DRAFT—February 6, 2025 © J. Heinz

Introduction to finite-state acceptors for strings
(the non-recursive way)

Non-deterministic finite-state string acceptors

Definition 1. A non-deterministic finite-state acceptor (NFA) is a tuple (Q, %, I, F, ) where

o () is a finite set of states;

Y is a finite set of symbols (the alphabet );

I C @ is a set of initial (start) states;

« F CQ isa set of accepting (final) states; and
0 CQ xXU{e} x Q is the transition relation.

A transition (g, a,r) means that if the acceptor is in state ¢ and reads the symbol a
in a string that it changes into state r, and advances to the next symbol in the string. A
transition (g, €, ) denotes a “free” change of state; that is the state of the system can change
without any symbol in the input string being consumed. You can think of € like the empty
string. The basic idea is that a NFA accepts/recognizes/generates a string w if there is a
sequence of transitions from a start state to a final state which consuming the w.

Formally, A NFA accepts/recognizes/generates a non-empty string w of length n if and
only if there is a path — that is, a sequence of transitions — of length m >n

(q07 X1, q1)7 (q1a X2, Q2) s (Qm—h L, Qm>
such that

* (o C Iv
* (m € Fa
o for each 1 <i < m it is the case that (¢;_1,x;,q;) € 0

e and z122...2,, = W

A NFA accepts/recognizes/generates the empty string if and only if I N F # .

Exercise 1 Write NFA for the sets of strings in Example 1 #1-#13 in Chapter 2.

0.1 Deterministic finite-state string acceptors

A NFA is deterministic if and only if

e |7] <1 (at most one start state),
o If (¢g,x,r) € § then x # € (no epsilon transitions), and
o If (¢,a,7),(q,a,r") € § then r =1’ (at most one a-transition for each state).

We write DFA for deterministic finite-state acceptors.

Exercise 2 Which of the NFA you provided in Exercise 1 are deterministic?



