
JMLR: Workshop and Conference Proceedings 57:66–78, 2016

Using model theory for grammatical inference: a case study
from phonology

Kristina Strother-Garcia kmsg@udel.edu

Jeffrey Heinz heinz@udel.edu

Hyun Jin Hwangbo hwangbo@udel.edu

Dept. of Linguistics & Cognitive Science, University of Delaware

125 E. Main St, Newark, DE 19716

Abstract

This paper examines the characterization and learning of grammars defined by conjunctions
of negative and positive literals (CNPL) where the literals correspond to structures in an
enriched model theory of strings. CNPL logic represents an intermediate between conjunc-
tions of negative literals (CNL) and a propositional-style logic, both of which have been
well-studied in terms of the language classes they describe. Model-theoretic approaches to
formal language theory have traditionally assumed that each position in a string belongs to
exactly one unary relation. Using enriched models (which do no satisfy this assumption)
presents a new avenue for investigation with potential applications in several fields includ-
ing linguistics, planning and control, and molecular biology. We demonstrate the value of
such structures and CNPL logic with a particular learning problem in phonology.

Keywords: subregular languages, model theory, phonology

1. Introduction

In this paper we explore model-theoretic approaches to formal languages, and some of
the consequences for grammatical inference. The paper is exploratory in nature; no hard
proofs or new theorems are provided. However, we show that a carefully chosen model
theory for strings can make the learning problem easier by lowering the complexity class
of the target languages and thereby lowering the complexity of the algorithms necessary
for learning them. Though the particular example presented in this paper draws from
phonology—the study of systematic aspects of pronunciation in natural languages—the
potential applications are far broader including other areas of linguistics, planning and
control in cyber-physical systems, and modeling sequential data in biological systems.

Traditional model-theoretic approaches (such as Büchi (1960)) assume that each position
in a string belongs to exactly one unary relation. Conceptualizing unary relations as position
labels, this means that no position in a string may go unlabeled or have multiple labels.
Abandoning this assumption allows similarities among different alphabetic symbols to be
fully expressed. It also allows underspecified structures to be defined, which simplifies the
logical expressions used to describe a formal language.

More broadly, we argue that the model-theoretic approach helps create a bridge between
grammatical inference, formal language theory, and other branches of machine learning

c© 2016 K. Strother-Garcia, J. Heinz & H.J. Hwangbo.

Using model theory for grammatical inference: a case study from phonology

such as concept and relational learning (Flach, 2012; De Raedt, 2008). In addition to
using enriched strings, we investigate an under-studied language class: namely, languages
describable by the conjunction of negative and positive literals (CNPL). CNPL logic is
more expressive than conjunction of negative literal (CNL) logic by definition, but lacks
disjunction and is therefore less expressive than full propositional logic.

This paper is organized as follows. We first introduce notation and concepts impor-
tant to model theory and formal language theory. Then we introduce the concept of sub-
structure and logics in the context of the Subregular Hierachy (McNaughton and Papert,
1971; Rogers and Pullum, 2011), highlighting some of the insights the model-theoretic ap-
proach brings. We then further motivate our exploration by bringing out two advantages of
model-theoretic approaches: grammars expressed as logical statements and enriched model
theories of strings. Then we turn to the phonological example where we present an enriched
model and show how it simplifies the grammar. The penultimate section shows how a sim-
ple twist on string extension learning (Heinz, 2010) can be used to learn a class of formal
languages containing the target grammars. And then we conclude.

2. Model Theory, Logic, and Formal Language Theory

Let Σ denote a finite set of symbols, the alphabet, and Σ∗ the set of elements of the free
monoid of Σ under concatenation. We refer to these elements both as strings and as words.
The ith symbol in word w is denoted wi. We sometimes make use of left and right word
boundary markers (o and n, respectively), which are symbols not in Σ.

If u and v are strings, let uv denote the concatenation of u and v. For all u, v, w, x ∈ Σ∗,
if x = uwv then then w is a substring of x. If x ∈ Σ∗w1Σ∗w2Σ∗ . . . wnΣ∗ then w is a
subsequence of x. A substring (subsequence) of length k is called a k-factor (k-subsequence).
Let factork(w) denote the set of substrings of w of length k. Let subseqk(w) denote the
set of subsequences of w up to length k. The domains of these functions are extended to
languages in the normal way.

A formal language is a subset of Σ∗. We assume some familiarity with regular and
subregular language classes shown in Figure 1 (McNaughton and Papert, 1971; Rogers
et al., 2010; Rogers and Pullum, 2011; Rogers et al., 2013). Here are definitions of the lower
four classes of languages.

Locally Testable. Language L is Locally k-Testable (LTk) iff there is some k such that,
for all strings x and y: if factork(oxn) = factork(oyn) then x ∈ L↔ y ∈ L. L is
Locally Testable (LT) if there is some k so L ∈ LTk (Rogers and Pullum, 2011).

Piecewise Testable. A language L is Piecewise k-Testable (PTk) iff there is some k such
that, for all strings x and y: if subseqk(x) = subseqk(y) then x ∈ L ↔ y ∈ L. L is
Piecewise Testable (PT) if there is some k such that L ∈ PTk.

Strictly Local. A stringset L is Strictly k-Local (SLk) iff whenever there is a string x of
length k−1 and strings u1, v1, u2, and v2, such that u1xv1, u2xv2 ∈ L then u1xv2 ∈ L.
(We say L is closed under suffix substitution). L is Strictly Local (SL) if L ∈ SLk for
some k (Rogers and Pullum, 2011).

Strictly Piecewise. A language L is Strictly k-Piecewise (SPk) iff subseqk(w) ⊆ subseqk(L)
implies w ∈ L. L is Strictly Piecewise (SP) if there is a k such that it belong to SPk;
equivalently, L belongs to SP iff L is closed under subsequence (Rogers et al., 2010).

67

Strother-Garcia Heinz Hwangbo

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Finite

Successor Precedence
Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

Figure 1: Subregular Hierarchies from a model-theoretic perspective.

We assume familiarity with Monadic Second Order (MSO) logic and First Order (FO)
logic. Definitions of these logics are involved and omitted for space, but readers unfamiliar
with them are encouraged to read Enderton (2001). We explain informally below how
formal languages can be defined with logical sentences and word models.

Model theory studies objects in terms of mathematical logic (Enderton, 2001). A model
of an object is a structure containing information about the object. The type of information
present in a model theory M of a set of objects Ω is given by the model signature and a set
of mathematical statements about how structures are interpreted.

A model signature contains a domain (a set of elements), a set of constants, a set of
relations, and a set of functions. These denote elements, relationships among elements, and
maps from (tuples of) elements to other elements, respectively. We only consider model
signatures with finite domains and whose signatures contain neither constants nor functions.
In other words, we apply finite model theory to relational structures.

Formally, a model theory M of a set of objects Ω has the signature 〈D,R〉 where there
exists n ∈ N such that R is a set of n relations, and for each 1 ≤ i ≤ n, there exists ai such
that Ri ∈ R is an ai-ary relation. A structure in M is thus any S = 〈D, {R1, R2, . . . , Rn}〉
where D is finite and each Ri is an ai-ary relation over D. Since D is finite, its elements are
standardly given as elements of N: D = {1, . . . k} for some k ∈ N. The size of S is |S| = k.

Not all structures under M are interpretable as objects of Ω. (An example is given
below.) For M to model Ω, each object in Ω must have some interpretable structure and
distinct objects must have distinct interpretable structures. A structure that is interpretable
as an object o ∈ Ω is a model of o (denoted Mo). We present two distinct model theories
for words to illustrate. For concreteness, let Σ = {a, b, c} and Ω = Σ∗.

Following Büchi (1960), Rogers and Pullum (2011), and Rogers et al. (2013), a com-
mon model for words in {a, b, c}∗ is the Successor Word Model (MC), which is given by
the signature 〈D, {C, Ra, Rb, Rc}〉 where C is the binary ordering relation successor and
for each σ ∈ {a, b, c}, Rσ is a unary relation denoting which elements are labeled σ. This
model will be contrasted with the Precedence Word Model (M<), which has the signature

68

Using model theory for grammatical inference: a case study from phonology

〈D, {<,Ra, Rb, Rc}〉 where < is the binary ordering relation precedence and the unary re-
lations Rσ are the same as in MC. In both model theories, each string w ∈ Σ of length
k has a unique interpretable structure (model). The domain of D of Mw is {1, 2 . . . k}.
For each σ ∈ Σ, the unary relation Rσ = {i ∈ D | wi = σ}. The only difference is the
ordering relation. Under MC, the ordering relation C = {(i, i + 1) ∈ D × D} but under
M<, <= {(i, j) ∈ D ×D | i < j}.

Figure 2 illustrates these different word models with the word cabb, along with graphical
representations of the models. In these graphs, nodes represent domain elements; binary
relations are shown with directed labeled edges; and unary relations are shown as labels
above the nodes. While significant aspects of the models illustrated in Figure 2 are the
same, information about the order of the elements is represented differently.

MC
cabb = 〈{1, 2, 3, 4} , {〈1, 2〉, 〈2, 3〉, 〈3, 4〉} ,

{2} , {3, 4} , {1}〉

M<
cabb = 〈{1, 2, 3, 4} , {〈1, 2〉, 〈1, 3〉, 〈1, 4〉,

〈2, 3〉, 〈2, 4〉, 〈3, 4〉}, {2} , {3, 4} , {1}〉

1

c

2

a

3

b

4

b
C C C

1

c

2

a

3

b

4

b
<

<

<

<

<

<

Figure 2: Successor and precedence models for word cabb with graphical representations.

It follows that certain conditions must be met for structures to be interpretable as
strings. In both theories, for a structure S with domain D to be interpretable as a word, each
element in D must have at least one label ((∀i ∈ D)(∃σ ∈ Σ)[i ∈ Rσ]) and at most one label
((∀σ, σ′ ∈ Σ)[Rσ ∩Rσ′ = ∅]). Furthermore, in both theories every element must be ordered.
For MC, this means C = {(i, i+1) ∈ D×D}. For M<, it means <= {(i, j) ∈ D×D | i < j}.

The structure S = 〈{1, 2}, {∅, {1}, {2}, ∅}〉 is an example of a structure in both MC and
M< which is not interpretable as a string. S specifies two elements, one of which is labeled
a and one is labeled b. But the order of these elements remains unspecified.

For any two relational structures S1 and S2 of the same theory, we say S1 is a sub-
structure of S2 (written S1 v S2) iff there exists a function h which maps every element in
D1, the domain of S1, to elements in D2, the domain of S2, such that for all n-ary relations
R and all n-tuples of elements of D1, R1(x1, . . . xn) iff R2(h(x1), . . . h(xn)). Observe that h
is an injective homomorphism.

For example under MC, Mab is a sub-structure of Mcabb. (Let h map 1 to 2 and 2 to
3.) Under M<, Mcb is a sub-structure of Mcabb. (Let h map 1 to 1 and 2 to 3 (or 4).)

The lemma below is not difficult to prove.

Lemma 1 For all u, v ∈ Σ∗, word u is a substring of v iff MC
u v MC

v . Likewise, u is a
subsequence of v iff M<

u vM<
v .

These facts help make clear similarities between substrings and subsequences observed in
earlier works (Garćıa and Ruiz, 2004; Lothaire, 1997, 2005). They are both sub-structures.

69

Strother-Garcia Heinz Hwangbo

For any structure S in model theory M for Ω, let substrucs(S)
def
= {S ′ | S ′ v S}

and substrucsk(S)
def
= {S ′ | S ′ v S and |S ′| ≤ k}. Note that substrucsk(S) includes

sub-structures of S of length k or less.
It is well-known that logical expressions together with a model theory for words can

define classes of formal languages. Given a logical language and a logical expression φ in this
language, together with a model theory M for words, then the formal language L defined by
φ is simply those words whose models satisfy φ. Satisfaction (denoted |=) is defined as part

of the semantics of the logic (see Enderton (2001)). Formally, L(φ)
def
= {w ∈ Σ∗ | Mw |= φ}.

Here is an example. In the terminology of FO logic, if R is a symbol denoting a n-ary
relation in R then R(x1, . . . , xn) is an atomic formula in the logical language (each xi is

a variable ranging over the domain). If φ
def
= (∃x)[Ra(x)] then L(φ) = Σ∗aΣ∗ since every

word w containing a satisfies φ. This is because there is an element i in the domain ofMw

to which variable x can be assigned which makes Ra(x) true since i ∈ Ra.
More generally, each structure S = 〈D, {R1 . . . Rn}〉 in signature 〈D,R〉 with each Ri

relation of arity ai and with |D| = k defines the FO sentence φS
def
= (∃x1, . . . xk)[∧

1≤i≤n,x∈Ri
Ri(x)

]
where x is a tuple of variables of size ai. When S is a model of

a word w, we write φw instead of φMw . The lemma below is not hard to prove.1

Lemma 2 For each structure S and w ∈ Σ∗, S vMw iff Mw |= φS .

For example, under MC, φCw = (∃x1, . . . xk)
[∧

1≤i≤k−1 xi C xi+1
∧

1≤i≤k Rwi(xi)
]
. Sim-

ilarly, under M<, φ<w = (∃x1, . . . xk)
[∧

1≤i<j≤k xi < xj
∧

1≤i≤k Rwi(xi)
]
. It follows from

Lemmas 1 and 2 that word u is a substring of v iffMC
v |= φCu and that u is a subsequence of

v iff M<
v |= φ<u . We take advantage of these lemmas in the case study in sections 4 and 5.

The aforementioned concepts (logic and model theory) provide a unified simple way
to understand the classes of formal languages shown in Figure 1. The class of languages
definable with sentences of Monadic Second-Order (MSO) logic under MC are exactly the
regular languages (Büchi, 1960). (MSO logic with M< is also exactly the regular languages
since both precedence and successor are MSO-definable from the other.) Restricting the
logical language to First Order (FO) logic but keeping MC yields the Locally Threshold
Testable (LTT) class of formal languages (Thomas, 1997). On the other hand, languages
of the sentences of FO logic under M< yields exactly the Non-counting languages (Mc-
Naughton and Papert, 1971). Note the Non-counting class properly contains LTT because
successor (C) is FO-definable from precedence (<) but not vice versa (see Figure 1).

In the same way that sentences of FO logic are a subset of sentences of MSO logic, re-
stricting sentences of FO logic in particular ways yields the Locally Testable (LT), Strictly
Local (SL), Piecewise Testable (PT), and Strictly Piecewise (SP) classes of languages. Call
a FO sentence φ propositional if there is a finite set of words W such that φ is a Boolean
combination of the formulae φw (with w ∈W).2 Then the class of LT languages is exactly
the set of languages definable with propositional sentences under MC of {o}Σ∗{n} and

1. There is a technical assumption here that the domain elements occur in some relation in R. If not, we
have to include ‘equals’ (=) into the logic and add statements like xi 6= xj in the FO formula.

2. This means that φ is a formula which combines formulae φw (w ∈ S) only with logical connectives such
as negation (¬), conjunction (∧), disjunction (∨), implication (→), and the biconditional (↔).

70

Using model theory for grammatical inference: a case study from phonology

the class of PT languages is exactly the set of languages definable with propositional sen-
tences under M< of Σ∗ (Thomas, 1997, Theorem 4.5).3 The ‘atomic’ expressions in this
‘propositional logic’ are the formulae φw. We use the word literal to mean such an atomic
expression or its negation.

The SL and SP classes are obtained by restricting the set of propositional sentences
further. A propositional sentence φ is a conjunction of negative literals (CNL) if it has the
form

∧
w∈W ¬φw. The SL languages are those obtained from CNL sentences under MC, and

the SP languages are those obtained from CNL sentences under M< (Rogers et al., 2010,
2013). Thus SL (SP) languages essentially forbid a finite set of k-factors (k-subsequences).

Finally, a propositional sentence is a k-sentence if the longest word in W is of length
k. Then the class of LTk (PTk) languages is the set of languages which are LT (PT) and
definable with propositional k-sentences. Similarly, SLk (SPk) is the set of languages which
are SL (SP) and definable with CNL k-sentences.

3. Motivation for the Present Work

Why model theoretic treatments of formal languages? There are two reasons. The first is
that it provides a bridge to a range of techniques that have been used to learn concepts
expressed as logical sentences. The second is that there are many more kinds of models of
words we can imagine and explore than the successor and precedence models. We argue
both of these are important for grammatical inference. But first we explain in more detail
these two reasons. Our case study in the later sections illustrates both of these points.

Take learning. It is known that for a given k, the LTk and PTk languages are identifiable
in the limit from positive data with different kinds of finite-state techniques (Garćıa and
Ruiz, 2004; Heinz and Rogers, 2013), though neither of these papers addresses the data
complexity in the sense of de la Higuera (1997). The logical characterizations provided in
Section 2, however, allow different learning strategies to be applied, such as concept learning
and related techniques (Flach, 2012; De Raedt, 2008). For example, Valiant (1984) presents
an algorithm that PAC-learns bounded CNF (Conjunctive Normal Form) expressions. A
CNF expression is the conjunction of clauses where each clause is a disjunction of atomic
expressions or their negation (i.e., literals). A m-CNF expression φ is one where the number
of atomic expressions in any clause of φ does not exceed m. It follows that this algorithm
can be used to PAC-learn the Locally k-Testable and Piecewise k-Testable languages.

To see why, we have to show that for every k there is an m such that for every k-sentence
φ there exists a m-CNF formula ψ such that ψ is equivalent to φ. First, there is the fact
that every sentence φ of propositional logic can be expressed as an equivalent expression ψ
which is in CNF (Enderton, 2001). Since the size of Σ and k bound the number of literals
to |Σ|k+1 we can set m accordingly.4 Hence no clause can exceed this many literals. So
m is a (possibly large) constant factor and these classes of languages are PAC-learned by
Valiant’s algorithm. This provides a window into the data complexity required to learn these
concepts, at least in the approximately correct setting (which we acknowledge is different
from de la Higuera’s 1997 study of exact identification).

3. A reviewer adds that word boundaries can also be handled with theories with constants min and max.
4. Using word boundaries would alter this value but not in a way that undermines the main point.

71

Strother-Garcia Heinz Hwangbo

The second reason to be interested in model theory is that much richer models of words
can be considered (and exploited) in scientific fields where richer models are warranted. In
both the successor and precedence models of words, it is the case that Rσ ∩ Rσ′ = ∅. No
domain element can satisfy more than one unary relation; no position in a string can be
more than one letter. Alphabetic symbols are taken to be independent and wholly distinct.

In many domains, however, there are reasons to believe this is not the case. In biology,
the sequences of symbols {A,C,G, T} are used to represent sequences of nucleotides in DNA
structures. However, these symbols are not wholly independent; A and T are considered
complementary in a way that A and G are not. This could be encoded in the representation
in part by including a unary relation which is true of both the A and T symbols. Another
example comes from robotic control and planning where sequences of symbols often denote
series of actions. The symbols here are also not necessarily independent; distinct actions
may involve common joints, postures, motors, and articulators. (See Coste (2016) and (Fu
et al., 2015) for grammatical inference approaches to these fields, respectively.)

Another domain is phonology, the study of systematic aspects of the pronunciation
of words and phrases in natural languages (Odden, 2014). It is well known that distinct
speech sounds are organized along certain dimensions. For example, the speech sounds [f]
and [v] are pronounced identically except the [v] involves additional vocal fold vibration
called voicing. This is also the only difference between [s] and [z]. Under a model-theoretic
approach, a theory can be constructed in which [v] and [z] both satisfy the unary relation
voicing but [f] and [s] do not.5 While a comprehensive study of model-theoretic approaches
to these dimensions remains to be done,6 we believe the model-theoretic approach provides
a way to bridge linguistic theory with formal language theory and learning theory.

In the next two sections, we explore this kind of model-theoretic approach to the problem
of representing and learning unbounded stress systems in phonology.

4. Case Study: The Nature of Unbounded Stress Patterns

Phonological stress refers to the auditory or perceptual prominence of a certain syllable in
a word or phrase (Hayes, 1995). For example, the second syllable in America is stressed
in English. In many languages the position of stress in words is predictable (van der Hulst
et al., 2010). The problem we study is how language-specific stress patterns can be learned
from positive data (Dresher and Kaye, 1990; Tesar and Smolensky, 1998; Heinz, 2009).

As explained in Hayes (1995), some stress patterns are quantity-sensitive, meaning they
are related to syllable weight, another type of prominence. Languages differ in how they
assign syllable weight, but this is not relevant to our analysis. Usually, there are two weights:
light (L) and heavy (H). We use the acute accent to denote stress (e.g., Ĺ represents a
stressed light syllable). Hence we let Σ = {L, H, Ĺ, H́}. Our interest is in those subsets of
Σ∗ which represent predictable stress patterns in natural languages.

If stress is always positioned predictably within a window of size k from the beginning
or end of the word, the pattern is said to be bounded. As such, these patterns are SLk.
Unbounded stress patterns are those that are not bounded. There are four simple types of

5. Similarly, there are 52 symbols in the English alphabet, but these could be modeled with 27 unary
relations: one for each of the 26 letters and another unary relation uppercase.

6. Though see Graf (2010) for the first thorough model-theoretic treatment of phonological theories.

72

Using model theory for grammatical inference: a case study from phonology

unbounded stress patterns (Hayes, 1995) and at least a dozen more complex types (Heinz,
2007). Kwakiutl exhibits one simple unbounded pattern, where stress falls on the leftmost
heavy syllable in words with heavy syllables and on the rightmost syllable in words without
them (Bach, 1975). This is called LHOR (Leftmost Heavy, Otherwise Right) (Hayes, 1995).
The three other simple unbounded patterns are variations on this theme. Table 1 shows
some possible word types in an LHOR language.

Heinz (2014) shows that these simple unbounded patterns are neither SP nor SL. Recall
that SP languages are closed under subsequence. Thus, LHOR is not SP since the word
LLĹ belongs to LHOR but LL does not. To see why LHOR is not Strictly k-Local for any
k, consider that both H́LkL and LkĹ belong to LHOR but H́LkĹ does not. Thus LHOR is
not closed under suffix substitution for any k.

H́ Ĺ LĹ H́L

LLH́ H́H LLĹ H́HH

. . .

Table 1: Possible word types

Permissible Forbidden

LL HH LĹ HL HH́ ĹL HĹ ĹĹ

LH H́H LH́ H́L H́H́ ĹH H́Ĺ ĹH́

Table 2: 2-subsequences (LHOR)

Heinz (2014) goes on to show that simple unbounded stress patterns are SP2 languages
intersected with the language L = Σ∗ĹΣ∗ ∪Σ∗H́Σ∗, which is the language where each word
has at least one stress. Table 2 shows the permissible and forbidden 2-subsequences of
LHOR. It is not hard to show that L belongs to neither SL nor SP, but that it is LT1 and
PT1 (since for all w ∈ L, factork(w) and subseqk(w) must contain Ĺ or H́). Rather than
move up the hierarchy, Heinz suggests L is innate and does not need to be learned.

However, an obvious alternative given the discussion in section 3 is to apply a learning
algorithm for PT2 (since this contains all PT1 and SP2 languages and their intersections
(Rogers et al., 2010)). Letting W = {HH́, H́H́, ĹL, ĹH, HĹ, H́Ĺ, HĹ, ĹĹ, ĹH́} (the forbid-
den 2-subsequences of LHOR), then the sentence φPT below exactly describes the LHOR
language under M<. Observe it is both a propositional 2-sentence (so belongs to PT2) and
a 2-CNF expression since the final clause has two literals.

φPT =
∧
w∈W

¬φw ∧ (φĹ ∨ φH́) (1)

We set aside here the linguistic reason against this proposal (that a PT2 theory of unbounded
stress may significantly overgenerate the attested typology). We are more interested in
reducing the time and/or data complexity of learning the simple unbounded stress patterns.

Our proposal comes in two parts. First, we consider a class of languages obtained
by conjunctions of positive and negative literals (CNPL). CNPL sentences are just 1-CNF
expressions since each clause contains exactly one literal, positive or negative. Given a
model theory M of a set of objects S, let CNPL(M, S) denote the set of CNPL sentences
obtained under M and let CNPLk(M, S) denote the set of CNPL k-sentences obtained
under M. It remains an open question what the exact nature of CNPL(M<,Σ∗) and
CNPL(MC, {o}Σ∗{n}) are, other than they are sandwiched in between PT and SP, and LT
and SL, respectively. Restricting the hypothesis space in this way can make learning easier.
Specifically, Valiant’s (1984) bounded CNF learning algorithm learns 1-CNF formulae with
less time and data than 2-CNF formulae.

73

Strother-Garcia Heinz Hwangbo

Secondly, we consider a non-standard word model. There is no 1-CNF formula for LHOR
under the M< theory of Σ∗ (note the final clause in (1) has two literals). As will be shown,
our alternative model has a 1-CNF formula which describes exactly LHOR.

The other word model for Σ∗ we consider is M where R = {<, light, heavy, stress}.
As before < is the binary precedence relation. The other relations are unary, with the

following interpretations: light = {i ∈ D | wi ∈
{

L, Ĺ
}
}; heavy = {i ∈ D | wi ∈ {H, H́}};

and stress = {i ∈ D | wi ∈ {Ĺ, H́}}.
It is important to note that, unlike MC or M<, domain elements of a structure in M

can belong to more than one (or no) unary relation. For example in the model of the word
LLH́L, 3 ∈ heavy and 3 ∈ stress. This model faithfully captures the linguistic truism that
stress is an additional aspect of syllables. Visually, each node may have multiple (or no)
labels, a key difference between this model of string structure and traditional models.

We use an in-text shorthand for structures. Figure 3 summarizes structures with the
symbol we use in-text shown below each one. H́ and Ĺ are fully-specified structures of size
one. H and L represent heavy and light syllables that are unspecified for stress. Similarly, σ́
represents a stressed syllable unspecified for weight, and σ a completely unspecified syllable.

heavy

stress

H́

light

stress

Ĺ

heavy

H

light

L

stress

σ́ σ

Figure 3: Structures of size 1 and their in-text shorthand.

We concatenate these symbols to represent longer structures. For example we write LLĹ
to indicate the structure in Figure 4. Four of its sub-structures are shown in Figure 5.

1

light

2

light

3

light

stress
< <

<

Figure 4: The structure LLĹ.

1

light

3

stress

1

light

2

light

2

light

3

light

stress
< <

Figure 5: Four sub-structures of LLĹ: L, σ́, LL, LĹ.

We now construct a new sentence under M that also describes LHOR exactly. Every
word must have at least one syllable (regardless of quality) and one stressed syllable. Under
M, these positive literals correspond to structures σ and σ́. Crucially, these structures are
underspecified ; they are not models themselves, but are sub-structures of MH́ and MĹ.

The banned structures can also be simplified under M. A stressed light is only permis-
sible if it is the final syllable. Thus one of the banned structures in the LHOR pattern is a
stressed light followed by any other syllable (Ĺσ). Again, this structure is underspecified.
It models no string in Σ∗ but is a sub-structure of models of many strings. In particular, it
is a sub-structure of the models of four forbidden 2-subsequences in Table 2: ĹH, ĹH́, ĹL,
and ĹĹ. The LHOR pattern also mandates that a word with one or more heavy syllables
have stress on the leftmost heavy. Consequently, a heavy syllable may not be followed by
any stressed syllable (Hσ́). Forbidding this structure effectively bans the remaining four
forbidden 2-subsequences from Table 2: HH́, H́H́, HĹ, and H́Ĺ. Thus, LHOR can be de-

74

Using model theory for grammatical inference: a case study from phonology

scribed with a 1-CNF formula with four literals under M, as shown in (2), which contrasts
with the 2-CNF formula φPT under M< in (1).

φLHOR = φσ ∧ φσ́ ∧ ¬φĹσ ∧ ¬φHσ́ (2)

The 2-sentence φLHOR refers to structures of size 2 or less, which are analogous to 2- and
1-subsequences. Forbidding structures (as opposed to models) allows us to capture the core
generalizations of LHOR without referring to a seemingly arbitrary list of subsequences.

It is natural to wonder whether a model with fewer unary relations could make these
same distinctions. Is a light syllable just the absence of a heavy syllable in the same way
an unstressed syllable is the absence of stress? We don’t believe it would suffice to remove
light from the theory. Without light, the structure σ́σ is a sub-structure of the model of
the ungrammatical word ĹL, but also the grammatical H́L. We only want to ban a stressed
syllable followed by another syllable if the first is light, so the light label appears necessary
to differentiate forbidden structures from permissible ones.

5. Learning k-CNPL

The learning algorithm identifies the target CNPL sentence by simultaneously building
two sets: one for permissible structures (Gper) and another for required structures (Greq).
Because conjunction is commutative, CNPL sentences can be rearranged into two groups
of literals: negative literals and positive literals. For instance, p ∧ ¬q ∧ r ∧ ¬s is equivalent
to (¬q ∧ ¬s) ∧ (p ∧ r). As suggested by Lemmas 1 and 2, it is straightforward to construct
a CNPL sentence once these structures are identified. Setting G = (Gper, Greq), let φG =∧
S∈Greq

φS
∧
S∈Gper

¬φS where Gper is the complement of Gper with respect to a finite set

of structures of bounded size (so k is understood).
The idea of learning forbidden structures from permissible ones goes back to Garćıa et al.

(1990) and was later generalized by Heinz (2010) and Heinz et al. (2012). The required sub-
structures are exactly the ones represented by positive literals in a CNPL sentence. Learning
the required structures is akin to cross-situational learning (Siskind, 1996, inter alia), where
learners seek what is common among different events.

Let L(Gper) = {w ∈ Σ∗ | substrucsk(Mw) ⊆ Gper}. Let L(Greq) = {w ∈ Σ∗ | Greq ⊆
substrucsk(Mw)}. Then the language of G = (Gper, Greq) is the intersection of L(Gper)
and L(Greq). Clearly for any φ ∈ CNPLk(M,Σ∗), L(φ) = L(φG) = L(G). L(G) is exactly
those words whose models contain all required structures and no forbidden ones.

The learning algorithm is defined in Equation 3. It sequentially draws from a sequence
of words t(1), t(2), . . ., each of which belongs to the target k-CNPL language L ⊆ S. For
each t(n), the algorithm returns a grammar G(n) = (Gper(n), Greq(n)) with Gper(1) =
Greq(1) = substrucsk(t(1)). As n increases, the learner identifies k-sub-structures of t(n)
and adds them to Gper. Thus learning Gper is a string extension learning (Heinz, 2010). In
contrast, to learn Greq, the algorithm takes the intersection of the sets k-sub-structures of
each datum, leaving only the k-sub-structures that are common to all observed words.

(Gper(1), Greq(1)) = (substrucsk(t(1)), substrucsk(t(1)).

Gper(n) = Gper(n− 1) ∪ substrucsk(t(n)) for n > 1. (3)

Greq(n) = Greq(n− 1) ∩ substrucsk(t(n)) for n > 1.

75

Strother-Garcia Heinz Hwangbo

We illustrate the algorithm on a sample run with the language LHOR and k = 2, as
shown in Table 3. Let t(1) = LLĹ. The relational structure of LLĹ is given in Figure 4,
and some of its sub-structures are shown in Figure 5. By definition, Gper(1) = Greq(1) =
substrucs2(t(1)) = {LL,LĹ,L, Ĺ, σ, σ́, . . .}.

Let t(2) = H́HL. The learner builds Gper(2) by taking the union of substrucs2(t(2))
and Gper(1), adding the 2-sub-structures of t(2) to its previously hypothesized grammar. In
contrast, Greq(2) takes the intersection of substrucs2(t(2)) and Greq(1), leaving only the
common sub-structures: {σ, σ́,L}.

Let t(3) = H́. As before, substrucs2(t(3)) are added to Gper(2). The only common
structures of Greq(2) and substrucs2(t(3)) are σ and σ́. Since this is correct for LHOR,
no more structures will be added to Greq; nor will more structures be removed from Greq
because every word in LHOR contains both structures.

Let t(4) = LH́. This includes two crucial 2-subsequences not present in t(1) through
t(3): LH, and LH́. The learner has now observed all permissible 2-subsequences in Table 2.
Because their models contain all permissible 2-structures, it follows that all permissible 2-
structures have been observed. In other words, Gper(4) contains exactly those 2-structures
that satisfy ¬φĹσ ∧ ¬φHσ́. Thus L(Gper(4)) = L(¬φĹσ ∧ ¬φHσ́). Also, it is clear that
L(Greq(4)) = L(φσ ∧ φσ́). By definition, L(G(4)) = L(φσ ∧ φσ́) ∩ L(¬φĹσ ∧ ¬φHσ́). It
follows that L(G(4)) = L(φσ ∧ φσ́ ∧ ¬φĹσ ∧ ¬φHσ́) = L(φLHOR). The learner has therefore
converged on the correct grammar for the LHOR stress pattern as described in (2).

i t(i) Gper(i) Greq(i)

1 LLĹ substrucs2(t(1)) substrucs2(t(1))

= {LL,LĹ,L, Ĺ, σ, σ́, . . .} = {LL,LĹ,L, Ĺ, σ, σ́, . . .}
2 H́HL Gper(1) ∪ substrucs2(t(2)) Greq(1) ∩ substrucs2(t(2))

= {LL,LĹ,HH, H́H,HL, H́L, . . .} = {σ, σ́,L}
3 H́ Gper(2) ∪ substrucs2(t(3)) Greq(2) ∩ substrucs2(t(3))

= {LL,LĹ,HH, H́H,HL, H́L, . . .} = {σ, σ́}
4 LH́ Gper(3) ∪ substrucs2(t(4)) Greq(3) ∩ substrucs2(t(4))

= {LL,LĹ,HH, H́H,HL, H́L,LH,LH́, . . .} = {σ, σ́}

Table 3: G(i), 1 ≤ i ≤ 4

Of course, it would be interesting to apply this algorithm to the full range of unbounded
stress patterns discussed in earlier research.

6. Conclusion

This paper presents a model-theoretic approach to formal languages and grammatical in-
ference. First, we confronted the assumption that unary relations on string positions be
mutually exclusive and considered some advantages of dispelling it. The string representa-
tions made possible by model theories allow sub-structures to capture similarities between
distinct alphabetic symbols, which seems appropriate in certain scientific fields.

Second, we pointed out that a type of logic, CNPL, or equivalently 1-CNF, corresponds
to a class of subregular languages not yet formally described. We presented an example that

76

Using model theory for grammatical inference: a case study from phonology

showed how a CNPL sentence of enriched string sub-structure literals can be used reduce
the learning complexity of simple unbounded stress patterns (from 2-CNF to 1-CNF). We
also described a simple learning algorithm for CNPL sentences in section 5.

The goal of this paper was to show that model theory offers new ways to think about
grammatical inference. It raises, of course, more questions than it answers. What is the
exact nature of the class of languages defined by CNPL? What exactly are the time and
data complexity savings with certain model-theoretic representations of strings? And must
the model theory M be given a priori or can it too be learned? We believe answering these
will lead to new developments in grammatical inference.

Acknowledgments

We thank Rémi Eyraud, Greg Kobele, and Jim Rogers for helpful discussion, and three
anonymous reviewers for valuable feedback. This work is supported by NIH#R01HD087133.

References

Emmon W Bach. Long vowels and stress in Kwakiutl. In Texas Linguistic Forum, volume 2,
pages 9–19, 1975.

J. Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

François Coste. Learning the language of biological sequences. In Jeffrey Heinz and José
Sempere, editors, Topics in Grammatical Inference, chapter 8, pages 215–247. Springer-
Verlag Berlin Heidelberg, 2016.

Colin de la Higuera. Characteristic sets for polynomial grammatical inference. Machine
Learning, 27(2):125–138, 1997.

Luc De Raedt. Logical and Relational Learning. Springer-Verlag Berlin Heidelberg, 2008.
Elan Dresher and Jonathan Kaye. A computational learning model for metrical phonology.

Cognition, 34:137–195, 1990.
Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2nd edition,

2001.
Peter Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of

Data. Cambridge University Press, 2012.
Jie Fu, Herbert G. Tanner, Jeffrey Heinz, Konstantinos Karydis, Jane Chandlee, and Cesar

Koirala. Symbolic planning and control using game theory and grammatical inference.
Engineering Applications of Artificial Intelligence, 37:378–391, January 2015.

Pedro Garćıa and José Ruiz. Learning k-testable and k-piecewise testable languages from
positive data. Grammars, 7:125–140, 2004.

Pedro Garćıa, Enrique Vidal, and José Oncina. Learning locally testable languages in the
strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory, pages
325–338, 1990.

Thomas Graf. Logics of phonological reasoning. Master’s thesis, University of California,
Los Angeles, 2010.

77

Strother-Garcia Heinz Hwangbo

Bruce Hayes. Metrical stress theory: Principles and case studies. University of Chicago
Press, 1995.

Jeffrey Heinz. Learning unbounded stress systems via local inference. In Proceedings of the
37th Meeting of the Northeast Linguistics Society, 2007. University of Illionois, Urbana-
Champaign.

Jeffrey Heinz. On the role of locality in learning stress patterns. Phonology, 26(2):303–351,
2009.

Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 897–906, Uppsala, Sweden, July 2010.

Jeffrey Heinz. Culminativity times harmony equals unbounded stress. In Harry van der
Hulst, editor, Word Stress: Theoretical and Typological Issues, chapter 8. Cambridge
University Press, Cambridge, UK, 2014.

Jeffrey Heinz and James Rogers. Learning subregular classes of languages with factored de-
terministic automata. In Proceedings of the 13th Meeting on the Mathematics of Language
(MoL 13), pages 64–71, Sofia, Bulgaria, August 2013.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. Learning with lattice-structured hypoth-
esis spaces. Theoretical Computer Science, 457:111–127, October 2012.

M. Lothaire, editor. Combinatorics on Words. Cambridge University Press, Cambridge,
UK, New York, 1997.

M. Lothaire, editor. Applied Combinatorics on Words. Cambridge University Press, 2nd
edition, 2005.

Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.
David Odden. Introducing Phonology. Cambridge University Press, 2nd edition, 2014.
James Rogers and Geoffrey Pullum. Aural pattern recognition experiments and the sub-

regular hierarchy. Journal of Logic, Language and Information, 20:329–342, 2011.
James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,

and Sean Wibel. On languages piecewise testable in the strict sense. In The Mathemat-
ics of Language, volume 6149 of Lecture Notes in Artifical Intelligence, pages 255–265.
Springer, 2010.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean
Wibel. Cognitive and sub-regular complexity. In Formal Grammar, volume 8036 of
Lecture Notes in Computer Science, pages 90–108. Springer, 2013.

Jeffrey Mark Siskind. A computational study of cross-situational techniques for learning
word-to-meaning mappings. Cognition, 61(1-2):39 – 91, 1996.

Bruce Tesar and Paul Smolensky. Learnability in optimality theory. Linguistic Inquiry,
(29):229–268, 1998.

Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
volume 3, chapter 7. Springer, 1997.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.
H.G. van der Hulst, R. Goedemans, and E. van Zanten, editors. A survey of word accentual

patterns in the languages of the world. Mouton de Gruyter, Berlin, 2010.

78

	Introduction
	Model Theory, Logic, and Formal Language Theory
	Motivation for the Present Work
	Case Study: The Nature of Unbounded Stress Patterns
	Learning k-CNPL
	Conclusion

