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What is this talk about?

Question: Are phonotactic grammars categorical or gradient?

Answer: It depends on which semiring you use!
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What is this talk about?

Two points I want to make:

1. Gradient phonotactic models account for new data from a Turkish acceptability

judgment task better than categorical models.

2. This distinction turns out to be somewhat superficial if we think of models from a

semiring-general perspective.
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What is phonotactics?

The legal ways in which sounds can be sequenced into words.

This is (mostly) learned and language-specific:

• /stik/ would be an ok English word; not a good Spanish word

• /ÙknOw̃ñtC/ is a fine Polish word; not a good English word
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Phonotactics is gradient

A typical source of data is to ask speakers for acceptability judgments:

• “on a scale of 1-7, how likely is ‘steek’ to become an English word?”

• “would ‘steek’ be a better English word than ‘chknonch’?”

• “could ‘steek’ be an English word?”

These judgments consistently display gradience [e.g. Chomsky and Halle, 1965,

Coleman and Pierrehumbert, 1997, Scholes, 1966, Bailey and Hahn, 2001, Hayes and

Wilson, 2008, Daland et al., 2011, a.o.].
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What do we mean by gradience?

poik

lvag

kip
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What do we mean by gradience?

lvag ≪ poik ≪ kip
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Where does this gradience come from?

Gradience in acceptability judgments can arise from performance factors such as

misperception [e.g. Kahng and Durvasula, 2023].

However, the gradience observed in phonotactic acceptability judgments is largely

predictable from “soft” versions of the same constraints that govern other phonological

processes [Hayes, 2000].

Typical modeling approach is to use a grammar that produces a gradient output.

• Often based on statistical frequencies in the lexicon.
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Implementing a gradient phonotactic grammar

Our phonotactic grammars consist of a score function that assigns values to words.

score : Σ∗ → [0, 1]

Such a model can represent gradient acceptability judgments:

score(lvag) = 0.01 < score(poik) = 0.2 < score(kip) = 0.4
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Is phonotactics categorical?

Gorman [2013] argues that we have been premature in assuming the phonotactic

grammar computes gradient outputs.

• Proposal: grammar is categorical and gradience comes from other sources.

• A categorical grammar labels words as either grammatical or ungrammatical

In particular, he claims that categorical models do as well as or better than

gradient models in predicting phonotactic phenomena.
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Past work on categorical grammars

Categorical models have been claimed to better predict:

• English onset acceptability [Gorman, 2013, Durvasula, 2020, Dai, accepted]

• Polish onset acceptability [Kostyszyn and Heinz, 2022, Dai, accepted]

• Turkish vowel distributions [Gorman, 2013, Dai, accepted]

• English medial cluster distributions [Gorman, 2013]
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Limitations of previous work

1. Use a very small number of data sets, almost all about consonant clusters

2. Authors have different definitions of “categorical”

3. The gradient model used in (almost) all cases is the UCLA Phonotactic Learner
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Limitation 2: Defining categorical

Some “categorical” models are in fact gradient [Durvasula, 2020, Kostyszyn and

Heinz, 2022].

• Words receive an integer score corresponding to number of constraint violations

• “Categorical” in these models means all constraint violations are penalized equally

These models can represent a situation where lvag ≪ poik ≪ kip.

For the sake of time I’m going to ignore these models.
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Limitation 2: Defining categorical

Other proposed categorical models are truly categorical [Gorman, 2013, Kostyszyn and

Heinz, 2022, Dai, accepted]

• Words are grammatical or not

• I’ll refer to this as a boolean model of phonotactics

score : Σ∗ → {0, 1}

These models cannot represent a situation where lvag ≪ poik ≪ kip

We’ll adopt this definition of categorical.
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Limitation 3: The UCLA Phonotactic Learner?

The UCLA Phonotactic Learner has become the poster boy for gradient phonotactics

[Hayes and Wilson, 2008].

• But it also has to learn constraints from the data!

• Its performance is sensitive to how it is parameterized.

• Do categorical models outperform it because it is gradient? Because of its

constraint selection process? Because it has been run with sub-optimal

hyperparameters?
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A simpler comparison

Let’s compare the performance of two proposed categorical boolean models of Turkish

vowel phonotactics against a simple probabilistic bigram model with a similar structure.

We’ll evaluate how these models predict new experimental data from a Turkish nonce

word acceptability judgment task.
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A new dataset of Turkish

acceptability judgments



Turkish vowels

[−back] [+back]

[−round] [+round] [−round] [+round]

[+high] i y W u

[−high] e ø a o

17



Constraints on Turkish vowels

Backness harmony: *[αback] [−αback]

• A vowel must agree in backness with the preceding vowel.

Rounding harmony: *[αround] [−αround, +high].

• A high vowel must agree in roundness with the preceding vowel.

These constraints govern suffix allomorphy, but their effect is also detectable in the

lexicon and in acceptability judgment tasks [Zimmer, 1969].
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Our data

The data we’ll look at are acceptability judgments from a large, online study.

• Participants: 90 native Turkish speakers (38F; mostly age 25-35) recruited on

Prolific

• Task: Wug word acceptability judgments
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Stimuli

Stimuli: 596 wug words with CVCVC shape

• Nine words for each unique pair of vowels (8× 8 total pairs)

• Probability of consonants controlled for within vowel groups

• Synthesized to speech using Google Cloud

• Words and recordings vetted by two native Turkish speakers
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Experiment task
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Analysis

Each participant rated 192 tokens after training and attention checks: 17,280 tokens.

Responses are normalized to z-scores within participant

• Controls for differences in mean and spread between participants

22



Analysis

Each participant rated 192 tokens after training and attention checks: 17,280 tokens.

Responses are normalized to z-scores within participant

• Controls for differences in mean and spread between participants

22



Defining our models

We’ll test three simple models that have similar structures:

Value type Constraint values

Probability Conditional probabilities

Boolean Harmony [Gorman, 2013]

Boolean Exception filtering [Dai, accepted]
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General model structure

All the models are TSL-2 grammars that operate on the vowel tier

• Informally, we ignore consonants and assign scores based on vowel bigrams

• Constraints can reference start and end symbols ⋊ and ⋉
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Scoring bigrams

Each model type has a ∆ function that assigns a value to a bigram.

Boolean model

∆b : Σ2 → {0, 1}

Probability model

∆p : Σ2 → [0, 1]
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Scoring words

Boolean model: words are assigned 1 if they contain only legal bigrams, 0 otherwise

bigram score(x1, . . . , xn) =
n−1∧
i=1

∆b(xi , xi+1)

Probability model: words are assigned the product of the probability of each bigram.

probability score(x1, . . . , xn) =
n−1∏
i=1

∆p(xi , xi+1)
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An example

Boolean model
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An example

Boolean model

boolean score([oi]) = ∆b(⋊o) ∧∆b(oi) ∧∆b(i⋉)

= 1 ∧ 0 ∧ 1

= 0

Probabilistic model

probability score([oi]) = ∆p(⋊o)×∆p(oi)×∆p(i⋉)

= 0.08× 0.107× 0.458

= 0.0004
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Choosing our values

How do we define ∆ for each model?
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Conditional probability model

The probability model uses Laplace-smoothed conditional probabilities derived from

18,472 citation forms in the TELL database [Inkelas et al., 2000].
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Boolean harmony model [Gorman, 2013]

Words are grammatical if they satisfy both rounding and backness harmony.
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Boolean exception filtering model [Dai, accepted]

Categorical Turkish phonotactic grammar from Dai [accepted] learned via an exception

filtering process.

31



Results

Let’s look at correlations between model score and mean acceptability judgment.

Value type Constraint set r τ ρ

Probability Conditional probabilities 0.558 0.375 0.527

Boolean Harmony [Gorman, 2013] 0.371 0.303 0.369

Boolean Exception filtering [Dai, accepted] 0.360 0.286 0.348

The simple probabilistic model substantially outperforms the other models
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Reconciling categorical and gradient

models using semirings



The reconciliation begins
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Commonalities between boolean and probabilistic models

Probabilistic and boolean TSL-2 models differ:

• Boolean: Assigns booleans to segmental bigrams, combines them using ∧.
• Probabilistic: Assigns probabilities to segmental bigrams, combines using +.

But the basic structure of each model is the same:

• We assign some value to each segmental bigram

• We aggregate those values to get a score for the word
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Commonalities between categorical and structural models

We can abstract away from specific values/aggregators:

∆: Σ2 −→ R

score(x1 . . . xn) =
n−1

⃝∧
i=1

∆(xi , xi+1)

where R is some set of values and ⃝∧ is some binary operator over R.
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Other values of R and ⃝∧

We can make these simple models compute even more interesting quantities!

What does it compute? R ⃝∧
Boolean scores {0, 1} ∧
[Gorman, 2013, Kostyszyn and Heinz, 2022, Dai, accepted]

Probabilities [0, 1] ×
Integer scores N +

[Durvasula, 2020, Kostyszyn and Heinz, 2022]

Constraint violation profiles Nk +

Left SL-2 string transduction Σ∗ +
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What’s going on here?

This definition of our TSL-2 models is in semiring-general terms

∆: Σ2 −→ R

score(x1 . . . xn) =
n−1

⃝∧
i=1

∆(xi , xi+1)

We can parameterize our model with different semirings that provide implementations

of R and ⃝∧ .
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What’s a semiring?

A semiring is an algebraic structure.

Monoid: a set R closed under a binary relation ⃝∧ such that:

• ⃝∧ is associative

• There’s an identity element ⊤ in R such that a⃝∧ ⊤ = ⊤⃝∧ a = a
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Semirings

A semiring consists of a pair of monoids

• (R,⃝∧ ) with identity element ⊤
• (R,⃝∨ ) with identity element ⊥

such that:

• ⃝∧ distributes over ⃝∨
• x ⃝∧ ⊥ = ⊥⃝∧ x = ⊥
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Why are semirings interesting?

The models we work with in FLT (TSL, FSA, CFG, etc.) can be expressed in

semiring-general terms.

• In terms of R, ⃝∧ , ⃝∨ rather than specific values and operators

• (TSL-2 models don’t use ⃝∨ but it’s important for more complex models)

Different semirings allow the same underlying model to compute different quantities.

• Unifies superficially different models [Goodman, 1999].

We can separate the structure of the model from the values it computes.
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Why is this useful for us as phonologists?
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Giorgolo, G., & Asudeh, A. (2014) One semiring to rule them all. Proceedings of the

36th Annual Meeting of the Cognitive Science Society. Québec City: Cognitive Science

Society, 208–26.
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Why is this useful for us as phonologists?

Semirings allow us to relate the grammar to different domains or contexts

• Giorgolo and Asudeh [2014] apply different semirings to the same underlying

semantic model to capture differences in heuristic vs. mathematical reasoning.

Giorgolo, G., & Asudeh, A. (2014) One semiring to rule them all. Proceedings of the

36th Annual Meeting of the Cognitive Science Society. Québec City: Cognitive Science

Society, 208–26.
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Connecting the grammar to different domains

There’s perhaps an analogy to be made to Turkish.

• Harmony is essentially categorical when determining suffix allomorphy

‘cat-PL‘ kedi-ler ✓ kedi-lar ✗

• Harmony is a gradient preference when determining word acceptability

• But both sensitive to the same configurations!
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Connecting the grammar to different domains

Regardless of semiring, both the categorical and probabilistic grammars we saw here

• are sensitive only to bigram constraints

• use segmental representations

• operate on the vowel tier

These are segmental TSL-2 grammars, regardless of the values they assign.

The same applies to other representations or grammars.
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Closing remarks

Durvasula [2020] closes with a plea to abandon gradience and adopt categorical

grammars so we can

• “focus on what’s a possible constraint or rule”; and

• “commit to a specific set of representations”
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We can have our phonotactic cake and eat it too

This is a false dichotomy.

• Constraints and representations in the grammar can be studied independently of

the values the grammar assigns.

• Insight into the structure of the grammar can come from both gradient and

categorical analyses!

• This flexibility allows our models to engage with a broader range of empirical

phenomena.
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Thank you!

Thanks to Huteng Dai, Jon Rawski, Megha Sundara, and Richard Futrell for many

interesting discussions, and to my Turkish consultants Cem Babalik and Defne Bilhan.
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Results

Value type Constraint set r τ ρ

Probability Conditional probabilities 0.558 0.375 0.527

Boolean Cost -0.379 -0.305 -0.386

[Durvasula, 2020, Kostyszyn and Heinz, 2022]

Boolean Harmony [Gorman, 2013] 0.371 0.303 0.369

Boolean Exception filtering [Dai, accepted] 0.360 0.286 0.348
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