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Introduction
®0

Optimality Theory is computationally complex

@ Rule-based models of phonology are finite-state?!
@ Natural language phonology appears to be as well?

@ Optimality Theory? is more powerful* and requires
a lot of time and space® to compute

1Johnson (1972); Kaplan and Kay (1994)

2Heinz (2018)

3Prince and Smolensky (1993/2004)

“Eisner (1997, 2000); Frank and Satta (1998); Lamont (2021,
2022)

Sldsardi (2006); Hao (2024)



Introduction
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Optimality Theory is computationally complex

@ In today’s talk, | show that OT is not computable

@ It is impossible to write an algorithm to determine
the output of an arbitrary input and OT grammar
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Related results

@ OT-LFG has been shown not to be computable?!
@ Harmonic Grammar? can model arbitrary
computations using non-linguistic representations?

@ The present construction only uses off the shelf
phonological tools and representations

1Johnson (2002); Kuhn (2001, 2002, 2023)
2|L,egendre, Miyata, and Smolensky (1990)
3Smolensky (1992)
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The grammar

@ The relevant OT grammar has the following ranking:

PARSESEG MAX

IDENT

LINEARITY

INTEGRITY
UNIFORMITY
MAX-PM

*H/b
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The grammar’s phonotactics

PARSESEG MAX

IDENT

LINEARITY

INTEGRITY
UNIFORMITY
MAX-PM

*H/b
*LONGT
*CONTOUR

SPECIFYT  *FLOAT

N/

DEpP

@ Every syllable must be linked to exactly one tone*
@ Every tone must be linked to exactly one syllable

“Yip (2002)
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The grammar’s phonotactics

PARSESEG MAX

IDENT

LINEARITY

INTEGRITY
UNIFORMITY
MAX-PM

*H/b
*LONGT
*CONTOUR

SPECIFYT  *FLOAT

DEep

@ High tones cannot link to [.la.]*
@ Low tones cannot link to [.ha.]
@ Segments must be parsed into .CV. syllables

“Lee (2008); Berkson (2013)
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The grammar’s phonotactics

@ Wellformed strings satisfy all the phonotactic
constraints and consist only of the syllables

H L
Jha. and  a.

@ One-to-one link between tones and syllables
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The grammar’s mappings

PARSESEG MAX

IDENT

LINEARITY

INTEGRITY
UNIFORMITY
MAX-PM

*L/p

*H/b

*LONGT
*CONTOUR

SPECIFYT  *FLOAT

N/

DEep

@ Wellformedness cannot be achieved by
deleting/changing/reordering/. .. tones or
segments*

“McCarthy and Prince (1994, 1995, 1999)
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The grammar’s mappings

PARSESEG MAX

IDENT

LINEARITY

INTEGRITY
UNIFORMITY
MaAX-PM

*L/p

*H/b

*LONGT
*CONTOUR

SPECIFYT  *FLOAT

N/

DEP

@ Wellformedness by inserting entire morphemes*
@ Max-PM: *tones/segs not associated to morphemes®

“Xu (2007, 2011); Wolf (2008, 2015); Rolle (2020)
SWalker and Feng (2004)
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The grammar’s lexicon

@ Consider lexicons consisting of a finite set of
unassociated strings of segments and tones

lexicon C {ha, la}* x {H, L}*
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An illustration

@ Given this ranking and the lexicon

{hahaha, H H, H}
@ The output of any monomorphemic input is:

HH H HH H HH H

ha ha ha or hahaha or hahaha
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An illustration

=
5| L g
< 9 o) o
é g : Lf |
/H/ > 2B @)
a. H ‘w1l L
|
b. .?24. W 2 | L2
c. .hd.ha.ha. W1, L6
T
I¥" d. .ha.ha.h4. :
IF" e. .ha.ha.ha. |
BF" f ha.ha.h4. :
g. -ha.hd.ha.hd.hé.ha. ! W 15

@ SPECIFYT and *FLOAT defined as binary constraints®
®Frank and Satta (1998)
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An illustration

2t
2802 8
/H/ > noE a)
a. H w1l oL
b. .25. w2 1 L2
c. .hd.ha.ha. W1, L6
5" d. .ha.hd.h4. 3
IF" e. .hd.ha.ha. |
B5" f. ha.ha.h4. i
g. .ha.hé.ha.hd.hé.ha. | W 15

@ Unassociated high tone fatally violates *FLOAT
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An illustration

2t
2802 8
/H/ > noE a)
a. H w1l oL
b. .25. W2 1 L2
c. .hd.ha.ha. W1, L6
5" d. .ha.hd.h4. 3
IF" e. .hd.ha.ha. |
B5" f. ha.ha.h4. i
g. .hé.ha.ha.hd.hé.ha. l W 15

@ Inserting non-morphemic string violates MAX-PM
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An illustration

= %L
Y908
é E : ~ w
/H/ = » o )]
a. H 'W 1 L
[
b. .73. W 2 | L2
c. .hé.ha.ha. W1, L6
T
IF" d. .hd.ha.h4. :
¥ e, .hi.hd.hd. |
B f ha.ha.h4. |
g. .hd.ha.ha.ha.hd.ha. ! W 15

@ Input tone can associate to inserted morpheme
@ Introduces toneless syllables violating SPECIFYT
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An illustration

=
ol R
I g 1+ O o
é E I LT_‘ T8
/H/ > - a)
a. H ‘W1 L
[l
b. .24. W 2 | L2
c. .hi.ha.ha. W1, L6
T
I d. .h4.hd.h4. :
1" e, .h4.hd.ha. }
IZ" f  ha.ha.ha. :
9. .hd.ha.ha.ha.hd.ha. | W 15

@ High tone morphemes are inserted to avoid
toneless syllables
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An illustration

=
2L
I g 1+ O o
é E I LT_‘ T8
/H/ > - a)
a. H ‘w1 L
|
b. .25. W 2 | L2
c. .hi.ha.ha. W1, L6
T
IF" d. .ha.ha.h4. :
IF" e, .h4.ha.ha. |
1F" f ha.ha.h4. :
g. hé.hi.hd.ha.hé.hi. l W 15

@ DEP selects the shortest well-formed candidate of
infinitely many
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Another illustration

@ Given the same ranking and the lexicon
{lala, H H, H}

@ All morphemic inputs are returned faithfully
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Another illustration

| | =R
a I I E I D.‘ 3]
2318358
Nala/ =, =, 8 = |n| o
IF" a. lala. | | | 1
I [ I
b. la.l4. W2 ! ! LIW2
1 1 1
C. e 'W 4 | | L
T T T
d. .h4.ha. : : W 2 : LIW2
e. Il | l W2 | L|w?2

@ No morphemes have floating low tones
@ Lexical insertion is ruled out by *H/b
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Another illustration

| | 2 =
Q % | E | X Q o
flala/ £ =12 = 5| o
womn | L .
b. Jili. | w2 1 1 L|w?2
c. e ' W 4 | 1 L
d. .hd.ha. i i W 2 i LIW2
e Il | ! : W2 L w2

@ Other operations violate constraints > SPECIFYT
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Technical wrinkle

@ Given the same ranking and the lexicon
{lala, L L H}
@ It is possible to satisfy SPECIFYT but not *FLOAT

LLH

lala — lala
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Technical wrinkle

@ If partially matched outputs are a formal problem,
they can be ruled out with conjoined constraints®

e SPECIFYT & DEP / word
@ *FLOAT & DEP / word

@ These constraints block unfaithful mismatches

LLH

lala 4 lala

®Moreton and Smolensky (2002); tubowicz (2002, 2003, 2005):
Smolensky (2006)
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General case

@ In general, an OT grammar with this ranking either

@ Returnsthe faithful candidate (a), or
@ Returns the shortest well-formed candidate(s) (b’)

|; |
L | =
8 ! g a
a | — |
/x/ o & a)
T 3. x (1) + (1)
b.yxz | (1) ' (1) | Wly|+|Z]
al. x (W1, (W1) L
P yxz ‘ |+ |z|
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General case

@ Given a finite lexicon and an input defined over it,
return the shortest candidate generated by
inserting morphemes composed only of syllables

H L
Jha. and  a.

@ If there is no such candidate, return the input as is
@ Whether it exists is impossible to determine



Non-computability
®0

The PCP is not computable

@ An instance of the Post Correspondence Problem”
provides a finite set of domino types

e ) B

@ A solution is a finite sequence of domino tokens
with the same string along the top and bottom

3 s [ 58] 7

alb/c alalabc

a bjc alajlablc

7Post (1946):; Sipser (2013)
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The PCP is not computable

@ Post Correspondence Problem is not computable”

@ It is impossible to write an algorithm that decides
whether an arbitrary instance has a solution

"Post (1946)
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The PCP is not computable

@ Sipser (2013:85.2) provides an intuitive proof

e Given a Turing Machine and input, generate an
instance of the PCP that models the computation

e There is a solution if and only if the Turing Machine
halts on the input

e If an algorithm exists to solve the PCP, it implies a
solution to the Halting Problem

e But the Halting Problem is hot computable”

@ Therefore no such algorithm exists

7Church (1936); Turing (1937)
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The PCP is not computable

@ Modified PCP specifies a starting domino
@ Itis also not computable”

"Harrison (1978)
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OT is not computable

@ Our OT grammar models the modified PCP and
therefore it is impossible to write an algorithm that
determines the output for an arbitrary input passed
into arbitrary OT grammar

@ OT is therefore not computable
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OT is not computable

-+ OT grammars ::

MPCP instances

Turing Machines

\ What is the output of grammar x for input y?
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So what?

@ OT is not the only constraint-based formalism that is
not computable®

@ However, it is primarily used to model phonology,
which is a significantly larger gulf than a model of
syntax/semantics

8Kaplan and Bresnan (1982); Johnson (1988); Kepser (2004);
Francez and Wintner (2012); Kaplan and Wedekind (2023);
Przepidrkowski (2023)
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So what's next?

@ The construction crucially depends on freedom of
analysis and strictly ranked constraints

@ Serialism does not automatically avoid this®

@ Weighted constraints appear to (single signed)1©

@ Removing one phonotactic violation cannot
motivate arbitrarily many unfaithful operations

e Can be shown to be finite-state with string
constraints (work in prep.)

@ Pursue alternative models like BMRS1!!

“Hampe (2022)
1OKimper (2016)
1 Chandlee and Jardine (2021)
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Thank you!
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