
Theoretical Computational Linguistics:
Finite-state Automata

Jeffrey Heinz

February 11, 2025

draft—February 11, 2025 © J. Heinz

2

Contents

1 Introduction 7
1.1 Computational Linguistics: Course Overview 7

1.1.1 Linguistic Theory . 7
1.1.2 Automata Theory . 8

2 Formal Language Theory 11
2.1 Formal Languages . 11
2.2 Grammars . 12
2.3 Expression Grammars . 13

2.3.1 Cat-Union Expressions . 14
2.3.2 Generalized Regular Expressions . 14
2.3.3 Star Free Expressions . 15
2.3.4 Piecewise Local Expressions . 15

2.4 Rewrite Grammars . 16
2.5 The Chomsky Hierarchy . 18
2.6 First Order and Monadic Second Order Logic 19

2.6.1 Syntax of FO logic . 20
2.6.2 Semantics of FO logic . 21
2.6.3 Syntax of MSO logic . 23
2.6.4 Semantics of MSO logic . 23
2.6.5 Theorems . 24
2.6.6 Other Logics . 24

3 Strings and Trees 27
3.1 Strings . 27
3.2 Trees . 29

3.2.1 String Exercises . 31
3.2.2 Tree Exercises . 32

4 String Acceptors 33
4.1 Deterministic Finite-state String Acceptors 33

4.1.1 Orientation . 33

3

draft—February 11, 2025 © J. Heinz

4.1.2 Definitions . 33
4.1.3 Exercises . 34

4.2 Properties of DFA . 35
4.3 Some Closure Properties of Regular Languages 35
4.4 Non-deterministic Finite-state String Acceptors 37

4.4.1 Orientation . 37
4.4.2 Non-deterministic string acceptors 37
4.4.3 Closure under concatenation, union, Kleene Star 39

4.5 Determinizing NFA . 42
4.6 Minimizing DFA . 42

4.6.1 Identifying indistinguishable states 43
4.6.2 Building the minimal DFA . 43
4.6.3 Example . 44

4.7 Nonregular stringsets . 46
4.7.1 Exercises . 47
4.7.2 Formal Analysis . 47

5 Tree Acceptors 49
5.1 Deterministic Finite-state Bottom-up Tree

Acceptors . 49
5.1.1 Orientation . 49
5.1.2 Definitions . 49
5.1.3 Notes on Definitions . 51
5.1.4 Examples . 51
5.1.5 Observations . 52
5.1.6 Connection to Context-Free Languages 52

5.2 Deterministic Top-down Finite-state Tree
Acceptors . 53
5.2.1 Orientation . 53
5.2.2 Definition . 53
5.2.3 Observations . 55

5.3 Properties of recognizable tree languages . 55
5.4 Connection to Context-Free Languages . 56

6 String Transducers 59
6.1 Deterministic Finite-state String Transducers 59

6.1.1 Orientation . 59
6.1.2 Definitions . 59
6.1.3 Exercises . 60

6.2 Some Closure Properties of Sequential functions 61
6.3 Generalizing sequential functions with monoids 62

6.3.1 Exercises . 64

4

draft—February 11, 2025 © J. Heinz

6.4 Learning more . 64
6.5 Left and Right Sequential Transducers . 64
6.6 Non-deterministic Finite-state String Transducers 66

7 Tree Transducers 71
7.1 Deterministic Bottom-up Finite-state Tree

Transducers . 71
7.1.1 Orientation . 71
7.1.2 Definitions . 71

7.2 Deterministic Top-down Finite-state Tree
Transducers . 74
7.2.1 Orientation . 74
7.2.2 Definitions . 74

7.3 Theorems about Deterministic Tree Transducers 76

8 Strict Locality 77
8.1 Strictly Local Languages . 77

8.1.1 Logic . 78
8.1.2 Suffix Substitution Closure . 78
8.1.3 Cognitive Interpretation . 79
8.1.4 Relationship to Regular Languages 79

8.2 Strictly Local Tree Languages . 79
8.2.1 Context Free Language Derivation Trees are 2-SL 80

8.3 Strictly Local Functions over Strings . 80
8.3.1 Local functions . 80
8.3.2 Input Strictly Local Functions . 80
8.3.3 Definiteness . 82
8.3.4 Output Strictly Local Functions . 84
8.3.5 Input-Output Strictly Local Functions 85

8.4 Strictly Local Functions over Trees . 86

9 Conclusion 87
9.1 Conclusion . 87

9.1.1 Two-way deterministic automata . 87
9.1.2 Natural Language Processing . 89
9.1.3 Combining Automata and complex generalizations 89
9.1.4 Subregular Classes of Automata . 90
9.1.5 Learning Automata . 91

5

draft—February 11, 2025 © J. Heinz

6

Chapter 1

Introduction

1.1 Computational Linguistics: Course Overview
In this class, we will study:

1. Formal Language Theory
2. Automata Theory
3. Haskell
4. …as they pertain to problems in linguistics:

(a) Well-formedness of linguistic representations
(b) Transformations from one representation to another

1.1.1 Linguistic Theory
Linguistic theory often distinguishes between well- and ill-formed representations.

Strings. In English, we can coin new words like bling. What about the following?

1. gding
2. TwIk
3. spIf

Trees. In English, we interpret the compound deer-resistant as an adjective, not a noun.
What about the following?

1. green-house
2. dry-clean
3. over-throw

Linguistic theory is often also concerned with transformations.

7

draft—February 11, 2025 © J. Heinz

Strings. In generative phonology, underlying representations of words are transformed to
surface representations of words.

1. /kæt-z/ → [kæts]
2. /wIS-z/ → [wISIz]

Trees. In derivational theories of generative syntax, the deep sentence structure is trans-
formed into a surface structure.

1. Mary won the competition.
(a) The competition was won by Mary.
(b) What did Mary win?

1.1.2 Automata Theory
Automata are abstract machines that answer questions like these.

The Membership Problem

Given: A possibly infinite set of strings (or trees) X.
Input: A input string (or tree) x.
Problem: Does x belong to X?

The Transformation Problem

Given: A possible infinite function of strings to strings (or trees to trees) f : X → Y .
Input: A input string (or tree) x.
Problem: What is f(x)?

There are many kinds of automata. Two common types of automata address these specific
problems.

Recognizers Recognizers solve the membership problem.
Transducers Transducers solve the transformation problem.

Different kinds of automata instantiate different kinds of memory.

Finite-state Automata An automata is finite-state whenever the amount of memory nec-
essary to solve a problem for input x is fixed and independent of the size of x.

Linear-bounded Automata An automata is linear-bounded whenever the amount of mem-
ory necessary to solve a problem for input x is bounded by a linear function of the
size of x.

In this class we will study finite-state recognizers and transducers. There are many types of
these as well, some are shown below.

8

draft—February 11, 2025 © J. Heinz

• deterministic vs. non-deterministic
• 1way vs. 2way (for strings)
• bottom-up vs. top-down vs. walking (for trees)

The simplest type is the deterministic, 1way recognizer for strings. We will start there and
then complicate them bit by bit:

1. add non-determinism
2. add output (transducers)
3. add 2way-ness
4. generalize strings to trees and repeat

What do automata mean for linguistic theory?

Fact 1: Finite-state automata over strings are sufficient for phonology and morphology
(Johnson, 1972; Kaplan and Kay, 1994; Roark and Sproat, 2007; Dolatian and Heinz,
2020).

Fact 2: Finite-state automata over strings areNOT sufficient for syntax, but linear-bounded
automata are (Chomsky, 1956; Huybregts, 1984; Shieber, 1985, among others).

Fact 3: Finite-state automata over trees ARE sufficient for syntax (Rogers, 1998; Kobele,
2011; Graf, 2011; Stabler, 2019).

Hypothesis: Linguistic phenomena can be modeled with special kinds of finite-state au-
tomata with even stricter memory requirements over the right representations (Heinz,
2018; Graf and De Santo, 2019; Graf, 2022).

9

draft—February 11, 2025 © J. Heinz

10

Chapter 2

Formal Language Theory

The material in this chapter is covered in much greater detail in a number of textbooks
including McNaughton and Papert (1971); Harrison (1978); Hopcroft et al. (1979); Davis
and Weyuker (1983); Hopcroft et al. (2001) and Sipser (1997). Here we will state definitions
and theorems, but we will not cover the proofs of the theorems.

We begin with the following question: If we choose to model natural languages with
formal languages, what kind of formal languages are they? We have some idea what natural
languages are. After all, you are reading this! A satisfactory answer to answer this question
however also requires being clear about what a formal language is.

2.1 Formal Languages
A formal language is a set of strings. Strings are sequences of symbols of finite length. The
symbol Σ commonly denotes a finite set of symbols. There is a unique string of length zero,
which is the empty string. This is commonly denoted with λ or ε.

A key operation on strings is concatenation. The concatenation of string x with string y
is written xy. Concatenation is associative: for all strings x, y, z, it holds that (xy)z = x(yz).
The empty string is an identity element for concatenation: for all strings x, xλ = λx = x. If
we concatenate a string x with itself n times we write xn. For example, (ab)3 = ababab.

We can also concatenate two formal languages X and Y .

XY = {xy : x ∈ X, y ∈ Y }

Language concatenation is also associative. The empty string language {λ} is an identity
element for language concatenation: for all languages L, L{λ} = {λ}L = L. Also, the empty
set ∅ is a zero element for language concatenation: for all languages L, L∅ = ∅L = ∅.

If we concatenate a language X with itself n times we write Xn. For example, XX = X2.
Finally for any language X, we define X* as follows.

X* = {λ} ∪X ∪X2 ∪X3 . . . =
⋃
n≥0

Xn

11

draft—February 11, 2025 © J. Heinz

where X0 is defined as {λ}. The asterisk (*) is called the Kleene star after Kleene (1956)
who introduced it.

It follows that the set of all strings of finite length can be denoted Σ* . Consequently
formal languages can be thought of as subsets of Σ* . How can we talk about such subsets?

One way is to use set notation and set construction. Example 1 present some examples
of formal languages defined in these ways.

Example 1. In this example, assume Σ = {a, b, c}.

1. {λ, a}.
2. {λ, a, aa}.
3. {an ∈ Σ* : n ≤ 10}.
4. {an ∈ Σ* : n ≥ 0}.
5. {w ∈ Σ*}.
6. {w ∈ Σ* : w contains the string aa}.
7. {w ∈ Σ* : w does not contain the string aa}.
8. {w ∈ Σ* : w contains a b somewhere after an a}.
9. {w ∈ Σ* : w does not contain a b somewhere after an a}.
10. {w ∈ Σ* : w contains either the string aa or the string bb}.
11. {w ∈ Σ* : w contains both the string aa and the string bb}.
12. {w ∈ Σ* : w does not contain the string bb on the {b,c} tier}.
13. {w ∈ Σ* : w contains an even number of as}.
14. {anbn ∈ Σ* : n ≥ 1}.
15. {anbm ∈ Σ* : m > n}.
16. {anbncn ∈ Σ* : n ≥ 1}.
17. {anbmc` ∈ Σ* : ` > m > n}.
18. {w ∈ Σ* : the number of bs is the same as the number of cs in w}.
19. {w ∈ Σ* : the number of as, bs, and cs is the same in w}.
20. {an ∈ Σ* : n is a prime number}.

2.2 Grammars
There are two important aspects to defining grammar formalisms. They are distinct, but
related, aspects.

1. The grammar itself. This is an object and in order to be well-formed it has to follow
certain rules and/or conditions.

2. How the grammar is associated with a language. A separate set of rules/conditions
explains how to interpret the grammar. This aspect explains how the grammar gen-
erates/recognizes/accepts a language.

12

draft—February 11, 2025 © J. Heinz

In other words, by itself, a grammar is more or less useless. But combined with a way to
interpret it—a way to associate it with a formal language—it becomes a very powerful form
of expression.

2.3 Expression Grammars

As a first example, consider regular expressions. These consist of both a syntax (which define
well-formed regular expressions) and a semantics (which associate them unambiguously with
formal languages). They are defined inductively.

Syntax Semantics
REs include

• each σ ∈ Σ (singleton letter set)
q
σ
y

= {σ}
• ε (empty string set)

q
ε
y

= {ε}
• ∅ (empty set)

q
∅

y
= {}

If R,S are REs then so are:

• (R◦S) (concatenation)
q
(R · S)

y
=

q
R

y
◦
q
S
y

• (R+S) (union)
q
(R + S)

y
=

q
R

y
∪

q
S
y

• R* (Kleene star)
q
R*

y
=

q
R

y
*

We say a language is regular if there is a regular expression denoting it. The class of
regular languages is denoted

q
RE

y
.

Exercise 1. Write regular expressions for as many of the languages in Example 1 as you
can.

13

draft—February 11, 2025 © J. Heinz

2.3.1 Cat-Union Expressions
Syntax Semantics
CUEs include

• each σ ∈ Σ (singleton letter set)
q
σ
y

= {σ}
• ε (empty string set)

q
ε
y

= {ε}
• ∅ (empty set)

q
∅

y
= {}

If R,S are CUEs then so are:

• (R◦S) (concatenation)
q
(R · S)

y
=

q
R

y
◦
q
S
y

• (R+S) (union)
q
(R + S)

y
=

q
R

y
∪

q
S
y

So CUEs are a fragment of REs that exclude Kleene star.

Exercise 2. Write CUEs for as many of the languages in Example 1 as you can. What
kinds of formal languages do cat-union expressions describe?

Theorem 1.
q
CUE

y
= {L ⊆ Σ* : |L| is finite} (

q
RE

y

2.3.2 Generalized Regular Expressions
Syntax Semantics
GREs include

• each σ ∈ Σ (singleton letter set)
q
σ
y

= {σ}
• ε (empty string set)

q
ε
y

= {ε}
• ∅ (empty set)

q
∅

y
= {}

If R,S are GREs then so are:

• (R◦S) (concatenation)
q
(R · S)

y
=

q
R

y
◦
q
S
y

• (R+S) (union)
q
(R + S)

y
=

q
R

y
∪

q
S
y

• R* (Kleene star)
q
R*

y
=

q
R

y
*

• (R&S) (intersection)
q
(R&S)

y
=

q
R

y
∩

q
S
y

• R (complement)
q
R

y
= Σ∗−

q
R

y

Theorem 2.
q
RE

y
=

q
GRE

y

14

draft—February 11, 2025 © J. Heinz

Exercise 3. Write GREs for as many of the languages in Example 1 as you can.

2.3.3 Star Free Expressions
Syntax Semantics
SFEs include

• each σ ∈ Σ (singleton letter set)
q
σ
y

= {σ}
• ε (empty string set)

q
ε
y

= {ε}
• ∅ (empty set)

q
∅

y
= {}

If R,S are SFEs then so are:

• (R◦S) (concatenation)
q
(R · S)

y
=

q
R

y
◦
q
S
y

• (R+S) (union)
q
(R + S)

y
=

q
R

y
∪

q
S
y

• (R&S) (intersection)
q
(R&S)

y
=

q
R

y
∩

q
S
y

• R (complement)
q
R

y
= Σ∗−

q
R

y

So SFEs are a fragment of GREs that exclude Kleene star.

Exercise 4. Write SFEs for as many of the languages in Example 1 as you can.

Theorem 3.
q
CUE

y
(

q
SFE

y
(

q
RE

y
=

q
GRE

y

For more information on the theorems in this section, see McNaughton and Papert (1971).

2.3.4 Piecewise Local Expressions
Dakotah Lambert developed PLEs over the past ten years. His 2022 dissertation, among
other contributions, provides a written treatment, as does Lambert (2024). I present a large
fragment of them here (some more details are in the thesis). Part of the motivation for PLEs
is to develop linguistically motivated expression-builders.

As an example, Lambert introduces a tier operator which takes two arguments: a set of
symbols T (the tier elements) and a language L. Non-tier elements are freely insertable and
deleteable (they have no effect on whether a string belongs to the language or not). Removing
the non-tier symbols from a word yields a string of symbols on the tier. Given a language L,
let us call the language obtained from removing the non-tier symbols from all of its words,
the tier-projection of L. Then Lambert’s tier operator produces the largest language in Σ*
such that its tier-projection equals the tier-projection of L. Lambert’s operator is thus the
maximal, inverse tier-projection.

15

draft—February 11, 2025 © J. Heinz

Formally, for all σ ∈ Σ and all T ⊆ Σ, let S = Σ − T , and let IT (σ) denote the
string σ iff σ ∈ T and λ otherwise. Then, for all w = σ1σ2 . . . σn ∈ Σ* , we let [T]w
be the language S*IT (σ1)S*IT (σ2)S* . . . S*IT (σn)S* . Finally, for any language L, we let
[T]L =

⋃
w ∈ L[T]w.

Syntax Semantics

For all σ1σ2 . . . σn ∈ Σ* PLEs include

• 〈σ1σ2 . . . σn〉 (unanchored substring)
q
〈σ1σ2 . . . σn〉

y
= Σ*σ1σ2 . . . σnΣ*

• 〈σ1, σ2, . . . , σn〉 (unanchored subsequence)
q
〈σ1, σ2, . . . , σn〉

y
= Σ*σ1Σ*σ2Σ* . . .Σ*σnΣ*

• o〈σ1σ2 . . . σn〉 (left-anchored substring)
q
o 〈σ1σ2 . . . σn〉

y
= σ1σ2 . . . σnΣ*

• o〈σ1, σ2, . . . , σn〉 (left-anchored subsequence)
q
o 〈σ1, σ2, . . . , σn〉

y
= σ1Σ*σ2Σ* . . .Σ*σnΣ*

• n〈σ1σ2 . . . σn〉 (right-anchored substring)
q
n 〈σ1σ2 . . . σn〉

y
= Σ*σ1σ2 . . . σn

• n〈σ1, σ2, . . . , σn〉 (right-anchored subsequence)
q
n 〈σ1, σ2, . . . , σn〉

y
= Σ*σ1Σ*σ2Σ* . . .Σ*σn

• on 〈σ1σ2 . . . σn〉 (anchored substring)
q
on〈σ1σ2 . . . σn〉

y
= {σ1σ2 . . . σn}

• on 〈σ1, σ2, . . . , σn〉 (anchored subsequence)
q
on〈σ1, σ2, . . . , σn〉

y
= σ1Σ*σ2Σ* . . .Σ*σn

If R1, R2, . . . Rn are PLEs then so are:

• ¬R1 (complement)
q
¬R1

y
= Σ*−

q
R1

y

• ∗R1 (Kleene star)
q
∗R1

y
=

q
R1

y
*

• [σ1, σ2, . . . σn]R1 (tier max-inv-projection)
q
[σ1, σ2, . . . σn]R1

y
= [σ1, σ2, . . . σn]

q
R1

y

• ∧{R1, R2, . . . Rn} (intersection)
q
∧ {R1, R2, . . . Rn}

y
=

⋂
1≤i≤n

q
Ri

y

• ∨{R1, R2, . . . Rn} (union)
q
∨ {R1, R2, . . . Rn}

y
=

⋃
1≤i≤n

q
Ri

y

• ◦{R1, R2, . . . Rn} (concatenation)
q
◦ {R1, R2, . . . Rn}

y
=

q
R1

y
◦
q
R2

y
◦…◦

q
Rn

y

Theorem 4.
q
CUE

y
(

q
SFE

y
(

q
RE

y
=

q
GRE

y
=

q
PLE

y

Exercise 5. Write PLEs for as many of the languages in Example 1 as you can.

2.4 Rewrite Grammars
There are many ways to define grammars which describe formal languages. Another influ-
ential approach has been rewrite grammars (Hopcroft et al., 1979).

Definition 1. A rewrite grammar1 is a tuple 〈T,N, S,R〉 where

• T is a nonempty finite alphabet of symbols. These symbols are also called the terminal
symbols, and we usually write them with lowercase letters like a, b, c, . . .

1For a slightly different definition and some more description of rewrite grammars, see Partee et al. (1993,
chap. 16).

16

draft—February 11, 2025 © J. Heinz

• N is a nonempty finite set of non-terminal symbols, which are distinct from elements
of T . These symbols are also called category symbols, and we usually write them with
uppercase letters like A,B,C, . . .

• S is the start category, which is an element of N .

• A finite set of production rules R. A production rule has the form

α→ β

where α, β belong to (T ∪ N)*. In other words, α and β are strings of non-terminal
and terminal symbols. While β may be the empty string we require that α include at
least one symbol.

Rewrite grammars are also called phrase structure grammars.

Example 2. Consider the following grammar G1:

• T = {john, laughed,and};

• N = {S, VP1, VP2}; and

•

R =

S→ john VP1
VP1→ laughed
VP1→ laughed VP2
VP2→ and laughed
VP2→ and laughed VP2

Example 3. Consider the following grammar G2:

• T = {a, b};

• N = {S, A, B}; and

•

R =

S→ ABS
S→ λ
AB→ BA
BA→ AB
A→ a
B→ b

Example 4. Consider the following grammar G3:

• T = {a, b};

• N = {S}; and

17

draft—February 11, 2025 © J. Heinz

•

R =

S→ ba
S→ baba
S→ bab

The language of a rewrite grammar is defined recursively below.

Definition 2. The (partial) derivations of a rewrite grammar G = 〈T ,N , S,R〉 is written
D(G) and is defined recursively as follows.

1. The base case: S belongs to D(G).

2. The recursive case: For all α→ β ∈ R and for all γ1, γ2 ∈ (T ∪N)*, if γ1αγ2 ∈ D(G)
then γ1βγ2 ∈ D(G).

3. Nothing else is in D(G).

Then the language of the grammar L(G) is defined as

L(G) =
{
w ∈ T * : w ∈ D(G)

}
.

Exercise 6. How does G1 generate John laughed and laughed and laughed?

Exercise 7. What language does G2 generate?

Exercise 8. What language does G3 generate?

2.5 The Chomsky Hierarchy
“By putting increasingly stringent restrictions on the allowed forms of rules we can establish
a series of grammars of decreasing generative power. Many such series are imaginable, but
the one which has received the most attention is due to Chomsky and has come to be known
as the Chomsky Hierarchy.” (Partee et al., 1993, p. 451)

Recall that rules are of the form α→ β with α, β ∈ (T ∪N)* , with the further restriction
that α was not the empty string.

Type 0 There is no further restriction on α or β.

Type 1 Each rule is of the form α→ β where α contains at least one symbol A ∈ N and
β is not the empty string.

Type 2 Each rule is of the form A→ β where A ∈ N and β ∈ (T ∪ N)* .

Type 3 Each rule is of the form A→ aB or A→ a where A,B ∈ N and a ∈ T .

18

draft—February 11, 2025 © J. Heinz

There is one exception to the above restrictions for Types 1, 2 and 3. For these types, the
production S → λ is allowed. If this production is included in a grammar then the formal
language it describes will include the empty string. Otherwise, it will not.

To this we will add an additional type which we will call finite:

finite Each rule of is of the form S → w where w ∈ T * .

Each of these types goes by other names.

Type 0 recursively enumerable, computably enumerable
Type 1 context-sensitive
Type 2 context-free
Type 3 regular, right-linear2

finite finite

Table 2.1: Names for classes of formal languages.

These names refer to both the grammars and the languages. These are different kinds of
objects, so it is important to know which one is being referred to in any given context.

Theorem 5 (Chomsky Hierarchy). 1.
q
type−3

y
⊆

q
type−2

y
(Scott and Rabin, 1959).

2.
q
type− 2

y
⊆

q
type− 1

y
(Bar-Hillel et al., 1961).

3.
q
type− 1

y
⊆

q
type− 0

y 3

For details, see, for instance, Davis and Weyuker (1983).

Exercise 9. Write rewrite grammars for as many of the languages in Example 1 as you can.
Are they type 1, 2, 3 or finite grammars?

If we choose to model natural languages with formal languages, what kind of formal
languages are they?

2.6 First Order and Monadic Second Order Logic
We can also define formal languages with logic, and this section explains one way to do that
drawing on mathematical logic and model theory Enderton (1972, 2001); Hedman (2004);
Rogers et al. (2013); Rogers and Heinz (2014).

2Technically, right-linear grammars are defined as those languages where each rule is of the form A→ aB
or A → a where A,B ∈ N and a ∈ T . Consequently is not possible for a right linear grammar to define a
language which includes the empty string.

3This is a diagnolization argument of the kind originally due to Cantor. Rogers (1967) is a good source
for this kind of thing.

19

draft—February 11, 2025 © J. Heinz

In what follows, we use the fact that every string w ∈ Σ* is equal to an indexed sequence
of symbols, so w = σ1 . . . σn. The positions in the string w correspond to the set of indices.
It is common to call this set the domain of w, or w’s domain. So for a string of length n ≥ 1
then its domain is the set {1, . . . n}. If w is the empty string then its domain is empty.

We begin with First Order (FO) logic and then expand it to Monadic Second Order
(MSO) logic.

2.6.1 Syntax of FO logic
We assume a countably infinite set of symbols x, y ∈ Vx = {x0, x1, . . .} disjoint from Σ.
These symbols will ultimately be interpreted as variables which range over the domains of
strings, and we refer to these symbols as variables.

Definition 3 (Formulas of FO logic).

The base cases. For all variables x, y, and for all σ ∈ Σ, the following are formulas of
FO logic.

(B1) x = y (equality)
(B2) x < y (precedence)
(B3) σ(x) (does σ occupy position x?)

The inductive cases. If ϕ, ψ are formulas of FO logic, then so are

(I1) (¬ϕ) (negation)
(I2) (ϕ ∨ ψ) (disjunction)
(I3) (ϕ ∧ ψ) (conjunction)
(I4) (ϕ→ ψ) (implication)
(I5) (ϕ↔ ψ) (biconditional)
(I6) (∃x)[ϕ] (existential quantification for individuals)
(I7) (∀x)[ϕ] (universal quantification for individuals)

Nothing else is a formula of FO logic.

Of course it is possible to define a FO logic with some subset of the above inductive cases
and to derive the remainder. For example, negation, disjunction, and existential quantifica-
tion are sufficient to derive the remainder. We include them all to facilitate writing logical
formulas.

Exercise 10. Which of the following expressions are syntactically valid formulas of FO
logic? Assume Σ = {a, b, c}.

1. a(x)
2. a(x) ∧ b(y)

20

draft—February 11, 2025 © J. Heinz

3. (a(x) ∧ b(y))
4. ∀x[a(x)]
5. (∀x) a(x)
6. (∀x) [a(x)]
7. (∀x) [x = a]

8. (∀x, y) [x = y]

9. (∀x)[(∀y) [x = y]]

10. (∀x)[(∃y)[y = x+ 1]]

11. (∃x)
[
(a(x) ∧ (∀y)[(a(y)→ x = y)])

]
12. ∃x

[
a(x) ∧ (∀y)[a(y)→ x = y]

]
13. ((∃x)[a(x)] ∧ (∀y)[(a(y)→ x = y)])

2.6.2 Semantics of FO logic
The free variables of a formula ϕ are those variables in ϕ that are not quantified. A formula
is a sentence if none of its variables are free. Only sentences can be interpreted.

Exercise 11. Which of the following expressions are sentences of FO logic? Assume Σ =
{a, b, c}.

1. a(x)
2. (∀x)[a(x)]
3. (∃x)

[
(a(x) ∧ (∀y)[(a(y)→ x = y)])

]
4. ((∃x)[a(x)] ∧ (∀y)[(a(y)→ x = y)])

It will also be useful to think of the interpretation of a sentence ϕ as a function that
maps strings to the set {true, false}. How that is done is explained below.

However, there is notation here to consider. We will write
q
ϕ
y
to denote this function.

In other words, for a sentence ϕ of FO logic and a string w, the expression
q
ϕ
y
(w) will

evaluate to true or false.
In the logical tradition, it is more common to write w |= ϕ, which is read as both “w

satisfies ϕ” and “w models ϕ,” and which means that
q
ϕ
y
(w) = true. If

q
ϕ
y
(w) evaluates

to false, one would write w 6|= ϕ. Since here I want to explain how
q
ϕ
y
(w) is calculated, I

will use this notation here.
In order to evaluate

q
ϕ
y
(w), variables must be assigned values. For this reason, we will

actually think of the function
q
ϕ
y
taking two arguments: one is the string w and one is

the assignment function. The assignment function S maps individual variables like x to
elements of then domain (positions). You can think of it like a dictionary which maps keys
(the variables) to their values (the positions). Formally, S : Vx → D. The assignment
function S may be partial, even empty. The empty assignment is denoted S0.

We evaluate
q
ϕ
y
(w,S0). Throughout the evaluation, the assignment function S gets

updated. The notation S[x 7→ e] updates the assignment function to add a binding of

21

draft—February 11, 2025 © J. Heinz

element e to variable x. Then whether w |= ϕ can be determined inductively by the below
definition.

Definition 4 (Interpreting sentences of FO logic).

The base cases. For all variables x, y, for all σ ∈ Σ, and for all w = σ1σ2 . . . σn:

(B1)
q
x = y

y
(w, S) ↔ S(x) = S(y)

(B2)
q
x < y

y
(w, S) ↔ S(x) < S(y)

(B3)
q
σ(x)

y
(w, S) ↔ σS(x) = σ

The inductive cases.

(I1)
q
(¬ϕ)

y
(w, S) ↔ ¬

q
ϕ
y
(w,S)

(I2)
q
(ϕ ∨ ψ)

y
(w,S) ↔

q
ϕ
y
(w,S) ∨

q
ψ

y
(w,S)

(I3)
q
(ϕ ∧ ψ)

y
(w,S) ↔

q
ϕ
y
(w,S) ∧

q
ψ

y
(w,S)

(I4)
q
(ϕ→ ψ)

y
(w, S) ↔

q
ϕ
y
(w,S)→

q
ψ

y
(w, S)

(I5)
q
(ϕ↔ ψ)

y
(w, S) ↔

q
ϕ
y
(w,S)↔

q
ψ

y
(w, S)

(I6)
q
(∃x)[ϕ]

y
(w, S) ↔ (

∨
e∈D

q
ϕ
y
(w,S[x 7→ e])

(I7)
q
(∀x)[ϕ]

y
(w, S) ↔ (

∧
e∈D

q
ϕ
y
(w,S[x 7→ e])

The formal language that a sentence ϕ denotes is given by
q
ϕ
y
= {w ∈ Σ* : w |= ϕ} ,

i.e. all and only those strings w such that
q
ϕ
y
(w, S0) = true.

Exercise 12. Determine the formal languages of the following logical sentences.

1. (∀x)[a(x)]
2. (∃x)[a(x)]
3. (∃x)

[
(a(x) ∧ (∀y)[(a(y)→ x = y)])

]
4. (∃x)[(∃y)[((a(x) ∧ a(y) ∧ x < y)]]

Exercise 13.

1. Write FO sentences for the following languages.

22

draft—February 11, 2025 © J. Heinz

(a) All words which begin with a (so aΣ*)
(b) All words which end with a (so Σ*a)

2. Write FO sentences for as many of the formal languages in Example 1 as you can.

Hint: it will be useful to define logical predicates for the successor relation, and the tier
successor relation and to use those.

Next we turn to Monadic Second Order (MSO) logic.

2.6.3 Syntax of MSO logic
Every formula of FO logic is a formula of MSO logic. MSO logic extends FO logic as follows.

In addition to the countably infinite set of symbols Vx = {x0, x1, . . .}, we assume another
countably infinite set of symbols VX = {X0, X1, . . .}, disjoint from Σ. These symbols will
ultimately be interpreted as variables which range over subsets of the domains of strings.
We refer to the symbols of Vx as set variables and the elements of Vx as individual variables.

Definition 5 (Formulas of MSO logic).

The base cases. The base cases are the same as FO logic along with

(B4) x ∈ X (membership)

The inductive cases. If ϕ, ψ are formulas of FO logic, then so are

(I8) (∃X)[ϕ] (existential quantification for sets)
(I9) (∀X)[ϕ] (universal quantification for sets)

Nothing else is a formula of FO logic.

2.6.4 Semantics of MSO logic
Recall the assignment function S we used to interpret sentences of FO logic. We also use S
to keep track of the assignments of set variables, and the notation S[X 7→ S] updates the
assignment function to add a binding of the set of elements S to variable X.

With that in mind, the interpretation of sentences of MSO logic is the same as FO logic
along with the following.

Definition 6 (Interpreting sentences of MSO logic).

The base cases.

(B4)
q
x ∈ X

y
(w, S) ↔ S(x) ∈ S(X)

23

draft—February 11, 2025 © J. Heinz

The inductive cases.
(I8)

q
(∃X)[ϕ]

y
(w,S) ↔ (

∨
S⊆D

q
ϕ
y
(w,S[X 7→ S])

(I9)
q
(∀X)[ϕ]

y
(w,S) ↔ (

∧
S⊆D

q
ϕ
y
(w,S[X 7→ S])

That’s it!

Exercise 14. 1. What language does the following MSO expression describe?

(∃X)[(∃Y)[

(∀x)[(∀y)[
((((

(x ∈ X ↔ (¬x ∈ Y))

∧ (first(x)→ x ∈ X))

∧ (last(x)→ x ∈ Y))

∧ ((x / y ∧ x ∈ X)→ y ∈ Y))

∧ ((y / x ∧ y ∈ Y)→ x ∈ X))

]]]]

(Make sure first and last are defined appropriately.)

2. Write a MSO sentence which denotes the language whose strings are all and only those
with an even number of a symbols. Assume Σ = {a, b}.

2.6.5 Theorems
Let

q
MSO

y
denote the class of formal languages definable with sentences of MSO logic andq

FO
y
denote the class of formal languages definable with sentences of FO logic.

Theorem 6 (Büchi, Elgot, and Trakhtenbrot).
q
MSO

y
=

q
RE

y
.

Theorem 7 (Schutzenberger).
q
FO

y
=

q
SFE

y
.

Consequently, it follows that
q
FO

y
(

q
MSO

y
.

2.6.6 Other Logics
In the logical languages defined above, we used the precedence (<) as a primitive formula.
So the MSO and FO languages defined above are often referred to as MSO(<) and FO(<).

What if we replace precedence with successor (/) so that
q
x / y

y
is true iff y = x+ 1 (so

y is the next position after x).

Theorem 8 (Thomas 1982).
q
FO(/)

y
(

q
FO(<)

y
.

24

draft—February 11, 2025 © J. Heinz

This is because successor is definable from precedence with first order logic but precedence
is not first-order definable with successor.

However, precedence is MSO-definable with successor. Consequently we have the follow-
ing hierarchy. q

FO(/)
y
(

q
F (<)

y
(

q
MSO(/)

y
=

q
MSO(<)

y

There are many other kinds of logical languages, including quantifier free logic, modal
logic, and Boolean Recursive Monadic Schemes. What is especially nice about logic is that
it separates the representational aspects of the computation from the computational actions
that operate on those representations, as we can see from the four classes considered above.

Kind of Representation of Order
Logic Successor Precedence

Monadic Second Order MSO(/) MSO(<)
First Order FO(/) FO (<)

What are the representational primitives of linguistic structures and what kind of oper-
ations act on them? What logic encodes these linguistic representations and operations?

25

draft—February 11, 2025 © J. Heinz

26

Chapter 3

Strings and Trees

In this chapter, we define strings and trees of finite size inductively.

3.1 Strings
Informally, strings are sequences of symbols.

What are symbols? It is standard to assume a set of symbols called the alphabet. The
Greek symbol Σ is often used to represent the alphabet but people also use S, A, or any-
thing else. The symbols can be anything: IPA letters, morphemes, words, part-of-speech
categories. Σ can be infinite in size, but we will usually consider it to be finite.

There are different ways strings can be defined formally. Here we define them as a
recursive data structure. They are defined inductively with a constructer (·), the alphabet
Sigma and the base case λ. What is λ? It is the empty string. It is usually written with
one of the Greek letters ε or λ. It’s just a matter of personal preference. The empty string is
useful from a mathematical perspective in the same way the number zero is useful. Zero is
a special number because for all numbers x it is the case that 0+x = x+0 = x. The empty
string serves the same special purpose. It is the unique string with the following special
property with respect to concatenation (denoted ◦).1

For all strings w, λ ◦ w = w ◦ λ = w (3.1)

Definition 7 (Strings).

Base Case: λ is a string.
Inductive Case: If a ∈ Σ and w is a string then a · (w) is a string.

Example 5. Let Σ = {a, b, c}. Then the following are strings.

1. a · (b · (c · (λ)))
1Concatenation will be defined in an exercise below. Our goal would be to ensure the property mentioned

holds once concatenation is defined between strings.

27

draft—February 11, 2025 © J. Heinz

2. a · (a · (a · (λ)))
3. a · (b · (c · (c · (λ))))

Frankly, writing all the parentheses and “·” is cumbersome. So the above examples are
much more readable if written as follows.

1. abc
2. aaa
3. abcc

Technically, when we write the string abc, we literally mean the following structure: a · (b ·
(c · (λ))).

The above definition provides a unique “derivation” for each string.

Example 6. Leet Σ = {a, b, c}. We claim w = a · (b · (a · (λ))) is a string. There is basically
one way to show this. First we observe that a ∈ Σ so whether w is a string depends, by the
inductive case, on whether x = b · (a · (λ)) is a string. Next we observe that since b ∈ Σ
whether x is a string depends on whether y = a · (λ) is a string, again by the inductive case.
Once more, since a ∈ Σ whether y is a string depends on whether λ is a string. Finally, by
the base case λ is a string and so the dominoes fall: y is a string so x is a string and so w is
a string.

This unique derivabality is useful in many ways. For instance, suppose we want to
determine the length of a string. Here is how we can do it.

Definition 8 (string length). The length of a string w, written |w|, is defined as follows. If
w = λ then |w| = 0. If not, then w = a · (x) where x is some string and a ∈ Σ. In this case,
|w| = |x|+ 1.

Note length is an inductive definition!

Example 7. What is the length of string w = abcc? Well, as before we see that w = a · x
where x = bcc. Thus, |w| = 1+ |bcc|. What is the length of bcc? Well, x = b ·y where y = cc.
So now we have |w| = 1+(1+|cc|). Since y = c·z where z = c we have |w| = 1+(1+(1+|c|)).
Since c is the structure c(̇λ), its length will be 1 + |λ|. Finally, by the base case we have
|w| = 1 + (1 + (1 + (1 + (0)))) = 4.

It’s interesting to observe how the structure of the computation of length is the same
structure as the object itself.

a ·(b ·(c ·(c ·(λ))))
1 +(1 +(1 +(1 +(0))))

We can now define concatenation between strings. First we define ReverseAppend, which
takes two strings as arguments and returns a third string.

28

draft—February 11, 2025 © J. Heinz

Definition 9 (reverse append). Reverse append is a binary operation over strings, which
we denote ⊗revapp. You can also think of it as a function which takes two strings w1 and w2

as arguments and returns another string. Here is the base case. If w1 = λ then it returns
w2. So we can write λ ⊗revapp w = w. Otherwise, there is a ∈ Σ such that w1 = a · (x) for
some string x. In this case, reverse append returns x⊗revapp a · (w2).

Exercise 15. Work out what abc⊗revapp def equals.

Exercise 16. What is abc⊗revapp λ? Write a definition for string reversal.

Exercise 17. Define the concatenation of two strings w1 and w2 using reverse append and
string reversal. Prove this definition satisfies Equation 3.1.

The set of all strings of finite length from some alphabet Σ, including the empty string,
is written Σ∗. A stringset is a subset of Σ∗.

Stringsets are often called formal languages. From a linguistic perspective, is is the study
of string well-formedness.

3.2 Trees
Trees are like strings in that they are recursive structures. Informally, trees are structures
with a single ‘root’ node which dominates a sequence of trees.

Formally, trees extend the dimensionality of string structures from 1 to 2. In addition to
linear order, the new dimension is dominance.

Unlike strings, we will not posit “empty” trees because every tree has a root.
Like strings, we assume a set of symbols Σ. This is sometimes partitioned into symbols

of different types depending on whether the symbols can only occur at the leaves of the trees
or whether they can dominate other trees. We don’t make such a distinction here.

Definition 10 (Trees). If a ∈ Σ and w is a string of trees then a[w] is a tree.

A tree a[λ] is called a leaf. Note if w = λ we typically write a[] instead of a[λ]. Similarly,
if w = t1 · (t2 · (. . . · (tn · (λ)) . . .)), we write a[t1t2 . . . tn] for readability.

The definition of trees above may appear circular. It appears circular since it defines
trees in terms of strings of trees. However, this circularity is an illusion. The definition has
a solid recursive base case, as I will now explain. The key to resolving this illusion is to
construct the full set of trees in steps. For example, λ is a string (of trees) by the definition
of string. With the empty string λ and the finite alphabet Σ we can define a set of trees
T0 = {a[λ] | a ∈ Σ}. T0 is the set of all logically possible leaves (trees of depth 0). T0 is
a finite alphabet and so T∗

0 is a well defined set of strings over this alphabet. For example
w = a[] · (b[] · (c[] · (b[] · (λ)))) is a string of trees.

So far, with Σ and λ we built T0. The definition of strings gives us T∗
0. Now with Σ and

T∗
0 we can build T1 = {a[w] | a ∈ Σ, w ∈ T∗

0} ∪ T0. T1 includes T0 in addition to all trees

29

draft—February 11, 2025 © J. Heinz

of depth 1. With T1, and the definition of strings we have T∗
1. Now with Σ and T∗

1 we can
build T2 = {a[w] | a ∈ Σ, w ∈ T∗

1} ∪ T1.
More generally, we define Tn+1 = {a[w] | a ∈ Σ, w ∈ T∗

n} ∪ Tn. Finally, let the set
of all logically possible trees be denoted with ΣT =

⋃
i∈N Ti. Figure 3.1 illustrates this

construction.

Figure 3.1: The inductive definition of trees.

Tn+1T∗
nTn

…T2T∗
1T1T∗

0T0λ

Σ Σ Σ Σstr.def. str.def. str.def.

Here are some examples of trees.

Example 8. Let Σ = {NP, VP, S}. Then the following are trees.

1. S[NP[] VP[VP[] NP[]]]
2. NP[VP[] S[] S[] VP[]]
3. NP[NP[NP[] VP[] S[]]]

We might draw these structures as follows.

(1)
S

NP VP

VP NP

(2)
NP

VP S S VP

(3)
NP

NP

NP VP S

Regarding the tree in (1), its leaves are NP, VP, and NP.

As before, we can now write definitions to get information about trees. For instance here
is a definition which gives us the number of nodes in the tree.

Definition 11. The size of a tree t, written |t|, is defined as follows. If there is some a ∈ Σ
such that t = a[] then its size is 1. If not, then t = a[t1t2 . . . tn] where a ∈ Σ and each ti is
a tree. Then |t| = 1 + |t1|+ |t2|+ . . .+ |tn|.

Exercise 18. Using the above definition, calculate the size of the trees (1)-(3) above. Write
out the calculation explicitly.

Here is a definition for the width of a tree.

30

draft—February 11, 2025 © J. Heinz

Definition 12. The depth of a tree t, written depth(t), is defined as follows. If there is
some a ∈ Σ such that t = a[] then its depth is 0. If not, then t = a[t1t2 . . . tn] where a ∈ Σ
and each ti is a tree. Then depth(t) = 1 + max

{
depth(t1), depth(t2), . . . , depth(tn)

}
where

max takes the largest number in the set.

Definition 13. The width of a tree t, written width(t), is defined as follows. If there is
some a ∈ Σ such that t = a[] then its width is 0. If not, then t = a[t1t2 . . . tn] where a ∈ Σ
and each ti is a tree. Then width(t) = max

{
n, width(t1), width(t2), . . . , width(tn)

}
where

max takes the largest number in the set.

The set of trees ΣT contains all trees of arbitrary width. Much research also effectively
concerns the set of all and only those trees whose width is bounded by some number n. Let
ΣT(n) = {t ∈ ΣT | width(t) ≤ n}.

Exercise 19. The yield of a tree t, written yield(t), maps a tree to a string of its leaves.
For example let t be the tree in (1) in Example 8 above. Then its yield is the string “NP
VP NP”.

3.2.1 String Exercises
Exercise 20. Let Σ be the set of natural numbers. So we are considering strings of numbers.

1. Write the definition of the function addOne which adds one to each number in the in
the string. So addOne would change the string 5 · (11 · (4 · (λ))) to 6 · (12 · (5 · (λ))).
Using this definition, show addOne of the following number strings is calculated.

(a) 11 · (4 · (λ))
(b) 3 · (2 · (λ))
(c) λ

2. Write the definition of the timesTwo of the numbers in the string. So timesTwo would
change the string 5 · (11 · (4 · (λ))) to 10 · (22 · (8 · (λ))). Using this definition, show
timesTwo of the following number strings is calculated.

(a) 11 · (4 · (λ))
(b) 3 · (2 · (λ))
(c) λ

Exercise 21. Let Σ be the set of natural numbers. So we are considering strings of numbers.

1. Write the definition of the sum of the numbers in the string. Using this definition,
show how the sum of the following number strings is calculated.

(a) 11 · (4 · (λ))

31

draft—February 11, 2025 © J. Heinz

(b) 3 · (2 · (λ))
(c) λ

2. Write the definition of the product of the numbers in the string. Using this definition,
show how the sum of the following number strings is calculated.

(a) 11 · (4 · (λ))
(b) 3 · (2 · (λ))
(c) λ

3.2.2 Tree Exercises
Exercise 22. Let Σ be the set of natural numbers. Now let’s consider trees of numbers.

1. Write the definition of the function addOne which adds one to each number in the tree.
Using this definition, calculate addOne as applied to the trees below.

(a) 4[12[] 3[]]

(b) 4[12[] 3[1[] 2[]]]

(c) 4[12[7[] 7[6[]]] 3[1[] 2[]]]

2. Write the definition of the function isLeaf which changes the nodes of a tree to True
if it is a leaf node or to False if it is not. Using this definition, calculate isLeaf as
applied to the trees below.

(a) 4[12[] 3[]]

(b) 4[12[] 3[1[] 2[]]]

(c) 4[12[7[] 7[6[]]] 3[1[] 2[]]]

Exercise 23. Let Σ be the set of natural numbers. Now let’s consider trees of numbers.
1. Write the definition of the sum of the numbers in the tree. Using this definition, show

how the sum of the following number trees is calculated.

(a) 4[12[] 3[]]

(b) 4[12[] 3[1[] 2[]]]

(c) 4[12[7[] 7[6[]]] 3[1[] 2[]]]

2. Write the definition of the yield of the numbers in the string. The yield is a string
with only the leaves of the tree in it. Using this definition, calculate the yields of the
trees below.

(a) 4[12[] 3[]]

(b) 4[12[] 3[1[] 2[]]]

(c) 4[12[7[] 7[6[]]] 3[1[] 2[]]]

32

Chapter 4

String Acceptors

4.1 Deterministic Finite-state String Acceptors

4.1.1 Orientation
This section is about deterministic finite-state acceptors for strings. The term finite-state
means that the memory is bounded by a constant, no matter the size of the input to the
machine. The term deterministic means there is single course of action the machine follows to
compute the output from some input. This is in contrast tonon-deterministic machines which
can be thought of as pursuing multiple computations simultaneously. The term acceptor is
synonymous with recognizer. It means that this machine solves membership problems: given
a set of objects X and input object x, does x belong to X? The term string means we are
considering the membership problem over stringsets. So X is a set of strings (so X ⊆ Σ∗)
and the input x is a string.

4.1.2 Definitions
Definition 14. A deterministic finite-state acceptor (DFA) is a tuple (Q,Σ, q0, F, δ) where

• Q is a finite set of states;
• Σ is a finite set of symbols (the alphabet);
• q0 ∈ Q is the initial state;
• F ⊆ Q is a set of accepting (final) states; and
• δ is a function with domain Q×Σ and co-domain Q. It is called the transition function.

We extend the domain of the transition function to Q × Σ∗ as follows. In these notes,
the empty string is denoted with λ.

δ∗(q, λ) = q

δ∗(q, aw) = δ∗((δ(q, a), w) (4.1)

33

draft—February 11, 2025 © J. Heinz

Consider some DFA A = (Q,Σ, q0, F, δ) and string w ∈ Σ∗. If δ∗(q0, w) ∈ F then we say
A accepts/recognizes/generates w. Otherwise A rejects w.

Definition 15. The stringset recognized by A is L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

4.1.3 Exercises
Exercise 24. This exercise is about designing DFA. Let Σ = {a, b, c}. Write DFA which
express the following generalizations on word well-formedness.

1. All words begin with a consonant, end with a vowel, and alternate consonants and
vowels.

2. Words do not contain aaa as a substring.
3. If a word begins with a, it must end with c.
4. Words must contain two bs.
5. All words have an even number of vowels.

Exercise 25. This exercise is about reading and interpreting DFA. Provide generalizations
in English prose which accurately describe the stringset these DFA describe.

1.
0 1

a
b,c

b,c

a

2. 10 2

a,b a a,c

b c

3.
0 1

b,c b,c

a

a

4. Write the DFA in #1-3 in mathematical notation. So what is Q,Σ, q0, F, and δ?

34

draft—February 11, 2025 © J. Heinz

4.2 Properties of DFA
Note that for a DFA A, its transition function δ may be partial. That is, there may be some
q ∈ Q, a ∈ Σ such that δ(q, a) is undefined. If δ is a partial function, δ∗ will be also. It is
assumed that if δ∗(q0, w) is undefined, then A rejects w.

We can always make δ total by adding one more state to Q. To see how, call this new
state ♦. Then for each (q, a) ∈ Q×Σ such that δ(q, a) is undefined, define δ(q, a) to equal ♦.
Every string which was formerly undefined w.r.t. to δ∗ is now mapped to ♦, a non-accepting
state. This state is sometimes called the sink state or the dead state.

Definition 16. A DFA is complete if δ is a total function. Otherwise it is incomplete.

It is possible to write DFA which have many useless states. A state can be useless in two
ways. First, there may be no string which forces the machine to transition into the state.
Second, there may be a state from which no string

Definition 17. A state q in a DFA A is useful if there is a string w such that δ∗(q0, w) = q
and a string v such that δ∗(q, v) ∈ F . Otherwise q is useless. If every state in A is useful,
then A is called trim.

Not all complete DFAs are trim. If there is a sink state, it is useless in the above sense
of the word.

Definition 18. A DFA A is minimal if there is no other DFA A′ such that L(A) = L(A′)
and A′ has fewer states than A.

Technically, not all complete DFAs are minimal. If there is a sink state, it is not minimal.

Exercise 26. Consider the DFAs in the exercise 25. Are they complete? Trim? Minimal?

4.3 Some Closure Properties of Regular Languages
A set of objects X is closed under an operation ◦ if for all objects x, y ∈ X it is the case
that x ◦ y ∈ X too.

We can easily show that the union of any two regular stringsets R and S is also regular.
Let AR = (QR,Σ, q0R, FR, δR) be the DFA recognizing R and let AS = (QS,Σ, q0S, FS, δS)
be the DFA recognizing S. We can assume AR and AS are complete. We assume the same
alphabet.

Construct A = (Q,Σ, q0, F, δ) as follows.

• Q = QR ×QS.
• q0 = (q0R, q0S).
• F = {(qr, qs) | qr ∈ FR or qs ∈ FS}.
• δ((qr, qs), a) = (q′r, q

′
s) where δR(qr, a) = q′r and δS(qs, a) = q′s.

35

draft—February 11, 2025 © J. Heinz

Theorem 9. L(A) = R ∪ S.

Similarly, the same kind of construction shows that the intersection of any two regular
stringsets is regular. Construct B = (Q,Σ, q0, F, δ) as follows.

• Q = QR ×QS.
• q0 = (q0R, q0S).
• F = {(qr, qs) | qr ∈ FR and qs ∈ FS}.
• δ((qr, qs), a) = (q′r, q

′
s) where δR(qr, a) = q′r and δS(qs, a) = q′s.

Theorem 10. L(B) = R ∩ S.

Here are some additional questions we are interested in for regular stringsets R and S.

1. Is the complement of R (denoted R) a regular stringset?
2. Is R\S a regular stringset?
3. Can we decide whether R ⊆ S?
4. Is R ◦ S a regular stringset? (Note R ◦ S = {rs | r ∈ R and s ∈ S}
5. Is R∗ a regular stringset? (Note R0 = {λ}, Rn = Rn−1R, R∗ =

⋃
n∈N0 Rn)

The answers to all of these questions is Yes. With a little thought about complete DFA,
the answers to first three follow very easily.

Theorem 11. If R is a regular stringset then the complement of R is regular.

Proof (Sketch). If R is a regular stringset then there is a complete DFA A = (Q,Σ, q0, F, δ)
which recognizes it. Let B = (Q,Σ, q0, F

′, δ) where F ′ = Q\F . We claim L(B) = R. ���

Corollary 1. If R,S are regular stringsets then so is R\S since R\S = R ∩ S.

Corollary 2. If R,S are regular stringsets then it is decidable whether R ⊆ S since R ⊆ S
iff R\S = ∅.

Corollary 3. If R,S are regular stringsets then it is decidable if R = S since R = S iff
R ⊆ S and S ⊆ R.

We postpone explaining how and why for the last two questions.

36

draft—February 11, 2025 © J. Heinz

4.4 Non-deterministic Finite-state String Acceptors

4.4.1 Orientation
This section is about non-deterministic finite-state acceptors for strings. The term finite-
state means that the memory is bounded by a constant, no matter the size of the input to
the machine. The term non-deterministic means there are potentially many computational
paths the machine may follow to compute the output from some input string. As we will
see later, deterministic machines pursue at most a single computation. The term acceptor is
synonymous with recognizer. It means that this machine solves membership problems: given
a set of objects X and input object x, does x belong to X? The term string means we are
considering the membership problem over stringsets. So X is a set of strings (so X ⊆ Σ∗)
and the input x is a string.

4.4.2 Non-deterministic string acceptors
Definition 19. A non-deterministic finite-state acceptor (NFA) is a tuple (Q,Σ, I, F, δ)
where

• Q is a finite set of states;
• Σ is a finite set of symbols (the alphabet);
• I ⊆ Q is a set of initial (start) states;
• F ⊆ Q is a set of accepting (final) states; and
• δ ⊆ Q× Σ ∪ {ε} ×Q is the transition relation.

The symbol ε denotes a “free” change of state; that is the state of the system can change
without any input being consumed.

There are a couple ways to think about the transition function. One way is to think
that when processing a string, there are multiple paths to take. For example, consider the
machine below which recognizes the set of strings where every non-empty string must end in
a consonant. Given the input string bb, when the first b is read and the machine is in state 0,

0 1 2a,b

b,ε

a,b

b

Figure 4.1: An example NFA.

it could transition to state 1 or 2. In fact, the epsilon transition from state 0 means that the
machine could transition to state 1 without even reading the first symbol of the string. If

37

draft—February 11, 2025 © J. Heinz

we think of the machine as occupying a single state at any given moment, there are multiple
paths that need to be explored. As long as least one them leads from a start state to a final
state when reading the whole string, we can say the machine accepts the string. Under this
way of thinking, there are potentially many paths that need to be explored and tracked until
a successful one is found.

The other way to think about is to think of the machine being in several states simul-
taneously. In the example above, when the first b is read, we can think of the machine as
transitioning from state 0 to both states 1 and 2. In other words, it originally was in state
0 and after reading the b, it is in “state” {1, 2}. In fact, because of the epsilon transition
from state 0, before the first b is read, the machine can be said to be in both states 0 and
2. It is this way of thinking that we use to define the set of strings that NFA recognize,
and it also is the intuition behind the fact that stringsets recognizable by non-deterministic
finite-state acceptors are the same as those recognizable by DFAs. We will use this same
insight to define how to decide whether NFA recognizes an input string or not.

The epsilon closure of a set of states S ⊆ Q is the smallest subset S ′ of Q satisfying these
properties:

1. S ⊆ S ′

2. For all q, r ∈ Q: if q ∈ S ′ and r ∈ δ(q, ε) then r ∈ S ′.

The epsilon closure of Q is denoted Cε(Q).
δ is a relation and in order to define a “process” function, we use δ to define related

functions. First, we define δ′ : Q× Σ→ ℘(Q). Recall that for any set A, ℘(A) denotes the
powerset of A, which is the set of all subsets of A.

δ′(q, a) = {q′ | (q, a, q′) ∈ δ}

Next we define δ′′ : ℘(Q)× Σ→ ℘(Q) as follows.

δ′′(Q, a) =
⋃
q∈Q

δ′(q, a)

Finally, we can explain how a NFA processes strings using the recursive definition below.

π(Q, λ) = Q

π(Q, aw) = π(Cε(δ
′′(Q, a)), w) (4.2)

Consider some NFA A = (Q,Σ, I, F, δ) and string w ∈ Σ∗. If π(Cε(I), w) ∩ F 6= ∅ then
we say A accepts/recognizes/generates w. Otherwise A rejects w.

Definition 20. The stringset recognized by A is L(A) = {w ∈ Σ∗ | π(Cε(I), w) ∩ F 6= ∅}.

Exercise 27.

1. Non-determinism makes expressing some stringsets easier because it can be done with
fewer states.

38

draft—February 11, 2025 © J. Heinz

(a) Write an acceptor for the set of strings where the second-to-last letter must be a
consonant.

(b) Write an acceptor for the set of strings where the third-to-last letter must be a
consonant.

2. Use the plurality of initial states to show that if R and S are stringsets each recognized
by some NFA that the union R ∪ S is also recognized by a NFA.

3. Use epsilon transitions to show that if R and S are stringsets each recognized by some
NFA that the concatenation RS is also recognized by a NFA.

4.4.3 Closure under concatenation, union, Kleene Star
Theorem 12.

q
NFA

y
=

q
RE

y

It is easy to prove that
q
RE

y
⊆

q
NFA

y
. Recall how the REs were defined with base

cases and inductive cases.

Exercise 28. Write a NFA which recognizes the same language as each of the RE base
cases.

We want to show the following.

1. Given NFA A,B, that there exists a NFA recognizing the L(A) ◦ L(B) (closure under
concatenation).

2. Given NFA A,B, that there exists a NFA recognizing the L(A)∪L(B) (closure under
union).

3. Given NFA A,that there exists a NFA recognizing the (L(A))* (closure under Kleene
star).

The existence of epsilon transitions make this this easy to show.

1. For closure under concatenation, the NFA recognizing L(A) ◦ L(B) is

• Q = QA ∪QB

• Σ = ΣA ∪ ΣB

• I = IA

• F = FB

• δ = δA ∪ δB ∪ {(q, ε, r) : q ∈ FA, r ∈ IB}

2. For closure under union, the NFA recognizing L(A) ∪ L(B) is

• Q = QA ∪QB

39

draft—February 11, 2025 © J. Heinz

• Σ = ΣA ∪ ΣB

• I = IA ∪ IB
• F = FB ∪ FB

• δ = δA ∪ δB

3. For closure under Kleene star, the NFA recognizing the (L(A))* .

• Q = QA ∪ {♥,♠}
• Σ = ΣA

• I = {♥}
• F = {♠}
• δ = δA ∪ {(♥, ε, q) : q ∈ IA} ∪ {(q, ε,♠) : q ∈ FA} ∪ {(♥, ε,♠), (♠, ε,♥)}

We can visualize the argument as follows. Figure 4.2 visualizes two NFA, A and B. Schemat-
ically, the initial states are on the left and the final states are on the right. The construction

A B

Figure 4.2: Two finite state machines with a set of initial states (leftside) and a set of final
states (rightside).

for concatenation is illustrated in Figure 4.3. The construction for union is illustrated in

A B

ε

Figure 4.3: Concatenation of two NFAs.

Figure 4.4. The construction for Kleene star is illustrated in Figure 4.5.
Proving that there is a RE for any NFA is only a little more complicated. It is reviewed

in several textbooks such as Sipser (1997) and Hopcroft et al. (2001) and we will not review
it here.

Since NFA recognize the same languages as REs, we will call this class of languages
regular languages. Next we turn to DFA.

40

draft—February 11, 2025 © J. Heinz

A

B

Figure 4.4: Union of two NFAs.

♥ ♠A
ε ε

ε

ε

Figure 4.5: Kleene Star of one NFA.

41

draft—February 11, 2025 © J. Heinz

4.5 Determinizing NFA
In this section, we prove the following theorem.

Theorem 13.
q
NFA

y
=

q
DFA

y
.

Since every DFA is a NFA, it follows that any language recognized by a DFA is also
recognized by some NFA. It remains to be shown that for any language recognized by a
NFA, there is a DFA that recognizes the same language.

The key idea is one encountered earlier: when processing a string in a NFA, instead of
pursuing multiple paths of single states, we can pursue a single path of multiple states. Since
there are finitely many states Q in a NFA, the number of sets of multiple states is also finite,
and is bounded by the powerset of Q. Thus for any NFA A = (QA,ΣA, IA, FA, δA), we can
construct a DFA B = (Q,Σ, I, F, δ) using the powerset construction shown below.

• Q = ℘(QA) is a finite set of states;
• Σ = ΣA is a finite set of symbols (the alphabet);
• Cε(IA) is the initial state;
• q ∈ Q is a set of accepting state iff q ∩ FA 6= ∅
• δ(q, a) = r iff Cε(δ

′′
A(q, a)) = r.

Then one can prove L(A) = L(B), and it follows that
q
NFA

y
=

q
DFA

y
.

Algorithms which determinize non-deterministic finite-state machines do not build the
entire powerset. Instead they proceed incrementally beginning with the start state IA and
proceeding through the alphabet. New states are added as they are needed.

Exercise 29. Determinize the NFA in Figure 4.1.

4.6 Minimizing DFA
Here we show that for each regular stringset R, there is a smallest DFA which recognizes R.
This DFA is unique (discounting the names of the states).

Consider any DFA A. The idea is that some states are doing the “same work” as other
states. Such states are said to be indistinguishable. States that are indistinguishable from
each other are grouped into blocks. These blocks become the states of the minimal DFA
which recognizes the same stringset as A.

Given a DFA A recognizing a stringset R, to find the minimal DFA recognizing R we
must do the following:

1. Determine which states of A are indistinguishable.

2. Using this information, construct the minimal DFA.

42

draft—February 11, 2025 © J. Heinz

4.6.1 Identifying indistinguishable states
Consider A = (Q,Σ, i, F, δ). Two states q, r are distinguishable in A if there is some string
w such that δ∗(q, w) ∈ F and δ∗(r, w) 6∈ F . In other words, if there is a string that causes A
to transition from state q to an accepting state but would cause A to transition from state
r to a rejecting state then q and r are distinguishable. We say w distinguishes q from r.

We can determine whether a distinguishing string w exists for q and r recursively. There
are two key observations to see why. First, observe that the empty string λ distinguishes
accepting states from rejecting states. Second, if w distinguishes q from r and string u causes
A to transition from state q′ to q and causes A to transition from state r′ to r then it is the
case that string uw distinguishes q′ from r′. Formally:

Base case: (q, r) is distinguishable if q ∈ F and r 6∈ F .

Inductive Step: (q′, r′) is distinguishable if (q, r) is distinguishable and there is a ∈ Σ such
that δ(q′, a) = q and δ(r′, a) = r.

It is sufficient to check individual symbols in Σ in the inductive step and repeat it until no
new distinguishable states are found.

To see why, consider the following. The first iteration checks to see if any 1-long strings
distinguish states in A. The second iteration checks to see if any 2-long strings distinguish
states in A. Generally, the kth iteration checks to see if any k-long strings distinguish states
in A. Importantly, if there is a string w of length k distinguishing q from r in A then
there must be a string v of length k − 1 and a symbol a ∈ Σ distinguishing q′ = δ(q, a)
from r′ = δ(r, a) in A. This justifies why the inductive step can stop iterating if no new
distinguishable states are found on the present iteration. It is not possible to find a k-long
string distinguishing states if no (k − 1)-long string distinguishes any states.

At the end of this process we have a set of distinguishable state-pairs. The state-pairs in
A that are not distinguishable are indistinguishable.

4.6.2 Building the minimal DFA
Once the indistinguishable states have been identified, a new DFA can be constructed. The
indistinguishable state-pairs of A partition its states into blocks. A block is just a set of
states. States q and r are in the same block only if (q, r) is an indistinguishable state-pair.

The process by which distinguishable states are found ensures that the set of indistin-
guishable state-pairs is closed under transitivity. In other words, if (q, r) and (r, s) are are
indistinguishable state-pairs then so is (q, s). More generally, the indistiguishable relation is
an equivalence relation satisyfying not only transitivity but also reflexivity and symmetry.

Let Bq denote the block containing state q. Then the minimal DFA M recognizing L(A)
is given by:

• QM = {Bq | q ∈ Q}

• iM = Bi

43

draft—February 11, 2025 © J. Heinz

• FM = {Bq | q ∈ F}

• δM(B, a) = B′ ∈ QM such that B′ ⊇ {δ(q, a) | q ∈ B}

4.6.3 Example
Identifying indistinguishable pairs of states. This example comes from (Hopcroft
et al., 2001, chapter 4). We are going to minimize the automaton shown below.

A B c D

E F G H

0

1 0

1

0 1

0

1

0

1

0

1

01

0

1

Figure 4.6: A non-minimal automaton (from Figure 4.8 in Hopcroft et al. (2001)).

We need to identify distinguishable states. From the base case, each rejecting state is
distinguishable from each accepting state with λ.

Distinguishable pairs (Base Case):{
(A,C), (B,C), (D,C), (E,C), (F,C), (G,C), (H,C)

}
A technical note: in addition to (A,C) the set should include (C,A) as well and similarly
for the other pairs. However, we leave out these reflexive pairs for readability.

Next we repeatedly apply the inductive case. For each indistinguishable pair (q, r), we ask
is there a ∈ Σ such that (δ(q, a), δ(r, a)) is distinguishable? If so, we add (q, r) to the list of
distinguishable pairs. For example, consider the pair (A,B). Since (δ(A, 1), δ(B, 1)) = (F,C)
and (F,C) is distinguishable, we add (A,B) to the list. On the other hand (A,E) is not
added to the list because neither (δ(A, 1), δ(E, 1)) = (F, F) nor (δ(A, 0), δ(E, 0)) = (B,H)
are distinguishable states.

The added ones are shown in bold below.

44

draft—February 11, 2025 © J. Heinz

Distinguishable pairs (Inductive Step 1):
(A,C), (B,C), (D,C), (E,C), (F,C), (G,C), (H,C)
(A,B), (A,D), (A,F), (A,H), (B,D), (B,E), (B,F),
(B,G), (D,E), (D,G), (D,H), (E,F), (E,G), (E,H),
(F,G), (F,H), (G,H)

At this point, only four pairs of states are not yet known to be distinguishable. These

are {(A,E), (A,G), (B,H), (D,F)}. We repeat the inductive step, to see if any new distin-
guished pairs are discovered. As before (A,E) is not found to be distinguishable. On the
other hand, (A,G) is distinguishable now with string 1 and states F and E are now known
to be distinguished. In fact, as a result of this step, only (A,G) is added as shown below.

Distinguishable pairs (Inductive Step 2):
(A,C), (B,C), (D,C), (E,C), (F,C), (G,C), (H,C)
(A,B), (A,D), (A,F), (A,H), (B,D), (B,E), (B,F),
(B,G), (D,E), (D,G), (D,H), (E,F), (E,G), (E,H),
(F,G), (F,H), (G,H), (A,G)

The inductive step is repeated again, and this time no new distinguishable states are

discovered. Therefore the iteration of the inductive steps terminates.

Distinguishable pairs (Inductive Step 3):
(A,C), (B,C), (D,C), (E,C), (F,C), (G,C), (H,C)
(A,B), (A,D), (A,F), (A,H), (B,D), (B,E), (B,F),
(B,G), (D,E), (D,G), (D,H), (E,F), (E,G), (E,H),
(F,G), (F,H), (G,H), (A,G)

Thus, the only indistinguishable pairs are {(A,E), (B,H), (D,F)}.

Building the minimal automaton. With this information, the states are partitioned
into blocks: {

{A,E}, {B,H}, {C}, {D,F}, {H}
}

These blocks are the states of the minimal automaton. Since block {A,E} contains the
start state of the original acceptor, this block is the start state. Since block {C} contains a
final state of the original acceptor, this block is a final state.

Finally, we calculate the transition function as shown in the diagram below. To illustrate,
first Consider the transition from block {A,E} upon reading 1. With 1, the original delta
function maps state A to F and E to F . There is exactly one block which contains F ; this
is the block {D,F}. Hence the minimal machine transitions from state {A,E} to {D,F}
with 1. The other transitions are determined similarly.

45

draft—February 11, 2025 © J. Heinz

A,E

G D,F

B,H C

0

1

0

1

0

1

0

1

0

1

Figure 4.7: The minimal automaton recognizing the same stringset as the one in Figure 4.6.

4.7 Nonregular stringsets
Regular stringsets were defined as those subsets of Σ∗ whose membership problem was solv-
able with a deterministic finite-state acceptor. It was also expressed that finite-state solvable
membership problems invoke constant memory. This can be understood to mean that the
number of states is constant and does not increase even as the words grow longer and longer.

In this section, we give a few examples of stringsets whose membership problem is not
solvable with any DFSA. In each case, I hope to convey that in order to solve the membership
problem for any word, the number of states needs to increase as words get longer.

Example 9. Let Σ = {a, b, c}.

1. The set of strings that with each string containing at least as many as as bs. Formally,
we can define this set of strings as follows. For each a ∈ Σ and w ∈ Σ∗, let |w|a be the
number of times a occurs in w. So |aabaa|a = 4 and |caca|c = 2 and so on. Then the
set of strings we are interested in can be expressed as S1 = {w | |w|a ≥ |w|b}.

2. The palindrome language. Recall that a palindrome is a word that is the same when
written both forwards and backwards. So the palindrome language contains all and
only those words that are palindromes. Formally, we can define this set of strings as
follows. Let us write wR to express the reverse of w. So abacR = caba. Then this
stringset can be expressed as S2 =

{
wxwR | w ∈ Σ∗, x ∈ {λ, a, b, c}

}
.

3. The anbn stringset. This is pronounced “a to the n, b to the n”. Recall that an defines
the string with a concatenated to itself n times. So a4 = aaaa and c3 = ccc and so on.
Note a0 = λ. So this stringset can be expressed as S3 = {anbn | 0 ≤ n}.

46

draft—February 11, 2025 © J. Heinz

4.7.1 Exercises
Exercise 30. For each of the above examples, we try to write a deterministic finite-state
acceptor. This exercise will help us understand why it is impossible.

1. First write an acceptor for S1 for words up to size 3. Next try to write the acceptor
for words up to size 5. What is happening? What information is each state keeping
tracking of?

2. First write an acceptor for S2 for words up to size 2. Next try to write the acceptor
for words up to size 4. What is happening? What information is each state keeping
tracking of?

3. First write an acceptor for S3 for words up to size 2. Next try to write the acceptor for
words up to size 4. What about up to size 6? What is happening? What information
is each state keeping tracking of?

In each case, the information that the states need to keep track of grows as words get
longer. This is the basic insight into why the problem of these stringsets (and many like
them) cannot be solved with finite-state acceptors.

4.7.2 Formal Analysis
Formal proofs that these are nonregular exist, based on abstract properies of regular stringsets
as discussed in (Sipser, 1997; Hopcroft et al., 2001) and elsewhere.

Here is one way to provide a rigorous proof with what we have learned so far.
Recall that when minimizing a DFSA A, we had to determine whether two states did the

“same work” or not. We said states did different work, if there was a string that distinguished
them. A string distinguishes state q from r if A would transition to a final state from q but
to a non-final state from r (or vice versa). We can use distinguishing strings to see that a
DFSA for the above stringsets would have infinitely many states.

Suppose there was a DFSA A for S1. Let q0 be the inital state of A and let qa = δ(q0, a).
Now we can ask are there any strings which distinguish q from qa? The answer is Yes. The
string b distinguishes them because A must transition to an accepting state from qa with
b, but must transition to a non-accepting state from q0 with b. Thus q0 and qa are distinct
states.

We can repeat this reasoning. Let qaa = δ(qa, a). Is there a string which distinguishes
qaa from qa? Yes, in fact the string bb distinguishes them because A must transition to an
accepting state from qaa with bb, but must transition to a non-accepting state from qa with
bb. So qa and qaa are distinct states. What about qaa and q0? They are distinct states too
as witnessed by the distinguishing string b. So now we have three distinct states.

More generally, define state qi to be δ∗(q0, ai). For any numbers n,m with n > m, one
can show that qn is a distinct state from qm. We have to find a distinguishing string for these
two states. The string bn is such a string. The DFSA A must transition to an accepting state

47

draft—February 11, 2025 © J. Heinz

from qn with bn because the word anbn has at least as many as as bs. However, A transitions
to an non-accepting state from qm with bn because the word ambn has more bs as as since
n > m. Thus A must have infinitely many states if it is to accept words of arbitrary length.
And we haven’t even looked at words beginning with bs yet!

0 1a 2a 3a · · ·1b2b3b· · ·
a a a a a a a a

bbbbbbbb

Exercise 31. Present an argument like the one above for S2 and S3.

48

Chapter 5

Tree Acceptors

5.1 Deterministic Finite-state Bottom-up Tree
Acceptors

5.1.1 Orientation
This section is about deterministic bottom-up finite-state tree acceptors. The term finite-
state means that the memory is bounded by a constant, no matter the size of the input to the
machine. The term deterministic means there is single course of action the machine follows
to compute its output. The term acceptor means this machine solves membership problem:
given a set of objects X and input object x, does x belong to X? The term tree means we
are considering the membership problem over treesets. The term bottom-up means that for
each node a in a tree, the computation solves the problem by assigning states to the children
of a before assigning states to a itself. This contrasts with top-down machines which assign
states to a first and then the children of a. Visually, these terms make sense provided the
root of the tree is at the top and branches of the tree move downward.

Acceptor is synonymous with recognizer. Treeset is synonymous with tree language.
A definitive reference for finite-state automata for trees is freely available online. It is

“Tree Automata Techniques and Applications” (TATA) (Comon et al., 2007). The presen-
tation here differs from the one there, as mentioned below.

5.1.2 Definitions
We will use the following definition of trees.

Definition 21 (Trees). We assume an alphabet Σ and symbols [] not belonging to Σ.

Base Cases: For each a ∈ Σ, a[] is a tree.
Inductive Case: If a ∈ Σ and t1t2 . . . tn is a string of trees of length n then a[t1t2 · . . . tn]

is a tree.

49

draft—February 11, 2025 © J. Heinz

Let ΣT denote the set of all trees of finite size using Σ. We also write a[λ] for a[].

It will be helpful to review the following concepts related to functions: domain, co-
domain, image, and pre-image. A function f : X → Y is said to have domain X and
co-domain Y . This means that if f(x) is defined, we know x ∈ X and f(x) ∈ Y . However, f
may not be defined for all x ∈ X. Also, f may not be onto Y , there may be some elements
in Y that are never “reached” by f .

This is where the concepts image and pre-image come into play. The image of f is the set
{f(x) ∈ Y | x ∈ X, f(x) is defined}. The pre-image of f is the set {x ∈ X | f(x) is defined}.
So the pre-image of f is the subset of the domain of f where f is defined. The image of f
is the corresponding subset of the co-domain of f .

With this in place, we can define our first tree acceptor.

Definition 22 (DFBTA). A Deterministic Bottom-up Finite-state Acceptor (DFBTA) is a
tuple (Q,Σr, F, δ) where

• Q is a finite set of states;
• Σ is a finite alphabet;
• F ⊆ Q is a set of accepting (final) states; and
• δ : Q∗ × Σ → Q is the transition function. The pre-image of δ must be finite. This

means we can write it down—for example, as a list.

We use the transition function δ to define a new function δ∗ : ΣT → Q as follows.

δ∗(a[λ]) = δ(λ, a)

δ∗(a[t1 · · · tn]) = δ
(
δ∗(t1) · · · δ∗(tn), a

)
(5.1)

There are some important consequences to the formulation of δ∗ shown here. One is that δ∗
is undefined on tree a[t1 · · · tn] if no transition δ(q1 · · · qn, a) is defined.

(Also, I am abusing notation since δ∗ is strictly speaking not the transitive closure of δ.)

Definition 23 (Treeset of a DFBTA). Consider some DFBTA A = (Q,Σ, F, δ) and tree
t ∈ ΣT . If δ∗(t) is defined and belongs to F then we say A accepts/recognizes t. Otherwise
A rejects t. The treeset recognized by A is L(A) = {t ∈ ΣT | δ∗(t) ∈ F}.

The use of the ‘L’ denotes “Language” as treesets are traditionally referred to as formal
tree languages.

We observe that since the pre-image of δ is finite, there is some n such that for all
(~q, a, q′) ∈ δ, it is the case that |~q| ≤ n. In other words, δ is effectively a function from
Qn × Σ to Q. We say δ is n-wide and any DFBTA with an n-wide δ is also called n-wide.

Definition 24 (n-wide Recognizable Treesets). A treeset is n-wide recognizable if there is
a n-wide DFBTA that recognizes it.

Definition 25 (Recognizable Treesets). A treeset is recognizable if there exists n ∈ N, such
that an n-wide DFBTA that recognizes it.

50

draft—February 11, 2025 © J. Heinz

5.1.3 Notes on Definitions

We have departed a bit from standard definitions. In particular, most introductions to
tree automata make use of a particular kind of alphabet called a ranked alphabet. A ranked
alphabet Σr is a finite alphabet Σ with an arity function ar : Σ→ N. We write Σr = (Σ, ar).
The idea is that each symbol comes pre-equipped with a number which indicates how many
children it has in trees. This is reasonable provided a node’s label determines how many
children it can have.

Strictly speaking, a ranked alphabet is not a necessary feature of tree automata. There
are two substantive reasons to adopt it. First, using it helps ensure that the transition
function is finite. (So it can accomplish the same thing as our requirement that the pre-
image of δ be finite.). Second, it can help ensure our transition function is total; that is,
defined for every element of the alphabet and the possible states of its children.

A ranked alphabet effectively defines a maximum width n for treees where n = max{ar(a) |
a ∈ Σ}. Thus a DFBTA defined with a ranked alphabet will always recognize a treeset which
is a subset of ΣT,n.

5.1.4 Examples

Example 10. Let A = (Q,Σ, F, δ) with its parts defined as follows.

• Q = {qa, qb, qS}
• Σ = {a, b, S}
• F = {qS}

• δ(λ, a) = qa

• δ(λ, b) = qb

• δ(qaqb, S) = qS

• δ(qaqSqb, S) = qS

Let us see how the acceptor A processes the two trees below as inputs.

S

a S

a S

a b

b

b

S

a S

a S

a b

b

A Lambert graph of this automaton is shown below.

51

draft—February 11, 2025 © J. Heinz

qSqa qb

0 1
2

0 1
S

S

a b

Example 11. The next example regards propositional logic. Propositional logic has one
unary operator, negation (¬), and two binary operators: conjunction (∧) and disjunction
(∨). We consider the case with two variables {x, y}. We can define trees of propositional
logic as follows.

• x[] and y[] are trees of propositional logic.

• If A and B are trees of propositional logic, then so are ¬ [A], ∧[A,B], and ∨[B,A].

A Lambert graph of the automata recognizing this language is shown below.

E

V

BU

x y

¬
∧

∨
0,2 1

1
0

0

EE

E

5.1.5 Observations
• For every symbol a ∈ Σ which can be leaf in a tree, you will need to define a transition
δ(λ, a).

• For every symbol a ∈ Σ which can have n children, you will need to define a transition
δ(q1 · · · qn, a).

5.1.6 Connection to Context-Free Languages
Recognizable treesets are closely related to the derivation trees of context-free languages.

Theorem 14.

• Let G be a context-free word grammar, then the set of derivation trees of L(G) is a
recognizable tree language.

52

draft—February 11, 2025 © J. Heinz

• Let L be a recognizable tree language then Yield(L) is a context-free word language.
• There exists a recognizable tree language not equal to the set of derivation trees of

any context-free language. Thus the class of derivation treesets of context-free word
languages is a proper subset of the class of recognizable treesets.

5.2 Deterministic Top-down Finite-state Tree
Acceptors

5.2.1 Orientation
This section is about deterministic top-down finite-state tree acceptors. The term finite-state
means that the memory is bounded by a constant, no matter the size of the input to the
machine. The term deterministic means there is single course of action the machine follows
to compute its output. The term acceptor means this machine solves membership problem:
given a set of objects X and input object x, does x belong to X? The term tree means we
are considering the membership problem over treesets. The term top-down means that for
each node a in a tree, the computation solves the problem by assigning a state to the parent
of a before assigning a state to a itself. This contrasts with bottom-up machines which assign
states to the children of a first and then a. Visually, these terms make sense provided the
root of the tree is at the top and branches of the tree move downward.

Acceptor is synonymous with recognizer. Treeset is synonymous with tree language.
A definitive reference for finite-state automata for trees is freely available online. It is

“Tree Automata Techniques and Applications” (TATA) (Comon et al., 2007). The presen-
tation here differs from the one there, as mentioned below.

5.2.2 Definition
Definition 26 (DTFTA). A Deterministic Top-down Finite-state Acceptor (DTFTA) is a
tuple (Q,Σr, F, δ) where

• Q is a finite set of states;
• q0 is a initial state;
• Σ is a finite alphabet;
• δ : Q× Σ× N→ Q∗ is the transition function. Note the pre-image of δ is necessarily

finite.

The transition function takes a state, a letter, and a number n and returns a string of
states. The idea is that the length of this output string should be n. Basically, when moving
top-down, the states of the child sub-trees depend on these three things: the state of the
parent, the label of the parent, and the number of children the parent has.

53

draft—February 11, 2025 © J. Heinz

We use the transition function δ to define a new function δ∗ : Q× ΣT → Q∗ as follows.

δ∗(q, a[λ]) = δ(q, a, 0)

δ∗(q, a[t1 · · · tn]) = δ∗(q1, t1) · · · δ∗(qn, tn) where δ(q, a, n) = q1 · · · qn (5.2)

As before, there are some important consequences to the formulation of δ∗. One is that δ∗ is
undefined on tree a[t1 · · · tn] if transition δ(q, a, n) does not return a string from Q∗ of length
n. (Also, I am abusing notation since δ∗ is strictly speaking not the transitive closure of δ.)

Definition 27 (Treeset of a DTFTA). Consider some DTFTA A = (Q,Σ, F, δ) and tree
t ∈ ΣT . If δ∗(q0, t) is defined and equals λ then we say A accepts/recognizes t. Otherwise A
rejects t. Formally, the treeset recognized by A is L(A) = {t ∈ ΣT | δ∗(t) = λ}.

The use of the ‘L’ denotes “Language” as treesets are traditionally referred to as formal
tree languages.

Example 12. Recall the example from last week which generates trees like

S

a b

S

a S

a b

b

S

a S

a S

a b

b

b

…

• Q = {qa, qb, qS}
• Σ = {a, b, S}
• q0 = qS

• δ(qa, a, 0) = λ

• δ(qb, b, 0) = λ

• δ(qS, S, 3) = qaqSqb

• δ(qS, S, 2) = qaqb

Let us see how the acceptor A processes the two trees below as inputs.

S

a S

a S

a b

b

b

S

a S

a S

a b

b

Theorem 15. Every treeset recognizable by a DTFTA is recognizable, but there are recog-
nizable treesets which cannot be recognized by a DTFTA.

54

draft—February 11, 2025 © J. Heinz

The following example helps show why this is the case. Consider the treeset T containing
only the two trees shown below.

S

a b

S

b a

This is a recoginiable treeset because the DBFTA below recognizes exactly these two trees
and no others.

• Q = {q, qS}
• Σ = {a, b, S}
• q0 = qS

• δ(λ, a) = qa

• δ(λ, b) = qb

• δ(qaqb, S) = qS

• δ(qbqa, S) = qS

Notice that this DBFTA fails on these two trees.

S

a a

S

b b

A DTFTA cannot recognize the trees in T without also recognizing the trees shown
immediately above. This is because moving top down there can only be one value for
δ(qS, S, 2). Suppose it equals q1q2. To recognize the first tree, we would also have to makes
sure that δ(q1, a, 0) and δ(q2, b, 0) are defined. Similarly, to recognize the second tree, we
would have to makes sure that δ(q1, b, 0) and δ(q2, a, 0) are defined. But it follows then that
the aforementioned trees above are also recognized by this DTFTA. For instance the tree
with two a leaves is recognized because both δ(q1, a, 0) and δ(q2, a, 0) are defined. Thus no
DTFTA recognizes T .

5.2.3 Observations
• For every symbol a ∈ Σ which can be leaf in a tree, you will need to define a transition
δ(q, a, 0) = λ.

• For every symbol a ∈ Σ which can have n children, you will need to define a transition
δ(q, a, n) = q1 · · · qn.

5.3 Properties of recognizable tree languages
Theorem 16 (Closure under Boolean operations). The class of recognizable tree languages
are closed under union and intersection.

The class of n-wide recognizable tree languages are closed under union, intersection, and
complementation with respect to the ΣT,n.

55

draft—February 11, 2025 © J. Heinz

The proofs of these cases are very similar to the ones for finite-state acceptors over strings.
For every DBFTA A recognizing a treeset T , it can be made complete by adding a sink state
and transitions to it. Then product constructions can be used to establish closure under
union and intersection. Closure under complement is established the same as before too:
everything is the same except the final states are now the non-final states of A.

Theorem 17 (Minimal, determinstic, canonical form). For every recognizable tree language
T , there is a unique, smallest DBFTA A which recognizes T . That is, if DBFTA A′ also
recognizes T then there at least as many states in A′ as there are in A.

5.4 Connection to Context-Free Languages
Recognizable treesets are closely related to the derivation trees of context-free languages.

Theorem 18.

• Let G be a context-free word grammar, then the set of derivation trees DT (G) is a
recognizable tree language.

• There exists a recognizable tree language not equal to the set of derivation trees of
any context-free language. Thus the class of derivation treesets of context-free word
languages is a proper subset of the class of recognizable treesets.

• Let L be a recognizable tree language then yield(L) is a context-free word language.

Each of these has a straightforward explanation.
For (1), the recognizable tree language which recognizes DT (G) for a CFG G can be

constructed based on the rules of G. For each symbol a in N , the DBFTA should in-
clude δ(λ, a) = qa. And, for each rule A → B1 · · ·Bn in R, the DBFTA should include
δ(qB1 · · · qBn , A) = qA. That’s it!

For (2), consider the DBFTA A shown below. The claim is that there is no CFG whose
derivation language is exactly this recognizable treeset. The only tree in L(A) is (t1), which
is shown below A at left. Tree (t2) shows (t1) with the states A assigns to its subtrees.

(A) Q = {qS, qa, qb, qx, qy} δ(λ, a) = qa
Σ = {S,G, a, b} δ(λ, b) = qb
F = {qS} δ(qa, G) = qx

δ(qxqy, S) = qS δ(qb, G) = qy

(t1) S

G

a

G

b

(t2) S (qS)

G (qx)

a (qa)

G (qy)

b (qb)

56

draft—February 11, 2025 © J. Heinz

That no CFG can recognize this treeset follows from the fact that such any CFG G which
includes the tree above will need to have the following rules: S → GG,G→ a,G→ b. But
then this G will not only generate (t1) above but also the derivation trees shown below.

(t3) S

G

a

G

a

(t4) S

G

b

G

a

(t5) S

G

b

G

b

Thus L(A) 6= DT (G).
This example shows that the states of the DBFTA are more abstract than the labels on

the nodes. The reason recognizable tree languages are more expressive than the derivation
treesets of CFGs follows from this. The DBFTA uses states qx and qy to distinguish the
subtrees bearing the label G. But the CFG cannot distinguish these trees in this way.

For (3), observe that we can write a CFG that generates the same stringset as the one
above. For instance, we could write a CFG with the rule S → ab.

More generally, though, we can always write a CFG that puts the state information into
the nodes themselves. The trees in the derivation treeset for this CFG would be “structurally
the same” as the trees in the recognizable treeset, but the labels on the nodes would be
different. So they are not the same trees. In the example above for instance we can write a
CFG with rules S → GxGy, Gx → a,Gx → b. There is only one tree in this CFG’s derivation
treeset shown below.

(t6) S

Gx

a

Gy

b

Importantly, (t6) is not the same as (t1). The inner nodes are labeled differently! So they
are different trees. However, they only differ with respect to how the inner nodes are labeled,
so it follows that the stringsets obtained by taking the yield of these trees are the same.
This is the kind of argument used to show that the yield of any recognizable treeset is a
context-free language.

57

draft—February 11, 2025 © J. Heinz

58

Chapter 6

String Transducers

6.1 Deterministic Finite-state String Transducers

6.1.1 Orientation
This section is about deterministic finite-state transducers for strings. The term finite-state
means that the memory is bounded by a constant, no matter the size of the input to the
machine. The term deterministic means there is single course of action the machine follows
to compute the output from some input. The term transducer means this machine solves
transformation problems: given an input object x, what object y is x transformed into? The
term string means we are considering the transformation problem from strings to objects.
So x is a string. As we will see, we can easily write transducers where y is a string, natural
number, real number, or even a finite stringset! We will also see that DFSAs are a specific
case of DFSTs.

However, we first define the output of the transformation to be a string. Then we will
generalize it.

6.1.2 Definitions
Definition 28. A deterministic finite-state string-to-string transducer (DFST) is a tuple
T = (Q,Σ,∆, q0, v0, δ, F) where

• Q is a finite set of states;
• Σ is a finite set of symbols (the input alphabet);
• ∆ is a finite set of ouput symbols (the output alphabet);
• q0 ∈ Q is the initial state;
• v0 ∈ ∆∗ is the initial string;
• δ is a function with domain Q× Σ and co-domain Q×∆∗. It is called the transition

function. If transition (q, a, r, v) ∈ δ it means that there is a transition from state q to
state r reading letter a and writing string v. It will be helpful to refer to the “first” and

59

draft—February 11, 2025 © J. Heinz

“second” outputs of delta with δ1 and δ2 respectively. So for all (q, a, r, v) ∈ δ, we have
δ1(q, a) = r and δ2(q, a) = v. These are are the “state” transition and the “output”
transitions, respectively.

• F is a function with domain Q and co-domain ∆∗. Let’s call it the final function.

For each transducer T , we can define a new function “process” π : Q×∆∗×Σ∗ → ∆∗ as
follows. Ultimately, π(q, v, w) processes an input string w letter by letter from a given state
q with a given output string v and returns an output string.

π(q, v, λ) = v · F (q)
π(q, v, aw) = π

(
(δ1(q, a), v · δ2(q, a), w

)
(6.1)

Consider some DFST T = (Q,Σ,∆, q0, v0, δ, F) and string u ∈ Σ∗. Then T (u) =
π(q0, v0, u). We say T transforms u into v.

Definition 29. The function defined by T is
{
(u, v) ∈ Σ∗ ×∆∗ | π(q0, v0, u) = v

}
.

We write T (u) = v iff (u, v) ∈ T .

Definition 30. A string-to-string function is called sequential if there is a DFST that
recognizes it.

(Sequential functions are also often called subsequential functions. The nomenclature is
unfortunate and different people have different opinions about it.) The important thing is
that they are deterministic on the input and one should always check the definitions and not
rely on names.

6.1.3 Exercises
Exercise 32. Let Σ = ∆ = {a, e, i, o, u, p, t, k, b, d, g,m, n, s, z, l, r}.

1. Write a transducer that prefixes pa to all words.
2. Write a transducer that suffixes ing to all words.
3. Write a transducer that deletes word initial vowels.
4. Write a transducer that voices obstruents which occur immediately after nasals.
5. Write a transducer that deletes word final vowels. So T (abba) = abb and T (pie) = pi.
6. Write a transducer that voices obstruents intervocalically.

Note that the transition function and the final function can be partial functions. In this
case, the transducer is incomplete in the sense it is not defined for all inputs. As before, we
will strive to make our sequential transducers describe total functions.

60

draft—February 11, 2025 © J. Heinz

6.2 Some Closure Properties of Sequential functions
Theorem 19 (Closure under composition). If f, g are sequential functions then so is f ◦ g.

Closure under composition can also be shown using a product construction. The tran-
sition function in the product construction is not built however by following simultaneous
paths in the two machines, but instead one after another.

Consider two sequential functions R and S and we are interested int he composition S◦R,
where R applies to first and S applies to the output of R. We treat the components of the im-
age of the delta function separately with δ1 and δ2. Let TR = (QR,Σ,∆, qR0, vR0, FR, δR1, δR2)
be the DFT recognizing R and let TS = (QS,∆,Γ, qS0, vS0, FS, δS1, δS2) be the DFT recog-
nizing S.

What happens when we are in q ∈ QR and q′ ∈ QS and we read the letter a? Well, in
TR we reach state r and write string u. This string u becomes the input to TS at state q′.
It will traverse TS reaching some state r′ and writing some string v. This is shown visually
below.

q rR: a : u

q′ r′S: u : v

(q, q′) (r, r′)S ◦R: a : v

Similarly, what is the initial string v0 for TS◦R? The initial string for TR is vR0. This will
be processed by TS from its initial state as shown below writing w and reaching state r′.

qS0 r′S: vR0 : w

Therefore the initial string of TS◦R will be vS0 · δ∗S2(qS0, vR0). And the initial state of TS◦R
will be (q0R, δ

∗
S1(qS0, vR0)).

The final output functions are handled similarly.

61

draft—February 11, 2025 © J. Heinz

qR: u

q′ r′S: u : v w

(q, q′)S ◦R: vw

Putting this altogether, we construct T = (Q,Σ,Γ, q0, v0, F, δ1, δ2) recognizing S ◦ R as
follows.

• Q = QR ×QS.
• q0 = (q0R, δ

∗
S1(qS0, vR0)).

• v0 = vS0 · δ∗S2(qS0, vR0).
• δ1((q, q

′), a) = (δR1(q, a), δ
∗
S1(q

′, δR2(q, a)))

• δ2((q, q
′), a) = δ∗S2(q

′, δR2(q, a)))

• F ((q, q′)) = δ∗S2(q
′, FR(q)) · FS(δ

∗
S1(q

′, FR(q)))

Theorem 20 (Minimal canonical form). For every sequential string-to-string function f ,
it is possible to compute a DFST T such that T is equivalent to f and no other DFST T ′

equivalent to f has fewer states than T .

The minimal cananoical form result is due to Choffrut (see his 2003 survey).
Sequential functions are not closed under union. This is because they are functions and

so each input has a unique output. I can’t find a reference that sequential transducers are
closed under intersection. That’s a good exercise!

6.3 Generalizing sequential functions with monoids
Amonoid is a mathematical term which means any set which is closed under some associative
binary operation with an identity. So if (S, ∗, 1) is a monoid then for all x, y ∈ S:

1. is the case that x ∗ y is in S too (Closure under ∗)
2. (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity)
3. 1 ∗ x = x ∗ 1 = x (1 is the identity)

62

draft—February 11, 2025 © J. Heinz

It is typical to refer to ∗ as “times”, “multiplication” or as a product. It is also typical to
refer to 1 as the “identity”, “unit” or “one”.

Σ∗ is closed under the binary operation of concatenation. Also the empty string behaves
like the identity with respect to concatenation. So (Σ∗, · , λ) is a monoid. As we processed
the input string, we moved from state to state and updated the ouput value by concatenating
strings along the output transitions. We can do the same thing and update the output value
using some other product from another monoid.

Example 13. Here are some examples.

1. ({True, False}, ∧, True). Boolean values and conjunction. This monoid shows the
membership problem is a special case of the transformation problem.

2. (N, +, 0). Natural numbers and addition. Useful for counting!
3. ([0, 1], ×, 1). The real unit interval and multiplication. Useful for probabilities!
4. (R, ×, 1). All real numbers and multiplication.
5. (FIN, ·, {λ}) where FIN is the class of finite stringsets and (·) is concatenation of

stringsets.

• FIN = {S | ∃n ∈ N with |S| = n}
• S1 · S2 = {u · v | u ∈ S1, v ∈ S2}.

6. There are many others!

This means we can generalize DFSTs to transducers which output elements from any
monoid.

Definition 31. A generalized sequential transducer (GST) is a tuple T = (Q,Σ,M, q0, v0, δ, F)
where

• Q is a finite set of states;
• Σ is a finite set of symbols (the input alphabet);
• (M, ∗, 1) is a monoid
• q0 ∈ Q is the initial state;
• v0 ∈M is the initial value;
• δ is a function with domain Q × Σ and co-domain Q × µ. It is called the transition

function. As before, from this we derive δ1 : Q×Σ→ Q and δ2 : Q×Σ→ µ to be the
state and output transition functions.

• F is a function with domain Q and co-domain M . Let’s call it the final function.

The process function π is the same except we replace concatenation of the outputs with
the monoid operator ∗.

π(q, v, λ) = v ∗ F (q)
π(q, v, aw) = π

(
(δ1(q, a), v ∗ δ2(q, a), w

)
(6.2)

63

draft—February 11, 2025 © J. Heinz

Then, the definition of the function computed by the transducer is identical to what was
written formerly.

That’s it!

6.3.1 Exercises
Exercise 33. Let Σ = {a, e, i, o, u, p, t, k, b, d, g,m, n, s, z, l, r}.

1. Write a transducer that counts how many NC (nasal-consonant) sequences occurs in
the input word.

2. Write a transducer that optionally voices obstruents which occur immediately after
nasals. So for in input like anta the output should be the set {anda, anta}. (Hint: use
the FIN monoid).

6.4 Learning more
Unfortunately, the material on deterministic transducers has yet to make its way into stan-
dard textbooks. Standard textbooks in computer science discuss non-deterministic finite-
state transducers if they discuss transducers at all. Within computational linguistics where
transducers are widely used, non-determinstic ones are the norm. See, for instance Roche
and Schabes (1997); Beesley and Kartunnen (2003); Roark and Sproat (2007) and Jurafsky
and Martin (2008a). A notable exception is work by Mehyar Mohri (1997; 2005). The most
textbook-like discussion of sequential functions I am aware of comes from Lothaire (2005,
chapter 1).

My interest in sequential transducers stems from three interrelated facts. First, they ap-
pear sufficient to decribe morpho-phonologial generalizations in natural language (Jardine,
2016) and subsequent discussions. So the extra power that comes with non-deteminsitic
transducers appears unnecessary in this domain. Second, sequential transducers have canon-
ical forms (Choffrut’s theorem), but non-deterministic ones do not. Third, the class of se-
quential transducers can be learned from examples, unlike the class of non-deterministic
transducers (de la Higuera, 2010, chapter 18).

6.5 Left and Right Sequential Transducers
Below is a sequential transducer for progressive sibilant harmony. This means later sibilants
agree in anteriority with the first sibilant in the word. The alphabet here is simply {s,S,t,o}
with {s,S} signifying the two classes of sibilants and {t} other consonants, and {o} the
vowels. We assume the initial value is λ and for all q the final function maps q to λ. In the
diagram, a : b means a is read as input and b is ouput. If there is no colon and only a, then
it means a is read as input and a is written as output.

64

draft—February 11, 2025 © J. Heinz

0

1

2

t,o s

S

t,o,s,S:s

t,o,s,s:S

Many examples of sibilant harmony in natural language are not progressive. They are
in fact regressive. For instance here are some wonderfully long words in Samala (Chumash)
(Applegate 1972). The underlying form is on the left and the surface form is on the right.
There are some alternations in the vowels which we ignore here.

/ha-s-xintila-waS/ [haSxintilawaS] ‘his former Indian name’
/k-su-kili-mekeken-S/ [kSuk’ilimekeke

>
tS] ‘I straigten myself up’

/k-su-al-puj-Vn-SaSi/ [kSalpuja
>
tS1Si] ‘I get myself wet’

/s-taja-nowon-waS/ [StojowonowaS] ‘it stood upright’

Exercise 34. Explain why regressive sibilant harmony cannot be modeled with sequential
transducers.

There is a straightforward way to address this issue. The transducers we are using process
strings from left-to-right. However, transducers could also process strings from right-to-left.
If we use the transducer above to process the Samala strings from right to left, we can model
regressive sibilant harmony. The example below shows /stototooS/ 7→[StototooS].

s t o t o t o o S
← 3 ← 3 ← 3 ← 3 ← 3 ← 3 ← 3 ← 3 ← 3 ← 1 ←

S t o t o t o o S

65

draft—February 11, 2025 © J. Heinz

If a transducer processes the string left-to-right, it is called a left sequential transducer.
If it processes it right-to-left it is called a right sequential transducer.

Theorem 21. Left sequential functions and right sequential functions are incomparable; that
is, there are functions that are both left and right sequential; neither left nor right sequential;
left but not right sequential; and right but not left sequential.

Progressive sibilant harmony is a case in point. It is left sequential but not right se-
quential. On the other hand, regressive sibilant harmony is right sequential, but not left
sequential. The identity function is both left and right sequential. Can you think of a a
function which is neither left nor right sequential?

The recursive data structure we are using for strings is inherently left-to-right because
the outermost element in the list structure is on the left. If we were to define lists so that the
outermost element of the list structure was on the right, it would become natural to process
strings right-to-left.

The Haskell implementation of strings is inherently left-to-right because the outermost
element in the list structure is on the left. If we were to define lists so that the outermost
element of the list structure was on the right, it would become natural to process strings
right-to-left.

An easy way to simulate a right sequential transducer with the lists we have in Haskell
is to do the following.

1. Implement left sequential transducers as we have done.
2. Before processing a string w, reverse it.
3. Then reverse the output of the transducer.

In other words, transduce t w will process the string left-to-right. However, the function
reverse (transduce t (reverse w)) will simulate t processing w right-to-left.

6.6 Non-deterministic Finite-state String Transducers
There are many ways to define non-deterministic finite-state string transducers. We follow
Lothaire (2005).

Definition 32. A non-deterministic finite-state string-to-string transducer (NFST) is a tuple
T = (Q,Σ,∆, I, F, δ) where

• Q is a finite set of states;
• Σ is a finite set of symbols (the input alphabet);
• ∆ is a finite set of ouput symbols (the output alphabet);
• I ∈ Q is a set of initial states;
• F ∈ Q is a set of final states;

66

draft—February 11, 2025 © J. Heinz

• δ ⊆ Q× Σ∗ ×∆∗ ×Q. It is called the transition relation. If transition (q, u, v, r) ∈ δ
it means that there is a transition from state q to state r reading u and writing v.

Definition 33. For each transducer T , a valid path in T denoted π is a sequence of transi-
tions (q0, u0, v0, r0)(q1, u1, v1, r1) . . . (qn, un, vn, rn) such that q0 ∈ I, rn ∈ F and ∀i if 1 ≤ i ≤ n
then (qi, ui, vi, ri) ∈ δ and if i < n then ri = qi+1. For each valid path π let its input projection
be the string πin = u0u1 . . . un and its output projection be the string πout = v0v1 . . . vn

Then the relation recognized by T is

{(u, v) : ∃ valid π in T, u = πin, v = πout}

Relations recognized by NFSTs are called rational relations. As Lothaire (p. 42) writes.
“A transducer is literal if for each edge the input label and the output label are letters or
the empty word. It is not difficult to show that any transducer can be replaced by a literal
one.”

Theorem 22. The pre-image of a rational relation is a regular stringset. The image of a
rational relation is a regular stringset.

Proof For any NFT T , mapping each transition (q, a, b, r) to (q, a, r) yields a NFA which
recognizes the input projections of valid paths in T . Similarly, mapping each transition
(q, a, b, r) to (q, b, r) yields a NFA which recognizes the output projections of valid paths in
T . ���

Theorem 23. Left and right sequential functions are proper subclasses of the rational rela-
tions.

One reason why this is true is that epsilon transitions permit non-deterministic transduc-
ers to recognize infinite relations not functions. For example, the non-deterministic acceptor
below relates input a to every element in {a, aa, aaa, . . .}.

0 1

ε:a

a:a

This is not possible for sequential transducers with the Σ∗ monoid or the finite language
monoid. However, it should be possible with the “Regular language” monoid where the
outputs of the transitions are actually NFA that get “concatenated.”

However there are rational functions that cannot be described with left or right sequential
transducers. An example from Heinz and Lai (2013) is Sour Grapes harmony, which is
illustrated in the table below wiht respect to other logically possible harmony patterns (was
Table 3, p. 57 in Heinz and Lai (2013)). See Jardine (2016) and McCollum et al. (2020) for
more discussion regarding the typology of phonological patterns like this.

67

draft—February 11, 2025 © J. Heinz

w PH(w) RH(w) DR(w) SG(w) MR(w)

a. /+−−/ [+++] [−−−] [+++] [+++] [−−−]
b. /−++/ [−−−] [+++] [+++] [−−−] [+++]
c. /−−−/ [−−−] [−−−] [−−−] [−−−] [−−−]
d. /−+−/ [−−−] [−−−] [+++] [−−−] [−−−]
e. /+−�/ [++�] [−−�] [++�] [+−�] [−−�]
f. /+	−/ [+	+] [−	−] [+	+] [+	+] [−	−]

Table 6.1: Example mappings of underlying forms (w) given by progressive harmony (PH),
regressive harmony (RH), dominant/recessive harmony (DR), sour grapes harmony (SG),
and majority rules harmony (MR). Symbols [+] indicates a [+F] vowel and [−] indicates a
[−F] vowel where “F” is the feature harmonizing. Symbols [�] and [] are [−F] vowels that
are opaque and transparent, respectively.

0 1 2

3 4

+ − : +

−

�

− : +

− : +

Figure 6.1: A non-deterministic transducer which recognizes a fragment of SG harmony.

Part of a NSFT recognizing Sour Grapes is shown in the Figure above (was Figure 3,
p. 58 in Heinz and Lai (2013)).

Finally, the definition above defined rational relations in terms of paths, and not the
recursive ‘process’ function we have used elsewhere. The definition is fine as far as it goes,
but it does not tell us how to compute the output for a given input. So given a NFST T how
do we compute T (w)? As mentioned above, this is more complicated because there may be
infinitely many strings which w relates to.

The answer is to use composition (◦). If we want to compute T (w), we first construct
a NFST W recognizing the relation {(w,w)}. Then we compute T ◦ W . This yields the
relation {(w, v) : v ∈ T (w)}. Thus the output projection of this transducer is the regular
stringset, which is all and only those strings related to w in the rational relation T .

Below is the definiton of composition for literal transducers.

Definition 34. Let TR = (QR,Σ,∆, IR, FR, δR) be the NFST recognizing R and let TS =

68

draft—February 11, 2025 © J. Heinz

(QS,∆,Γ, IS, FS, δS) be the NFST recognizing S. Then T = (Q,Σ,Γ, I, F, δ) recognizes S ◦R
where:

• Q = QR ×QS.
• I = IR × IS.
• F = FR × FS.
• δ =

{(
(p, r), a, c, (q, s)

)
: (p, a, b, q) ∈ TR, (r, b, c, s) ∈ TS

}
∪

{(
(p, r), a, λ, (q, r)

)
: (p, a, λ, q) ∈ TR, r ∈ QS

}
∪

{(
(p, r), λ, c, (p, s)

)
: (r, λ, c, s) ∈ TS, p ∈ QR

}
Exercise 35.

1. Write a NFST T which deletes sequences of word final consonants. Compute T (abab),
T (abbb), T (baba).

2. Write a NFST T which optionally voices obstruents after nasals. Compute T (anta),
T (antanta).

69

draft—February 11, 2025 © J. Heinz

70

Chapter 7

Tree Transducers

7.1 Deterministic Bottom-up Finite-state Tree
Transducers

7.1.1 Orientation
This section is about deterministic bottom-up finite-state tree transducers. The term finite-
state means that the amount of memory needed in the course of computation is independent
of the size of the input. The term deterministic means there is single course of action the
machine follows to compute its output. The term transducer means this machine solves
transformation problem: given an input object x, what object y is x transformed into? The
term tree means we are considering the transformation problem from trees to trees. The term
bottom-up means that for each node a in a tree, the computation transforms the children
of a node before transforming the node. This contrasts with top-down transducers which
transform the children after transforming their parent. Visually, these terms make sense
provided the root of the tree is at the top and branches of the tree move downward.

A definitive reference for finite-state automata for trees is freely available online. It is
“Tree Automata Techniques and Applications” (TATA) (Comon et al., 2007). The presen-
tation here differs from the one there, as mentionepd below.

7.1.2 Definitions
Recall the definition of trees with a finite alphabet Σ. All such trees belonged to the treeset
ΣT . In addition to this, we will need to define a new kind of tree which has variables in
the leaves. I will call these trees Variably-Leafed. We assume a countable set of variables X
containing variables x1, x2,

Definition 35 (Variably-Leafed Trees).

Base Cases (Σ): For each a ∈ Σ, a[] is a tree.
Base Cases (X): For each x ∈ X, x[] is a tree.

71

draft—February 11, 2025 © J. Heinz

Inductive Case: If a ∈ Σ and t1t2 . . . tn is a string of trees of length n then a[t1t2 · . . . tn]
is a tree.

Let ΣT [X] denote the set of all variably-leafed trees of finite size using Σ and X.

Note that ΣT (ΣT [X]. In the tree transducers we write below, the variably-leafed trees
will play a role in how outputs are constructed as well as the the intermediate stages of the
transformation.

With this definition in place, we can define our first tree transducer.

Definition 36 (DBFTA). A Deterministic Bottom-up Finite-state Acceptor (DBFTT) is a
tuple (Q,Σ, F, δ) where

• Q is a finite set of states;
• Σ is a finite alphabet;
• F ⊆ Q is a set of accepting (final) states; and
• δ : Q∗×Σ→ Q×ΣT [X] is the transition function. The pre-image of δ must be finite.

This means we can write it down—for example, as a list.
If transition (~q, a, r, t) ∈ δ it means that if the children of node a have been assigned
states ~q then the state r will be assigned to a and the tree t will be the output employed
at this stage in the derivation. It will be helpful to refer to the “first” and “second”
outputs of delta with δ1 and δ2 respectively. So for all (~q, a, r, v) ∈ δ, we have δ1(~q, a) = r
and δ2(~q, a) = t. These are are the “state” transition and the “output” transitions,
respectively.

The key to understanding how a tree-to-tree transducer is defined is to understand how
variables are used to rewrite and expand output trees. If t1 . . . tn is a list of trees and
tx ∈ ΣT [X] is a variably leafed tree with variables x1, . . . xn then let tx〈t1 . . . tn〉 = t ∈ ΣT

obtained by replacing each variable xi in tx with ti. Here is a visualization of this notation.

a

x1 . . . xn

〈
t1 . . . tn

〉
=

a

t1 . . . tn

Example 14.

a
[
b[x1 x1] c[x2 x2]

]〈
t1 = c[], t2 = d[]

〉
= a

[
b[c[] c[]] c[d[] d[]]

]
Visually, we are taking the tree shown below and substituting t1 for x1 and t2 for x2.

a

b

x1 x1

c

x2 x2

〈
c d

〉
=

a

b

c c

c

d d

72

draft—February 11, 2025 © J. Heinz

Now we explain how substitution is used in the process of transducing a tree into another.
Given δ2(q1q2 . . . qn, a) = tx and a tree a[t1t2 . . . tn] with states q1q2 . . . qn, respectively, then
the output tree will be the one obtained by replacing each xi with ti in tx. A schematic of
this is shown below.

a

t1(q1) . . . tn(qn)
, tx =

b

x1 . . . xn
−→

b

t1 . . . tn

Then we can define a function “process” π : ΣT → Q × ΣT which will process the tree
and produce its output. It is defined recursively as follows.

π(a[]) =
(
δ1(λ, a), δ2(λ, a)

)
π(a[t1 · · · tn]) = (q, t) where

q = δ1
(
q1 · · · qn, a

)
and

t = δ2
(
q1 · · · qn, a

)
〈s1 · · · sn〉 and (7.1)

(q1, s1) · · · (qn, sn) = π(t1) · · · π(tn)

Definition 37 (Tree-to-tree function of a DBFTT). The function defined by the transducer
T is

{
(t, s) | t, s ∈ ΣT , π(t) = (q, s), q ∈ F

}
. If (t, s) belongs to this set, we say T transduces

t to s and write T (t) = s.

Example 15. Consider the transducer T constructed as follows.

• Q = {qa, qb, qS}
• Σ = {a, b, S}
• F = {qS}
• δ1(λ, a) = qa

• δ1(λ, b) = qb

• δ1(qaqb, S) = qS

• δ1(qaqSqb, S) = qS

• δ2(λ, a) = a[]

• δ2(λ, b) = b[]

• δ2(qaqb, S) = S[x2x1]

• δ2(qaqSqb, S) = S[x3x2x1]

Let us work out what T transforms the tree below into.
S

a S

a S

a b

b

b

Example 16. Consider the transducer T constructed as follows. We let Q = {qw, qp, qS},
Σ = {w,P, S}, and F = {qS}. The transition and ouput functions are given below.

73

draft—February 11, 2025 © J. Heinz

• δ(λ, P) = qp, P []

• δ(λ,w) = qw, w[]

• δ(qpqp, P) = qp, P [x1x2]

• δ(qwqp, P) = qw, P [x1x2]

• δ(qpqw, P) = qw, P [x1x2]

• δ(qpqw, S) = qS, S[w[] S[x1x2]]

• δ(qwqp, S) = qS, S[w[] S[x1x2]]

• δ(qpqp, S) = qS, S[x1x2]

Let us work out how T transforms the trees below.

S

P P

P P

P P

P w

S

P P

P P

P P

P P

S

P P

P

P w

P

P P

7.2 Deterministic Top-down Finite-state Tree
Transducers

7.2.1 Orientation
This section is about deterministic bottom-up finite-state tree transducers. The term finite-
state means that the amount of memory needed in the course of computation is independent
of the size of the input. The term deterministic means there is single course of action the
machine follows to compute its output. The term transducer means this machine solves
transformation problem: given an input object x, what object y is x transformed into? The
term tree means we are considering the transformation problem from trees to trees. The
term top-down means that for each node a in a tree, the computation transforms the node
before transforming its children. This contrasts with bottom-up transducers which transform
the children before transforming their parent. Visually, these terms make sense provided the
root of the tree is at the top and branches of the tree move downward.

A definitive reference for finite-state automata for trees is freely available online. It is
“Tree Automata Techniques and Applications” (TATA) (Comon et al., 2007). The presen-
tation here differs from the one there, as mentioned below.

7.2.2 Definitions
As before, we use variably leafed trees ΣT [X].

74

draft—February 11, 2025 © J. Heinz

Definition 38 (DTFTT). A Deterministic Top-down Finite-state Acceptor (DTFTT) is a
tuple (Q,Σr, q0, δ) where

• Q is a finite set of states;
• Σ is a finite alphabet;
• q0 ∈ Q is the initial state; and
• δ : Q × Σ × N → Q∗ × ΣT [X] is the transition function. As before, we will derive

“state” and “output” transitions, and notate them with δ1 and δ2, respectively. So for
all (q, a, ~r, t) ∈ δ, we have δ1(q, a) = ~r and δ2(q, a) = t.

We also define the “process” function π : Q× ΣT → ΣT which will process the tree and
produce its output. It is defined as follows.

π(q, a[]) = δ2(q, a, 0)

π(q, a[t1 · · · tn]) = δ2(q, a, n)
〈
π(q1, t1) · · · π(qn, tn)

〉
where q1 · · · qn = δ1(q, a, n) (7.2)

Intuitively, δ2 transforms the root node into a variably leafed tree. The variables are replaced
with the children of the root node. These children are also trees with states assigned by δ1.
Then π transforms each tree-child as well.

Definition 39 (Tree-to-tree function of a DTFTT). The function defined by the transducer
T is

{
(t, s) | t, s ∈ ΣT , π(q0, t) = s

}
. If (t, s) belongs to this set, we say M transduces t to s

and write T (t) = s.

Example 17. Consider the transducer T constructed as follows.

• Q = {q, qS}
• Σ = {a, b, S}
• q0 = qS

• δ1(q, a, 0) = λ

• δ1(q, b, 0) = λ

• δ1(qS, S, 3) = qqSq

• δ1(qS, S, 2) = qq

• δ2(q, a, 0) = a[]

• δ2(q, b, 0) = b[]

• δ2(q, S, 3) = S[x3x2x1]

• δ2(q, S, 2) = S[x2x1]

Let see how T transforms the tree below.

S

a S

a S

a b

b

b

Exercise 36. Recall the “wh-movement” example from before. Explain why this transfor-
mation cannot be computed by a deterministic top-down tree transducer.

75

draft—February 11, 2025 © J. Heinz

7.3 Theorems about Deterministic Tree Transducers
Theorem 24 (composition closure). The class of deterministic bottom-up transductions is
closed under composition, but the class of top-down deterministic transductions is not.

Theorem 25 (Incomparable). The class of deterministic bottom-up transductions is incom-
parable with the the class of top-down deterministic transductions.

This theorem is based on the same kind of examples which separated the left and right
sequential functions. Let relations U = {(fna, fna) | n ∈ N} ∪ {(fnb, gnb) | n ∈ N} and
D = {(ffna, ffna) | n ∈ N} ∪ {(gfna, gfnb) | n ∈ N}. U is recognized by a DBFTT but
not any DTFTT and D is recognized by a DTFTT but not any DBFTT.

76

Chapter 8

Strict Locality

8.1 Strictly Local Languages
A language L is k-Strictly Local (SL) if we can determine whether a string x belongs to L by
checking each of the k-long substrings in x (Rogers and Pullum, 2011; Rogers et al., 2013;
Rogers and Lambert, 2019). If every one is well-formed then x ∈ L. If any k-long substring
is ill-formed then x 6∈ L. We can imagine examining each of the local-substructures, checking
to see if it is forbidden or not. The whole structure is well-formed only if each local sub-
structure is. For example, consider the string abab. If we fix a diameter of 2, we have to
check these substrings.

Figure 8.1: Checking substrings of length 2.

Formally, k-SL grammars are defined as follows. For any Σ, define factork : Σ∗ →
℘(Σ≤k) as factork(x) = {v ∈ Σk : ∃u,w ∈ Σ∗, x = uvw} whenever k ≤ |x| and let
factork(x) = {x} otherwise. We lift the domain of factork from strings to set of strings as
follows.

factork(L) =
⋃
x∈L

factork(w)

Let o,n denote the right and left word boundaries, respectively.
Definition 40. A k-SL grammar is a subset of

factork
(
{o}Σ∗{n}

)
77

draft—February 11, 2025 © J. Heinz

The language of a k-SL grammar G is L(G) = {w ∈ Σ∗ : factork(own) ⊆ G}.

These grammars are sometimes called positive grammars because the grammar is defined
as the set of well-formed k-long substrings.

Exercise 37. Define k-SL grammars and languages in terms of forbidden k-long substrings.

8.1.1 Logic
Negative SL Grammars can also be expressed logically as the Conjunctions of Negative
Literals. Formally, we define a logical language as follows.

• Base cases: For each w ∈ Σk−1, ¬o w and ¬wn are literals. For each w ∈ Σk, ¬w is
a literal. These literals are interpreted as follows.

q
¬o w

y
= wΣ∗;

q
¬w n

y
= Σ∗w;

q
¬w

y
= Σ∗wΣ∗

• Inductive case: if R1, . . . , Rn are expressions so is
∧

1≤i≤nRi, which is interpreted as⋂
1≤i≤n

q
Ri

y
.

8.1.2 Suffix Substitution Closure
Abstract characterizations of classes of formal languages are independent of logical formulas,
grammars, and automata. They provide laws of inference for learning and they provide ways
to show certain stringsets do NOT belong to the class.

The theorem below establishes a set-based characterization of SL stringsets independent
of any grammar, scanner, or automaton.

Theorem 26 (k-Local Suffix Substitution Closure). For all L ⊆ Σ∗, L ∈ SL iff there exists
k such that for all u1, v1, u2, v2, x ∈ Σ∗ it is the case that if u1xv1, u2xv2 ∈ L and |x| = k−1
then u1xv2 ∈ L.

As illustrated in Figure 8.2, the theorem provides a law which simultaneously provides a
basis for inference and provides a method for establishing non-SLk stringsets.

u1 σ1 · · ·σk−1 v1 ∈ L
u2 σ1 · · ·σk−1 v2 ∈ L
u1 σ1 · · ·σk−1 v2 ∈ L

Figure 8.2: Suffix Substitution Closure

Exercise 38.

78

draft—February 11, 2025 © J. Heinz

1. Consider a Strictly 2-Local stringset L which contains the words aa and ab. Using
Suffix Substitution Closure, explain what other words must be in L.

2. Consider the constraint a . . . a. Show this is not SLk for any k.

3. Consider the constraint EVEN-a. Show this is not SLk for any k.

8.1.3 Cognitive Interpretation

Rogers et al. (2013) argue that this Strictly Local languages have a cognitive interpretation
as follows.

• Any cognitive mechanism that can distinguish member strings from non-members of a
SLk stringset must be sensitive, at least, to the length k blocks of consecutive events
that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then this corresponds to
being sensitive, at each point in the string, to the immediately prior sequence of k− 1
events.

• Any cognitive mechanism that is not sensitive to the length k blocks of consecutive
events that occur in the presentation of the string will be unable to recognize some
SLk stringsets.

8.1.4 Relationship to Regular Languages

For every regular language L, let AL be a finite-state acceptor recognizing L. The set of
valid paths of A is a 2-SL language. While L is a subset of Σ∗, the path language of Al is a
subset of (Q× Σ×Q)∗. It follows that every regular language L ∈ Σ∗ is the homomorphic
image of a SL-2 language P ∈ ∆∗ with Σ ⊆ ∆. The homomorphism simply erases the state
information in the path language of AL.

8.2 Strictly Local Tree Languages
A positive k-SL grammar for a string language can be thought of as a set of tiles. The strings
in the language are the ones obtained by overlapping these tiles. Similarly, a positive k-SL
grammar for a string language is also a set of tiles. However, the tiles now represent treelets
of depth k.

For example, consider the tree below

79

draft—February 11, 2025 © J. Heinz

S

NP

People

VP

VP

consider

NP

things

[INSERT FIGURE HERE]

Figure 8.3: Checking treelets of length 2.

We follow the presentation in Ji and Heinz (2020).

8.2.1 Context Free Language Derivation Trees are 2-SL
Theorem 27. Consider any CFG grammar G. The derivation tree language of G is 2-SL.

Exercise 39. Prove this theorem.

8.3 Strictly Local Functions over Strings

8.3.1 Local functions
Vaysse 1986 studied p-local functions. He writes:

8.3.2 Input Strictly Local Functions
The following is an excerpt from Heinz (2018, §6.2.1):

Excerpt Begins.
Input Strictly Local function generalize the notion of Strictly Local stringset. Recall the

Strictly Local stringsets are Markovian in nature: the well-formedness of a string can be
determined by examining the substrings of length k. Equivalently, this means that the well-
formedness of any position in the string can be determined by checking the k − 1 previous
symbols. This is illustrated in Figure 8.4, for the case where k = 2.

80

draft—February 11, 2025 © J. Heinz

x

b a b b a ba aaa b... ...

Figure 8.4: A schematic illustrating the Markovian nature of Strictly k-Local stringsets.
Each element x of a string belonging to a strictly 2-local stringset depends only on the
previous element. In other words, the lightly shaded cell only depends on the darkly shaded
cell.

Input Strictly Local functions are similarly Markovian. The idea is that every element
in the input string corresponds to a string of symbols in the output string. For any input
symbol x its output string u will only depend on x and the previous k − 1 elements of x in
the input string. Figure 8.5 illustrates, for the case where k = 2.

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Figure 8.5: A schematic illustrating the Markovian nature of Input Strictly k-Local functions.
For every Input Strictly 2-Local function, the output string u of each input element x depends
only on x and the input element previous to x. In other words, the lightly shaded cell only
depends on the darkly shaded cells.

[…]
(Chandlee, 2014) shows that ISL functions can model a range of local phonological pro-

cesses, including substitution, insertion, deletion, and synchronic metathesis. More generally,
she shows that given a mapping describable with a rule of the form A −→ B / C D where
the set of strings in CAD is finite and the rule applies simultaneously then it is ISL for some
k.

This result may seem counter-intuitive given the current discussion. A reader may won-
der whether, especially given the diagram in Figure 8.5, how ISL functions can model any
transformation triggered by any right context at all. As mentioned, every element in the
input string corresponds to a string of elements in the output. These output strings can be
any length, including length zero (the so-called ‘empty’ string). The option to output the
empty string allows the function to ‘wait’ until it has enough information to decide what
to output. But importantly, the amount of input it needs to see to make this decision is

81

draft—February 11, 2025 © J. Heinz

bounded, by the specified value of k. For example consider regressive nasal place assimilation
where underlying /inpa/ 7→[impa]. Each row in Table 8.1 shows how the output string is
determined by each input element x and the input element preceding x. Since the output

element input output
preceding element string

x x u

o i i
i n λ
n p mp
p a a

Table 8.1: Illustrating why transformations with right contexts can still be ISL. The symbol
λ represents the empty string (the string of length zero).

string at each point is determined by a window whose size is bounded by k, ISL maps are
myopic in Wilson’s (2003) sense.

Chandlee also investigated the approximately 5500 phonological processes (from over
500 languages) reported in the P-Base database (v1.95 Mielke, 2008). It was determined
that over 95% of these patterns are ISL. Chandlee acknowledges that P-Base ought not be
taken as representative of the cross-linguistic distribution of processes that target contiguous
versus non-contiguous segments. However, given that it is the most comprehensive collection
of processes of which we are aware, she deemed it necessary to survey.

Furthermore, Chandlee (2014); Chandlee et al. (2014) also show how ISL functions can
be efficiently learned from finitely many examples in the sense of Gold (1967) and de la
Higuera (1997). This stands in stark contrast to the class of regular functions which cannot
be so learned. Remarkably, Jardine et al. (2014) generalize this result to obtain an even
more efficient learning algorithm for this class of functions.

Excerpt Ends.

8.3.3 Definiteness
Definition 41. A deterministic finite-state machine has a k-definite structure whenever

• Q = Σ≤k−1

• q0 = λ

• δ(q, a) = r iff r = Suffixk−1(qa).

Theorem 28. The language of DFA with a k-definite structure is a definite language.

Definite languages are a subclass of the SL languages. They can be defined by identiying
a finite set of permissible suffixes {w1, . . . wn}. A word belongs to the language only if it
ends with one of the wi.

82

draft—February 11, 2025 © J. Heinz

Theorem 29. The language computed by a DFT with a k-definite structure with outputs
from the Boolean monoid ({true, false},∧, true) are k-SL languages.

Theorem 30. The function computed by a DFT with a k-definite structure with outputs
from the (Σ∗, ◦, λ) monoid are k-ISL languages.

Dakotah Lambert was working on algebraic characterizations of various subregular classes
when he realized that ISL functions have the definite structure. A reviewer pointed out that
the such functions are p-local and pointed us to te Vaysse 1986 article. Vaysse defines p-
local functions in terms of windows (like Figure 8.5; see Sakarovitch (2009, p. 61)) and
provides an automata-theoretic characterization. Chandlee et al. (2014) define ISL functions
abstractly using the concept of “tails” (also called “residuals”), and characterize these in
terms of finite-state transducers that have the definite-structure.

What are tails and/or residuals? It is a way of dividing a formal language or function
into equivalence classes. For a formal language L, the tails of a string w with respect to L
is below.

TL(w) = {v : wv ∈ L}

In other words it is the set of strings which continue w and obtain a string in L.
Consequently each language L naturally gives rise to an equivalence relation over Σ∗:

strings w and w′ are tail-equivalent with respect to L provided TL(w) = TL(w
′). The equiva-

lence relation partitions Σ∗ into blocks of strings; all the strings in a block are tail-equivalent
to each other. This relation is called the Nerode equivalence relation after Nerode who
proved that a language is regular (acceptable by a NFA) if and only if the partition induced
by L has finitely many blocks. His proof establishes a one-to-one correspondence between
the blocks of this partition induced by L and the states of the minimal DFA recognizing L.

Incidentally, we can also define other equivalence relations over strings according to a
language L. The contexts of a string w with respect to a language L is below.

CL(w) = {(u, v) : uwv ∈ L}

In other words it is the set of pairs of strings (u, v) into which w can be “sandwiched” to
obtain a string in L. This also induces an equivalence relation over Σ∗: strings w and w′

are tail-equivalent with respect to L provided CL(w) = CL(w
′). This equivalence relation is

called the Myhill equivalence relation, after Myhill who proved that the partition induced
by this relation has finitely many blocks if and only if L is regular. Algebraic characteri-
zations of formal languages and trasnductions are based on the Myhill relation because the
partition forms what is called a congruence, as opposed to the Nerode relation, which is only
guaranteed to yield what is called a right congruence. Broadly speaking, the Myhill relation
is more “symmetric” than the Nerode relation and therefore more natural from an algebraic
perspective.

Both the Nerode and Myhill equivalence relations can be lifted to functions. An impor-
tant concept in both cases is the longest common prefix. For a set of strings S the longest
common prefix is the string u such that for all w ∈ S, there exists v such that w = uv (so u

83

draft—February 11, 2025 © J. Heinz

is a prefix of each w ∈ S) and for all other u′ such that u′ is a prefix of each w ∈ S, we have
|u′| < |u|.

The Nerode equivalence relation extends naturally to functions by means of the tails of
input strings. The set of tails of x in a function f , Tf (x), is defined as follows:

Tf (x) = {〈y, v〉: f(xy) = lcp(f(xΣ∗))v}.

Two strings are related iff their tails are equal. Choffrut proved that f induces a finite
partition over Σ∗ if and only if f is sequential, again by establishing a correspondence
between the states of the minimal onward DFT for f and the blocks of this partition.

A two-sided extension generalizes Myhill equivalence. The contexts of x in f are as
follows:

Cf (x) = {〈w, y, v〉: f(wxy) = lcp(f(wxΣ∗))v}.

Chandlee’s definition of k-ISL functions is that two strings w and w′ are tail equivalent
if and only if w and w′ have the same k − 1 suffix.

Lambert (2022) has more to say about algebraic characterizations of many classes, in-
cluding definiteness.

8.3.4 Output Strictly Local Functions
For a k-ISL function, the states of the DFA depend on the last k − 1 symbols read in the
input string. In contrast, for a k-ISL function, the states of the DFA depend on the last
k − 1 symbols read in the output string. Why would be interested in this? The following
excerpt from Heinz (2018, §6.2.2) explains.

Excerpt Begins.
A notable example of a map that Input Strictly Local functions are unable to model are

ones like progressive harmony (PH). Recall that a mapping like
/+ − −−/7→[+ + ++] belongs to this map, and more generally for all numbers k,
/+−k −/7→[++k +] and /−−k −/7→[−−k −]. Such a map cannot be Input Strictly Local
for any k. This is because whether the last input element surfaces as [+] or [−] depends on
an input element which is more than k input elements away.

Chandlee (2014) defines Left and Right Output Strictly Local functions (LOSL and
ROSL) to address such maps. These capitalize on the output-oriented nature of many
phonological processes (Kisseberth, 1970; Prince and Smolensky, 1993, 2004). They are
Markovian like ISL functions, but this time the context is found in the output string, not
the input string. Specifically for Left (Right) OSL functions, for any input element x, its
output string u will only depend on x and the previous (following) k − 1 elements of the
output string. The idea is that a function is Left or Right, depending on whether the left
or right context in the output string matters. Figures 8.6 and 8.7 illustrate Left and Right
OSL functions, respectively, for the case where k = 2.

Informally, Left and Right OSL functions can be thought of as characterizing the maps
one can describe with rewrite rules that apply left-to-right or right-to-left (Howard, 1972)

84

draft—February 11, 2025 © J. Heinz

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Figure 8.6: A schematic illustrating the Markovian nature of Left Output Strictly k-Local
functions. For every Left Output Strictly 2-Local function, the output string u of each input
element x depends only on x and the output element previous to u. As before, the lightly
shaded cell only depends on the darkly shaded cells.

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Figure 8.7: A schematic illustrating the Markovian nature of Right Output Strictly k-Local
functions. For every Right Output Strictly 2-Local function, the output string u of each
input element x depends only on x and the output element succeeding u. As before, the
lightly shaded cell only depends on the darkly shaded cells.

(cf. the treatment of rule-application by Kaplan and Kay (1994)). This appears to be
approximately correct, though certain details are still being worked out. However, we can
say with certainty that the map PH is LOSL and the map RH is ROSL. More generally, such
functions capture spreading processes such as progressive and regressive nasal spreading.

Left and Right OSL functions can both be computed by subsequential transducers. For
Right OSL functions, the input string must be processed right-to-left by the transducer and
the resulting output will then be reversed. See Heinz and Lai (2013) for details.

Excerpt Ends.

8.3.5 Input-Output Strictly Local Functions
Chandlee, Eyraud and Heinz have a never-ending “in progress” paper where we combine
the two ideas via a product construction. Consquently, the states ofthe DFT only make

85

draft—February 11, 2025 © J. Heinz

distinctions based on both the last k − 1 symbols on the input string and the last k − 1
symbols written on the output.

8.4 Strictly Local Functions over Trees
Two different definitions of ISL tree transducers exist. One is given by Ji and Heinz (2020)
using deterministic bottom-up tree transducers. Their goal was to follow the same line of
thinking which informed Chandlee and colleagues. Another approach is given by Graf (2020)
using a non-deterministic top-down approach.

86

Chapter 9

Conclusion

9.1 Conclusion
In this class, we learned about finite-state automata and how they can be used to express
linguistic generalizations.

We studied two kinds of linguistic generalizations: representational and transformational.
The former asks whether a particular representation is well-formed or not. The latter changes
one representation into another. From a computational perspective, the first question cor-
responds to a membership problem and the second one to what we called a transformation
problem.

Broadly speaking, automata are machines that solve particular classes of these problems.
Recognizers, also called acceptors, solve membership problems. Transducers solve transfor-
mation problems.

When the automata are finite-state, it means that the memory they require
is bounded by a constant, no matter the size of the input.

We studied four major classes of finite-state automata: recognizers and transducers for
strings and trees. We implemented them in the programming language Haskell, a fully-
typed, functional programming language with lazy evaluation. The programs were short
and concise, and the code looked a lot like the math.

In the remainder of this conclusion, I want to emphasize aspects of automata that we
were unable to get into in class.

9.1.1 Two-way deterministic automata
The automata we studied are called one-way automata. This means they processed the data
structures in one direction. For instance, for strings the automata processed them left-to-
right. For trees, it was either top-down or bottom-up. However, people have also studied
two-way automata. These automata are allowed to re-read parts of the input string.

A useful analogy is to consider the automata as a scanning device with a “read head”
that hovers over elements in the data structure. The diagram below shows such a device

87

draft—February 11, 2025 © J. Heinz

reading a string. Here the automata is like a scanner. It scans the string in one direction and

Automata one way

Internal State

a a b a b b c c c b a a

Figure 9.1: One-way automata

its internal state changes in response to new inputs. As Engelfriet and Hoogeboom (1999)
explain, “Here the point of view has changed: the input is not fed into the automaton (like
money into a coffee machine), but the automaton walks on the input string (like a mouse in
a maze).”

The automata below is “Two-way.” This means it can move back and forth along the
input tape.

Automata

two wayInternal State

a a b a b b c c c b a a

Figure 9.2: Two-way automata

Formally, for deterministic automata, the transition function δ has as its domain Q ×
Σ∗ and as its co-domain {Left, Stay, Right} × Q. The values Left,Stay,Right indicates
whether the scanning device should move one position to the left or right or whether it
should stay in its current position. If the scanner goes off the left edge, gets stuck in a loop,
it rejects the string. It only accepts the string if it eventually moves off the right edge of the
string

It is also possible to define non-deterministic two way automata.
In the case of string recognizers, all combinations are equally expressive.

Theorem 31. The class of stringsets recognized by

1. one-way deterministic acceptors,

88

draft—February 11, 2025 © J. Heinz

2. two-way deterministic acceptors,
3. one-way non-deterministic acceptors, and
4. two-way non-deterministic acceptors

are the same. They are the regular stringsets.

However, when we get to transducers, the picture changes. As mentioned, the determinis-
tic/non-deterministic distinction matters for the transducer case. So does the one-way/two-
way distinction. There are four distinct classes (Filiot and Reynier, 2016).

Two-way non-deterministic transducers

Two-way deterministic transducersOne-way non-deterministic transducers(regular relations)

One-way deterministic transducers (sequential)

One reason to be interested in two-way automata is that they provide a natural way to
describe reduplication in natural languages! Total reduplication patterns cannot be described
with one-way string transducers. Your classmate Hossep Dolatian has shown this is the case
for over a hundred reduplication patterns in the world’s languages and he will present this
research at an upcoming linguistics conference at the University of Chicago.

For tree automata, there is an analog of “Two-way.” It is called “Walking” and these
automata can move from one node to another (up to a parent or down to one of the children).
They have been difficult to analyze; see Engelfriet and Hoogeboom (1999).

9.1.2 Natural Language Processing
Finite-state automata are widely used in natural language processing tasks (Roche and
Schabes, 1997; Mohri, 1997, 2005; Jurafsky and Martin, 2008b). Many of these models rely
on probabilities. Essentially, the transitions of the automata are weighted in the way we
considered when the outputs of the sequential transducers were elements of a monoid.

In the domain of syntax, for many years people used context-free grammars or context-
sensitive grammars, but a recently some replaced those with weighted tree automata (Knight
and May, 2009; Maletti, 2009).

There are many aspects of NLP that this class did not cover since it focused on theoretical
and foundational aspects. However, I hope that if you choose to further study NLP, the
material you would have learned in this class would help.

9.1.3 Combining Automata and complex generalizations
Why do we care about the closure properties of automata? We care because they tell us
that we can build new automata from old ones and that the new ones we build will behave
the way we intend. This is especially useful if we have complex linguistic generalizations.

89

draft—February 11, 2025 © J. Heinz

For example, consider a language which places stress on the first heavy syllable in a word
if there is a heavy syllable. On words with no heavy syllables, stress goes on the last syllable.
Simplifying we can assume that the letters are L and H for “Light” and “Heavy” respectively.
Thus we have:

HLL 7→ H́LL
HHH 7→ H́HH
LLH 7→ LLH́
LLL 7→ LLĹ
LLLL 7→ LLLĹ

It may be difficult to write a single automaton for this. However, if we are writing non-
deterministic transducer, we can write one transducer for all the words with no heavy syl-
lables (below left) and one transducer for the words with at least one heavy syllable (below
right). Each of these is simple to write.

Next, since regular relations are closed under union we can simply take the union of these
two machines. That’s it! Furthermore, if there is a deterministic transducer able to describe
this pattern, there are algorithms that can determinize it (Mohri, 1997).

More generally, operations like intersection, composition, and concatenation let us de-
scribe complex generalizations in terms of simpler parts.

9.1.4 Subregular Classes of Automata
There are many types of regular stringsets, which can be further classified. The figure below
shows one classification based on logic. Each of these classes have multiple characteriza-

Regular

Non-Counting
Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic
Second Order

First
Order

Propositional

Conjunctions
of Negative

Literals

Figure 9.3: Subregular hierarchies of stringsets

tions in terms of logic, automata, and algebraic properties (McNaughton and Papert, 1971;
Thomas, 1982; Rogers and Pullum, 2011; Rogers et al., 2010). Rogers et al. (2013) argue

90

draft—February 11, 2025 © J. Heinz

that each of these classes correspond to a kind of model of memory with implications for
cognition.

Heinz (2010) argues that all human phonotactic generalizations belong to the smallest
classes shown here: Strictly Local and Strictly Piecewise generalizations. Heinz and Idsardi
(2011, 2013) develop this view in the broader context of language and cognition.

What about subregular string transformations? This is much less well-studied and the
University of Delaware has been at the forefront of this with Jane Chandlee’s PhD work
(Chandlee, 2014; Chandlee et al., 2014, 2015).

2way DFTs

aperiodic 2way DFTs?

? ?

ISL DFTs ∼ Quantifier Free
with / function ?

Successor Precedence

Monadic
Second Order

First
Order

Propositional

Conjunctions
of Negative

Literals

Figure 9.4: Subregular hierarchies of string-to-string functions

Heinz (2018) overviews all of the work up to that point. Lambert (2022) algebraic
characterizations yield methods for deciding whether a given language or function (given as
a deterministic finite-state machine) belongs to some class. With respect to functions, there
is a lot here to explore.

9.1.5 Learning Automata
Finally, there has been a lot of work on how automata can be learned. Here are some of the
main results. Readers are referred to the following texts for more information Heinz et al.
(2015); de la Higuera (2010); Heinz and Sempere (2016).

(Note that “identification in the limit” is a well-known definition for learning dating to
Gold’s seminal work Gold (1967) even if it is a little controversial (Clark and Lappin, 2011).
See also Heinz (2016).)

Theorem 32. The regular stringsets cannot be identified in the limit from positive data.

Theorem 33. The regular stringsets and recognizable treesets can be efficiently identified in
the limit from positive and negative examples.

91

draft—February 11, 2025 © J. Heinz

Theorem 34. The Strictly k-Local, Strictly k-Piecewise, Locally k-Testable, Piecewise k-
Testable, and Locally t-Threshold k-Testable classes (stringsets) each be efficiently identified
in the limit from positive and negative data.

Furthermore, there are concrete senses in which the lower classes are more efficiently
learnable than the higher ones. I don’t know of work on subregular treesets, but these
results should carry through.

Theorem 35. The class of sequential functions is efficiently identifiable in the limit from
positive data.

Theorem 36. The class of probability distributions over strings and over trees describable
with weighted deterministic recognizers are efficiently approximable from positive data.

92

Bibliography

Applegate, R.B. 1972. Ineseño Chumash grammar. Doctoral dissertation, University of
California, Berkeley.

Bar-Hillel, Y., M. Perles, and E. Shamir. 1961. On formal properties of simple phrase-
structure grammars. Zeitschrift fur Phonetik, Sprachwissenschaft, und Kommunikations-
forschung 14:143–177.

Beesley, Kenneth, and Lauri Kartunnen. 2003. Finite State Morphology. CSLI Publications.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly 6:66–92.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral dissertation, The
University of Delaware.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2014. Learning strictly local subsequential
functions. Transactions of the Association for Computational Linguistics 2:491–503.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2015. Output strictly local functions. In
Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), edited by
Marco Kuhlmann, Makoto Kanazawa, and Gregory M. Kobele, 112–125. Chicago, USA.

Choffrut, Christian. 2003. Minimizing subsequential transducers: a survey. Theoretical
Computer Science 292:131 – 143.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on
Information Theory 113–124. IT-2.

Clark, Alexander, and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the
Stimulus. Wiley-Blackwell.

Comon, H., M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. 2007. Tree automata techniques and applications. Available on: http:
//tata.gforge.inria.fr/. Release October, 12th 2007.

Davis, Martin D., and Elaine J. Weyuker. 1983. Computability, Complexity and Languages.
Academic Press.

93

draft—February 11, 2025 © J. Heinz

Dolatian, Hossep, and Jeffrey Heinz. 2020. Computing and classifying reduplication with
2-way finite-state transducers. Journal of Language Modelling 8:179–250.

Enderton, Herbert B. 1972. A Mathematical Introduction to Logic. Academic Press.

Enderton, Herbert B. 2001. A Mathematical Introduction to Logic. 2nd ed. Academic Press.

Engelfriet, Joost, and Hendrik Jan Hoogeboom. 1999. Tree-walking pebble automata. In
Jewels are Forever: Contributions on Theoretical Computer Science in Honor of Arto
Salomaa, edited by Juhani Karhumäki, Hermann Maurer, Gheorghe Păun, and Grzegorz
Rozenberg, 72–83. Berlin, Heidelberg: Springer Berlin Heidelberg.

Filiot, Emmanuel, and Pierre-Alain Reynier. 2016. Transducers, logic and algebra for func-
tions of finite words. ACM SIGLOG News 3:4–19.

Gold, E.M. 1967. Language identification in the limit. Information and Control 10:447–474.

Graf, Thomas. 2011. Closure properties of Minimalist derivation tree languages. In LACL
2011, edited by Sylvain Pogodalla and Jean-Philippe Prost, vol. 6736 of Lecture Notes in
Artificial Intelligence, 96–111. Heidelberg: Springer.

Graf, Thomas. 2020. Curbing feature coding: Strictly local feature assignment. In Proceed-
ings of the Society for Computation in Linguistics 2020, 224–233. New York, New York:
Association for Computational Linguistics.
URL https://aclanthology.org/2020.scil-1.27

Graf, Thomas. 2022. Subregular linguistics: bridging theoretical linguistics and formal gram-
mar. Theoretical Linguistics 48:145–184.

Graf, Thomas, and Aniello De Santo. 2019. Sensing tree automata as a model of syntactic
dependencies. In Proceedings of the 16th Meeting on the Mathematics of Language, 12–26.
Toronto, Canada: Association for Computational Linguistics.
URL https://aclanthology.org/W19-5702

Harrison, Michael A. 1978. Introduction to Formal Language Theory. Addison-Wesley Pub-
lishing Company.

Hedman, Shawn. 2004. A First Course in Logic. Oxford University Press.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry 41:623–661.

Heinz, Jeffrey. 2016. Computational theories of learning and developmental psycholinguistics.
In The Oxford Handbook of Developmental Linguistics, edited by Jeffrey Lidz, William
Synder, and Joe Pater, chap. 27, 633–663. Oxford, UK: Oxford University Press.

Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In Phonolog-
ical Typology, edited by Larry Hyman and Frans Plank, Phonetics and Phonology, chap. 5,
126–195. De Gruyter Mouton.

94

draft—February 11, 2025 © J. Heinz

Heinz, Jeffrey, Colin de la Higuera, and Menno van Zaanen. 2015. Grammatical Inference for
Computational Linguistics. Synthesis Lectures on Human Language Technologies. Morgan
and Claypool.

Heinz, Jeffrey, and William Idsardi. 2011. Sentence and word complexity. Science
333:295–297.

Heinz, Jeffrey, and William Idsardi. 2013. What complexity differences reveal about domains
in language. Topics in Cognitive Science 5:111–131.

Heinz, Jeffrey, and Regine Lai. 2013. Vowel harmony and subsequentiality. In Proceedings
of the 13th Meeting on the Mathematics of Language (MoL 13), edited by Andras Kornai
and Marco Kuhlmann, 52–63. Sofia, Bulgaria.

Heinz, Jeffrey, and José Sempere, eds. 2016. Topics in Grammatical Inference. Berlin
Heidelberg: Springer-Verlag.

de la Higuera, Colin. 1997. Characteristic sets for polynomial grammatical inference. Machine
Learning 27:125–138.

de la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press.

Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 1979. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley.

Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 2001. Introduction to Automata The-
ory, Languages, and Computation. Boston, MA: Addison-Wesley.

Howard, Irwin. 1972. A directional theory of rule application in phonology. Doctoral disser-
tation, Massachusetts Institute of Technology.

Huybregts, Riny. 1984. The weak inadequacy of context-free phrase structure grammars. In
Van periferie naar kern, edited by Ger de Haan, Mieke Trommelen, and Wim Zonneveld,
81–99. Dordrecht, The Netherlands: Foris.

Jardine, Adam. 2016. Computationally, tone is different. Phonology 32:247–283.

Jardine, Adam, Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2014. Very efficient learn-
ing of structured classes of subsequential functions from positive data. In Proceedings of
the Twelfth International Conference on Grammatical Inference (ICGI 2014), edited by
Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka, vol. 34, 94–108. JMLR: Work-
shop and Conference Proceedings.

95

draft—February 11, 2025 © J. Heinz

Ji, Jing, and Jeffrey Heinz. 2020. Input strictly local tree transducers. In Proceedings of
the 14th International Conference on Language and Automata Theory and Applications
(LATA 2020), edited by A. Leporati, C. Martín-Vide, D. Shapira, and C. Zandron, Lecture
Notes in Computer Science, 369–381. Springer.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The Hague: Mou-
ton.

Jurafsky, Daniel, and James Martin. 2008a. Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Speech Recognition, and Computational Linguistics.
2nd ed. Upper Saddle River, NJ: Prentice-Hall.

Jurafsky, Daniel, and James Martin. 2008b. Speech and Language Processing: An Introduc-
tion to Natural Language Processing, Speech Recognition, and Computational Linguistics.
2nd ed. Prentice-Hall.

Kaplan, Ronald, and Martin Kay. 1994. Regular models of phonological rule systems. Com-
putational Linguistics 20:331–378.

Kisseberth, Charles. 1970. On the functional unity of phonological rules. Linguistic Inquiry
1:291–306.

Kleene, S.C. 1956. Representation of events in nerve nets. In Automata Studies, edited by
C.E. Shannon and J. McCarthy, 3–40. Princeton University. Press.

Knight, Kevin, and Jonathan May. 2009. Applications of weighted automata in natural
language processing. In Handbook of Weighted Automata, edited by Manfred Droste,
Werner Kuich, and Heiko Vogler, Monographs in Theoretical Computer Science, chap. 14.
Springer.

Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with
recognizable tree languages. In LACL 2011, edited by Sylvain Pogodalla and Jean-Philippe
Prost, vol. 6736 of Lecture Notes in Artificial Intelligence, 129–144. Berlin: Springer.

Lambert, Dakotah. 2022. Unifying classification schemes for languages and processes with
attention to locality and relativizations thereof. Doctoral dissertation, Stony Brook Uni-
versity.
URL https://vvulpes0.github.io/PDF/dissertation.pdf/

Lambert, Dakotah. 2024. System description: A theorem-prover for subregular systems: The
language toolkit and its interpreter, plebby. In Functional and Logic Programming, edited
by Jeremy Gibbons and Dale Miller, 311–328. Singapore: Springer Nature Singapore.

Lothaire, M., ed. 2005. Applied Combinatorics on Words. 2nd ed. Cmbridge University
Press.

96

draft—February 11, 2025 © J. Heinz

Maletti, Andreas. 2009. Minimizing deterministic weighted tree automata. Information and
Computation 207:1284 – 1299.

McCollum, Adam G., Eric Baković, Anna Mai, and Eric Meinhardt. 2020. Unbounded
circumambient patterns in segmental phonology. Phonology 37:215–255.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata. MIT Press.

Mielke, Jeff. 2008. The Emergence of Distinctive Features. Oxford: Oxford University Press.

Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing. Compu-
tational Linguistics 23:269–311.

Mohri, Mehryar. 2005. Statistical natural language processing. In Applied Combinatorics on
Words, edited by M. Lothaire. Cambridge University Press.

Partee, Barbara, Alice ter Meulen, and Robert Wall. 1993. Mathematical Methods in Lin-
guistics. Dordrect, Boston, London: Kluwer Academic Publishers.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint interaction in
generative grammar. Tech. Rep. 2, Rutgers University Center for Cognitive Science.

Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint Interaction in
Generative Grammar . Blackwell Publishing.

Roark, Brian, and Richard Sproat. 2007. Computational Approaches to Morphology and
Syntax. Oxford: Oxford University Press.

Roche, Emmanuel, and Yves Schabes. 1997. Finite-State Language Processing. MIT Press.

Rogers, Hartley. 1967. Theory of Recursive Functions and Effective Computability. McGraw
Hill Book Company.

Rogers, James. 1998. A Descriptive Approach to Language-Theoretic Complexity. Stanford,
CA: CSLI Publications.

Rogers, James, and Jeffrey Heinz. 2014. Model-Theoretic Phonology. Tübingen, Germany.
Course taught at the 2014 European Summer School for Logic, Language, and Information
(ESSLI).

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,
and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In The Math-
ematics of Language, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol.
6149 of Lecture Notes in Artifical Intelligence, 255–265. Springer.

97

draft—February 11, 2025 © J. Heinz

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean
Wibel. 2013. Cognitive and sub-regular complexity. In Formal Grammar , edited by Glyn
Morrill and Mark-Jan Nederhof, vol. 8036 of Lecture Notes in Computer Science, 90–108.
Springer.

Rogers, James, and Dakotah Lambert. 2019. Some classes of sets of structures definable
without quantifiers. In Proceedings of the 16th Meeting on the Mathematics of Language,
63–77. Toronto, Canada: Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/W19-5706

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information 20:329–342.

Sakarovitch, Jaques. 2009. Elements of Automata Theory. Cambridge University Press.
Translated by Reuben Thomas from the 2003 edition published by Vuibert, Paris.

Scott, Dana, and Michael Rabin. 1959. Finite automata and their decision problems. IBM
Journal of Research and Development 5:114–125.

Shieber, Stuart. 1985. Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8:333–343.

Sipser, Michael. 1997. Introduction to the Theory of Computation. PWS Publishing Com-
pany.

Stabler, Edward P. 2019. Three mathematical foundations for syntax. Annual Review of
Linguistics 5:243–260.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Journal of Computer
and Systems Sciences 25:370–376.

98

