

ESSLLI 2014 7

Slide 7

Phonology

Three Aspects of Phonological Knowledge

1. Phonotactic knowledge

2. Knowledge of phonological processes

3. Knowledge of contrast

In this course, we will focus on (1) Phonotactics, and will not discuss (2) Processes or
(3) contrast.

ESSLLI 2014 8

Slide 8

Phonotactic Knowledge - Knowledge of word

well-formedness (1)

ptak thole hlad plast sram mgla vlas flitch dnom rtut

Halle, M. 1978. In Linguistic Theory and Psychological Reality. MIT

Press.

ESSLLI 2014 9

Slide 9

Phonotactic Knowledge - Knowledge of word

well-formedness (2)

possible English words impossible English words

thole ptak

plast hlad

flitch sram

mgla

vlas

dnom

rtut

Exercise 1 How do English speakers know which of these words belong to different columns?

They have knowledge they have learned, but it is untaught. What is the nature of this
knowledge?

ESSLLI 2014 10

Slide 10

Phonotactics – Samala Version (1)

StojonowonowaS

stojonowonowaS

stojonowonowas

Stojonowonowas

pisotonosikiwat

pisotonoSikiwat

asanisotonosikiwasi

aSanipisotonoSikiwasi

ESSLLI 2014 11

Slide 11

Phonotactics – Samala Version (2)

possible Samala words impossible Samala words

StojonowonowaS stojonowonowaS

stojonowonowas Stojonowonowas

pisotonosikiwat pisotonoSikiwat

asanisotonoskiwasi aSanipisotonoSikiwasi

Exercise 2 How do Samala speakers know which of these words belong to different columns?

Solution: Different types of sibilant sounds [S,s] cannot co-occur in words.

By the way, StoyonowonowaS means ‘it stood upright’ [App72]

ESSLLI 2014 12

Slide 12

Phonotactics – Language X

possible words of Language X impossible words of Language X

SotkoS sotkoS

SoSkoS Sotkos

SosokoS SoSkos

soSokos soskoS

sokosos

pitkol

pisol

piSol

Exercise 3 How do speakers of Language X know which of these words belong to different
columns?

Solution: Sibilant sounds which begin and end words must agree (but not ones word me-
dially).

ESSLLI 2014 13

Slide 13

Phonotactics – Language Y

possible words of Language Y impossible words of Language Y

SotkoS SoSkoS

sotkoS SoskoS

Sotkos soSkos

pitkol SoSkos

soSkostoS soskoS

soksos

piskol

piSkol

Exercise 4 How do speakers of Language Y know which of these words belong to different
columns?

Solution: Words must have an even number of sibilant sounds.

ESSLLI 2014 14

Slide 14

Typology

Attested Phonotactic Patterns

1. Words don’t begin with [mgl]. (English)

2. Words don’t contain both [S] and [s]. (Samala)

Unattested Phonotactic Patterns

1. Words don’t begin and end with disagreeing sibilants.

(Language X = First/Last Harmony)

2. Words don’t contain an even number of sibilants.

(Language Y = Even-Sibilants)

Why are some logically possible patterns attested and others not?

ESSLLI 2014 15

Slide 15

Our Thesis

1. Phonology is constrained by computational complexity.

2. The model-theoretic perspective makes the levels of complexity

clear.

3. The model-theoretic perspective helps make clear the cognitive

functions at stake since the properties identified are

independent of particular grammatical formalisms.

Wilhelm von Humboldt commented that in order to do typology, researchers need “an
encyclopedia of categories” and “an encyclopedia of types.” In this research program, the
“encyclopedia of categories” is given by the model-theoretic analysis of formal languages
and the “encyclopedia of types” comes from centuries of phonological analysis of natural
languages.

Additionally, the model-theoretic perspective developed here can be extended to look at
different kinds of structures, like trees [Rog94, Pul07, Gra13]. Working with strings provides
a firm foundation upon which more complex linguistic structures can be studied.

So now let’s turn to strings, languages, and grammars.

ESSLLI 2014 16

Slide 16

Strings and Stringsets

We assume a finite set of symbols, the alphabet Σ, and consider the

monoid (Σ, ·) where · is an associative, non-commutative operation

called concatenation with λ as the identity element.

Thus,
(
∀u ∈ (Σ, ·)

)[
λ · u = u · λ = u

]

Elements of (Σ, ·) are defined inductively:

1. Base case: λ ∈ (Σ, ·).

2. Inductive case: u ∈ (Σ, ·) ∧ σ ∈ Σ ⇒ u · σ ∈ (Σ, ·)

We refer to elements of (Σ, ·) as strings.

A stringset (=formal language) is a (possibly infinite) subset of

(Σ, ·).

The string λ itself is thus the unique string of length zero.

ESSLLI 2014 17

Slide 17

Concatenation and Kleene Star

We lift the definition of concatenation to stringsets. Following

convention, we often leave out writing the operator · itself.

• If R and S are stringsets then RS = {uv | u ∈ R ∧ v ∈ S}.

Kleene star is another operation defined on stringsets.

• If S is a stringset then S∗ is defined recursively:

1. Base case: λ ∈ S∗.

2. Recursive case: w ∈ S∗ ∧ v ∈ S ⇒ wv ∈ S∗.

We observe Σ∗ = (Σ, ·), and so stringsets can also be said to be

subsets of Σ∗.

ESSLLI 2014 18

Slide 18

Grammars and Languages

• Every grammar G we consider will be an object of finite size

and will belong to a (possibly infinite) class of grammars G.

• Grammars are associated to languages via a naming function.

L : G → P(Σ∗)

We give some examples with regular expressions.

ESSLLI 2014 19

Slide 19

Regular Expressions as Grammars

An RE is defined inductively as follows.

1. The base cases:

• ∅ is an RE.

• λ is an RE.

• For all σ ∈ Σ, σ is an RE.

2. The inductive cases:

• If R is an RE then so is (R∗).

• If R and S are REs then so are (R+ S) and (R · S).

3. Nothing else is a regular expression.

Despite the choice of notation, the REs are just strings. As of yet they are ‘meaningless’
in the sense that they do not yet have any interpretation.

ESSLLI 2014 20

Slide 20

Regular Expressions - Stringsets

The naming function for REs LRE(·) is inductively defined as

follows:

1. The base cases:

LRE(∅)
def
= ∅

LRE(λ)
def
= {λ}

(
∀σ ∈ Σ

)[
LRE(σ)

def
= {σ}

]

2. The inductive cases:

LRE(R
∗)

def
= (LRE(R))

∗

LRE(RS)
def
= LRE(R)LRE(S)

LRE(R + S)
def
= LRE(R) ∪ LRE(S)

Definition 1 (Regular languages) Stringsets definable with REs

are the regular languages (Reg).

The definition of REs gives the syntax of the objects in the class of grammars. The
semantics is given by the definition of LRE. We will follow this pattern throughout the
course.

In the diagram, Reg stands at the top.

ESSLLI 2014 21

Slide 21

Generalized Regular Expressions — Grammars

GREs are REs extended with operators for intersection and

complement

1. Base cases

• If R is an RE then R is a GRE

2. Inductive cases

• If R is a GRE then so is (R).

• If R and S are GREs then so is (R & S).

3. Nothing else is a generalized regular expression.

ESSLLI 2014 22

Slide 22

Generalized Regular Expressions — Stringsets

1. The base cases:

(
∀R ∈ RE

)[
LGRE(R)

def
= LRE(R)

]

2. The inductive cases:

LGRE(R)
def
= Σ∗ − LGRE(R)

LGRE(R & S)
def
= LGRE(R) ∩ LGRE(S)

Lemma 1 (Equivalence of GREs and REs) A stringset is

definable with a GRE iff it is definable with an RE.

The class of regular languages is closed under intersection and complement, hence GREs
are syntactic sugar.

Note, however, that “syntactic sugar” does not mean “superfluous crutch”. Generally
expressions using ‘ ’ and ‘ & ’ (i.e., negative and conjunctive constraints) may be much
easier to write and comprehend (well, for most of us) than equivalent expressions written
without them.

There are several conventions to note. For instance, ·, +, & are all associative so
parentheses are often omitted. Often parentheses are omitted for ∗ too, but it is understood
to have precedence: So RS∗ is always understood as (R · (S∗)) and never as (R · S)∗. We
aren’t going to dwell on this.

ESSLLI 2014 23

Slide 23

Star Free Expressions - Grammars and Stringsets

• A Star Free Expression is a GRE containing no ‘And’ (&) or

Kleene star (∗).

·, +,
• The language of an SFE is defined using the same naming

function we used for defining the language of GREs.

Definition 2 (Star Free stringsets) Stringsets definable with

SFEs are the Star Free languages (SF).

Theorem 1 (McNaughton and Papert 1971) SF (Reg.

Closure under union and complement gives closure under intersection. Hence SFEs can
be extended with & without extending the class of stringsets they define. Thus & is
syntactic sugar for SFEs, and we will make use of & in SFEs.

That SF is subset of Reg is obvious from the definitions. That Reg is not a subset of
SF is witnessed by Even-Sibilants. We will see a proof of this in a different form later.

ESSLLI 2014 24

Slide 24

Finite expressions - Grammars and languages

• A Finite Expression is an RE which contains no Kleene star.

·, +
• The language of a FE is defined using the same naming

function we used for defining the language of REs.

Theorem 2 The class of finite languages (Fin) are exactly those

stringsets with finite cardinality. Every stringset definable with a

FE is in Fin, and for every stringset in Fin there is a FE for it.

Theorem 3 Fin (SF.

Exercise 5

1. For any finite expression E, L(E) has finite cardinality. Why?

2. Is Fin closed under intersection?

3. Is Fin closed under complement?

Regarding Theorem 3, that Fin is a subset of SF is clear from the definitions. That it
is a proper subset is witnessed by many examples, for instance L(∅) = Σ∗ belongs to SF
but not Fin.

In the diagram, Fin stands at the bottom.

ESSLLI 2014 25

Here is a summary.

Grammar Operations Language class

Generalized Regular expressions ·, +, ∗, & , Reg
Regular expressions ·, +, ∗ Reg

Star Free expressions ·, +, SF
Finite expressions ·, + Fin

Note that:

• Reg is the closure of Fin under concatenation, union and Kleene star.

• SF is the closure of Fin under concatenation, union and complement.

These expressions vary in which kinds of operators are permitted, which has consequences
for the generative capacity. We can ask: which operators are necessary to describe human
phonotactics? Model theory is a similar exercise, but exhibits a finer degree of control.

ESSLLI 2014 26

Slide 25

Word Models

We use the word ‘word’ synonymously with ‘string.’

• A model of a word is a representation of it.

• A (Relational) Model contains two kinds of elements.

A domain. This is a finite set of elements.

Some relations over the domain elements.

• Guiding principles:

1. Every word has some model.

2. Different words must have different models.

Also, we are most interested in models which provide the minimum kind of information
necessary to distinguish one word from another.

Note that relational models include only a domain and a finite number of relations, each
of finite arity. In particular, there are no function symbols. We will accommodate (partial)
n-ary functions (when necessary) as (n + 1)-ary relations that are functional in their first
n arguments, i.e., for each n-tuple of elements of the domain there is (at most) a single
element of domain that extends it to an element of the relation.

Generally models are given in terms of their signature, which is a tuple containing the
domain of the model and the relations.

M = 〈D, R1, R2, . . . , Rn〉

ESSLLI 2014 27

Slide 26

Three Word models

W⊳,⊳+ = 〈DW, ⊳W, ⊳+
W
, PW

σ 〉σ∈Σ

W⊳+ = 〈DW, ⊳+
W
, PW

σ 〉σ∈ΣW⊳ = 〈DW, ⊳W, PW
σ 〉σ∈Σ

DW — Finite set of elements (positions)

⊳W — immediate linear precedence on D

⊳+
W

— (arbitrary) linear precedence on D

PW
σ — Subset of D at which σ occurs

Properly ⊳, etc., are symbols and ⊳W, etc., are sets, but usually there is no ambiguity
and we will drop the superscript.

Three distinct models for words are shown here. The ‘lower’ two have less structure than
the one on top. What is different between the three models is how they represent the order
of symbols in words:

• ⊳ and ⊳+ are binary relations. ⊳ represents the successor function on the domain, and
⊳+ represents the less-than relation. Both linearly order the domain.

• The relations Pσ, one for each σ ∈ Σ, are unary relations over the domain, each picking
out the subset of positions at which the symbol σ occurs. Normally the Pσ partition
D, but this is not actually necessary.

ESSLLI 2014 28

Slide 27

Example: W⊳

Let Σ = {a, b} and so W⊳ = 〈D, ⊳, Pa, Pb〉.

Consider the string abbab.

The model of abbab under the signature W⊳ (denoted M⊳
abbab)

looks like this.

M⊳
abbab =

〈

{0, 1, 2, 3, 4},

{(0, 1), (1, 2), (2, 3), (3, 4)},

{0, 3},

{1, 2, 4}

〉

This says: There are five elements in the domain. Elements 0 and 1 stand in the (binary)
successor relation. Elements 1 and 2 stand in the successor relation. . . Elements 0 stands in
the (unary) relation Pa, as does element 3. Elements 1, 2, and 4 each stand in the unary
relation Pb.

Exercise 6

1. If we only considered signatures with a domain and no relations, could we distinguish dif-
ferent words?

2. If we left out the Pσ relations, could we distinguish different words?

3. If we left out the successor relation, could we distinguish different words?

ESSLLI 2014 29

Slide 28

Example: W⊳+

Let Σ = {a, b} and so W⊳+

= 〈D, ⊳+, Pa, Pb〉.

A model for abbab under the signature W⊳+

(denoted M⊳+

abbab)

looks like this.

M⊳+

abbab =

〈

{0, 1, 2, 3, 4},

{(0, 1), (0, 2), (0, 3), (0, 4),

(1, 2), (1, 3), (1, 4),

(2, 3), (2, 4), (3, 4)}

{0, 3}, {1, 2, 4}

〉

This says the same as before except the ordering is defined in terms the (arbitrary) linear
precedence. Elements 0 and 1 stand in this relation. So do element 0 and 2. And elements
0 and 3. And so on.

How can we obtain models of strings? Here is a way for W⊳. Consider any w ∈ Σ∗.

1. D
def
= {i | 0 ≤ i < |w|}.

2. ⊳
def
= {(i, j) | i ∈ D ∧ j = i+ 1}.

3. For all σ ∈ Σ, Pσ
def
= {i | wi = σ}.

(We let |w| be the length of w and |w|i be the ith position in w. This notation can be
defined more formally and recursively but we won’t dwell on that.)

Exercise 7 Write a way to obtain a model for strings with the signature W⊳+

. (Hint: only
part of 1 line needs to change.)

ESSLLI 2014 30

Slide 29

Subregular Hierarchies

<+1 +1,<

PTLT

SF

MSO
Reg

TSL

LTT

Prop

Restricted

SPSL

FO

SL + SP

LT +PT

Fin

As we will see, we can describe four properly nested classes of languages with four differ-
ent logics of increasing power when using the word models with successor and precedence:

(+1): SL — LT — LTT — Reg
(<): SP — PT — SF — Reg

Also we will see the following when looking at this way:

1. The English-style phonotactics is SL.

2. Samala Harmony is SP.

3. First-Last Harmony (Language X) is not SL, but is LT.

4. Even-Sibilants (Language Y) is not LTT,PT nor even SF, but is Reg.

ESSLLI 2014 31

Slide 30

Session 1 Summary

• Phonotactic knowledge can be described with stringsets. What

kinds of stringsets are they?

• Generalized Regular Expressions, and restrictions thereof, can

be used to define three classes of languages of decreasing

generative capacity: Reg, SF, and Fin.

• Similarly, model theory allows us to study the nature of

stringsets from two dimensions: the choice of signature and the

power of the logic.

• One signature type uses the Successor relation to describe

words.

ESSLLI 2014 32

Slide 31

Overview Session 2

Local Stringsets I

• Stress and accent patterns

• Strictly Local Stringsets

– Grammar-theoretic definition

– Automata-theoretic characterization

– Abstract (set-theoretic) characterization

– Model-theoretic characterization

• Language Identification in the Limit

ESSLLI 2014 33

Slide 32

What is stress and accent?

1. In many languages—but not all—certain syllables are more

prominent than others. This prominence is referred to as stress

and/or accent.

2. There are no universal phonetic correlates of stress, though

common correlates involve pitch, duration, and loudness.

3. The presence of stress/accent is often detectable by its effects.

In English, for example, unstressed vowels reduce (see notes).

Here are some examples of where stress falls in English words. Note how unstressed
vowels often reduce to a schwa (from [Odd05, p. 89]).

ESSLLI 2014 34

Slide 33

An Alphabet for Stress Patterns

Syllable Weight Stress

• L = Light • σ = Unstressed Stress

• H = Heavy • σ́ = Primary Stress

• S = Super Heavy • σ̀ = Secondary Stress

• σ = Arbitrary •
+
σ = Some Stress

•
∗
σ = Arbitrary Stress

The entire alphabet is thus given by any combination of a primary glyph (Syllable Weight
column) and a diactric, or absence thereof (the Stress column).

For instance, H́ is an alphabetic symbol, interpreted as a heavy syllable with primary

stress. Similarly, σ indicates an unstressed, aribtrary syllable, and
∗
σ indicates any syllable

with any level of stress (including unstressed).

ESSLLI 2014 35

Slide 34

Stress in Pintupi [HH69]

a. páïa ‘earth’

b. tjúúaya ‘many’

c. máíawàna ‘through from behind’

d. púíiNkàlatju ‘we (sat) on the hill’

e. tjámul̀ımpatjùNku ‘our relation’

f. ú́ıíir̀iNulàmpatju ‘the fire for our benefit flared up’

g. kúranjùlul̀ımpatjùõa ‘the first one who is our relation’

h. yúmaõ̀ıNkamàratjùõaka ‘because of mother-in-law’

ESSLLI 2014 36

Slide 35

Pintupi – Linguistic generalization

a. σ́ σ

b. σ́ σ σ

c. σ́ σ σ̀ σ

d. σ́ σ σ̀ σ σ

e. σ́ σ σ̀ σ σ̀ σ

f. σ́ σ σ̀ σ σ̀ σ σ

g. σ́ σ σ̀ σ σ̀ σ σ̀ σ

h. σ́ σ σ̀ σ σ̀ σ σ̀ σ σ

• Primary stress falls on the first syllable and secondary stress on

all nonfinal odd syllables.

An important difference between the generalization and the words in (a)-(h) is that the
generalization describes an infinite set of words, whereas the (a)-(h) only describes eight.

ESSLLI 2014 37

Slide 36

Pintupi with expressions. Let Σ = {σ́, σ̀, σ}.

• A generalized regular expression

σ́
((

(σ σ̀)∗ σ(σ+λ)
)
+ λ

)

• A star free expression

1. Let R = (σ σ̀)∗.

2. Let

S = λ+

σ∅

& ∅ σ̀

& ∅ σ́∅

& ∅ σ̀ σ̀∅

& ∅ σ σ∅

3. Observe that LGRE(R) = LGRE(S).

When we look at the definition of S, we can understand the star free expression in terms
of its parts. These say “An admissible sequences is either λ or else it. . .

. . . must begin with σ
and must end with σ̀
and cannot contain any σ́
and cannot contain any σ̀ σ̀
and cannot contain any σ σ.”

ESSLLI 2014 38

Slide 37

Substrings (also called factors)

1. For all u,w ∈ Σ∗, u - w (“u is a substring of w”)
def
= (∃x, y ∈ Σ∗)[xuy = w].

2. For all w ∈ Σ∗, Fk(w)
def
= {u | u - w ∧ |u| = k} if k ≤ |w| and

{w} otherwise.

3. For all L ⊆ Σ∗, Fk(L)
def
=

⋃

w∈L Fk(w)

Exercise 8 Calculate the following.

1. F2(aaa)

2. F2(aaab)

3. F10(aaab)

4. F3(σ́ σ σ̀ σ σ̀ σ σ̀ σ σ)

ESSLLI 2014 39

Slide 38

Strictly Local Stringsets

We introduce two special symbols marking word boundaries:

⋊,⋉ 6∈ Σ.

Definition 3 (Strictly Local stringsets) A Strictly k-Local

Grammar G = (Σ, T) where T is a subset of Fk

(
{⋊}Σ∗{⋉}

)
and

LSL

(
(Σ, T)

) def
= {w | Fk(⋊w⋉) ⊆ T }.

A stringset L is strictly k-local if there exists a strictly k-local G

such that LSL(G) = L. Such stringsets form the exactly the Strictly

k-Local stringsets (SLk).

A stringset is strictly local if there exists a k such that it is strictly

k-local. Such stringsets form exactly the Strictly Local stringsets

(SL).

Exercise 9

1. Show that, given an alphabet, Σ and a k, there are only finitely many Strictly k-local
stringsets.

2. Show that Fin 6⊆ SLk for any k.

3. Show that Fin (SL.

4. Show that there are infinitely many SL stringsets.

ESSLLI 2014 40

Slide 39

Strictly Local stringsets as Tiling

⋊ ⋉ a⋊ a b b a b ⋉

a⋊ a b b a a b b ⋉

• For G = (Σ, T), the factors in T can be thought of as a set of

tiles. Placing matching tiles generates words.

• In the above diagram, the tiles are 2-factors and generate the

word abab.

ESSLLI 2014 41

Slide 40

Modeling Pintupi with a Strictly Local stringset

Pintupi is Strictly 3-local.

G =

⋊ σ́⋉, σ́ σ σ, σ σ⋉, σ̀ σ σ̀,

⋊ σ́ σ, σ́ σ σ̀, σ σ̀ σ, σ̀ σ σ,

σ́ σ⋉, σ̀ σ⋉

Exercise 10

1. Generate some words with the above 3-factors.

2. Pintupi is not Strictly 2-local. Explain why not.

ESSLLI 2014 42

Slide 41

SL stringsets - Scanners

a b a b a b a b a babababa

a a b b

ba

b a

b

a

∈

START S Q

R

• The tiling perspective naturally leads to a recognition strategy.

Given a word, check the k-sized tiles in it one a time from left

to right against the grammar. The diagram describes such a

scanner for the case when T = {⋊⋉,⋊a, ab, ba, b⋉}.

ESSLLI 2014 43

Slide 42

SL stringsets - Abstract characterization

The theorem below establishes a set-based characterization of SL

stringsets independent of any grammar, scanner, or automaton.

Theorem 4 (k-Local Suffix Substitution Closure) For all

L ⊆ Σ∗, L ∈ SL iff there exists k such that for all

u1, v1, u2, v2, x ∈ Σ∗ it is the case that

u1xv1, u2xv2 ∈ L and |x| = k − 1 ⇒ u1xv2 ∈ L.

Exercise 11

1. Show that the class of SLk stringsets is not closed under

• Union

• Complement

• If k > 2, Kleene star.

2. Is SL closed under any of these operations?

3. (For thought) Show that SL2 is closed under Kleene star.

ESSLLI 2014 44

Slide 43

Using Theorem 4

• The theorem provides a law which simultaneously

– provides a basis for inference

– provides a method for establishing non-SLk stringsets.

u1 σ1 · · ·σk−1 v1 ∈ L

u2 σ1 · · ·σk−1 v2 ∈ L

u1 σ1 · · ·σk−1 v2 ∈ L

Exercise 12 Consider a Strictly 2-Local stringset L which contains the words aaa and aab.
Using this theorem, explain what other words must be in L.

ESSLLI 2014 45

Slide 44

Showing what is not SLk.

Pintupi is not Strictly 2-local because we can find a

counterexample.

σ́σ σ ∈ L

σ́ σ σ ∈ L

σ́σ σ σ 6∈ L

ESSLLI 2014 46

Slide 45

Showing what is not SL.

Samala is not Strictly k-Local for any k.

s ok s ∈ L

S ok S ∈ L

s ok S 6∈ L

Exercise 13

1. Using this theorem, explain why First/Last Harmony is not Strictly k-Local for any k.

2. Using this theorem, explain why Even-sibilants is not Strictly k-Local for any k.

ESSLLI 2014 47

Slide 46

SL Hierarchy

Theorem 5 (SL-Hierarchy)

SL1 (SL2 (SL3 (· · · (SLi (SLi+1 (· · · (SL

Every Finite stringset is SLk for some k: Fin (SL.

There is no k for which SLk includes all Finite languages.

ESSLLI 2014 48

Slide 47

SL stringsets - Model Theoretic Characterization

W⊳ = 〈D, ⊳, Pσ〉σ∈Σ

• Earlier we introduced the above model to describe words.

• Now we will introduce a logic based on a restricted form of

propositional logic, along with a naming function, similar to

what we did yesterday with regular expressions.

But first, to set the stage, we must discuss embeddings.

ESSLLI 2014 49

Slide 48

Embeddings

• An injective homomorphism between two models M1 and M2

with the same signature is a function h which maps every

element in D1, the domain of M1, to elements in D2, the

domain of M2, such that for all n-ary relations R and all

n-tuples of elements of D1,

R1(x1, · · ·xn) ⇔ R2(h(x1), · · ·h(xn)).

• Such homomorphisms are also called embeddings.

• If there exists an injective homomorphism from M1 to M2 we

say that M1 can be embedded in M2, that M1 is a submodel

of M2 (M1 - M2) and M2 is an extension of M1.

We use the same symbol for “submodel” as we do for “substring”, which we will justify
in a moment.

Exercise 14

1. Assume W⊳. Is there an embedding from Mba to Mccba? Explain.

2. Assume W⊳. Is there an embedding from Mba to Mcabc? Explain.

The following lemma is nearly immediate.

Lemma 2 Consider any words w, v ∈ Σ∗. Then Mw can be embedded in Mv iff w is a
substring of v:

M⊳
w - M⊳

v ⇔ w - v.

Where the first ‘-’ is a relation between models and the second a relation between strings.
Thus any confusion between the two types of relations is harmless.

Note that these are strong homomorphisms; a weak homomorphism requires only that
R1(x1, · · ·xn) ⇒ R2(h(x1), · · ·h(xn))

ESSLLI 2014 50

Slide 49

Restricted Propositional Logic (RPL)

A sentence of RPL is defined inductively as follows.

1. The base cases:

• For all w ∈ {⋊, λ}Σ∗{⋉, λ}, (¬w) is a sentence of RPL.

2. The inductive case:

• If φ and ψ are sentences of RPL then so is (φ ∧ ψ).

3. Nothing else is a sentence of RPL.

Essentially, all sentences will have the form

(¬w0) ∧ (¬w1) ∧ · · · ∧ (¬wn)

In other words sentences of the restricted propositional logic considered here are simply
conjunctions of negations of atomic propositions (negative literals).

(We omit many parentheses because the semantics of the naming function (next slide)
are such that ∧ will be associative and commutative.)

This is not the only possible restricted propositional logic. We might limit it to dis-
junctions of positive literals, for example, which would allow definition of all and only the
stringsets that are complements of stringsets definable with this RPL.

ESSLLI 2014 51

Slide 50

Restricted Propositional Logic - Stringsets

• To define the naming function, it is first necessary to say what

it means for a word w ∈ Σ∗ to model (|=) a sentence φ in

Restricted Propositional Logic.

• The idea is if Mw |= φ then φ is true of w.

• Consider any v ∈ {⋊}Σ∗{⋉}.

1. The base cases:

– For all w ∈ {⋊, λ}Σ∗{⋉, λ}, Mv |= (¬w) ⇔ Mw 6- Mv.

2. The inductive cases:

– For all φ, ψ in RPL, v |= (φ ∧ ψ) ⇔ v |= φ and v |= ψ.

• Then

LRPL(φ) = {w | M⋊w⋉ |= φ}

The above definition is not signature-specific. (Although it does presume the presence
of ‘⋊’ and ‘⋉’ in the alphabet, which will not always be the case.)

It follows that, under the W⊳ signature, stringsets are defined as exactly those words
which do not contain any of the atomic propositions as substrings.

Exercise 15

1. Write a sentence of RPL that yields the Pintupi stress pattern.

2. How do the atomic elements of this sentence relate to the tiles (elements of T in the
grammar-based definition) discussed earlier?

3. RPL differs from the traditional notion of propositional logic, in which the atomic formulae
are propositional variables and a model is a valuation: an assignment of truth values to the
propositional variables.

(a) What, in RPL, corresponds to propositional variables?

(b) What corresponds to a valuation?

While word models have internal structure, in the propositional semantics it only contributes
to the definition of -. There is no way, in our propositional languages, to refer to the
relations of the signature directly.

Two words are logically equivalent wrt RPL (w ≡RPL v) iff they share the same set of
k-factors (Fk(w) = Fk(v)).

ESSLLI 2014 52

Slide 51

Cognitive complexity of SL

• Any cognitive mechanism that can distinguish member strings

from non-members of a (properly) SLk stringset must be

sensitive, at least, to the length k blocks of consecutive events

that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the immediately prior sequence of k − 1 events.

• Any cognitive mechanism that is not sensitive to the length k

blocks of consecutive events that occur in the presentation of

the string will be unable to recognize some SLk stringsets.

ESSLLI 2014 53

Slide 52

Identification in the limit from text [Gol67]

• A positive presentation of a language L is a total, surjective

function tL : N → L. It is also called a text for L and can be

thought of as an infinite sequence of elements drawn from L

such that every element of L occurs at least once. The initial

portion of a text up to its ith element is denoted tL[i].

• Let SEQ
def
= {tL[i] | L ⊆ Σ∗ and i ∈ N}.

• For some class of grammars G, a learner is a function

φ : SEQ → G.

• Class L is identifiable in the limit from positive data if there

exists a computable φ such that

(∀L ∈ L)(∀tL)(∃i ∈ N)(∀j > i)(∃G ∈ G)
[
φ(tL[j]) = G and L(G) = L

]

According to the above definition, there is no text for the empty language. This is
usaully accomodated by letting the codomain of tL include an element ‘#’ called ‘pause’
which means a moment when no information is forthcoming. Then there would be exactly
one text for the empty language: (∀i ∈ N)[t∅(i) = #].

The learning definition requires that for every language in the class, for every text for the
language, that the learner converge to a single grammar and that this grammar be correct
in the sense that it generates the target language exactly.

Surveys of different definitions of learning can be found in [OWS86, JORS99, LZZ08,
ZZ08, Hei14].

ESSLLI 2014 54

Slide 53

Learning Fin

Theorem 6 (Gold 1967) Fin is identifiable in the limit from

positive data.

• Consider grammars to be finite stringsets, and let L be the

identity function. So L(G) = G.

• Let content(tL[i])
def
= {w ∈ Σ∗ | (∃i)[tL(i) = w]}.

• Then consider this learner:

φ(tL[i])
def
= content(tL[i])

Essentially, the learning algorithm just memorizes the words it has observed so far. Since
these are finite languages, in any presentation, there will be a point when every word in the
language has been seen. Thus the learner will have converged to a correct grammar for the
language.

ESSLLI 2014 55

Slide 54

Non-Learnability of ANY ‘superfinite’ class

A class of languages is superfinite if it includes every finite

language and at least one infinite language.

Theorem 7 (Gold 1967) No superfinite class is identifiable in

the limit from positive data.

• Therefore, none of SL, SF, and Reg is learnable in this sense.

• Gold suggested three ways to proceed: consider non-superfinite

classes, allow for some negative evidence, constrain the texts

(tL) learners are required to succeed on.

Two ways (at least) to prove this. Gold’s original proof stands, but modern treatments
are based on so-called ‘locking’ sequences [BB75, OWS86, JORS99]

• Show that if a learner can learn the infinite language on every text for it then there is
a text for some finite language that the learner fails on.

• Show that if a learner identifies every finite language L then there is a text for the
infinite language that the learner fails to identify the infinite language on.

ESSLLI 2014 56

Slide 55

Learning SLk

Theorem 8 (Garcia et al. 1993) SLk is identifiable in the limit

for positive data.

• Let G and L be given by the grammar-theoretic definition

earlier.

• Consider this learner:

φ(tL[i])
def
= Fk

(

content(tL[i]
)

Essentially, this learner just remembers the k-factors of words it has observed. Since
there are only finitely many such k-factors at some point in any text for a SLk language,
they will all be observed.

You may observe that this learner essentially applies a function to the content of the
observed text and that this function returns grammatical information. The consequences of
this observation were explored by [Hei10, KK10, HKK12].

ESSLLI 2014 57

Slide 56

Stress Typology

Heinz’s Stress Pattern Database (ca. 2007)—109 patterns

9 are SL2 Abun West, Afrikans, . . . Cambodian,. . .

Maranungku

44 are SL3 Alawa, Arabic (Bani-Hassan),. . .

24 are SL4 Dutch,. . .

3 are SL5 Asheninca, Bhojpuri, Hindi (Fairbanks)

1 is SL6 Icua Tupi

28 are not SL Amele, Bhojpuri (Shukla Tiwari), Ara-

bic (Classical), Hindi (Kelkar), Yidin,. . .

72% are SL, all k ≤ 6. 49% are SL3.

There is a polynomial time algorithm that, given a regular stringset (as a DFA) decides
whether it is SL or not and, if it is, the minimum k for which it is SLk [ELM+08].

Using this, a group of Earlham students has classified the patterns in [Hei07, Hei09] with
respect to the SL hierarchy.

The results indicate that the majority of stress patterns are, in fact, quite simple and
that the amount of context that is relevant is quite small.

ESSLLI 2014 58

Slide 57

Summary Session 2

• There are several natural definitions of SL and SLk languages.

• SLk is identifiable in the limit from positive data (but SL is

not.

• Many phonotactic patterns and stress patterns are SLk for

small k (but not all are SL).

ESSLLI 2014 59

Slide 58

Overview Session 3

Local Stringsets II

• Some non-SL stress patterns

• Locally Testable Stringsets (Full Propositional(+1))

• Locally Threshold Stringsets (FO(+1))

• Regular Stringsets (MSO(+1))

ESSLLI 2014 60

Slide 59

Overview of Part 3.1:

Locally Testable Stringsets (LT)

• Some non-SL stress patterns

• Locally Testable Stringsets (Full Propositional(+1))

– Model-theoretic characterization

– Grammatical characterization

– Automata-theoretic characterization

– Abstract (set-theoretic) characterization

– Cognitive complexity of LT.

• A non-LT stress pattern

ESSLLI 2014 61

Slide 60

Yidin [Dix77, HV87, Hei07]

• Primary stress on the leftmost heavy syllable, else the initial

syllable

• Secondary stress iteratively on every second syllable in both

directions from primary stress

• No light monosyllables

Yidin is an Australian language, first described in 1971. The description is somewhat
controversial, since there were very few surviving informants. In any case, it is the patterns
that concern us here, not the question of whether they are linguistically accurate.

ESSLLI 2014 62

Slide 61

Yidin

• Primary stress on the leftmost heavy syllable, else the initial

syllable

– First H gets primary stress (No-H-before-H́)

– Ĺ only if initial (Nothing-before-Ĺ)

– Ĺ implies no H (No-H-with-Ĺ)

• Secondary stress iteratively on every second syllable in both

directions from primary stress

– σ and
+
σ alternate (Alt)

• No light monosyllables

– No Ĺ monosyllables (No-⋊ Ĺ⋉)

• At least one σ́ (Some-σ́) [Assumed]

• No more that one σ́ (At-Most-One-σ́) [Assumed]

We can extract a set of explicit constraints from the description.
These are not the only way of factoring the constraints and not fully independent. No-

⋊ Ĺ⋉, for example, can be reduced to No Ĺ⋉ in the presence of Nothing-before-Ĺ. Which
constraints are fundamental (which we refer to as primitive constraints) is a linguistic issue.
Again, we are interested in these particular constraints, not in the issue of whether they are
truly primitive.

We have factored the constraint that every word has exactly one syllable that gets
primary stress, which is assumed in most cases, into two components: ≥ 1 (often called
“obligatoriness”) and ≤ 1 (often called “culmanitivity”). These two components not only
have distinct formal complexity, they seem to be phonotactically independent [Hym09].

Exercise 16 Which of these are SL? For those that are, what is k?

ESSLLI 2014 63

Slide 62

Determining Complexity of Factored Stress

Patterns

• We will factor patterns into the co-occurrence (conjunction,

intersection) of primitive constraints.

• Our complexity classes form a proper hierarchy.

• Each of the classes is closed under intersection.

• Hence, the complexity of a compound constraint is no more

than the maximal complexity of its primitive factors.

ESSLLI 2014 64

Slide 63

No-H-with-Ĺ

⋊ Ĺ

k−1
︷ ︸︸ ︷

L · · ·L ⋉

⋊ H́

k−1
︷ ︸︸ ︷

L · · ·L H ⋉

⋆ ⋊ Ĺ

k−1
︷ ︸︸ ︷

L · · ·L H ⋉

No-H-with-Ĺ 6∈ SL

Exercise 17

• Show that Some-σ́ is not SL.

• How, then, can any stress pattern be SL?

Because they are conjunctions only of negative literals, SL constraints can only forbid the
occurrence of a factor, they cannot require an occurrence.

We could accommodate required factors by allowing positive literals, in which case we
would have a conjunctive logic with the scope of negation limited to atomic formulae, but
this gives a level of complexity that is not particularly interesting in itself. It is more useful
to allow negation to have arbitrary scope, in which case we get a full Boolean logic, since
disjunction can be reduced to conjunction and negation.

ESSLLI 2014 65

Slide 64

Full Propositional Logic for W⊳ (Prop(+1))

—Syntax

k-Expressions

k-expressions are defined inductively as follows.

1. The base cases:

• For all w ∈ Fk({⋊}Σ∗{⋉}), w is a k-expression.

2. The inductive cases:

• If φ is a k-expression then so is (¬φ).

• If φ and ψ are k-expressions then so is (φ ∧ ψ).

3. Nothing else is a k-expression.

ESSLLI 2014 66

Slide 65

Full Propositional Logic for W⊳ (Prop(+1))

—Semantics

Consider any v ∈ {⋊}Σ∗{⋉} and any k-expression φ:

1. The base cases:

• If φ = w ∈ {⋊, λ}Σ∗{⋉, λ}, Mv |= φ⇔ Mw - Mv.

2. The recursive case:

• If φ = (¬ψ) then Mv |= φ⇔ Mv 6|= ψ.

• If φ = ψ1 ∨ ψ2 then Mv |= φ⇔ either Mvψ1 or Mvψ2

L(ϕ)
def
= {w ∈ Σ∗ | M⋊w⋉ |= φ}.

A stringset is k-locally definable iff it is L(ϕ) for some k-expression

ϕ. It is locally definable iff it is k-locally definable for some k.

We can, of course, now use any Boolean-definable connectives, for example:

φ→ ψ ≡ ¬φ ∨ ψ
φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ)

etc.

Implication (→) is particularly useful in expressing linguistic constraints.

ESSLLI 2014 67

Slide 66

No-H-with-Ĺ and Some-σ́ are Locally Definable

Some- σ́ = L(σ́)

No- σ́ -with- Ĺ = L(Ĺ → ¬H)

Exercise 18 For each of these, what is k?

ESSLLI 2014 68

Slide 67

k-Local Grammars

Definition 4 (k-Locally Testable Stringsets) A k-Local

Grammar is a pair G = 〈Σ, T 〉 where T is a subset of

P(Fk

(
{⋊}Σ∗{⋉}

)
).

The stringset licensed by G is

LLT

(
〈Σ, T 〉)

def
= {w | Fk(w) ∈ T }.

A stringset L is k-local if there exists a k-local G such that

LSL(G) = L. Such stringsets form the exactly the k-Locally Testable

stringsets (LTk).

A stringset is Locally Testable if there exists a k such that it is

k-local. Such stringsets form exactly the Locally Testable stringsets

(LT).

We can get grammars for LTk stringsets by following the observation that, in the context
of our propositional logics, words are, in essence, Boolean valuations of the atomic formulae,
which are just the set of k-factors over the given alphabet.

So a word model just specifies which atomic formulae are to be interpreted as true (those
that occur in the word) and which are false (those that do not).

An LTk grammar, then, just specifies which of these valuations (i.e., words) are accept-
able.

It is immediate, then, that Local Grammars are equivalent in expressive power to k-
expressions.

Exercise 19 How does this definition differ from that of strictly k-local grammars?

ESSLLI 2014 69

Slide 68

LT Automata

a b a b a b a b a babababa

a a b b

Boolean
Network

Yes

No

Accept

Reject

a

b

a a

a b

b a

b b

a

b X

X

X

X

Membership in an LTk stringset depends only on the set of

k-Factors which occur in the string.

Recognizing an LTk stringset requires only remembering which

k-factors occur in the string.

Automata for LT are scanners that keep track of which factors occur in the word. So
the internal table embodies the valuation represented by the word.

The k-expression is implemented in Boolean network

ESSLLI 2014 70

Slide 69

Character of Locally Testable sets

Theorem 9 (k-Test Invariance) A stringset L is Locally

Testable iff

there is some k such that, for all strings x and y,

if ⋊ · x ·⋉ and ⋊ · y ·⋉ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

Definition 5 (k-Local Equivalence)

w ≡L
k v

def
⇐⇒ Fk(⋊w⋉) = Fk(⋊v⋉).

It should be clear that LT definitions can’t distinguish strings that have same k-factors.
So, with respect to LT definitions, strings with the same set of k-factors are equivalent.

This equivalence categorizes the set of all strings into classes based on their set of k-
factors. LT definitions can’t break these classes—if one string in a class satisfies the defini-
tion then all strings in the class necessarily satisfy the definition as well.

In this way, a set of strings is LT iff it is the union of some LTk equivalence classes, for
some k.

Exercise 20 Show that there are only finitely many LTk stringsets.

ESSLLI 2014 71

Slide 70

Using k-Local Equivalence

Inductive mode

Given some strings in an LTk stringset, by considering the form of

the strings that are in their equivalence classes of the given strings

one can determine what other strings must be in the class.

Contradiction mode

To show that a stringset L is not LTk it suffices to show any two

strings w ∈ L and v 6∈ L which are in the same k-local equivalence

class: w ≡L
k v.

To establish that a stringset is not LT, it suffices to show that such

a counterexample exists for any k.

As with suffix-substitution closure, k-test invariance can be used inductively, to get a
sense of the strings that must be included (at least) in an LTk the stringset given knowledge
of some of the strings it includes.

And, as with suffix-substitution closure, one can establish that a stringset is not LT by
exhibiting a class of counterexamples parameterized by k.

Exercise 21

1. Suppose that L ∈ LT2 and that both of the strings aaba and bb are in L.

• Give the sets of k-factors of aaba and of bb.

• Using that, describe what other strings must be included in L (at least).

2. Let L2a be the set of strings over {a, b} which include at least two ‘a’s. (In notation we
would say {w ∈ Σ∗ | |w|a ≥ 2}.) Show that L2a is not LT.

ESSLLI 2014 72

Slide 71

LT Hierarchy

Theorem 10 (LT-Hierarchy)

LT1 (LT2 (LT3 (· · · (LTi (LTi+1 (· · · (LT

SLk (LTk

LTk (LTk+1

LTk 6⊆ SLk+1

SLk+1 6⊆ LTk

SLk and LTk for parallel proper hierarchies. While for a given k, SLk (LTk (and
consequently SLk (LTk+i for all i ∈ N), all other relations between the hierarchies are
incomparable.

Exercise 22 Prove it (them).

ESSLLI 2014 73

Slide 72

At-Most-One-σ́ is not LT

⋊

k−1
︷ ︸︸ ︷
σ · · ·σ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ⋉ ∈ LOne−σ́

⋊

k−1
︷ ︸︸ ︷
σ · · ·σ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ⋉ 6∈ LOne−σ́

But

⋊

k−1
︷ ︸︸ ︷
σ · · ·σ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ⋉ ≡L

k ⋊

k−1
︷ ︸︸ ︷
σ · · ·σ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ⋉

At-Most-One-σ́ is not LT (hence not SL)

ESSLLI 2014 74

Slide 73

Cognitive interpretation of LT

• Any cognitive mechanism that can distinguish member strings

from non-members of a (properly) LTk language must be

sensitive, at least, to the set of length k contiguous blocks of

events that occur in the presentation of the string—both those

that do occur and those that do not.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the set of length k blocks of events that occurred at any

prior point.

• Any cognitive mechanism that is sensitive only to the

occurrence or non-occurrence of length k contiguous blocks of

events in the presentation of a string will be able to recognize

only LTk languages.

Note that while negative judgments about SL constraints can be made as soon as an
exception is encountered, in general judgments about properly LT constraints can’t be made
until entire string has been processed. In particular, there is no way to determine that some
required factor does not occur until all of the factors of the word have been scanned.

ESSLLI 2014 75

Slide 74

Summary of Part 3.1

• We introduced the stress pattern of Yidin which will provide us

with a framework for exploring the complexity of naturally

occurring constraints.

• We factored that stress pattern into a set of primitive

constraints.

• The overall complexity of the full pattern will be the

supremum of the complexity of those primitive constraints.

• You established that Alt and Nothing-before-Ĺ are SL2, that

(by itself) No-⋊ Ĺ⋉ is SL3 but that its conjunction with

Nothing-before-Ĺ is just SL2.

• We established that No-H-with-Ĺ and Some-σ́ are not SL

ESSLLI 2014 76

Slide 75

Summary of Part 3.1 (cont.)

• We introduced k-expressions, the formulae of the full

Propositional logic for W⊳.

• We established that No-H-with-Ĺ and Some-σ́ are LT1.

• We gave grammar- and automata-theoretic characterizations of

LT.

• We gave an abstract characterization of LT in terms of Local

Test Invariance and looked at how to use this to explore given

LT stringsets and to show that a given stringset is not LT.

• We showed that At-most-one-σ́ is not LT.

• We gave a characterization of the cognitive complexity of LT

constraints.

ESSLLI 2014 77

Slide 76

Overview of Part 3.2:

Locally Threshold Testable Stringsets (LTT)

• Model-theoretic characterization

• Abstract (set-theoretic) characterization

• Cognitive complexity of LTT.

• Some non-LTT stress pattern.

ESSLLI 2014 78

Slide 77

FO(+1)

Models: 〈D, ⊳, Pσ〉σ∈Σ

First-order Quantification (over positions in the strings)

Syntax Semantics

x ≈ y w, [x 7→ i, y 7→ j] |= x ≈ y
def
⇐⇒ j = i

x ⊳ y w, [x 7→ i, y 7→ j] |= x ⊳ y
def
⇐⇒ j = i+ 1

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)

for some i ∈ D

FO(+1)-Definable Stringsets: L(ϕ)
def
= {w | w |= ϕ}.

To be able to reason about multiple occurrences of the same symbol we will need to be
able to talk about positions in the string. This is where the internal structure of the word
models becomes essential.

FO(+1) is ordinary First-Order logic over the successor word models. The syntax of
the logical formulae includes the predicate symbols for the successor relation (⊳, we use this
as an infix binary relation), and for each of the alphabet symbols (the Pσ). There are no
constants in this language, so the only way to refer to positions is via first-order variables,
i.e., variables which range over individuals of the domain. We assume an infinite supply of
these.

The semantics of the logic is defined in terms of the satisfaction relation, a relation
between models and logical formulae, which asserts that the formula is true in the model,
i.e., that the property that the string has the property that the formula encodes. When
there are free variables in the formula (those that are not in the scope of a quantifier) this
is contingent on which positions are assigned to each of those variables. When we say

w, [x 7→ i, y 7→ j] |= ϕ(x, y)

we are asserting that the formula ϕ, in which x and y occur free, is true in the word w if
x is bound to position i and y is bound to position j. By convention, if s is an assignment
of positions to variables (a partial function from the set of variables to the domain of the
structure), s[x 7→ i] denotes the assignment which is identical to s for all variables other
than x and which binds x to i.

If there are no free variables in a formula, it expresses a (non-contingent) property
of strings. Formulae without free variables are called sentences. A stringset is FO(+1)
definable iff there is a FO(+1) sentences that is satisfied by all and only the strings in the
set.

We also include the familiar Boolean connectives and the existential quantifier. By
convention, we enclose the quantifier along with the variables it binds in ordinary parentheses
and enclose the formula it scopes over in square brackets. So

(∃x, y)[ϕ(x) ∧ ψ(y)]

ESSLLI 2014 79

is true in a model iff there is some assignment of positions in the domain of the model to
the variables x in y which make the formulae ϕ (with x free) and ψ (with y free) true in
that model.

Note that the universal quantifier ∀ (which asserts that all assignments to the variables
make the matrix formula true in the model) is definable from ∃:

(∀x)[ϕ(x)] ≡ ¬(∃x)[¬ϕ(x)].

ESSLLI 2014 80

Slide 78

Some FO(+1) Definable Constraints

ϕOne-σ́ = (∃x)[σ́(x) ∧ (∀y)[σ́(y) → x ≈ y]]

Lemma 3 Let f be any k-factor over {⋊,⋉} ∪ Σ. There is a

FO(+1) sentence occursf which is satisfied by a string w iff f

occurs as a substring of w.

With the ability to distinguish distinct occurrences of a symbol we can assert that there
is exactly on occurrence of primary stress in a word by asserting that there is some position
in which primary stress occurs ((∃x)[σ́(x) . . .), and that there are no other positions in which
primary stress occurs (∧(∀y)[σ́(y) → x ≈ y]]).

We no longer extend the alphabet with ⋊ and ⋉, as they are no longer necessary. We can
assert that the position assigned to x is the initial position of the string with the formula:

Initial(x) ≡ ¬(∃y)[y ⊳ x]

We can define Final(x) similarly.

Exercise 23

1. Write a FO(+1) sentence that is true of a string iff an unstressed syllable occurs somewhere
in the string immediately before some syllable with secondary stress.

2. Prove Lemma 3. There are three (possibly four) cases to handle: when neither ⋊ nor ⋉

occur in the factor, when the factor starts with ⋊ and when it ends with ⋉. Depending on
how you go about these, you may have to handle the case in which it both starts with ⋊ and
ends with ⋉ separately.

3. Write an FO(+1) expression that asserts that the ante-penultimate (i.e., the syllable that
precedes the syllable that precedes the final syllable) has no stress (neither primary nor
secondary).

4. Write an FO(+1) expression that asserts that there are at least two distinct occurrences of
light syllables in a word.

5. Argue that FO(+1) can express that there are at least, at most, or exactly n occurrences of
a particular symbol for any natural number n.

ESSLLI 2014 81

Slide 79

Character of the FO(+1) Definable Stringsets

Definition 6 (Locally Threshold Equivalent (≡k,t)) Two

strings w and v are (k, t)-equivalent (w ≡k,t v) iff

for all f ∈ Fk(⋊ · w ·⋉) ∪ Fk(⋊ · v ·⋉)

either |⋊ · w ·⋉|f = |⋊ · v ·⋉|f
or both |⋊ · w ·⋉|f ≥ t and |⋊ · v ·⋉|f ≥ t,

Definition 7 (Locally Threshold Testable) A set L is Locally

Threshold Testable (LTT) iff there is some k and t such that, for

all w, v ∈ Σ∗ if w ≡k,tv then w ∈ L ⇐⇒ v ∈ L.

Theorem 11 (Thomas) A set of strings is First-order definable

over 〈D, ⊳, Pσ〉σ∈Σ iff it is Locally Threshold Testable.

LTk = LTTk,1, hence LT (LTT

LTTk,t stringsets categorize strings on the basis of (k, t)-equivalence; a stringset is
LTTk,t iff it is the union of some set of equivalence classes of Σ∗ wrt ≡k,t.

ESSLLI 2014 82

Slide 80

LTT Automata

a a b b

a b a a a b a b a bbababab

Boolean
Network

Yes

No

Accept

Reject

φ

a

b

a

a

b

b

b

ab

a b

a

X

XX

XX

X

X

X

X

X

X

Membership in an FO(+1) definable stringset depends only on the

multiplicity of the k-factors, up to some fixed finite threshold,

which occur in the string.

ESSLLI 2014 83

Slide 81

Cognitive interpretation of FO(+1)

• Any cognitive mechanism that can distinguish member strings

from non-members of a (properly) FO(+1) stringset must be

sensitive, at least, to the multiplicity of the length k blocks of

events, for some fixed k, that occur in the presentation of the

string, distinguishing multiplicities only up to some fixed

threshold t.

• If the strings are presented as sequences of events in time, then

this corresponds to being able count up to some fixed threshold.

• Any cognitive mechanism that is sensitive only to the

multiplicity, up to some fixed threshold, (and, in particular, not

to the order) of the length k blocks of events in the presentation

of a string will be able to recognize only FO(+1) stringsets.

ESSLLI 2014 84

Slide 82

A non-FO(+1) Definable Constraint

No-H-before-H́

• Primary stress falls on the leftmost heavy syllable

• Yidin, Murik, Maori, Kashmiri, . . .

⋆ H . . . H́

⋊

2kt
︷ ︸︸ ︷

L̀ L · · · L̀ L H́ H

2kt
︷ ︸︸ ︷

L̀ L · · · L̀ L H̀ H

2kt
︷ ︸︸ ︷

L̀ L · · · L̀ L⋉

≡L
k,t

⋆ ⋊ L̀ L · · · L̀ L
︸ ︷︷ ︸

2kt

H̀ H L̀ L · · · L̀ L
︸ ︷︷ ︸

2kt

H́ H L̀L · · · L̀ L
︸ ︷︷ ︸

2kt

⋉

No-H-before-H́ requires the ability to reason about the order of occurrences of symbols
without being explicit about adjacency. There are two ways of doing this. One is to move
to a signature including ⊳+, which we will do do in the next class.

The other is to extend k-expressions with concatenation. Both Some-H and Some-H́
are LT1 constraints, so No-H-before-H́ is just the complement of the concatenation of two
LT stringsets. McNaughton and Papert [MP71] define LTO to be the closure of LT under
concatenation and Boolean operations. They then show that LTO is equivalent to both SF
and FO(<) (just two of at least three truly remarkable results in this book). We will return
to this class of stringsets tomorrow.

ESSLLI 2014 85

Slide 83

Summary of Part 3.2

• We introduced the syntax and semantics of First-Order logic

over W⊳ known generally as FO(+1).

• We showed that No-More-than-One-σ́, and hence, One-σ́ is

FO(+1) definable.

• We showed that the substring relation is FO(+1) definable.

• We gave Thomas’s characterization of FO(+1) in terms of

Local Threshold Testability and introduced the dual hierarchy

of classes LTTk,t.

• We introduced LTT automata

• We characterized the cognitive complexity of LTT constraints.

• We showed that No-H-before-H́ is not LTT.

ESSLLI 2014 86

Slide 84

Overview of Part 3.3:

Regular Stringsets (Reg)

• MSO(+1)

• FSA as tiling systems

• Projections (Alphabetic Homomorphisms)

• Cognitive complexity of Reg.

• Yidin revisited

ESSLLI 2014 87

Slide 85

Monadic Second-Order Logic over Strings

(MSO(+1))

〈D, ⊳, Pσ〉σ∈Σ

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

Syntax Semantics

X(x) w, s |= X(x)
def
⇐⇒ s(x) ∈ s(X)

(∃X)[ϕ(X)] w, s |= (∃X)[ϕ(X)]
def
⇐⇒ w, s[X 7→ S] |= ϕ(x)]

for some S ⊆ D

MSO(+1)-Definable Stringsets: L(ϕ)
def
= {w | w |= ϕ}.

⊳+ is MSO-definable from ⊳, so there is no difference in terms of

definability between MSO(+1) (for W⊳ models) and MSO(+1, <)

(for W⊳,⊳+

models).

Monadic Second-Order adds quantification over subsets of the domain. We use capital
letters for set variables to distinguish them from individual variables (lower case). Again,
there are no constants in this language so the only way to refer to specific sets is via these
variables. We treat them as if they were monadic relation symbols: X(x) asserts that the
individual that is assigned to x is included in the set assigned to X .

To show that MSO(+1, <) ≡ MSO(+1), it suffices to show that the ⊳+ relation can be
defined in MSO using only ⊳:

x ⊳+ y ⇔ (∀X)
[(
(∀z0, z1)[(X(z0) ∧ z1 ⊳ z0) → X(z1)] ∧X(y)

)
→ X(x)

]

This says that every downward closed set (i.e., every set that includes the predecessors of
all elements in the set) that includes y also includes x.

Exercise 24

• Give an MSO(+1, <) formula that is satisfied by all and only those strings that satisfy
No-H-before-H́.

• Give an MSO(+1) formula (that does not use the MSO(+1) definition of ⊳+) that does the
same thing. (Hint, use an MSO variable to mark positions in the string. Then use ∃X to
erase the marks.)

ESSLLI 2014 88

Slide 86

Finite State Automata

a

Y N

Internal State

a a b a b b c c c b a

Finite State Automata can be thought of as scanners with a single symbol window and
a state that stores arbitrary (but finitely bounded) information about the string that has
been scanned so far in an internal state.

ESSLLI 2014 89

Slide 87

Finite State Automata (cont.)

a

b b
a

b a, b

〈0, 1, a〉, 〈0, 0, b〉, 〈1, 2, a〉, 〈1, 1, b〉, 〈2, >2, a〉, 〈2, 2, b〉, 〈>2, >2, a〉, 〈>2, >2, b〉

0 1 2 >2

We can think of the FSA as a categorizer of strings; when it scans a string the state that
it ends up in is the category of that string from the perspective of the FSA. The FSA places
every string in Σ∗ in at least one category. It is deterministic (a DFA) if it places each
string in Σ∗ in exactly one category; it is non-deterministic (an NFA) if it may place some
strings in more than one. The information represented by a state is the set of properties of
strings that are common to all of the strings that end up in that state.

When we say (on the previous slide) that the amount of information must be bounded,
what we meant (precisely) is that there is a fixed finite bound on the number of categories,
that is, the FSA has a fixed number of states. In particular, this means that the amount of
information we are tracking can’t depend on the length of the string.

When we say that it must be information about the string that has been scanned so far,
we imply that it must be possible to keep track of that information as we scan the string
one symbol at a time. What this means is that it must be possible to properly define a
relation that tells how to update the state as the FSA scans a symbol. This is the transition
relation of the FSA. It relates a pair of states with a symbol of the alphabet, e.g., 〈qi, qj , σ〉
which says that if the FSA is in state qi and it is scanning the symbol σ it may go to state
qj . For a DFA, this relation is functional in the first and third component: for each qi and
σ there is exactly one qj ; if the DFA is in state qi and is scanning σ it must go to state qj .

Some set of states are designated to be accepting, strings that are described by the
information encoded in that state are strings that belong in the stringset the FSA defines.
That stringset is the union of the sets of strings associated with those accepting states; we
say that the FSA recognizes that set.

Exercise 25

• Give a DFA that recognizes No-H́-before-H́.

• So No-H́-before-H́ is at most Reg. Show that it is actually only SF.

ESSLLI 2014 90

Slide 88

FSA as Tiling Systems

a

b b
a

b a, b

〈0, 1, a〉, 〈0, 0, b〉, 〈1, 2, a〉, 〈1, 1, b〉, 〈2, >2, a〉, 〈2, 2, b〉, 〈>2, >2, a〉, 〈>2, >2, b〉

⋊

0⋊

⋊

⋊

b

0 0

a

0 1

a

1 2

b

1 1

a

2 >2

b

2 2

⋉

2 ⋉

a

>2 >2

b

>2 >2

b

0

0 1 2 >2

a

0 1

a b

0 0

a b

0 0

ba

0 1

⋊ b

0 0

⋊ a

0 1

b⋊

⋊ 0

⋊

a

0

0

⋊

a

1

0

b

b

2

1

a

⋉

2 ⋉

2

a

⋊ b a a b ⋉

〈0,⋊〉〈0, b〉〈1, a〉〈2, a〉〈2, b〉〈⋉,⋉〉
2 ⋉

⋉b

Alternatively, we can interpret the triples of the transition relation as L-shaped tiles.
The tiling is constrained by the states. This gives a tiling system that generates two strings
in parallel: one a sequence of states and the other a sequence of symbols. The sequence of
states is the sequence of states the FSA visits as it scans the sequence of symbols.

We can expand the tiles to square tiles by adding new tile types for each of the original
tiles, a new type for each symbol of the alphabet in which the fourth corner has been filled
in with that symbol.

We can think of these tiles as being pairs of pairs of a state and a symbol. This just
gives us a new alphabet, one in which each “symbol” pairs a state and a symbol. The tiling,
then, generates strings of these pairs.

With that perspective, the tiles are just an SL2 tiling system and the set of strings of pairs
that it generates is just an SL2 stringset, one that happens to be strings of state/symbol
pairs.

The key thing about this stringset is that, because of the way we constructed the gen-
erator out of the FSA tiling system, if we erase the state from each of the pairs in a string
it generates, we are left with a string that is accepted by the FSA; if we do that for each of
the strings in the SL2 stringset, we are left with the original stringset, which, of course, is
a Reg stringset.

This is a remarkable connection between one of the weakest classes with one that, for
our purposes, is the strongest.x

ESSLLI 2014 91

Slide 89

Projections of Stringsets

A Projection is an alphabetic homomorphism, a mapping of one

alphabet into another: h : Γ → Σ.

The image of a string under a projection is the result of applying

that mapping to each symbol in the string in turn.

The image of a stringset under a projection is the set of images of

the strings in the set.

Since the projection is functional, it can never gain information.

The number of distinct symbols in the image of a string can never

be more than the number of distinct symbols in the string itself.

In general projections may be many to one; they may lose

information. We can think of them as striping away some of the

distinctions that are made by the first alphabet.

ESSLLI 2014 92

Slide 90

Theorem 12 (Medvedev’64(’56) [Med64]) Every regular

stringset is a projection (the image under an alphabetic

homomorphism) of a strictly 2-local stringset.

Let Γ = Q× Σ where Q is the set of states of an FSA. We’ve

established that the set of strings over Γ which represent accepting

runs of that automaton is SL2.

Let h(〈q, σ〉) = σ. Then the image of the set of accepting runs

under h is the set of strings that are accepted by the automaton.

ESSLLI 2014 93

Slide 91

Characterization of MSO(+1)

Definition 8 (Nerode equivalence)

w ≡L v
def
⇐⇒ (∀u)[wu ∈ L⇔ vu ∈ L].

[w]L
def
= {v ∈ Σ∗ | w ≡L v}

Theorem 13 A stringset L is recognizable iff

card({[w]L | w ∈ Σ∗}) is finite. (≡L has finite index.)

Nerode classes correspond to the minimal information that must be retained about a
string in order to make a judgment about whether its continuations are members of the
given stringset. As long as there are finitely many of these classes, these can be represented
by a DFA.

ESSLLI 2014 94

Slide 92

MSO and Reg

bab

a0 1

(∃X0, X1)[(∀x, y)[(x ⊳ y ∧X0(x) ∧ Pa(x)) → X1(y)] ∧

(∀x, y)[(x ⊳ y ∧X0(x) ∧ Pb(x)) → X0(y)] ∧

(∀x, y)[(x ⊳ y ∧X1(x) ∧ Pa(x)) → X0(y)] ∧

(∀x, y)[(x ⊳ y ∧X1(x) ∧ Pb(x)) → X1(y)] ∧

(∀x)[¬(∃y)[y ⊳ x] → X0(x)] ∧

(∀x)[¬(∃y)[x ⊳ y] → X0(x)]]

MSO satisfaction is relative to the assignment of sets to MSO variables (as well as
assignment of points to FO variables, but we can take these to be MSO variables with
assignments restricted to be singleton sets).

Note that MSO variables pick out sets of points in same way that Pσ do.
In order to capture a FSA with an MSO sentence, we can use these auxiliary labels to

represent the state, as we did in capturing runs of the FSA in SL2. We require each position
to be labeled with some state and Each transition of the DFA can then be captured with an
MSO sentence, as can the requirements that the initial position is labeled with a start state
and the final position with a final state. The conjunction of these defines a set of strings
corresponding to the runs of the DFA.

We can then project away the extra labels by existentially binding them.

ESSLLI 2014 95

Slide 93

Automata for MSO

(∃X0, X1)[(∀x, y)[(x ⊳ y ∧X0(x) ∧ Pa(x)) → X1(y)] ∧

(∀x, y)[(x ⊳ y ∧X0(x) ∧ Pb(x)) → X0(y)] ∧

(∀x, y)[(x ⊳ y ∧X1(x) ∧ Pa(x)) → X0(y)] ∧

(∀x, y)[(x ⊳ y ∧X1(x) ∧ Pb(x)) → X1(y)] ∧

(∀x)[¬(∃y)[y ⊳ x] → X0(x)] ∧

(∀x)[¬(∃y)[x ⊳ y] → X0(x)]]

bab

a
∅ X1X0 X0, X1

In building an automaton that recognizes the set of strings satisfying a given MSO
sentence, the key requirement is, in essence, to invert the construction of the previous slide.
Where we had used MSO variables to represent the states of the automaton, we will use
the states of the automaton to encode the assignments of the MSO variables. Each state
represents a subset of the free variables in the MSO formula. (WLOG we assume that all
free variables are MSO). A string will end up in a given state iff the last position of the
string is a member of each of the sets of positions assigned to the MSO variables encoded
by the state.

The actual construction is done recursively on the structure of the formula. We start
with automata for the atomic formulae and then construct automata for the compound
formulae using these. For the most part, this involves standard automata construction
techniques: union, determinization and complement, in particular. The construction for
existential quantification is more complicated in that it involves a change in the alphabet—
the number of free variables in the matrix of the formula is one more than that of the
formula itself.

ESSLLI 2014 96

Slide 94

Cognitive Complexity of Reg

• Any cognitive mechanism that can distinguish member strings

from non-members of a finite-state stringset must be capable of

classifying the events in the input into a finite set of abstract

categories and are sensitive to the sequence of those categories.

• Subsumes any recognition mechanism in which the amount of

information inferred or retained is limited by a fixed finite

bound.

• Any cognitive mechanism that has a fixed finite bound on the

amount of information inferred or retained in processing

sequences of events will be able to recognize only finite-state

stringsets.

This does not imply that such a mechanism actually requires unbounded resources. It
could employ a mechanism that, in principle, requires unbounded storage which fails on
sufficiently long or sufficiently complicated inputs.

Or would if it ever encountered such.

ESSLLI 2014 97

Slide 95

Yidin Reprise

• One-σ́ (∃!x)[σ́(x)] (LTT1,2)

• No-H-before-H́ ¬(∃x, y)[x ⊳+ y ∧H(x) ∧ H́(y)] (SF)

• No-H-with-Ĺ ¬(H ∧ Ĺ) (LT1)

• Nothing-before-Ĺ ¬σ Ĺ (SL2)

• Alt ¬σ σ ∧¬ σ́ σ́ ∧¬ σ́ σ̀ ∧¬ σ̀ σ́ ∧¬ σ̀ σ̀ (SL2)

• No ⋊ Ĺ⋉ ¬⋊ Ĺ⋉ (SL3)

Yidin is SF

Exercise 26 The FO(+1) formula establishes that No-H-before-H́ is Reg, not that it is
SF. Show that it is SF (without using the Day 4 results).

ESSLLI 2014 98

Slide 96

Summary of Part 3.3

• We introduced the syntax and semantics of Monadic

Second-Order logic for W⊳: MSO(+1)

• We introduced Finite State Automata, focusing on them as

classifiers of strings. A stringset is Reg iff it is recognizable by

an FSA.

• You showed that No-H-before-H́ is an MSO(+1) definable

constraint. You also showed that it is SF, so we still don’t have

a good bound on its complexity.

• We introduced a tiling system for FSAs.

• We introduced projections of stringsets and used this, along

with the tiling, to show that every Reg stringset is actually a

projection of an SL2 stringset.

ESSLLI 2014 99

Slide 97

Summary of Part 3.3

• We have observed that MSO(+1) and Reg are equivalent.

• We gave Nerode’s characterization of the Reg stringsets.

• We considered the cognitive complexity of Reg constraints.

• We showed that the complexity of No-H-before-H́ determines

the overall complexity of the stress pattern of Yidin. Which is

SF when viewed from the local perspective.

We have been busy little beavers.

ESSLLI 2014 100

Slide 98

Overview Session 4

• Harmony

• Subsequences

• Strictly Piecewise Languages/Restricted Propositional(<)

• Piecewise Testable Languages/Propositional(<)

• Star-Free Languages/FO(<)

• Co-occurrence classes: Local+Piecewise/Propositional(+1, <)

ESSLLI 2014 101

Slide 99

Long-Distance Dependencies

Samala (Chumash) sibilant harmony:

s does not occur in the same word as S

[StojonowonowaS] ‘it stood upright’ *[Stojonowonowas]

(Σ∗ · s · Σ∗ · S · Σ∗) + (Σ∗ · S · Σ∗ · s · Σ∗)

Sarcee sibilant harmony:

s does not occur before S

a. /si-tSiz-aP/ → S ı́tS ı́dzàP ‘my duck’

b. /na-s-GatS/ → nāSGátS ‘I killed them again’

c. cf. ⋆śıtS ı́dzàP

Σ∗ · s · Σ∗ · S · Σ∗

Two kinds of sibilant harmony:

• Samala—symmetric

– s does not occur with S (either order).

• Sarcee—asymmetric

– s does not occur before S (but may come after).

ESSLLI 2014 102

Slide 100

Complexity of Sibilant Harmony

Symmetric sibilant harmony (Samala) is LT

¬(S ∧ s)

Asymmetric sibilant harmony (Sarcee) is not FO(+1)

⋊ w S w s w⋉

≡L
k,t

⋆ ⋊w S w s w S w⋉

ESSLLI 2014 103

Slide 101

Precedence—Subsequences

Definition 9 (Subsequences)

v ⊑ w
def
⇐⇒ v = σ1 · · ·σn and w ∈ Σ∗ · σ1 · Σ

∗ · · ·Σ∗ · σn · Σ∗

Pk(w)
def
= {v ∈ Σk | v ⊑ w}

P≤k(w)
def
= {v ∈ Σ≤k | v ⊑ w}

σ σ σ́ σ σ̀ σ
σσ, σσ́, σ́σ, σσ̀, σ̀σ
σσ́, σσ, σ́σ̀
σσ, σσ̀, σ́σ
σσ̀, σσ
σσ

P2(σ σ σ́ σ σ̀ σ) = {σ σ, σ σ́, σ σ̀, σ́ σ, σ́ σ̀, σ̀ σ}

P≤2(σ σ σ́ σ σ̀ σ) = {ε, σ, σ́, σ̀, σ σ, σ σ́, σ σ̀, σ́ σ, σ́ σ̀, σ̀ σ}

Redo same sequence of classes but with arbitrary (⊳+) rather than immediate (⊳) prece-
dence.

Technical reasons: subsequences of length ≤ k: P≤k

ESSLLI 2014 104

Slide 102

Word Models for Subsequences

W⊳+ = 〈D, ⊳+, Pσ〉σ∈Σ

Lemma 4 If M⊳+

w and M⊳+

v are precedence models for the strings

w and v, respectively, then

M⊳+

w - M⊳+

v ⇔ w ⊑ v

To parallel the local side of the hierarchy completely, we could have used - for subse-
quence as well as substring (since they are both submodels). But since we will eventually
want to talk about both relations at the same time we will distinguish them.

ESSLLI 2014 105

Slide 103

Restricted Propositional Logic (RPL)

A sentence of RPL is defined recursively as follows.

1. The base cases:

• For all w ∈ Σ∗, (¬w) is a sentence of RPL.

2. The inductive case:

• If φ and ψ are sentences of RPL then so is (φ ∧ ψ).

3. Nothing else is a sentence of RPL.

We repeat here the almost exactly the same definitions for syntax and semantics of RPL.
The only difference in the syntax is that we can no longer use the endmarkers {⋊,⋉}.

This is because the ends of the strings are local phenomena and we want to restrict the
languages on the piecewise side of the hierarchy to phenomena with arbitrary radius.

ESSLLI 2014 106

Slide 104

Restricted Propositional Logic - Stringsets

• Consider any v ∈ Σ∗.

1. The base cases:

– For all w ∈ Σ∗, Mv |= (¬w) ⇔ Mw 6- Mv.

2. The inductive case:

– For all φ, ψ in RPL, v |= (φ ∧ ψ) ⇔ v |= φ and v |= ψ.

• Then

LRPL(φ) = {w | Mw |= φ}

ESSLLI 2014 107

Slide 105

Strictly Piecewise Stringsets—SP [RHB+10]

Definition 10 (Strictly Piecewise Stringsets) A stringset is

Strictly Piecewise iff the M⊳+

models of its member strings is

LRPL(φ) for some RPL sentence φ.

Definition 11 (Strictly Piecewise Grammars) A Strictly

k-Piecewise Grammar G = 〈Σ, T 〉 where T is a subset of Σ≤k and

LSP

k

(
〈Σ, T 〉

) def
= {w ∈ Σ∗ | P≤k(w) ⊆ T }.

Membership in an SPk stringset depends only on the individual

(≤ k)-subsequences which do and do not occur in the string.

Again, the only distinction is the interpretation of the elements of T .
Heinz [Hei07] defined an equivalent class as Precedence Languages.

ESSLLI 2014 108

Slide 106

Character of the Strictly k-Piecewise Sets

[RHB+10]

Theorem 14 A stringset L is Strictly k-Piecewise Testable iff it is

closed under subsequence:

wσv ∈ L⇒ wv ∈ L

Every naturally occurring stress pattern requires Primary Stress

⇒

No naturally occurring stress pattern is SP.

But SP can forbid multiple primary stress: ¬ σ́ σ́

ESSLLI 2014 109

Slide 107

Yidin constraints wrt SP

• One-σ́ is not SP ⋆ σ σ ⊑ σ σ́ σ

• No-H-before-H́ is SP2 ¬H H́

• No-H-with-Ĺ is SP2 ¬H Ĺ∧¬ ĹH

• Nothing-before-Ĺ is SP2 ¬σ Ĺ

• Alt is not SP ⋆ σ σ σ́ ⊑ σ σ̀ σ σ́

• No ⋊ Ĺ⋉ is not SP ⋆ Ĺ ⊑ Ĺ L

ESSLLI 2014 110

Slide 108

Cognitive interpretation of SP

• Any cognitive mechanism that can distinguish member strings

from non-members of a (properly) SPk stringset must be

sensitive, at least, to the length k (not necessarily consecutive)

sequences of events that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to up to k − 1 events distributed arbitrarily among the prior

events.

• Any cognitive mechanism that is sensitive only to the length k

sequences of events in the presentation of a string will be able

to recognize only SPk stringsets.

ESSLLI 2014 111

Slide 109

Full Propositional Logic for W⊳+ (Prop(<))

—Syntax

k-Piecewise-Expressions

k-Piecewise-expressions are defined inductively as follows.

1. The base cases:

• For all w ∈ Σ≤k, w is a k-Piecewise-expression.

2. The inductive cases:

• If φ is a k-Piecewise-expression then so is (¬φ).

• If φ and ψ are k-Piecewise-expressions then so is (φ ∧ ψ).

3. Nothing else is a k-Piecewise-expression.

Again, the only change in the syntax is the loss of the endmarkers. . .

ESSLLI 2014 112

Slide 110

Full Propositional Logic for W⊳+ (Prop(<))

—Semantics

Consider any v ∈ Σ∗ and any k-Piecewise-expression φ:

1. The base cases:

• If φ = w ∈ Σ≤k, Mv |= φ⇔ Mw - Mv.

2. The recursive case:

• If φ = (¬ψ) then Mv |= φ⇔ Mv 6|= ψ.

• If φ = ψ1 ∨ ψ2 then Mv |= φ⇔ either Mvψ1 or Mvψ2

L(ϕ)
def
= {w ∈ Σ∗ | Mw |= φ}.

A stringset is k-piecewise definable iff it is L(ϕ) for some

k-piecewise-expression ϕ. It is piecewise definable iff it is

k-piecewise definable for some k.

. . . and the type of the models.
Imre Simon [Sim75] first introduced this class.

ESSLLI 2014 113

Slide 111

k-Piecewise Grammars

Definition 12 (k-Piecewise Testable Stringsets) A

k-Piecewise Grammar is a pair G = 〈Σ, T 〉 where T is a subset of

P(Σ≤k).

The stringset licsensed by G is

LPT

(
〈Σ, T 〉)

def
= {w | P≤k(w) ∈ T }.

A stringset L is k-piecewise if there exists a k-piecewise G such that

LPT(G) = L. Such stringsets form the exactly the k-Piecewise

Testable stringsets (PTk).

A stringset is Piecewise Testable if there exists a k such that it is

k-piecewise. Such stringsets form exactly the Locally Testable

stringsets (PT).

ESSLLI 2014 114

Slide 112

Character of Piecewise Testable sets

Theorem 15 (k-Subsequence Invariance) A stringset L is

Piecewise Testable iff

there is some k such that, for all strings x and y,

if x and y have exactly the same set of (≤ k)-subsequences

then either both x and y are members of L or neither is.

w ≡P
k v

def
⇐⇒ P≤k(w) = P≤k(v).

ESSLLI 2014 115

Slide 113

Yidin constraints wrt SP

• One-σ́ is PT2 σ́ ∧¬ σ́ σ́

• No-H-before-H́ is SP2 ¬H H́

• No-H-with-Ĺ is SP2 ¬H Ĺ∧¬ ĹH

• Nothing-before-Ĺ is SP2 ¬σ Ĺ

• Alt is not PT ⋆

2k
︷ ︸︸ ︷

σ σ̀ · · ·σ σ̀ ≡ P
k

2k
︷ ︸︸ ︷

σ σ̀ · · ·σ σ̀ σ̀

• No ⋊ Ĺ⋉ is PT2 Ĺ→ (σ Ĺ∨ Ĺ σ)

ESSLLI 2014 116

Slide 114

Cognitive interpretation of PT

• Any cognitive mechanism that can distinguish member strings

from non-members of a (properly) PTk stringset must be

sensitive, at least, to the set of length k subsequences of events

that occur in the presentation of the string—both those that

do occur and those that do not.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the set of all length k subsequences of the sequence of prior

events.

• Any cognitive mechanism that is sensitive only to the set of

length k subsequences of events in the presentation of a string

will be able to recognize only PTk stringsets.

ESSLLI 2014 117

Slide 115

FO(<)

Models: 〈D, ⊳+, Pσ〉σ∈Σ

First-order Quantification (over positions in the strings)

Syntax Semantics

x ≈ y w, [x 7→ i, y 7→ j] |= x ≈ y
def
⇐⇒ j = i

x ⊳+ y w, [x 7→ i, y 7→ j] |= x ⊳+ y
def
⇐⇒ i < j

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)

for some i ∈ D

FO(<)-Definable Stringsets: L(ϕ)
def
= {w | w |= ϕ}.

ESSLLI 2014 118

Slide 116

FO(<) Definability

⊳ is FO(<) definable

R⊳(x, y) ≡ x ⊳+ y ∧ (∀z)[x ⊳+ z → ¬z ⊳+ y]

Hence FO(+1) (FO(<). No-H-before-H́ witnesses that the

inclusion is proper.

Alt is FO(<)

(∀x, y)[R⊳(x, y) → (σ(x) ↔
+
σ(y))]

ESSLLI 2014 119

Slide 117

Star Free Expressions - Grammars and Stringsets

• A Star Free Expression is a GRE containing no ‘And’ (&) or

Kleene star (∗).

·, +,
SF is the closure of Fin under concatenation, union and

complement.

ESSLLI 2014 120

Slide 118

FO(<) and SF

To show that SF ⊆ FO(<)

• Fin (SL (FO(+1) (FO(<).

• FO(<) is closed under disjunction by definition.

• Concatenation:

If φ is a FO formula, let φ|〈l, r〉(l, r) be the relativization of φ

to the interval [l, r], where φ|〈l, r〉(l, r) is syntactically identical

to φ except that each ‘(∃x)[ψ(x)]’ is replaced by

‘(∃x)[l ⊳∗ x ∧ x ⊳∗ r ∧ ψ(x)]’

Let L1 = L(φ1) and L2 = L(φ2). Then L1 · L2 is L(φ1·2) where

φ1·2
def
= (∃x1, x2, x3)[φ1|〈l, r〉(x1, x2) ∧ φ2|〈l, r〉(x2, x3)]

ESSLLI 2014 121

Slide 119

FO(<) and SF

Theorem 16 (McNaughton & Papert [MP71]) A set of

strings is First-order definable over W⊳+ iff it is Star-Free.

ESSLLI 2014 122

Slide 120

Yidin wrt Local and Piecewise Constraints

One-σ́ LTT1,2 PT2

Some-σ́ LT1 PT1

At-Most-One-σ́ LTT1,2 SP2

No-H-before-H́ SF SP2

No-H-with-Ĺ LT1 SP2

Nothing-before-Ĺ SL2 SP2

Alt SL2 SF

No ⋊ Ĺ⋉ SL3 PT2

Yidin is SF with either local or piecewise constraints.

ESSLLI 2014 123

Slide 121

Yidin wrt Local and Piecewise Constraints

One-σ́ LTT1,2 PT2

Some-σ́ LT1 PT1

At-Most-One-σ́ LTT1,2 SP2

No-H-before-H́ SF SP2

No-H-with-Ĺ LT1 SP2

Nothing-before-Ĺ SL2 SP2

Alt SL2 SF

No ⋊ Ĺ⋉ SL3 PT2

Yidin is co-occurence of SL and PT constraints or of LT and SP

constraints

ESSLLI 2014 124

Slide 122

Stress Patterns wrt Local Constraints

• SL — 89 of 109 patterns

• LT

None

• LTT

Alawa, Bulgarian, Murik

• SF

Amele, Arabic (Classical), Buriat, Cheremis (East),

Cheremis (Meadow), Chuvash, Golin, Komi, Kuuku Yau,

Lithuanian, Mam, Maori, K. Mongolian (Street), K.

Mongolian (Stuart), K. Mongolian (Bosson), Nubian, Yidin

• Reg

Arabic (Cairene), Arabic (Negev Bedouin), Arabic

(Cyrenaican Bedouin)

ESSLLI 2014 125

Slide 123

Stress Patterns wrt Piecewise Constraints

• SP

None

• PT

Amele, Bulgarian, Chuvash, Golin, Lithuanian, Maori K.

Mongolian (Street), Murik,

• SF

Alawa, Arabic (Classical), Buriat, Cheremis (East),

Cheremis (Meadow), Komi, Kuuku Lau, Mam, K.

Mongolian (Bosson), K. Mongolian (Stuart), Nubian, Yidin

• Reg

Arabic (Cairene), Arabic (Negev Bedouin), Arabic

(Cyrenaican Bedouin)

Don’t know where the SL patterns fall

ESSLLI 2014 126

Slide 124

Stress Patterns wrt Co-occurrence of Local and

Piecewise Constraints

• SL+ SP — 89 of 109 patterns

• SL+PT — Komi, Kuuku Lau, Yidin

• LT+ SP

Alawa Amele, Arabic (Classical), Bulgarian, Buriat,

Cheremis (East), Cheremis (Meadow), Chuvash, Golin,

Komi, Kuuku Lau, Lithuanian, Mam, Maori K. Mongolian

(Bosson), K. Mongolian (Street), K. Mongolian (Stuart),

Murik, Nubian, Yidin

• SF — None

• Reg

Arabic (Cairene), Arabic (Negev Bedouin), Arabic

(Cyrenaican Bedouin)

Those in SL+PT constraints are subset of those in LT+ SP constraints.

ESSLLI 2014 127

Slide 125

Arabic (Negev Bedouin)

• In sequences of light syllables, secondary stress falls on the even

numbered syllables, counting from the left edge of the sequence.

• This pattern is used only for the sake of defining main stress.

Secondary stress is absent on the surface.

Without reference to secondary stress

• Odd number of unstressed light syllables precedes a light

syllable with primary stress

L

∗

S
∗

H

ĹL
∗

H
∗

S

No Ĺ out of LH state

ESSLLI 2014 128

Slide 126

Arabic (Negev Bedouin) with explicit secondary

stress

ϕLalt = ¬LL ∧¬ L̀ L̀ ∧¬ L̀ Ĺ ∧¬ Ĺ L̀ ∧¬
∗

H L ∧¬
∗

S L

If secondary stress is explicit, then Arabic (Negev Bedouin) is LT

ESSLLI 2014 129

Slide 127

Some Constraints

• Forbidden syllables (SL1, SP1)

– No heavy syllables

• Required syllables (LT1, PT1)

– Some primary stress

• Forbidden initial/final syllables (SL2, SF)

– Cannot start with unstressed light

– Cannot start with unstressed heavy

– Cannot end with stressed light

• Forbidden adjacent pairs (SL2, SF)

– No adjacent unstressed

– No adhacent secondary stress

– No heavy immediately following a stressed light

. . .

L∧¬σ L⇔ ⋊L

ESSLLI 2014 130

Slide 128

Properly Regular Constraints

• Alternation (Reg)

– Arabic (Negev Bedouin), . . .

– This class of constraints accounts for all properly regular

stress patterns (that are known to us).

ESSLLI 2014 131

Slide 129

What we covered in this course (in pictures)

<+1 +1,<

PTLT

SF

MSO
Reg

TSL

LTT

Prop

Restricted

SPSL

FO

SL + SP

LT +PT

Fin

Thanks for your excellent participation!
Apart from the notes Jim will send around, here are some references for further reading

[MP71, RHB+10, RHF+13].

ESSLLI 2014 132

References

[App72] R.B. Applegate. Ineseño Chumash Grammar. PhD thesis, University of Califor-
nia, Berkeley, 1972.

[BB75] M. Blum and L. Blum. Towards a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[Dix77] M. W. Dixon. A Grammar of Yidin. Cambridge University Press, 1977.

[ELM+08] Matt Edlefsen, Dylan Leeman, Nathan Myers, Nathaniel Smith, Molly Viss-
cher, and David Wellcome. Deciding strictly local (SL) languages. In Jon Bre-
itenbucher, editor, Proceedings of the Midstates Conference for Undergraduate
Research in Computer Science and Mathematics, pages 66–73, 2008.

[Gol67] E.M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[Gra10] Thomas Graf. Comparing incomparable frameworks: A model theoretic ap-
proach to phonology. University of Pennsylvania Working Papers in Linguistics,
16(2):Article 10, 2010. Available at: http://repository.upenn.edu/pwpl/

vol16/iss1/10.

[Gra13] Thomas Graf. Local and Transderivational Constraints in Syntax and Semantics.
PhD thesis, University of California, Los Angeles, 2013.

[Hal78] Morris Halle. Knowledge unlearned and untaught: What speakers know about
the sounds of their language. In Linguistic Theory and Psychological Reality.
The MIT Press, 1978.

[Hei07] Jeffrey Heinz. The Inductive Learning of Phonotactic Patterns. PhD thesis,
University of California, Los Angeles, 2007.

[Hei09] Jeffrey Heinz. On the role of locality in learning stress patterns. Phonology,
26(2):303–351, 2009.

[Hei10] Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, pages 897–906, Uppsala,
Sweden, July 2010. Association for Computational Linguistics.

[Hei14] Jeffrey Heinz. Computational theories of learning and developmental psycholin-
guistics. In Jeffrey Lidz, William Synder, and Joe Pater, editors, The Oxford
Handbook of Developmental Linguistics. Oxford University Press, 2014. To ap-
pear.

[HH69] Kenneth Hansen and L.E. Hansen. Pintupi phonology. Oceanic Linguistics,
8:153–170, 1969.

[HKK12] Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. Learning with lattice-
structured hypothesis spaces. Theoretical Computer Science, 457:111–127, Oc-
tober 2012.

[HV87] Morris Halle and Jean-Roger Vergnaud. An Essay on Stress. The MIT Press,
1987.

[Hym09] Larry M. Hyman. How (not) to do phonological typology: the case of pitch-
accent. Language Sciences, 31(2-3):213 – 238, 2009. Data and Theory: Papers
in Phonology in Celebration of Charles W. Kisseberth.

ESSLLI 2014 133

[JORS99] Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems
That Learn: An Introduction to Learning Theory (Learning, Development and
Conceptual Change). The MIT Press, 2nd edition, 1999.

[KK10] Anna Kasprzik and Timo Kötzing. String extension learning using lattices. In
Henning Fernau Adrian-Horia Dediu and Carlos Mart́ın-Vide, editors, Proceed-
ings of the 4th International Conference on Language and Automata Theory and
Applications (LATA 2010), volume 6031 of Lecture Notes in Computer Science,
pages 380–391, Trier, Germany, 2010. Springer.

[LZZ08] Steffen Lange, Thomas Zeugmann, and Sandra Zilles. Learning indexed fami-
lies of recursive languages from positive data: A survey. Theoretical Computer
Science, 397:194–232, 2008.

[Med64] Yu. T. Medvedev. On the class of events representable in a finite automaton.
In Edward F. Moore, editor, Sequential Machines; Selected Papers, pages 215–
227. Addison-Wesley, 1964. Originally published in Russian in Avtomaty, 1956,
385–401.

[MP71] Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press,
1971.

[Odd05] David Odden. Introducing Phonology. Cambridge University Press, 2005.

[OWS86] Daniel Osherson, Scott Weinstein, and Michael Stob. Systems that Learn. MIT
Press, Cambridge, MA, 1986.

[PP02] Christopher Potts and Geoffrey Pullum. Model theory and the content of OT
constraints. Phonology, 19:361–393, 2002.

[Pul07] Geoffrey K. Pullum. The evolution of model-theoretic frameworks in linguistics.
In James Rogers and Stephan Kepser, editors, Model-Theoretic Syntax at 10,
pages 1–10, Dublin, Ireland, 2007.

[RHB+10] James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David
Wellcome, and SeanWibel. On languages piecewise testable in the strict sense. In
Christian Ebert, Gerhard Jäger, and Jens Michaelis, editors, The Mathematics of
Language, volume 6149 of Lecture Notes in Artifical Intelligence, pages 255–265.
Springer, 2010.

[RHF+13] James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert,
and Sean Wibel. Cognitive and sub-regular complexity. In Glyn Morrill and
Mark-Jan Nederhof, editors, Formal Grammar, volume 8036 of Lecture Notes in
Computer Science, pages 90–108. Springer, 2013.

[Rog94] James Rogers. Studies in the Logic of Trees with Applications to Grammatical
Formalisms. PhD thesis, University of Delaware, 1994. Published as Technical
Report 95-04 by the Department of Computer and Information Sciences.

[Sim75] Imre Simon. Piecewise testable events. In Automata Theory and Formal Lan-
guages, pages 214–222. 1975.

[ZZ08] Thomas Zeugmann and Sandra Zilles. Learning recursive functions: A survey.
Theoretical Computer Science, 397(1-3):4–56, 2008.

