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Studying Linguistic Typology

Requires two books:

● “encyclopedia of categories”

● “encyclopedia of types”

Wilhelm Von
Humboldt
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Thesis

Theoretical computer science provides a useful “encyclopedia of
categories.”

● This encyclopedia is both about representations and
computational power.

● This encyclopedia is not complete and we can help write it.

● The categories in this encyclopedia are not in competition with
statistics or probabilities. They complement it.

● Each entry in this encyclopedia can be viewed as a linguistic
hypothesis with consequences for psychology, typology, and
learnability.
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Act I

Phonological Generalizations are Regular

Johnson 1972, Koskenniemi 1983, Kaplan and Kay 1994, Beesley and
Karttunen 2003
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Regular grammars for sets and
transformations

1. Regular expressions

2. Finite-state machines

3. Monadic Second Order (MSO)-definability

Kleene 1956, Scott and Rabin 1959, Büchi 1960, Engelfriedt and Hoogeboom
2001
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What “Regular” means

A set, relation, or function is regular provided the memory
required for the computation is bounded by a constant,
regardless of the size of the input.

input size

memory

Regular

input size

memory

Non-regular
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Some computations important to
grammar

● For given constraint C and any representation w:
▸ Does w violate C? How many times?

● For given grammar G and any underlying representation w:
▸ What surface representation(s) does G transform w to? With

what probabilities?

input size

memory

Regular

input size

memory

Non-regular
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Example: Vowel Harmony

Progressive
Vowels agree in backness with the first vowel in the underlying
representation.
Majority Rules
Vowels agree in backness with the majority of vowels in the underlying
representation.

UR Progressive Majority Rules

/nokelu/ nokolu nokolu
/nokeli/ nokolu nikeli
/pidugo/ pidige pudugo
/pidugomemi/ pidigememi pidigememi

(Lombardi 1999, Bakovic 2000, Finley 2008, 2011, Riggle 2004, Heinz and Lai
2013)
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Progressive and Majority Rules
Harmony

input size

memory

Regular

input size

memory

Non-regular

Progressive Majority Rules
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Some Perspective

Typological: With one potential counterexample (Bowler 2013),
Majority Rules is unattested.

(Lombardi 1999, Bakovic 2000)

Psychological: Human subjects fail to learn Majority Rules in
artificial grammar learning experiments, unlike
progressive harmony. (Finley 2008, 2011)

Computational: Majority Rules is not regular.
(Riggle 2004, Heinz and Lai 2013)
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Whether a function is regular is
independent of its co-domain.

Function Description

f ∶ Σ∗ → {0,1} Binary classification (well-formedness)

f ∶ Σ∗ → N Maps strings to numbers (counting violations)

f ∶ Σ∗ → [0,1] Maps strings to real values (gradient well-formedness)

f ∶ Σ∗ →∆∗ Maps strings to strings (single-valued transformation)

f ∶ Σ∗ → ℘(∆∗) Maps strings to sets of strings (multi-valued transformation)

Table: Functions from strings to various co-domains
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Act II

Representation and Computational Power
(with examples from phonotactics)
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The Chomsky Hierarchy

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

MSO

FO(prec)

FO(succ)

Prop(succ) Prop(prec)

CNL(succ) CNL(prec)

Finite
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Model theoretic representation of
order in words

hypothetical [sriS]

Successor

s r i S
◁ ◁ ◁

Precedence

s r i S
< < <

<

<

<

Stanford ∣ 2018/09/22 J. Heinz ∣ 15



Representations and Power

Monadic Second

Order Logic

First Order

Logic

Propositional

Logic

Conjunctions of

Negative Literals

Regular

... Rep 3 Rep 2 Rep 1
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With Successor

Monadic Second

Order Logic

First Order

Logic

Propositional

Logic

Conjunctions of

Negative Literals

Regular
2

3

5

4

1

2. *s...S

3. If sr then VV 

4. If 3sr then VV

5. *Even−Sib

1. *sr

... Rep 3 Rep 2 succ
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With Successor and Precedence

Monadic Second

Order Logic

First Order

Logic

Propositional

Logic

Conjunctions of

Negative Literals

Regular

3

5

4

1 2

2. *s...S

3. If sr then VV 

4. If 3sr then VV

5. *Even−Sib

1. *sr

... Rep 3 Rep 2 succ

prec

 +

Stanford ∣ 2018/09/22 J. Heinz ∣ 18



Some Lessons of this Story

1. Precedence is the transitive closure of successor.

2. Providing the power of transitive closure (MSO-definability)
yields power to do lots of other things (so expands the typology
undesirably)

3. Putting precedence directly into the representation allows a
restricted expansion of the typology in a more desirable way.

4. The restriction to CNL(X) also has provable learnability benefits.

5. Makes strong psychological predictions.

Heinz 2010, Rogers et al. 2013, Lai 2015
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Lest there be any misunderstanding

1. I am not claiming that order (successor and precedence) is all
that matters.

2. I am using an example to make a point about the interplay of
representation and power.

3. Generally, this model-theoretic perspective provides a systematic
way to explore what De Lacy (2011) calls “Constraint Definition
Languages” (CDLs).
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Lest there be any misunderstanding

1. I am not claiming that order (successor and precedence) is all
that matters.

2. I am using an example to make a point about the interplay of
representation and power.

3. Generally, this model-theoretic perspective provides a systematic
way to explore what De Lacy (2011) calls “Constraint Definition
Languages” (CDLs).

A coda:

1. Many more representations to explore!

2. Theories with optimization also can check whether these CDLs
are closed under optimization or not. . .
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Phonological Tiers

Locality on the tier

s r i S
◁ ◁ ◁

◁SIB

Phonological Theory: Goldsmith 1976, Rose and Walker 2004,
McMullin 2016, Aksënova and Deshmukh 2018, a.o.

Computational Analysis: Heinz et al. 2011, De Santo 2016

Learning with Tiers: Hayes and Wilson 2008, Wilson and
Gallagher 2018, a.o.

Learning Tiers themselves: Jardine and McMullin 2017, a.o.

Extensions to Morphology: Graf 2017 (CLS), Askënova et al.
2016, Askënova and De Santo 2017
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Autosegmental representations

Adam Jardine

1. Jardine (2016, 2017) examines autosegmental
representations (ASRs), where the sub-
structures are now sub-graphs of the
autosegmental structure.

2. He argues that a theory of tonal surface
patterns as CNL(ASR) captures the typology
better than both Zoll 2003 and earlier
derivational approaches.

3. He shows that his grammars can be learned from strings (not
ASRs!) because ASRs are fundamentally stringlike (Jardine and
Heinz 2015).

[félàmà]
‘junction’
(Mende)

H L

σ σ σ

* H L

σ σ
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Structure in Phonological
Representations

Jon Rawski

1. Phonological features structure natural
classes (Frish 1996).

2. From a learning perspective, this
structure provides entailment relations,
which helps prune the search space
(cf. Tesar 2014, Antilla and Magri 2018).

[-N]

[-N,+V] [-N,+C]

[-N,+V,+C]

✓

✓

*

*

Joint work with Jane Chandlee, Rémi Eyraud, and Adam Jardine.
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Joint work with Jane Chandlee, Rémi Eyraud, and Adam Jardine.Stanford ∣ 2018/09/22 J. Heinz ∣ 23



Structure in Phonological
Representations

Jon Rawski

1. Phonological features structure natural
classes (Frish 1996).

2. From a learning perspective, this
structure provides entailment relations,
which helps prune the search space
(cf. Tesar 2014, Antilla and Magri 2018).
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Joint work with Jane Chandlee, Rémi Eyraud, and Adam Jardine.Stanford ∣ 2018/09/22 J. Heinz ∣ 23



Structure in Phonological
Representations

Jon Rawski

What has been done

● Provably correct bottom-up learning
algorithm

Goals of the Project

● Model Efficiency

● Model Implementation (integration with
MaxEnt, MLE, etc.)

● Model Testing - large linguistic datasets

Broader Impacts

● Learner that takes advantage of data sparsity

● applicable on any representational structures of sequential data
(language, genetics, robotic planning, etc.)

● implemented, open-source code

Joint work with Jane Chandlee, Rémi Eyraud, and Adam Jardine.
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The end of Act II

The typological hypothesis which emerges from these studies is

Phonotactics is CNL(X) with the right representations X.

This is not a claim about categoricity vs. gradience. It is independent
of that distinction.
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Intermission

What about statistics and probability?
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Lots of possibilities

● Maximum Entropy

● Maximum Likelihood Estimate

● Bayesian Inference

● Minimum Description Length

● Markov Logic Networks

● Support Vector Machines (Empirical Risk Minimization)

● Neural Networks

● . . .

In every case, it is worthwhile to think carefully about the family of
distributions these methods are being used on.

Goldwater and Johnson 2003, Hayes and Wilson 2008, Jarosz 2006, Goldwater
2006, Solomnoff 1964, Goldsmith 1999, Rasin and Katzir 2016, Vu et al. 2018,
Shaw and Taylor 2005, Goldberg 2017, a.o.
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Maximum Likelihood Estimate

Θ̂ = arg max
Θ

(L(D ∣ Θ))

The family of distributions really matters!

1. CNL(succ) = Strictly k-Local → stochastic SL / n-gram model

2. CNL(prec) = Strictly k-Piecewise → stochastic SP models

3. For same data D, the MLE returns different functions because
the parameters mean different things.

Heinz and Rogers (2010)
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Comparing representations within a
statistical model

Hayes and Wilson maxent models r

features & complement classes 0.946
no features & complement classes 0.937
features & no complement classes 0.914
no features & no complement classes 0.885

Table: From Hayes and Wilson (2008: Table 5) and Koirala and Heinz
2010: Table 4): Correlations of different versions of HW maxent model with
Scholes data.
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Comparing statistical models within a
representation

models r

HW MaxEnt w/no features & no complement classes 0.885
N-gram model (MLE) 0.877

Table: From Hayes and Wilson (2008: Table 5): Correlations of different
models with Scholes data.

Open question: How to find MLE of feature-based representations.
What is this family of distributions?

cf. Albright 2009
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Research on learning large families of
distributions

Deterministic regular stochastic functions

● ALEGRIA (Carrasco and Oncina 1994, 1999, de la Higuera and
Thollard 2000)

Non-deterministic regular stochastic functions

● Clark and Thollard (2004)

● Spectral learning (Hsu et al. 2009, Baille et al. 2014)

None of these have been applied to phonological learning to my
knowledge. How can they be generalized to other phonological
representations?
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Conclusion to the Intermission

1. The choice of statistical learning methods is distinct from the
choice of representation and the family of stochastic models.

2. Both matter and both must be attended to when making
comparisons.

3. Many more models out there!
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Act III

Morpho-phonological Transformations
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The Encyclopedia of Categories for
Maps

2: 2-way
1: 1-way
N: Non-deterministic
D: Deterministic
f: functional
I: Input

O: Output
S: Strictly
L: Local

2NFT

1NFT

1fNFT

2DFT

1DFT

ISL OSL

Engelfriedt and Hoogeboom 2001, Chandlee 2014, Filiot and Reynier 2016,
Chandlee and Lindell, forthcoming
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f: functional
I: Input

O: Output
S: Strictly
L: Local

2NFT

1NFT

1fNFT

2DFT

1DFT

ISL OSL
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functions

Engelfriedt and Hoogeboom 2001, Chandlee 2014, Filiot and Reynier 2016,
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The Encyclopedia of Categories for
Maps

2: 2-way
1: 1-way
N: Non-deterministic
D: Deterministic
f: functional
I: Input

O: Output
S: Strictly
L: Local

2NFT

1NFT

1fNFT

2DFT

1DFT

ISL OSLQuantifer Free (◁)
definable

Engelfriedt and Hoogeboom 2001, Chandlee 2014, Filiot and Reynier 2016,
Chandlee and Lindell, forthcoming
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Input Strictly Local Maps

For every Input Strictly Local function, the output

string u of each input element x depends only on x

and k − 1 input elements previous to x. Here k = 3 so

the contents of the lightly shaded cell only depends

on the contents of the darkly shaded cells.

Jane Chandlee

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Chandlee 2014, Chandlee et al. 2014, Chandlee and Heinz 2018, Chandlee et
al. 2018
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Output Strictly Local Maps

For every Output Strictly Local function, the output

string u of each input element x depends only on x

and the last k−1 elements written to the output. Here

k = 3 so the contents of the lightly shaded cell only

depends on the contents of the darkly shaded cells.

Jane Chandlee

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Chandlee 2014, Chandlee et al. 2015, Chandlee and Heinz 2018, Chandlee
2018 (AMP)
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ISL and OSL

ISL is input-oriented

1. Maps describable with a rule R: A Ð→ B / C D where CAD
is a finite set and R applies simultaneously

2. Approximately 95% of the individual processes in P-Base (v.1.95,
Mielke (2008))

3. Many opaque transformations without any special modification.

OSL is output-oriented

1. Spreading processes

2. . . .

Neither can describe long-distance consonantal harmony

Chandlee 2014, Chandlee et al. 2014, 2015, Chandlee and Heinz 2018,
Chandlee et al. 2018
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2. . . .

Neither can describe long-distance consonantal harmony
(but see Graf and Mayer 2018 SIGMORPHON and Chandlee and
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ISL and OSL
ISL is input-oriented

1. Maps describable with a rule R: A Ð→ B / C D where CAD
is a finite set and R applies simultaneously

2. Approximately 95% of the individual processes in P-Base (v.1.95,
Mielke (2008))

3. Many opaque transformations without any special modification.

OSL is output-oriented

1. Spreading processes

2. . . .

Neither can describe long-distance consonantal harmony
(but see Graf and Mayer 2018 SIGMORPHON and Chandlee and
McMullin 2018 AMP on I/O TSL!)

Learnability: k-ISL and k-OSL are learnable with quadratic
time and data by ISLFIA and OSLFIA, respectively.

Chandlee 2014, Chandlee et al. 2014, 2015, Chandlee and Heinz 2018,
Chandlee et al. 2018
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Syllabification

Kristina
Strother-Garcia

1. Translations between different syllabic
representations are Quantifier Free
interpretations.

2. Syllabification in IT Berber is also
Quantifier Free, with a “window size” of 3.

She concludes “. . . syllabification in ITB can be represented by a QF
graph transduction, a formalism restricted to substantially lower
computational complexity than [traditional] phonological
grammars. . . Establishing that ITB syllabification is QF highlights an
insight not apparent from [those traditional] grammatical
formalisms. . . ”
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Computational Typology of
Reduplication

RedTyp: https://github.com/jhdeov/RedTyp

● SQL database of reduplicative processes

● Modeled 138 reduplicative processes across 90
languages using 57 2-way FSTs

● Average number of states: 8.8

● Largest number of states: 30
(1000s for 1-way FSTs)

Hossep Dolatian
Contributions

1. 2-way FSTs can model virtually all reduplication patterns.

2. ∼87% belongs to a subclass which can be described as the
“Concatenation of two OSL functions” (C-OSL).

3. Simple learning algorithm for C-OSL which uses OSLFIA but
also a boundary-enriched sample.

Dolatian and Heinz 2018 (ICGI, SIGMORPHON)
Stanford ∣ 2018/09/22 J. Heinz ∣ 39

https://github.com/jhdeov/RedTyp


The Encyclopedia of Categories for
Maps

2: 2-way
1: 1-way
N: Non-deterministic
D: Deterministic
f: functional
I: Input

O: Output
S: Strictly
L: Local

2NFT

1NFT

1fNFT

2DFT

C-OSL

1DFT

ISL OSL

Engelfriedt and Hoogeboom 2001, Chandlee 2014, Filiot and Reynier 2016,
Dolatian and Heinz 2018a,b
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Who are the actors in phonological
typology?

● Representation

● Logical power

● Grammatical structure

● Statistics
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And. . . Curtain!

Thanks!
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