Learning Left-to-Right and Right-to-Left Iterativs
Languages

Jeffrey Heinz
hei nz@udel . edu

University of Delaware

St. Malo
September 24, 2008

J. Heinz (1) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



Introduction

LRI and RLI Languages

previously unnoticed infinite subclasses of the regulagl@ages

J. Heinz (2) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



Introduction

LRI and RLI Languages

previously unnoticed infinite subclasses of the regulagl@ages
identifiable in the limit from positive data

J. Heinz (3) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



Introduction

LRI and RLI Languages

previously unnoticed infinite subclasses of the regulagl@ages
identifiable in the limit from positive data

essentially the classes obtainable by merging final antisttaes
in prefix and suffix trees, respectively
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Introduction

Why they are interesting

related algorthimically to the zero-reversible languages
(remove one line!) (Angluin 1982)

a step towards mapping out space of language classes difaina
by Muggleton’s (1990) general state-merging IM1 algorithm

help reveal the algebraic structure underlying state-mgrgnd
the reverse operator

related to a linguistic hypothesis: all phonotactic paitesire
neighborhood-distinct (Heinz 2007)
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Phonotactics

What are phonotactic patterns?

= Rules or constraints governingord well-formedness
m Possible words of English:

{ slam, fist, blick, flump, ...}
m This set excludes:

{ sram, fizt, bnick, flumk, ...}
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Phonotactics

Specific Sound Patterns

m No Triple Consonant Clusters in Yokuts:

m Includes{ab, abba, ababa, ...}
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= Symmetric Sibilant Harmony (Navajo):
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Phonotactics

Specific Sound Patterns

m No Triple Consonant Clusters in Yokuts:

m Includes{ab, abba, ababa, ...}
m Excludes { bbb, abbb, abbba, bbbba, ...}

= Symmetric Sibilant Harmony (Navajo):

m Includes {sos, sotototos, .faf, fotototof ...}
m Excludes {sof, [otos, sototof, ...}

m Asymmetric Sibilant Harmony (Sarcee):
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Phonotactics

Language Patterns and the Chomsky Hierarchy

Mildly  Context

Regular Context Free | Context . gensitive
Sensitive!
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Phonotactics

Language Patterns and the Chomsky Hierarchy

Mildly Context

Context | Sensitive
Sensitive!
/

Yawelmani Yokuts
Consonant Clusters

(Kisseberth 1973)

Yoruba Copying
English Nested”  Swiss Germa (Kobele 2006)
Embedding Crossing Dependencies

(Chomsky 1956) (Schieber 1985)

Pintupi Stres
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)
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Phonotactics

The Subregular Hierarchy

Locally Testable Non-Counting Regular
(Locally Testable w/ order),

(McNaughton and Papert 1971, Pullum and Rogers 2007)
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Phonotactics

The Subregular Hierarchy

Symmetric Harmony Asymmetric Harmony

Adjacency restrictions Unbounded Stress

Locally Testable Non-Counting Regular
(Locally Testable w/ order),

(Greenberg 1978, Hansson 2001, Hayes 1995)
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Phonotactics

Grammatical Inference of Regular Languages is Theorel
Phonology

m The properties of learnable subclasses of the regular &ayegu
are candidates as universal properties of sound patterns

E.g. Angluin 1982, Muggleton 1990, Fernau 2003, ...
m Which can be evaluated by comparing them to the
Linguists’ knowledge of the range of variation
E.g. Greenberg 1978, Hansson 2001, Hayes 1995, ...
Psycholinguistic evidence about the state of infants’ Kecdge

E.g. Juscyk et al. 1999, Mattys and Juscyk 2001, Saffran et al
1996, Saffran and Thiessen 2003, ...
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Phonotactics

The Subregular Hierarchy

Symmetric Harmony Asymmetric Harmony

Adjacency restriction: Unbounded Stress
Bounded Stres:

Locally Testable| Non-Counting Regular

(Locally Testable w order

m For small neighborhoods, they are all neighborhood-dittin

m 3-LTSScC 1-1ND
m precedence languagesl-1 ND
m all but 2 attested stress patternd-1 ND

(Heinz 2007)

J. Heinz (34) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



LRI and RLI languages

LRI: Language-theoretic Characterization

m LRI languages are defined as the intersectibtwo classes of
languages.
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LRI and RLI languages

LRI: Language-theoretic Characterization

m LRI languages are defined as the intersectibtwo classes of
languages.

{L : whenevem,v e L, T (u) = T.(v)}
{Li-L3: Ly, L2 € Lsin}
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LRI: Towards an Automata-theoretic Characterization
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LRI and RLI languages

LRI: Towards an Automata-theoretic Characterization

Theorem.

The class[L : whenevew,v € L, T (u) = T_(v)} coincides with
those languages recognizable by finite-state automatahvaingc
forward deterministic and have at most one final state.

These languages | call 1-final deterministic
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Theorem.
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The tail-canonical acceptd¥ (L) is 1-final-deterministic, and

b
o
b

J. Heinz (42) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



LRI and RLI languages

LRI: Automata-theoretic Characterization

Theorem.

A languagel is left-to-right iterative iff
The tail-canonical acceptd¥r (L) is 1-final-deterministic, and

if L is infinite, then every loop idr (L) passes through the final
state.

J. Heinz (43) University of Delaware
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LRI and RLI languages

Consequences for Inference

Givenab, abcd we can inferab(cd)* C L
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LRI and RLI languages

Consequences for Inference

Givenab, abcd we can inferab(cd)* C L
= Generally, giveru,uv € L, we inferuv* C L.

Vv
[

=~
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LRI and RLI languages

Learning LRI

¢(S) = PT(S)/mfinal

Merge final states in the prefix tree
Merge states to eliminate forward non-determinism

= This last step is not required — it does not change the largguag
of the machine

J. Heinz (51) University of Delaware
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LRI and RLI languages

lllustration of Learning LRI
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LRI and RLI languages

lllustration of Learning LRI

Sample = { a, b, abcd, bbcb}

m The algorithm differs only from ZR (Angluin 1982) in that &ta
arenot merged to remove reverse non-determinism!
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LRI and RLI languages

Learning Results for LRI

Theorem. EveryL € LRI has a characterstic sample. Since
L = Li-L5 whereLy, L € Lin, Such a sample is

LiULls- Lo

Theorem. L=L(PT(S)/7inal) is the smallest language in LRI which
includesS.

Theorem. The learners identifies LRI in the limit from positive data.
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LRI and RLI languages

Relation to other classes

m LRI is incomparable with ZR ...
m and incomparable with LTSS, LT, ...

i.e. it crosscuts the Subregular Hierarchy
m Unknown if it is function-distinguishable (Fernau 2003)
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m head-canonical acceptors have at most one start state
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LRI and RLI languages

RLI: Language-theoretic Characterization

m Languages in RLI are theverseof languages in LRI.

m They are those languages recognized by FSAs whose
m head-canonical acceptors have at most one start state
m all loops pass through the start state

m RLI can be learned by a learner which merges start stategin th
suffix tree of the sample.

J. Heinz (65) University of Delaware
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State-merging Algorithms

State-merging: Algorithm IM1

m Begin with a structured representatiBit of the sample

(Muggleton 1990)
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State-merging Algorithms

State-merging: Algorithm IM1

m Begin with a structured representatibhof the sample
m Use an equivalence relation to determine which states tgener
m The equivalence relation is determined by a funcfion
p~ qiff f(p) =f(q)
m l.e. given samplé&, compute
M(S) /i
(Muggleton 1990)
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m Choice ofM:

Prefix Tree
Suffix Tree

= Choice off
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State-merging Algorithms

Choices ofM andf

m Choice ofM:
Prefix Tree
Suffix Tree

m Choice off
same incoming k-pathg(q)
same outgoing k-path3.(q)
final statedinal(q)

(=)
5 [
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Choices ofM andf

a
m Choice ofM:
Prefix Tree cld
Suffix Tree
m Choice off

same incoming k-pathg(q)

same outgoing k-path3«(q)

final statedinal(q)

nonfinal statesionfinal q) a
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Choices ofM andf

m Choice ofM:
Prefix Tree cld
Suffix Tree
= Choice off
same incoming k-pathg(q)
same outgoing k-paths(q)
final statedinal(q)

nonfinal statesonfinalq) a

start statestart(q)

[@ nonstart statesonstartq)
c\d
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State-merging Algorithms

Choices ofM andf

m Choice ofM:

Prefix Tree
Suffix Tree

m Choice off
same incoming k-pathg(q)
same outgoing k-path3.(q)
final statedinal(q)
nonfinal statesonfinalq)
start statestart(q)
[@ nonstart statesonstartq)
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State-merging Algorithms

Summary of known classes obtainable in this way

(Garcia et. al 1990)

| f \ PT(S)/n | ST(S) /7 |
I (k+1) LTSS ?
Ok ? (k+1) LTSS

J. Heinz (84) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



State-merging Algorithms

Summary of known classes obtainable in this way

. f \ PT(S)/n | ST(S) /7 |
Ik (k+ 1) LTSS ?
Ok ? (k+1) LTSS
final ? Lsin
start Liin ?

J. Heinz (85) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



State-merging Algorithms

Summary of known classes obtainable in this way

. f \ PT(S)/n | ST(S) /7 |
I (k+ 1) LTSS ?
Ok ? (k+1) LTSS
final LRI Lsin
start Liin RLI
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State-merging Algorithms

Summary of known classes obtainable in this way

1 PT(S/m SIC
% (k+ 1) LTSS ?
Ok 2 (k+1) LTSS
final LRI Lin
start Liin RLI
nonfinal ? {LiLo: Ly, L C 21}
nonstart | {L;-L}:Lg,Lp C %1} ?

J. Heinz (87)

University of Delaware
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Neighborhood-distinctness

Neighborhood-distinctness

a C a
o dard Sy
b

m The neighborhood of state is determined by the function:
nd(q) = (I;(a), Ox(a), [q € F], [q € 1])

J. Heinz (88) University of Delaware

Learning Left-to-Right and Right-to-Left Iterative Larages



Neighborhood-distinctness

Neighborhood-distinctness

a C a
o dard Sy
b

m The neighborhood of state is determined by the function:

nd(a) = (1j(@), Ok(a). [a € FJ. [q € 1])

m Neighborhood-distinct languages are those recognizeds\sF
where distinct states have distinct neighborhoods.
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Neighborhood-distinctness

Neighborhood-distinctness

a C a
o dard Sy
b

m The neighborhood of state is determined by the function:

nd(q) = (I;(a), Ox(a), [q € F], [q € 1])
m Neighborhood-distinct languages are those recognizeds\sF
where distinct states have distinct neighborhoods.

m But a language-theoretic characterization is missing.

J. Heinz (90) University of Delaware
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Neighborhood-distinctness

Strategy

a C a
O=N Sy
b

‘ If we understand the parts, we understand the Wlﬁole.

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(q) = (1j(@), Ok(a) [a € FJ.[q € 1])
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Neighborhood-distinctness

Strategy

b

‘ If we understand the parts, we understand the wlﬁole.

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(q) = (1j(a), Ok(a), [a € FJ[q € 1])
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Neighborhood-distinctness

Strategy

a C a
== Sy
b

‘ If we understand the parts, we understand the wlﬁole.

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(a) = (1j(a), Ox(a), [  Fl, [a € 1)
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Neighborhood-distinctness

Strategy

a C a
== Sy
b

‘ If we understand the parts, we understand the wlﬁole.

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(q) = (j(a), O(a). [a € FJ, [q € 1)
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Neighborhood-distinctness

Strategy

a C a
o dard Sy
b

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(a) = (Ij(a), O(a), [q € Fl. [a € 1])
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Neighborhood-distinctness

Strategy

a C a
o dard Sy
b

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(a) = (Ij(a), O(a), [q € Fl. [a € 1])

m final(g) (which helps return LRI) is part of the boolean
composition oflq € F|
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Neighborhood-distinctness

Strategy

a C a
o dard Sy
b

m The neighborhood is a boolean composition of the simpler
properties mentioned earlier

nd(a) = (Ij(a), O(a), [q € Fl. [a € 1])

m final(g) (which helps return LRI) is part of the boolean
composition oflq € F|

m start(q) (which helps return RLI) is part of the boolean
composition ofiq € 1]

J. Heinz (98) University of Delaware
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Neighborhood-distinctness

Summary of known classes obtainable in this way

. f PT(S) /7t ST(S) /=t |
I (k+ 1) LTSS ?
Ok ? (k+ 1) LTSS
final LRI Liin
start Lin RLI
nonfinal ? {L; Lz : Ly, L C 21
nonstart | {L;-L}: Ly, Ly C 2} ?

J. Heinz (99)

University of Delaware
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Neighborhood-distinctness

Conclusion

= LRI (RLI) languages are infinite subclasses of the regular
languages that
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Conclusion

= LRI (RLI) languages are infinite subclasses of the regular
languages that

are obtained by merging final (start) states in prefix (suffe@s
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Conclusion
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Conclusion
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Conclusion

= LRI (RLI) languages are infinite subclasses of the regular
languages that

are obtained by merging final (start) states in prefix (suffe@s
are cousins of zero-reversible languages
help reveal the algebra underlying state-merging algmsthnd
the reverse operator
m Phonotactic patterns are regular and it is an open questidchw
of their properties are sufficient or necessary for learning

m The neighborhood-distinct hypothesis is one proposal
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Neighborhood-distinctness

Conclusion

= LRI (RLI) languages are infinite subclasses of the regular
languages that

are obtained by merging final (start) states in prefix (suffe@s
are cousins of zero-reversible languages
help reveal the algebra underlying state-merging algmsthnd
the reverse operator
m Phonotactic patterns are regular and it is an open questidchw
of their properties are sufficient or necessary for learning

m The neighborhood-distinct hypothesis is one proposal

m The LRI and RLI languages are a small but necessary step
towards a better understanding of this proposal

J. Heinz (106) University of Delaware
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Appendices

RLI: Language-theoretic Characterization

m LRI languages are defined as the intersectibtwo classes of
languages.
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languages.
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Appendices

RLI: Language-theoretic Characterization

m LRI languages are defined as the intersectibtwo classes of
languages.

{L : whenevew,v € L,H (u) = H_(v)}
{Li-L2:La,La € Lin}

J. Heinz (109) University of Delaware
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Appendices

What isH_ (u)?

m H (u={v:vuel}
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Appendices

What isH_ (u)?

m H (u={v:vuel}
m It used to defindnead-canonical acceptorsvhich are the
smallest reverse-deterministic acceptor for a regulaguage.

J. Heinz (111) University of Delaware
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Appendices

Learning RLI

m Mergestart states in thesuffix tree

¢(S) = ST(SI)/Wstart
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Appendices

Learning RLI

m Mergestart states in thesuffix tree

¢(S) = ST(SI)/Wstart

m Merge states to remove reverse non-determinism

J. Heinz (113) University of Delaware
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Appendices

lllustration of Learning RLI

Sample = { a, b, dcba, bcbb}
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lllustration of Learning RLI

Sample = { a, b, dcba, bcbb}
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Appendices

Asymmetric Harmony

m Sarcee is like Navajo except the pattern is asymmetffjengy
precede [s] in a word, but [s] cannot precefle [

(Hansson 2001)
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Appendices

Asymmetric Harmony

m Sarcee is like Navajo except the pattern is asymmetffjengy
precede [s] in a word, but [s] cannot precefle [

m Includes {sotos, [otof, [otos, ...}
m Excludes {sotof, ...}
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Appendices

Asymmetric Harmony

m Sarcee is like Navajo except the pattern is asymmetffjengy
precede [s] in a word, but [s] cannot precefle [

m Includes {sotos, [otof, [otos, ...}
m Excludes {sotof, ...}
m This pattern is Noncounting.

(Hansson 2001)
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Appendices

Bounded Stress Patterns

m Secondary stress falls on nonfinal odd syllables (countiowp f

left)
a. oo pdna ‘earth’
b. o0 thitaya ‘many’
C. G6ooo0 mdlawana ‘through from behind’
d o500 piligkalatiu ‘we (sat) on the hill’
e. 605080 tlamulimpatiinku ‘our relation’
f. dododoo tfliripulampatiu ‘the fire for our benefit flared up’
g 6o050cb60&0 kiran'alulimpatiija ‘the first one who is our relation’
h. 6o060&0& 00 yimajigkamaratijaka ‘because of mother-in-law’

Hayes (1995:62) citing Hansen and Hansen (1969:163)
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Appendices

Bounded Stress Patterns

m Secondary stress falls on nonfinal odd syllables (countiowp f
left)

m Primary stress falls on the initial syllable

a. oo pdna ‘earth’

b. o0 thitaya ‘many’

C. G6ooo0 mdlawana ‘through from behind’

d o500 piligkalatiu ‘we (sat) on the hill’

e. 605080 tlamulimpatiinku ‘our relation’

f. dododoo tfliripulampatiu ‘the fire for our benefit flared up’
g 6o050cb60&0 kiran'alulimpatiija ‘the first one who is our relation’
h. 6o060&0& 00 yimajigkamaratijaka ‘because of mother-in-law’

Hayes (1995:62) citing Hansen and Hansen (1969:163)
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Appendices

Unbounded Stress Patterns

| KwaKwala: Leftmost Heavy Otherwise Rightmast

m Stress the heavy syllable closest to the left edge. If tren@i
heavy syllable, stress the rightmost syllable.

a. HHH d. LL
b. LLHLL e LLL
c. LLLH f. LLLL

Walker (2000:21) citing Zec (1994)
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Appendices

Language Patterns and the Chomsky Hierarchy

Mildly  Context

Regular Context Free | Context . gensitive
Sensitive!
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/
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Language Patterns and the Chomsky Hierarchy

Mildly Context

Context | Sensitive
Sensitive!
/

Yawelmani Yokuts
Consonant Clusters

(Kisseberth 1973)

Yoruba Copying
English Nested”  Swiss Germa (Kobele 2006)
Embedding Crossing Dependencies

(Chomsky 1956) (Schieber 1985)

Pintupi Stres
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)
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Language Patterns and the Chomsky Hierarchy

Sensitive,; Sensitive

Yawelmani Yokuts
Consonant Clusters
(Kisseberth 1973)

Yoruba Copying
English Nested (Kobele 2006)
Embedding Crossing Dependencies

Pintupi Stres (Chomsky 1956) (Schieber 1985)

(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)
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Language Patterns and the Chomsky Hierarchy

Mildly " Context
Context |  Sensitive

Sensitive
Q

Yoruba Copying
English Nested (Kobele 2006)
Embedding Crossing Dependencies

(Chomsky 1956) (Schieber 1985)

Yawelmani Yokuts
Consonant Clusters

(Kisseberth 1973)

Pintupi Stres
(Hansen and Hansen 1969)

Navajo Sibilant Harmony
(Sapir and Hojier 1967)
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