
Subregular Complexity and Machine
Learning

Jeffrey Heinz

Linguistics Department

Institute for Advanced Computational Science

Stony Brook University

IACS Seminar September 14, 2017

1

Joint work

• Enes Avcu, University of Delaware

• Professor Chihiro Shibata, Tokyo University of Technology

*This research was supported by NIH R01HD87133-01 to JH, and JSPS

KAKENHI 26730123 to CS.
2

Charles Babbage

“On two occasions I have been asked [by members of Parliament],

‘Pray, Mr. Babbage, if you put into the machine wrong figures, will

the right answers come out?’ I am not able rightly to apprehend

the kind of confusion of ideas that could provoke such a question.”

as quoted in de la Higuera 2010, p. 391

3

Sequences in nature and engineering

1. Natural languages

2. Nucleic acids

3. Planning and executing actions

4. . . .

4

This talk: A tale of two approaches to learning

and

5

This talk

The judicial use of formal language theory and grammatical

inference (GI) can help illuminate the kinds of generalizations deep

learning networks can and cannot make.

Contributions

1. Simple regular languages discriminate naive LSTMs’ ability to

generalize. Ultimate goal would try to formalize this

relationship.

2. GI algorithms can help us understand whether sufficient

information is present for successful learning to occur.

6

Success of Deep Learning

“Our deep learning methods developed since

1991 have transformed machine learning and

Artificial Intelligence (AI), and are now avail-

able to billions of users through the five most

valuable public companies in the world: Ap-

ple (#1 as of 9 August 2017 with a market

capitalization of US$ 827 billion), Google (Al-

phabet, #2, 654bn), Microsoft (#3, 561bn),

Facebook (#4, 497bn), and Amazon (#5,

475bn) [1].”
Jürgen Schmidhuber, IDSIA

http:

//people.idsia.ch/~juergen/impact-on-most-valuable-companies.html

6

Feed-forward neural network with two hidden

layers

(Goldberg 2017, page 42)
7

Recurrent Neural Networks (RNNs) add a loop

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

8

Success of Deep Learning

“Most work in machine learning focuses on

machines with reactive behavior. RNNs,

however, are more general sequence proces-

sors inspired by human brains. They have

adaptive feedback connections and are in

principle as powerful as any computer. The

first RNNs could not learn to look far back

into the past. But our ‘Long Short-Term

Memory’ (LSTM) RNN overcomes this fun-

damental problem, and efficiently learns to

solve many previously unlearnable tasks.”
Jürgen Schmidhuber, IDSIA

http://people.idsia.ch/~juergen/

8

RNNs

LSTMs

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

9

Success of Deep Learning

“LSTM-based systems can learn to translate

languages, control robots, analyse images,

summarise documents, recognise speech and

videos and handwriting, run chat bots, pre-

dict diseases and click rates and stock mar-

kets, compose music, and much more, . . . ”

Jürgen Schmidhuber, IDSIA
http:

//people.idsia.ch/~juergen/impact-on-most-valuable-companies.html

10

A contrarian view

“Even the trendy technique of ‘deep learn-

ing,’ which uses artificial neural networks

to discern complex statistical correlations in

huge amounts of data, often comes up short.

Some of the best image-recognition systems,

for example, can successfully distinguish dog

breeds, yet remain capable of major blun-

ders, like mistaking a simple pattern of yellow

and black stripes for a school bus. Such sys-

tems can neither comprehend what is going

on in complex visual scenes (‘Who is chasing

whom and why?’) nor follow simple instruc-

tions (‘Read this story and summarize what

it means’).”

Gary Marcus, NYU

NY Times, Sunday Review, July 29, 2017

11

Rest of the talk

1. Formal Language Theory

2. Grammatical Inference

3. Learning Experiments

4. Discussion

12

Sequences, Strings

...

aaa, aab, aba, abb, baa, bab, bba, bbb

aa, ab, ba, bb

a, b

λ

A string is a finite sequence of symbols from some set of symbols Σ.

13

Formal languages, sets of strings

The set of all possible strings is notated Σ∗.

Every subset of Σ∗ is a formal language.

Examples

1. Let Σ = { a,b,c,..., z, �, . }. Then there is a subset of

Σ∗ which includes all and only the grammatical sentences of

English (modulo capitalization and with � representing

spaces).

2. Let Σ = {Advance-1cm, Turn-R-5◦}. Then there is a subset of

Σ∗ which includes all and only the ways to get from point A to

point B.

3. . . .

14

The membership problem

M

S yes no

s ∈ S s 6∈ S

s ∈ Σ∗

Given a set of strings S and any string s, output whether s ∈ S .

15

Example 1

A string belongs to S if it does not contain aa as a substring.

s ∈ S s 6∈ S

abba baab

abccba aaccbb

babababa ccaaccaacc

.

a

b
c

b
c

a

a
b
c

16

Example 2

A string belongs to S if it does not contain aa as a subsequence.

s ∈ S s 6∈ S

cabb baab

babccbc babccba

bbbbbb bbaccccccccccaccc

.

a

b
c

b
c

a

a
b
c

17

A Learning Problem: Positive Evidence Only

For any set S from some given collection of sets: Drawing finitely

many example strings from S, output a program solving the

membership problem for S.

A

algorithm
learning

M

yes no
S

D

s ∈ S s 6∈ S

s ∈ Σ∗

18

A Learning Problem: Positive and Negative

Evidence

For any set S from some given collection of sets: Drawing finitely

many strings labeled as to whether they belong to S or not, output

a program solving the membership problem for S.

AD+

algorithm
learning

M

yes no
S

D−

s ∈ S s 6∈ S

s ∈ Σ∗

19

Generalizing the Membership and Learning

Problems

function Notes

f : Σ∗ → {0, 1} Binary classification

f : Σ∗ → N Maps strings to numbers

f : Σ∗ → [0, 1] Maps strings to real values

f : Σ∗ → ∆∗ Maps strings to strings

f : Σ∗ → ℘(∆∗) Maps strings to sets of strings

20

Classifying membership problems (1)

Computably Enumerable

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

21

RPNI: Regular Positive and Negative Inference

Theorem. For every regular language S, there is a finite set

D+ ⊆ S and a finite set D− 6∈ S such that when the algorithm

RPNI takes any training sample containing D+ and D− as input,

RPNI outputs a program which solves the membership problem for

S. Furthermore, RPNI is efficient in both time and data.

(Oncina and Garica 1992, de la Higuera 2010)

22

How does RPNI work?

1. RPNI first builds a finite state machine representing the

training sample called a “prefix tree.”

2. It iteratively tries to merge states in a breadth-first manner,

testing each merge against the training sample.

3. It keeps merges that are consistent with the sample and rejects

merges that are not.

4. At the end of this process, if the training data was sufficient

then the resulting finite-state machine is guaranteed to solve

the membership problem for S.

23

Let’s use formal languages to study LSTMs

1. Grammars generating the formal languages are known.

(a) Conduct controlled experiments.

(b) Ask specific questions. Example: To what extent are the

generalizations obtained independent of string length?

2. Relative complexity of different formal languages may provide

additional insight.

3. Grammatical inference results can inform whether the data was

rich enough.

4. May lead to proofs and theorems about abilities of types of

networks

5. May lead to new network architectures.

24

Valid idea then, valid now

1. Predicting the next symbol of a string drawn from a regular

language

• Network Type: First-order RNNs,

• Target language: Reber Grammar (Reber 1967)

• (Casey 1996; Smith, A.W. 1989)

2. Deciding whether a string s belongs to a regular language S

• Network Type: Second-order RNNs,

• Target language: Tomita languages (Tomita 1982).

• (Pollack 1991; Watrous and Kuhn 1992; Giles et al. 1992)

25

Later research targeted nonregular languages

• LSTMs correctly predicted the possible continuations of

prefixes in words from anbncn for n up to 1000 and more.

• (Schmidhuber et al. 2002; Chalup and Blair 2003; Prez- Ortiz

et al. 2003).

26

Additional Motivation for current study:

Subregular complexity

The Reber grammars and Tomita languages were not understood

in terms of their abstract properties or pattern complexity.

• Regular languages chosen here are known to have certain

properties based on their subregular complexity (McNaughton

and Papert 1971, Rogers and Pullum 2011, Rogers et al. 2010,

2013).

27

Classifying membership problems (2)

28

Classifying membership problems (3)

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011, Rogers

et al 2010, 2013)

29

Subregular complexity

These classes are natural because they have multiple

characterizations in terms of logic, automata, regular expressions,

and abstract algebra.

1. SL is the formal language-theoretic basis of n-gram models

(Jurafsky and Martin, 2008),

2. SP can model aspects of long-distance phonology (Heinz, 2010;

Rogers et al. 2010)

30

SL Characterizations

1. S is closed under suffix substitution. S ∈ SL if there exists k

such that for all u, v, w, x, y if uvw and xvy belong to L and v

has length k − 1 then uvy belongs to S too.

2. SL stringsets can be defined with a finite set of forbidden

substrings.

3. From a model-theoretic perspective, the order of elements in

strings is represented with the successor (+1) relation and the

logical formula conjoin negative literals.

31

SP Characterizations

1. S belongs to SP iff S is closed under subsequence.

2. SP stringsets can be defined with a finite set of forbidden

subsequences.

3. From a model-theoretic perspective, the order of elements in

strings is represented with the precedence (<) relation and the

logical formula conjoin negative literals.

32

GI results for SL and SP with positive data only

Theorem. For each k, there is an algorithm A such that, for all

S ∈ SL-k (SP-k), there is a finite subset D ⊆ S such that when A

takes any finite superset of D as input, A outputs a program which

solves the membership problem for S.

33

Six Target Languages

Σ = {a, b, c, d}.

DFA

Language Class Forbidden k-substrings in target stringsets size

SL2 ⋊b, aa, bb, a⋉ 3

SL4 ⋊bbb, aaaa, bbbb, aaa⋉ 7

SL8 ⋊bbbbbbb, aaaaaaaa, bbbbbbbb, aaaaaaa⋉ 15

Language Class Forbidden k-subsequences in target stringsets

SP2 ab 2

SP4 abba 4

SP8 abbaabba 8

34

Training

The six target languages were implemented with finite state

machines using foma, a publicly available, open-source platform

(Hulden, 2009).

Training Data

• Three training data sets: 1k, 10k, and 100k.

• Half of the words in each training set were positive examples

and the other half were negative examples.

• Training words were generated for each length between 1 and

25.

• Training sets were generated randomly with foma and thus

may contain duplicates.

35

Test Data

We developed two test sets: Test1 and Test2.

• Each contain 1k, 10k, 100k novel words (so not in training).

• Half of the test words belong to L and half do not.

• Test1: The length of the words are no longer than 25.

• Test2: Test2 words are of length between 26 and 50.

36

Test Data

37

The LSTMs in these experiments

• We constructed simple LSTM networks to test the capability of

the LSTM itself.

• We used a package for RNNs called Chainer

(http://chainer.org) to implement them.

38

LSTM architecture

LSTM

・・・ an

positive / negative (softmax)

embed

LSTM

embed

・・・LSTM

a1

embed

a2

• The embed layer maps the one-hot vector of each symbol to a

real-valued vector.

• All outputs of the LSTM except for the last one are ignored.

• The last output of the LSTM is input to the softmax layer.

• The output of the softmax layer represents the positive and

negative probability.
39

Learning Parameters

• Three fully connected LSTMs: vector sizes were 10, 30, and

100 for all layers.

• The weights of the forget gate of LSTM are initialized

according to the normal distribution with mean 1.

• The batch size is 128.

• The L2 norm of the gradient is clipped with 1.0.

• The optimization algorithm is Adam (Kingma et. al, 2014) .

• The lengths of strings in each batch are aligned through

padding with the zero vector.

• . . . many choices, but basically done in a standard fashion

40

SL Results
< 0.60 < 0.80 < 0.99

LSTM type

Training v10 v30 v100

Regimen Test1 Test2 Test1 Test2 Test1 Test2

1k 0.9026 0.9238 0.9663 0.9978 0.9832 1.0000

SL2 10k 0.9798 0.9989 0.9942 1.0000 0.7495 0.7323

100k 0.6379 0.6180 0.7121 0.6980 0.7898 0.7645

1k 0.9111 0.8515 0.9522 0.8851 0.9691 0.9278

SL4 10k 0.7193 0.7116 0.9993 0.9999 1.0000 0.9987

100k 0.9871 0.9940 0.9904 0.9957 0.9934 0.9970

1k 0.9971 0.9941 0.9951 0.9902 1.0000 0.9902

SL8 10k 0.9950 0.9989 0.9420 0.9992 0.9190 0.9988

100k 0.9949 0.9997 0.8695 0.9989 0.9996 0.9995

41

SP Results
< 0.60 < 0.80 < 0.99

LSTM type

Training v10 v30 v100

Regimen Test1 Test2 Test1 Test2 Test1 Test2

1k 0.9685 0.9873 0.9869 1.0000 0.9971 1.0000

SP2 10k 1.0000 1.0000 0.7722 0.7615 1.0000 1.0000

100k 1.0000 1.0000 0.9995 1.0000 1.0000 1.0000

1k 0.9351 0.9603 0.9697 0.9635 0.8633 0.8624

SP4 10k 0.9991 0.9953 0.7223 0.8014 0.9872 0.9838

100k 0.9502 0.9600 0.7988 0.7930 1.0000 1.0000

1k 0.8846 0.5850 0.8902 0.6148 0.9153 0.6472

SP8 10k 0.7547 0.5151 0.9661 0.6099 0.8056 0.6471

100k 0.8485 0.6569 0.8599 0.6899 0.8214 0.7087

42

Summary

1. Across-the-board success in SL4, SL8, SP2, SP4 experiments.

2. SL2 is not as successful, especially with 100k training examples.

3. SP8 is not as successful with Test 2 always worse than Test 1

across-the-board.

43

SP8 100k v100 : accuracy per epoch

44

SL2 100k v100 : accuracy per epoch

45

SL8 100k v100 : accuracy per epoch

46

What can explain these worse outcomes?

1. The training data is not rich enough.

2. The architecture is too naive and the pattern is beyond the

capacity of the specific architecture employed.

47

RPNI lets us answer Hypothesis 1: SL Results

< 0.60 < 0.80 < 0.99

LSTM

Training v100 Sufficient Data? RPNI

Regimen Test1 Test2 Test1 Test2

1k 0.9832 1.0000 NO 0.8550 0.8440

SL2 10k 0.7495 0.7323 YES 1.0000 1.0000

100k 0.7898 0.7645 YES 1.0000 1.0000

1k 0.9691 0.9278 NO 0.9180 0.8130

SL4 10k 1.0000 0.9987 NO 0.9946 0.9785

100k 0.9934 0.9970 YES 1.0000 1.0000

1k 1.0000 0.9902 NO 0.9910 0.9660

SL8 10k 0.9190 0.9988 NO 0.9980 0.9937

100k 0.9996 0.9995 NO 0.9998 0.9996

Implementation with gi-toolbox

(https://code.google.com/archive/p/gitoolbox/)

48

RPNI lets us answer Hypothesis 1: SP Results

< 0.60 < 0.80 < 0.99

LSTM

Training v100 Sufficient Data? RPNI

Regimen Test1 Test2 Test1 Test2

1k 0.9971 1.0000 YES 1.0000 1.0000

SP2 10k 1.0000 1.0000 YES 1.0000 1.0000

100k 1.0000 1.0000 YES 1.0000 1.0000

1k 0.8633 0.8624 YES 1.0000 1.0000

SP4 10k 0.9872 0.9838 YES 1.0000 1.0000

100k 1.0000 1.0000 YES 1.0000 1.0000

1k 0.9153 0.6472 NO 0.8710 0.5870

SP8 10k 0.8056 0.6471 NO 0.8729 0.63.38

100k 0.8214 0.7087 YES 1.0000 1.0000

49

Discussion

The data was sufficient in the SL2 and SP8 cases.

So the LSTM failed to generalize correctly despite it.

1. For SL2 case, overfitting

• The dropout method somewhat improved results but overall

picture is the same.

2. For SP8 case, the LSTM architecture is still challenged by

long-distance dependencies.

50

Comparing SL8 vs SP8 cases

The difference between substring and subsequence—which reduces

logically to the difference between the successor and precedence

relations (Rogers et al., 2013)—is significant for naive LSTMs.

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

51

Not about One-Upmanship

• Of course we can modify the network: more nodes, more

hidden layers, use Kalman filters . . .

• But we can also increase the k value. We can move from

Strictly Local/Piecwise to Locally Testable/Piecewise.

52

Goal

Establishing a relationship between architectures and subregular

complexity.

Conclusion

1. Simple subregular languages discriminate naive LSTMs’ ability

to generalize.

2. GI algorithms can help us understand whether sufficient

information is present for successful learning to occur.

53

Thanks for listening!

and

54

