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This Talk
1 Introduce MLRegTest, which contains training and test

sets for 1800 regular languages spanning 16 subclasses.
2 108,000 experiments on recurrent neural networks using

MLRegTest.

Main conclusions

1 Lots of variation!
2 NNs perform better on randomly generated test sets than

test sets designed to contain pairs of strings x ∈ L, y 6∈ L
and string_edit_distance(x,y)=1.

3 Formal properties of regular languages – such as logical
or algebraic properties – better account for learning
difficulty than the size of the minimal DFA or its
syntactic monoid.
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Part I

Motivation
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Why Artificial Formal Languages for ML?

1 Classifying sequences is useful in many fields (software
engineering, bioinformatics, nlp)

2 Evaluating ML systems on how well they can learn known
classifiers allows finer examination of the capabilities of ML
systems, which can build confidence when they are applied
to the learning of unknown classifiers

3 This approach has a rich history in several traditions:
computational learning theory, grammatical inference,
neural networks, and more.
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Why 1800 Regular Languages?

1 Regular languages have many characterizations: regular
expressions, finite-state acceptors, monadic second order
logic with successor or precedence.

2 The languages in the 16 classes used better represent
different corners of the space of regular languages
compared to earlier benchmarks

(Reber, 1967; Tomita, 1982; Bhattamishra et al., 2020).

3 These classes are also understood along logical and
algebraic dimensions

(McNaughton and Papert, 1971; Pin, 2021).

4 The logical characterizations have been argued to have
cognitive interpretations

(Rogers and Pullum, 2011; Jäger and Rogers, 2012; Rogers et al.,
2013)
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Why 1800 Regular Languages?

1 Regular languages have many characterizations: regular
expressions, finite-state acceptors, monadic second order
logic with successor or precedence.

2 The languages in the 16 classes used better represent
different corners of the space of regular languages
compared to earlier benchmarks

(Reber, 1967; Tomita, 1982; Bhattamishra et al., 2020).

3 These classes are also understood along logical and
algebraic dimensions

(McNaughton and Papert, 1971; Pin, 2021).

4 The logical characterizations have been argued to have
cognitive interpretations

(Rogers and Pullum, 2011; Jäger and Rogers, 2012; Rogers et al.,
2013)

We acknowledge they may still be insufficiently representative …
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Part II

Subregular Hierarchies
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Some finite-state acceptors

“Odd numbers of a are forbidden.”

0 1

b,c,d,e
a

b,c,d,e

a

“The subsequence aa is forbidden.”

0 1 2

b,c,d,e

a a

b,c,d,e a,b,c,d,e
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Some finite-state acceptors, continued
“The substring aa is forbidden.”

0 1 2

b,c,d,e
a

a

b,c,d,e

a,b,c,d,e

“The substring aa on the {a e} tier is forbidden.”

0 1 2

b,c,d,e
a

a

e

b,c,d a,b,c,d,e
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Counting modulo n

“Odd numbers of a are forbidden.”

0 1

b,c,d,e
a

b,c,d,e

a

• Algebraically, such languages are periodic.
• We call the class of purely periodic languages languages with a

prime-numbered cycle Zp (after the algebraic cyclic group).
• Regular languages with a periodic component require MSO logic.
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Containing Subsequences or Not

“The subsequence aa is forbidden.”

0 1 2

b,c,d,e

a a

b,c,d,e a,b,c,d,e

• Subsequences are defined as symbols in a precedence order (not
necessarily successive).

• The length of a subsequence is the factor width.
• Languages defined by forbidding subsequences are Strictly

Piecewise (SP).
• Their complements are co-Strictly Piecewise (coSP).
• The Boolean closure of SP languages are Piecewise Testable

(PT), characterizable with Propositional Logic.
• The Star-Free (SF) languages are First Order definable with

Precedence.

HCL | 07.11.2023 J. Heinz | 12



Containing Substrings or Not
“The substring aa is forbidden.”

0 1 2

b,c,d,e
a

a

b,c,d,e

a,b,c,d,e

• Substrings are defined as successive symbols.
• The length of a substring is the factor width.
• Languages defined by forbidding substrings are Strictly Local

(SL), characterizable as Conjunctions of Negative Literals.
• Their complements are co-Strictly Local (coSL) (Disjunctions of

Positive Literals).
• The Boolean closure of SL languages are Locally Testable (LT),

characterizable with Propositional Logic.
• Locally Threshold Testable (LTT) languages are First Order

definable with Successor.
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Containing Substrings on Tiers or Not
“The substring aa on the {a e} tier is forbidden.”

0 1 2

b,c,d,e
a

a

e

b,c,d a,b,c,d,e

• A tier T is a subset of Σ.
• The tier-projection of w ∈ Σ∗ is the longest string u ∈ T∗ such

that u is a subsequence of w. Remove the non-tier symbols from
w to get u.

• Tier-projection lifts to languages and classes to obtain new ones.
• Every Local class is properly contained within a Tier-based

superclass (of the same logical type but now under the
tier-successor relation).

• Projecting Piecewise classes to tiers does not change their
expressivity. (Piecewise classes are closed under tier-projection.)
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Summary

SL
coSL

TSL
TcoSL

LT

LTT

TLT

TLTT

PLT TPLT

SP
coSP

PT

S t a r F r e e

R e g u l a r

Zp

Monadic Second
Order Logic

First Order
Logic

Propositional
Logic

Conjunctions of
Negative Literals

(bold)

Disjunctions of
Positive Literals

(italics)
successor

tier
successor

successor,
precedence

tier
successor,
precedence precedence
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Cf. random construction

Random construction of DFA may not lead to diversity.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

States

1
2
3
4
5
6
7
8
9

10

Symbols

0%

100%

The proportion of Strictly Local languages upon fair generation,
pe = pf = 0.5.
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Cf. random construction

Random construction of DFA may not lead to diversity.

0 20 40 60 80 100

Edge weight (pe, %)

0

20

40

60

80

100

Finality weight
(pf , %)

0%

100%

The proportion of Strictly Local languages for 7 states, 8 symbols.
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Part III

ML-RegTest
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Languages

class bases alphabets windows thresholds total

SL 10 3 3 90
coSL 10 3 3 90
SP 10 3 3 90
coSP 10 3 3 90

LT 10 3 3 90
PLT 10 3 3 90
PT 10 3 3 90

LTT 10 3 3 2(3)* 180
SF 10 3 30
Zp 10 3 30
Reg 10 3 30

total 900

The asterisk (*) indicates that while there were actually 3 thresholds, since
they occur in 3:2:1 ratio, they doubled the number of languages.
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Languages

class bases alphabets windows tiers thresholds total

TSL 10 1 3 1 30
10 2 3 2 120

TcoSL 10 1 3 1 30
10 2 3 2 120

TLT 10 1 3 1 30
10 2 3 2 120

TPLT 10 1 3 1 30
10 2 3 2 120

TLTT 10 1 3 1 2(3)* 60
10 2 3 2 2(3)* 240

total 900

The asterisk (*) indicates that while there were actually 3 thresholds, since
they occur in 3:2:1 ratio, they doubled the number of languages.
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What we mean by “belongs to language class”

• Some classes contain others (for example LT contains SL).
• Some classes are incomparable but overlap (for example LT

and PT).

When we say “Language L belongs to class X” we mean

1 L belongs to class X, and
2 L does not belong to any class Y which is a subset of, or

incomparable with, X.
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Language Variables

logical level MSO, FO, Prop, CNL/DPL
order relation successor, precedence, tier-successor

alphabet size {4, 16, 64}
factor widths {2, 4, 6}

tier size {2, 3}; {4, 7}; {6, 11}
threshold {2,3,5}

Acceptors for the 1800 languages were created and their class
memberships were verified with the The Language Toolkit and
amalgam softwares (Lambert, 2022).
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Sizes of Minimal DFAs

Type of Machine min max median mean s.d.

Minimal DFA 2 613 11 23.35 53.19
Monoid of Minimal DFA 2 2701 45 142 304.76
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Sizes of Minimal DFAs
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Sizes of Minimal DFAs
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Research Questions

1 What is the effect of the language class?
2 What is the effect of logical level?
3 What is the effect of order relation

(successor, tier-successor, precedence)?
4 What is the effect of alphabet size?
5 What is the effect of DFA size? Monoid size?
6 Other good questions are left unexplored

(Tier size? Factor width? Threshold?)
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Training Data Sets

Training data was randomly generated with duplicates. For
each L, We generated 50k positive and 50k negative strings
subject to the following constraints:
• Equally many strings of each length between 20 and 29.
• Uniform distribution over the paths in the minimal,

acyclic DFA representing words of length n belonging to
L

We downsampled to obtain three nested sets:

Small 1k, Mid 10k, Large 100k.
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Why no short strings?

• We excluded short strings because we wanted equal
numbers of positive and negative strings at each length.

• For some (many) languages, this is not possible if the
lengths are small.

• We will return to the issue of short strings at the end.
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Validation Data Sets

Validation data was randomly generated with duplicates. We
generated 50k positive and 50k negative strings subject to the
same constraints as Training Data and:
• The development set and training sets were disjoint.

We downsampled to ultimately obtain three nested sets:

Small 1k, Mid 10k, Large 100k.
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Random Test Sets
For each language there are 4 kinds of test sets.

Short Random

50k positive and 50k negative strings were randomly generated
without duplicates subject to the constraints:
• There are equally many strings of each length

between 20 and 29.
• Disjoint from the training and validation data.
• Uniform distribution over the paths in the minimal,

acyclic DFA representing words belonging to L ∩ Σn

Long Random

As above, except that there are equally many strings of each
length between 31 and 50.
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Adversarial Test Sets
For each string length n, a minimal, acyclic finite-state
transducer which mapped each x ∈ L of length n to each string
y 6∈ L such that string_edit_distance(x, y) = 1.

Short Adversarial

• 50k positive and 50k negative strings with lengths
between 20 and 29.

• The positive and negative strings were disjoint from the
training and validation data.

• String sampled without replacement from a uniform
distribution over the paths of the transducer.

Long Adversarial

• As above, but strings were of length between 31 and 50.
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Test Data Summary

We hypothesized difficulty increases as follows.

Short Random

Long Random Short Adversarial

Long Adversarial

We downsampled to obtain three nested sets for each kind of
test:

Small 1k, Mid 10k, Large 100k
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Implementation

Data was generated by exporting the DFA made with The
Language Toolkit to the .att format, and were then processed
with the software libraries openfst (Allauzen et al., 2007) and
Pynini (Gorman, 2016; Gorman and Sproat, 2021)

One exception. The datasets for coSL, TcoSL, and coSP
languages were generated simply by flipping positive and
negative strings in the corresponding datasets for the SL, TSL
and SP languages.
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Part IV

Experiments
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Setup

1 For each language, we trained five different neural networks
on each of three different training sets:

Small 1k, Mid 10k, Large 100k
2 Each trained network was tuned with one validation set:

Small 1k
3 Each trained network was tested on each of four Large

100k test sets:
SR, SA, LR, LA

Consequently, there are 1800×5×3×4 = 108, 000 experimental
observations.
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Performance Measures

We collected different measures of performance on the test sets.
1 Accuracy: Proportion correctly classified. (1 best, 0 worst)
2 F-score: Harmonic mean of precision and recall. (1 best, 0

worst)
3 Brier Score: Incorporates confidence with correct

classification. (0 best, 1 worst)
4 Area Under the Curve: Balances True positive rate with

false positive rate. (1 best, 0 worst)
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The Neural Networks

1 Simple Recurrent Neural Network (RNN)
2 Long Short-Term Memory (LSTM)
3 Gated Recurrent Unit (GRU)
4 2 layer LSTM
5 Transformer

Tensorflow and Keras APIs were used to implement all NNs
(Abadi et al., 2015). The total number of trainable parameters
depend on alphabet size, but they are ordered roughly as:

simple RNN (∼45k) < transformer (∼115k) < GRU (∼126k)
< LSTM (∼165k) < 2-layer LSTM (∼326k)
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Additional details

Parameters and features that are the same across all
architectures are:

• Batch size = 64
• Epochs = 30
• Loss = Binary cross-entropy
• Optimizer = Adam
• Learning rate = 2e-5

Dropout was not used except for transformers because their
performance was especially bad without it. For them, we used
dropout probability = 0.2.
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Part V

Results
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Caveat

Our neural networks are simple. If we added more layers and
units or adopted a different architecture, it is possible the
distinctions we observe could be erased.

Nonetheless, even these basic networks provide some sense of
where some of the challenges are in generalizing over sequences
drawn from regular languages.

And the purpose of the ML-RegTest is to challenge folks to find
a single ML system that excels across the board.
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Analytic Techniques

1 Aggregating over factor width, tier size, threshold, and
individual language within a class yields a full factorial design
whose design variables are {training set, test set,
language class, network type, alphabet}, and whose
response variables are {accuracy, fscore, auc, brier},
yielding 2880 “aggregated observations”.

2 A design variable can be singled out as a treatment with the
remaining variables serving as blocking variables. Then a
non-parametric, repeated measure ANOVA can be conducted
with a Friedman Test to determine whether any of the treatment
levels differ.

3 If so, post hoc analyses using the Nemenyi-Wilcoxon-Wilcox
all-pairs test can be used to determine where the significant
differences exist.

4 We can also examine post-hoc the size of the effect (Cohen’s d).
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Sanity Checks

Do the performance measures correlate with each other?
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Sanity Checks

Do the performance measures correlate with each other?

Spearman’s rho

Accuracy AUC Brier

AUC 0.950 – –
Brier −0.940 −0.897 –
F-score 0.873 0.834 −0.811

YES. Since all measures strongly correlate,
we henceforth just report accuracy.
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Sanity Checks

2. Is performance on the SL/coSL, TSL/TcoSL, SP/coSP pairs
the same?
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Sanity Checks

2. Is performance on the SL/coSL, TSL/TcoSL, SP/coSP pairs
the same?

Accuracy All-pairs p-value

SL coSL 1.0000.806 0.806

SP coSP 1.0000.731 0.731

TSL TcoSL 1.0000.769 0.769

YES. There is no significant difference between these pairs of
language classes.

HCL | 07.11.2023 J. Heinz | 38



Sanity Checks

3. Does more training data help?
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Sanity Checks

3. Does more training data help?

YES

Average accuracy; each pair is significant (p < 2.2e−16).

Small Mid Large

0.668 0.772 0.863
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Accuracy by Class and Training Set Size



Research Questions

1 What is the effect of the test set?
2 What is the effect of logical level?
3 What is the effect of order relation (successor,

tier-successor, precedence)?
4 What is the effect of alphabet size?
5 What is the effect of these basic neural networks?
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What is the effect of the test set?

These average accuracy scores are pairwise significantly
different (p ≤ 2e−16).

SR LR SA LA

0.884 0.847 0.686 0.653

Pair Effect Size (Cohen’s d)) Interpretation

SR, LR 0.286 Small
LR, SA 1.274 Large
SA, LA 0.188 Small
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Accuracy by Class and Test Set



Accuracy by Class and Test Set



What is the effect of logical level?

Does accuracy decrease as we expressivity increases logically?

Group Classes

CNL SL, SP, TSL
DPL coSL, coSP, TcoSL
PROP LT, PLT, PT, TLT, TPLT
FO LTT, TLTT, SF
REG Zp, Reg
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The MSO divide matters most, but…

Average accuracy by logical level in decreasing order.

FO PROP CNL DPL REG

0.781 0.776 0.768 0.768 0.697
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The MSO divide matters most, but…

Average accuracy by logical level in decreasing order.

FO PROP CNL DPL REG

0.781 0.776 0.768 0.768 0.697

p-values from Nemenyi-Wilcoxon-Wilcox all-pairs test

CNL DPL FO PROP

DPL 0.99 – – –
FO 3.4e−6 3.5e−5 – –
PROP 5.7e−6 5.7e−5 1.00 –
MSO 1.7e−6 1.2e−7 4.8e−14 4.2e−14
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The MSO divide matters most, but…

Average accuracy by logical level in decreasing order.

FO PROP CNL DPL REG

0.781 0.776 0.768 0.768 0.697

Effect sizes as measured by Cohen’s d

CNL DPL FO PROP

DPL nss – – –
FO −0.079 −0.077 – –
PROP −0.059 −0.057 nss –
REG 0.394 0.397 0.463 0.452
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The MSO divide matters most, but…

Average accuracy by logical level in decreasing order.

FO PROP CNL DPL REG

0.781 0.776 0.768 0.768 0.697

Takeaways:
• In aggregate, FO had highest accuracy, contrary to

expectations.
• At the FO level and below, differences, if significant, have

very small effects.
• The significant differences between MSO and everything

else are medium effects.
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What is the effect of order relation?

Is there a significant difference in accuracy?

Group Classes

SUCC SL, coSL, LT, LTT
PREC coSP, PT, SF, SP
TSUCC TcoSL, TLT, TLTT, TSL
OTHER PLT, TPLT, Reg, Zp
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SUCC then TSUCC then PREC

Average accuracy by order relation in decreasing order.

SUCC TSUCC OTHER PREC

0.800 0.777 0.759 0.747
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SUCC then TSUCC then PREC

Average accuracy by order relation in decreasing order.

SUCC TSUCC OTHER PREC

0.800 0.777 0.759 0.747

p-values from Nemenyi-Wilcoxon-Wilcox all-pairs test

OTHER PREC SUCC

PREC 0.007 – –
SUCC 1.6e−13 4.0e−14 –
TSUCC 0.559 0.220 2.8e−14
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SUCC then TSUCC then PREC

Average accuracy by order relation in decreasing order.

SUCC TSUCC OTHER PREC

0.800 0.777 0.759 0.747

Takeaways:
• In aggregate, successor-based patterns have highest

accuracies.
• The significant difference between SUCC and PREC is a

small effect (d = 0.292).
• The significant differences between other comparisons is

very small (|d| < 0.2).
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What is the effect of alphabet size?

Accuracy

64 16 4

0.798 0.764 0.740

• Each difference is significant.
• The effect sizes between 64/16 and 16/4 are very small

(|d| ∼ 0.1).

HCL | 07.11.2023 J. Heinz | 47



What is the effect of the neural network?

Aggregate Accuracy

Simple 2-layer
RNN LSTM LSTM GRU Transformer

0.784 0.776 0.773 0.770 0.734
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What is the effect of the neural network?

Accuracy by Training Set

Small Mid Large

Simple RNN 0.719 0.781 0.853
GRU 0.645 0.776 0.889
LSTM 0.671 0.770 0.879
2-layer LSTM 0.649 0.783 0.897
Transformer 0.656 0.750 0.795

Bold faced scores are not significantly different from each other,
but are significantly different from the non-boldfaced scores.
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What is the effect of the neural network?

Accuracy by Training Set

Small Mid Large

Simple RNN 0.719 0.781 0.853
GRU 0.645 0.776 0.889
LSTM 0.671 0.770 0.879
2-layer LSTM 0.649 0.783 0.897
Transformer 0.656 0.750 0.795

Bold faced scores are not significantly different from each other,
but are significantly different from the non-boldfaced scores.

Effect sizes range from negligible (Mid, 2-layer LSTM to LSTM, d = 0.069)
to medium (Large, 2-layer LSTM to transformer, d = 0.646).
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Accuracy by Class and Neural Network



Accuracy by Class and Neural Network



What is the effect of grammar size?

Overall correlations

All train Large train

DFA size ∼ accuracy −0.050 −0.129
monoid size ∼ accuracy −0.045 −0.121

We calculated other correlations making finer distinctions by
network type, test type, and training size. The strongest
correlation we found is shown.

2-layer LSTM / Large training set / Short Adversarial test set

Size Monoid
-0.460 -0.470
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Lessons from these experiments on
ML-RegTest

1 High performance on Random Test sets does not imply
correct generalization as measured by performance on the
Adversarial tests.

2 Classification which depends on counting modulo n is hard
for neural ML systems to learn.

3 Classification which depends on precedence is harder for
neural ML systems to learn than successor

4 Classification ability of neural ML systems does not
correlate well with DFA size or monoid size.

5 On small training sets, simple RNNs perform best.
6 On large training sets, 2-layer LSTMs perform best.
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Rethinking Short Strings
• At ICGI 2023, Dana Angluin (Yale) wondered whether the

exclusion of shorter strings mattered and presented an
analysis indicating they could help.

• At the same event, Adil Soubki (Stony Brook) presented
work on testing classical grammatical inference algorithms
for sequence classification (RPNI, EDSM, ALERGIA) on
MLRegTest. He found including short strings in training
dramatically improved outcomes.

• We still need to train the vanilla NNs with shorter strings
and evaluate them.

MLRegTest

https://doi.org/10.5061/dryad.dncjsxm4h
https://arxiv.org/abs/2304.07687

https://github.com/heinz-jeffrey/subregular-learning
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Merci Beaucoup!

SL
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TSL
TcoSL

LT

LTT

TLT

TLTT

PLT TPLT

SP
coSP

PT

S t a r F r e e

R e g u l a r

Zp

Monadic Second
Order Logic

First Order
Logic

Propositional
Logic

Conjunctions of
Negative Literals

(bold)

Disjunctions of
Positive Literals

(italics)
successor

tier
successor

successor,
precedence

tier
successor,
precedence precedence
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