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Abstract

Beginning with Goldsmith (1976), the phono-
logical tier has a long history in phonological
theory to describe non-local phenomena. This
paper defines a class of formal languages, the
Tier-based Strictly Local languages, which be-
gin to describe such phenomena. Then this
class is located within the Subregular Hier-
archy (McNaughton and Papert, 1971). It is
found that these languages contain the Strictly
Local languages, are star-free, are incompa-
rable with other known sub-star-free classes,
and have other interesting properties.

1 Introduction

The phonological tier is a level of representation
where not all speech sounds are present. For ex-
ample, the vowel tier of the Finnish wordpäivää
‘Hello’ is simply the vowels in order without the
consonants:̈aiää.

Tiers were originally introduced to describe tone
systems in languages (Goldsmith, 1976), and subse-
quently many variants of the theory were proposed
(Clements, 1976; Vergnaud, 1977; McCarthy, 1979;
Poser, 1982; Prince, 1984; Mester, 1988; Odden,
1994; Archangeli and Pulleyblank, 1994; Clements
and Hume, 1995). Although these theories differ in
their details, they each adopt the premise that repre-
sentational levels exist which exclude certain speech
sounds.

Computational work exists which incorporates
and formalizes phonological tiers (Kornai, 1994;
Bird, 1995; Eisner, 1997). There are also learning
algorithms which employ them (Hayes and Wilson,
2008; Goldsmith and Riggle, to appear). However,
there is no work of which the authors are aware that

addresses the expressivity or properties of tier-based
patterns in terms of formal language theory.

This paper begins to fill this gap by defining Tier-
Based Strictly Local (TSL) languages, which gen-
eralize the Strictly Local languages (McNaughton
and Papert, 1971). It is shown that TSL languages
are necessarily star-free, but are incomparable with
other known sub-star-free classes, and that natural
groups of languages within the class are string exten-
sion learnable (Heinz, 2010b; Kasprzik and Kötzing,
2010). Implications and open questions for learn-
ability and Optimality Theory are also discussed.

Section 2 reviews notation and key concepts. Sec-
tion 3 reviews major subregular classes and their re-
lationships. Section 4 defines the TSL languages,
relates them to known subregular classes, and sec-
tion 5 discusses the results. Section 6 concludes.

2 Preliminaries

We assume familiarity with set notation. A finite al-
phabet is denotedΣ. Let Σn, Σ≤n, Σ∗ denote all
sequences over this alphabet of lengthn, of length
less than or equal ton, and of any finite length, re-
spectively. The empty string is denotedλ and|w| de-
notes the length of wordw. For all stringsw and all
nonempty stringsu, |w|u denotes the number of oc-
currences ofu in w. For instance,|aaaa|aa = 3. A
languageL is a subset ofΣ∗. The concatenation of
two languagesL1L2 = {uv : u ∈ L1 andv ∈ L2}.
For L ⊆ Σ∗ andσ ∈ Σ, we often writeLσ instead
of L{σ}.

We define generalized regular expressions
(GREs) recursively. GREs includeλ, ∅ and
each letter ofΣ. If R and S are GREs then
RS, R + S, R × S, R, and R∗ are also GREs.
The language of a GRE is defined as follows.
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L(∅) = ∅. For all σ ∈ Σ ∪ {λ}, L(σ) = {σ}.
If R and S are regular expressions then
L(RS) = L(R)L(S), L(R + S) = L(R) ∪ L(S),
and L(R × S) = L(R) ∩ L(S). Also,
L(R) = Σ∗ − L(R) and L(R∗) = L(R)∗.
For example, the GRE∅ denotes the languageΣ∗.

A language isregular iff there is a GRE defin-
ing it. A language isstar-free iff there is a GRE
defining it which contains no instances of the Kleene
star (*). It is well known that the star-free languages
(1) are a proper subset of the regular languages, (2)
are closed under Boolean operations, and (3) have
multiple characterizations, including logical and al-
gebraic ones (McNaughton and Papert, 1971).

String u is a factor of string w iff ∃x, y ∈ Σ∗

such thatw = xuy. If also |u| = k thenu is a k-
factor of w. For example,ab is a 2-factor ofaaabbb.
The functionFk maps words to the set ofk-factors
within them.

Fk(w) = {u : u is ak-factor ofw}

For example,F2(abc) = {ab, bc}.
The domainFk is generalized to languagesL ⊆

Σ∗ in the usual way:Fk(L) = ∪w∈LFk(w). We
also consider the function whichcountsk-factors up
to some thresholdt.

Fk,t(w) = {(u, n) : u is ak-factor ofw and

n = |w|u iff |w|u < t elsen = t}

For exampleF2,3(aaaaab) = {(aa, 3), (ab, 1)}.
A string u = σ1σ2 · · · σk is a subsequenceof a

string w iff w ∈ Σ∗σ1Σ
∗σ2Σ

∗ · · ·Σ∗σkΣ
∗. Since

|u| = k we also sayu is ak-subsequenceof w. For
example,ab is a 2-subsequence ofcaccccccccbcc.
By definition λ is a subsequence of every string in
Σ∗. The functionP≤k maps words to the set of sub-
sequences up to lengthk found in those words.

P≤k(w) = {u ∈ Σ≤k : u is a subsequence ofw}

For exampleP≤2(abc) = {λ, a, b, c, ab, ac, bc}. As
above, the domains ofFk,t andP≤k are extended to
languages in the usual way.

3 Subregular Hierarchies

Several important subregular classes of languages
have been identified and their inclusion relation-
ships have been established (McNaughton and Pa-
pert, 1971; Simon, 1975; Rogers and Pullum, to
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Figure 1: Proper inclusion relationships among subreg-
ular language classes (indicated from left to right). This
paper establishes the TSL class and its place in the figure.

appear; Rogers et al., 2010). Figure 1 summarizes
those earlier results as well as the ones made in
this paper. This section defines the Strictly Local
(SL), Locally Threshold Testable (LTT) and Piece-
wise Testable (PT) classes. The Locally Testable
(LT) languages and the Strictly Piecewise (SP) lan-
guages are discussed by Rogers and Pullum (to ap-
pear) and Rogers et al. (2010), respectively. Readers
are referred to these papers for additional details on
all of these classes. The Tier-based Strictly Local
(TSL) class is defined in Section 4.

Definition 1 A languageL is Strictly k-Local iff
there exists a finite setS ⊆ Fk(⋊Σ∗

⋉) such that

L = {w ∈ Σ∗ : Fk(⋊w⋉) ⊆ S}

The symbols⋊ and ⋉ invoke left and right word
boundaries, respectively. A language is said to be
Strictly Local iff there is somek for which it is
Strictly k-Local. For example, letΣ = {a, b, c} and
L = aa∗(b + c). ThenL is Strictly 2-Local because
for S = {⋊a, ab, ac, aa, b⋉, c⋉} and everyw ∈ L,
every2-factor of⋊w⋉ belongs toS.

The elements ofS can be thought of as theper-
missiblek-factors and the elements inFk(⋊Σ∗

⋉)−
S are theforbiddenk-factors. For example,bb and
⋊b are forbidden 2-factors forL = aa∗(b + c).

More generally, any SL languageL excludes ex-
actly those words with any forbidden factors; i.e.,L

is the intersection of the complements of sets defined
to be those words whichcontain a forbidden fac-
tor. Note the set of forbidden factors is finite. This
provides another characterization of SL languages
(given below in Theorem 1).

Formally, let thecontainerof w ∈ ⋊Σ∗
⋉ be

C(w) = {u ∈ Σ∗ : w is a factor of⋊ u⋉}

For example,C(⋊a) = aΣ∗. Then, by the immedi-
ately preceding argument, Theorem 1 is proven.
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Theorem 1 Consider any Strictlyk-Local language
L. Then there exists a finite set of forbidden factors
S̄ ⊆ Fk(⋊Σ∗

⋉) such thatL = ∩w∈S̄ C(w).

Definition 2 A languageL is Locally t-Threshold
k-Testableiff ∃t, k ∈ N such that∀w, v ∈ Σ∗, if
Fk,t(w) = Fk,t(v) thenw ∈ L ⇔ v ∈ L.

A language is Locally Threshold Testable iff there
is somek andt for which it is Locally t-Threshold
k-Testable.

Definition 3 A languageL is Piecewisek-Testable
iff ∃k ∈ N such that∀w, v ∈ Σ∗, if P≤k(w) =
P≤k(v) thenw ∈ L ⇔ v ∈ L.

A language is Piecewise Testable iff there is somek

for which it is Piecewisek-Testable.

4 Tier-based Strictly Local Languages

This section provides the main results of this paper.

4.1 Definition

The definition of Tier-based Strictly Local lan-
guages is similar to the one for SL languages with
the exception that forbiddenk-factors only apply to
elements on a tierT ⊆ Σ, all other symbols are ig-
nored. In order to define the TSL languages, it is
necessary to introduce an “erasing” function (some-
times called string projection), which erases sym-
bols not on the tier.

ET (σ1 · · · σn) = u1 · · · un

whereui = σi iff σi ∈ T andui = λ otherwise.
For example, ifΣ = {a, b, c} and T = {b, c}

then ET (aabaaacaaabaa) = bcb. A string u =
σ1 · · · σn ∈ ⋊T ∗

⋉ is afactor on tier Tof a stringw

iff u is a factor ofET (w).
Then the TSL languages are defined as follows.

Definition 4 A languageL is Strictly k-Local on
Tier T iff there exists a tierT ⊆ Σ and finite set
S ⊆ Fk(⋊T ∗

⋉) such that

L = {w ∈ Σ∗ : Fk(⋊ET (w)⋉) ⊆ S}

Again,S represents the permissiblek-factors on the
tier T , and elements inFk(⋊T ∗

⋉) − S represent
the forbiddenk-factors on tierT . A languageL is a
Tier-based Strictly Localiff it is Strictly k-Local on
Tier T for someT ⊆ Σ andk ∈ N.

To illustrate, letΣ = {a, b, c}, T = {b, c}, and
S = {⋊b, ⋊c, bc, cb, b⋉, c⋉}. Elements ofS are
the permissiblek-factors on tierT . Elements of
F2(⋊T ∗

⋉) − S = {bb, cc} are the forbidden fac-
tors on tierT . The language this describe includes
words likeaabaaacaaabaa, but excludes words like
aabaaabaaacaa sincebb is a forbidden 2-factor on
tier T . This example captures the nature of long-
distance dissimilation patterns found in phonology
(Suzuki, 1998; Frisch et al., 2004; Heinz, 2010a).
Let LD stand for this particular dissimilatory lan-
guage.

Like SL languages, TSL languages can also be
characterized in terms of the forbidden factors. Let
thetier-based containerof w ∈ ⋊T ∗

⋉ beCT (w) =

{u ∈ Σ∗ : w is a factor on tierT of ⋊ u⋉}

For example,CT (⋊b) = (Σ − T )∗bΣ∗. In general
if w = σ1 · · · σn ∈ T ∗ thenCT (w) =

Σ∗σ1(Σ − T )∗σ2(Σ − T )∗ · · · (Σ − T )∗σnΣ∗

In the case wherew begins (ends) with a word
boundary symbol then the first (last)Σ∗ in the pre-
vious GRE must be replaced with(Σ − T )∗.

Theorem 2 For any L ∈ TSL, let T, k, S be
the tier, length, and permissible factors, respec-
tively, and S̄ the forbidden factors. ThenL =⋂

w∈S̄ CT (w).

Proof The structure of the proof is identical to the
one for Theorem 1. �

4.2 Relations to other subregular classes

This section establishes that TSL languages prop-
erly include SL languages and are properly star-free.
Theorem 3 shows SL languages are necessarily TSL.
Theorems 4 and 5 show that TSL languages are not
necessarily LTT nor PT, but Theorem 6 shows that
TSL languages are necessarily star-free.

Theorem 3 SL languages are TSL.

Proof Inclusion follows immediately from the defi-
nitions by setting the tierT = Σ. �

The fact that TSL languages properly include SL
ones follows from the next theorem.

Theorem 4 TSL languages are not LTT.
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Proof It is sufficient to provide an example of a TSL
language which is not LTT. Consider any threshold
t and lengthk. Consider the TSL languageLD dis-
cussed in Section 4.1, and consider the words

w = akbakbakcak andv = akbakcakbak

Clearly w 6∈ LD and v ∈ LD. However,
Fk(⋊w⋉) = Fk(⋊v⋉); i.e., they have the same
k-factors. In fact for any factorf ∈ Fk(⋊w⋉),
it is the case that|w|f = |v|f . Therefore
Fk,t(⋊w⋉) = Fk,t(⋊v⋉). If LD were LTT,
it would follow by definition that either both
w, v ∈ LD or neitherw, v belong toLD, which is
clearly false. HenceLD 6∈ LTT. �

Theorem 5 TSL languages are not PT.

Proof As above, it is sufficient to provide an exam-
ple of a TSL language which is not PT. Consider any
lengthk and the languageLD. Let

w = ak(bakbakcakcak)k and

v = ak(bakcakbakcak)k

Clearly w 6∈ LD and v ∈ LD. But observe that
P≤k(w) = P≤k(v). Hence, even though the two
words have exactly the same k-subsequences (for
any k), both words are not inLD. It follows thatLD

does not belong to PT. �

Although TSL languages are neither LTT nor PT,
Theorem 6 establishes that they are star-free.

Theorem 6 TSL languages are star-free.

Proof Consider any languageL which is Strictlyk-
Local on TierT for someT ⊆ Σ andk ∈ N. By
Theorem 2, there exists a finite setS̄ ⊆ Fk(⋊T ∗

⋉)
such thatL = ∩w∈S̄ CT (w). Since the star-free lan-
guages are closed under finite intersection and com-
plement, it is sufficient to show thatCT (w) is star-
free for allw ∈ ⋊T ∗

⋉.
First consider anyw = σ1 · · · σn ∈ T ∗. Since

(Σ−T )∗ = Σ∗TΣ∗ andΣ∗ = ∅, the setCT (w) can
be written as

∅ ∅T∅ σ1 ∅T∅ σ2 ∅T∅ · · · σn ∅

This is a regular expression without the Kleene-star.
In the cases wherew begins (ends) with a word

boundary symbol, the first (last)∅ in the GRE above

should be replaced with∅T∅. Since everyCT (w)
can be expressed as a GRE without the Kleene-star,
every TSL language is star-free. �

Together Theorems 1-4 establish that TSL lan-
guages generalize the SL languages in a different
way than the LT and LTT languages do (Figure 1).

4.3 Other Properties

There are two other properties of TSL languages
worth mentioning. First, TSL languages are closed
under suffix and prefix. This follows immediately
because no wordw of any TSL language contains
any forbidden factors on the tier and so neither does
any prefix or suffix ofw. SL and SP languages–but
not LT or PT ones–also have this property, which has
interesting algebraic consequences (Fu et al., 2011).

Next, consider that the choice ofT ⊆ Σ and
k ∈ N define systematic classes of languages which
are TSL. LetLT,k denote such a class. It follows
immediately thatLT,k is a string extension class
(Heinz, 2010b). A string extension class is one
which can be defined by a functionf whose do-
main is Σ∗ and whose codomain is the set of all
finite subsets of some setA. A grammarG is a
particular finite subset ofA and the language of the
grammar is all words whichf maps to a subset of
G. ForLT,k, the grammar can be thought of as the
set of permissible factors on tierT and the func-
tion is w 7→ Fk(⋊ET (w)⋉). In other words, every
word is mapped to the set ofk-factors present on tier
T . (So here the codomain–the possible grammars–is
the powerset ofFk(⋊T ∗

⋉).)
String extension classes have quite a bit of

structure, which faciliates learning (Heinz, 2010b;
Kasprzik and Kötzing, 2010). They are closed un-
der intersection, and have a lattice structure under
the partial ordering given by the inclusion relation
(⊆). Additionally, these classes are identifiable in
the limit from positive data (Gold, 1967) by an in-
cremental learner with many desirable properties.

In the case just mentioned, the tier is known in
advance. Learners which identify in the limit a class
of TSL languages with an unknown tier but known
k exist in principle (since such a class is of finite
size), but it is unknown whether any such learner is
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efficient in the size of the input sample.

5 Discussion

Having established the main results, this section dis-
cusses some implications for phonology in general,
Optimality Theory in particular, and future research.

There are three classes of phonotactic constraints
in phonology: local segmental patterns, long-
distance segmental patterns, and stress patterns
(Heinz, 2007). Local segmental patterns are SL
(Heinz, 2010a). Long-distance segmental phono-
tactic patterns are those derived from processes of
consonant harmony and disharmony and vowel har-
mony. Below we show each of these patterns belong
to TSL. For exposition, assumeΣ={l,r,i, ö,u,o}.

Phonotactic patterns derived from attested long-
distance consonantal assimilation patterns (Rose
and Walker, 2004; Hansson, 2001) are SP; on the
other hand, phonotactic patterns derived from at-
tested long-distance consonantaldissimilation pat-
terns (Suzuki, 1998) are not (Heinz, 2010a). How-
ever, both belong to TSL. Assimilation is obtained
by forbidding disagreeing factors on the tier. For
example, forbiddinglr and rl on the liquid tier
T = {l, r} yields only words which do not contain
both [l] and [r]. Dissimilation is obtained by for-
bidding agreeing factors on the tier; e.g. forbidding
ll andrr on the liquid tier yields a language of the
same character asLD.

The phonological literature distinguishes three
kinds of vowel harmony patterns: those without neu-
tral vowels, those with opaque vowels and those
with transparent vowels (Baković, 2000; Nevins,
2010). Formally, vowel harmony patterns without
neutral vowels are the same as assimilatory conso-
nant harmony. For example, a case of back harmony
can be described by forbidding disagreeing factors
{iu, io, öu, öo, ui, üo, oi, öo} on the vowel tier
T ={i,ö,u,o}. If a vowel is opaque, it does not har-
monize but begins its own harmony domain. For ex-
ample if [i] is opaque, this can be described by for-
bidding factors{iu, io öu, öo, üo, oö} on the vowel
tier. Thus words likelulolil ö are acceptable because
oi is a permissible factor. If a vowel is transpar-
ent, it neither harmonizes nor begins its own har-
mony domain. For example if [i] is transparent (as in
Finnish), this can be described by removing it from

the tier; i.e. by forbidding factors{öu, öo, üo, oö}
on tierT ={ö,u,o}. Thus words likelulolilu are ac-
ceptable since [i] is not on the relevant tier. The rea-
sonable hypothesis which follows from this discus-
sion is that all humanly possible segmental phono-
tactic patterns are TSL (since TSL contains SL).

Additionally, the fact thatLT,k is closed under in-
tersection has interesting consequences for Optimal-
ity Theory (OT) (Prince and Smolensky, 2004). The
intersection of two languages drawn from the same
string extension class is only as expensive as the in-
tersection of finite sets (Heinz, 2010b). It is known
that the generation problem in OT is NP-hard (Eis-
ner, 1997; Idsardi, 2006) and that the NP-hardness is
due to the problem of intersecting arbitrarily many
arbitrary regular sets (Heinz et al., 2009). It is un-
known whether intersecting arbitrarily many TSL
sets is expensive, but the results here suggest that
it may only be the intersections across distinctLT,k

classes that are problematic. In this way, this work
suggests a way to factor OT constraints characteri-
zable as TSL languages in a manner originally sug-
gested by Eisner (1997).

Future work includes determining automata-
theoretic characterizations of TSL languages and
procedures for deciding whether a regular set be-
longs to TSL, and if so, for whatT and k. Also,
the erasing function may be used to generalize other
subregular classes.

6 Conclusion

The TSL languages generalize the SL languages
and have wide application within phonology. Even
though virtually all segmental phonotactic con-
straints present in the phonologies of the world’s lan-
guages, both local and non-local, fall into this class,
it is striking how highly restricted (sub-star-free) and
well-structured the TSL languages are.
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