
OXFORD SURVEYS IN SYNTAX AND MORPHOLOGY

GENERAL EDITOR: Robert D Van Valin, Jr, Heinrich-Heine Universitat Dusseldorf

& University at Buffalo, The State University of New York

ADVISORY EDITORS: Guglielmo Cinque, University ofVenice; Daniel Everett,
Illinois State University; Adele Goldberg, Princeton University; Kees Hengeveld,
University of Amsterdam; Caroline Heycock, University of Edinburgh; David
Pesetsky, MIT; Ian Roberts, University of Cambridge; Masayoshi Shibatani, Rice
University; Andrew Spencer, University of Essex; Tom Wasow, Stanford

University

PUBlISHED

I. Grammatical Relations
Patrick Farrell
2" Morphosyntactic Change
Olga Fischer
3. Information Structure: the Syntax-Discourse Interface
Nomi Erteschik- Shit
4. Computational Approaches to Morphology and Syntax
Brian Roark and Richard Sproat
5, Constituent Structure
Andrew Carnie

IN PREPARATION

The Acquisition ofSyntax and Morphology
Shanley Allen and Heike Behrens

The Processing of Syntax and Morphology
Ina Bornkessel-Schlesewsky and Matthias Schlesewesky

Morphology and the Lexicon
Daniel Everett

Grammatical Relations
Revised second edition
Patrick Farrell

The Phonology-Morphology Interface
Sharon Inkelas

The Syntax-Semantics Interface
Jean-Pierre Koenig

Complex Sentences
Toshio Ohori

Syntactic Categories
by Gisa Rauh

Language Universals and Universal Grammar
Anna Siewierska

Argument Structure: The Syntax-Lexicon Interface
Stephen Weschler

Computational
Approaches to
Morphology
and Syntax

BRIAN ROARK AND RICHARD SPROAT

OXFORD
UNIVERSITY PRESS

OXFORD
UNIVERSITY PRESS

Great Clarendon Street, Oxford oX2 6DP

Oxford University Press is a department of the University of Oxford
It furthers the University's objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Aucklmd Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Dellii Shmghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic Frmce Greece
Guatemala Hungary Italy Japm Polmd Portugal Singapore
South Korea Switzerlmd Thailand Tmkey Ukraine Vietnam

Oxford is a registered tmdemark of Oxford University Press
in the UK md in certain other countries

Published in the United States
by Oxford University Press Inc" New York

© Brim Roark, Richard Sproat 2007

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2007

All rights reserved" No part of this publication may be reproduced,
stored in a retrieval system, or trmsmitted, in my form or by my mems,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization" Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in my other binding or cover
and you must impose the same condition on anyacquirer

British Library Cataloguing in Publication Data

Data available

Library of Congress Cataloging in Publication Data

Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by
BiddIes Ltd" King's Lynn, Norfolk

ISBN 978-0-19-927477-2 (Hbk)
978-0-19-927478-9 (Pbk)

13579 1086 4 2

Contents

General preface IX

Preface x
List ofFigures XlI

List ofTables xv
Abbreviations XVll

1. Introduction and Preliminaries 1
1.1. Introduction 1
1.2. Finite-State Automata and Transducers 2
1..3. Weights and Probabilities 8
1.4· Weighted Finite-State Automata and Transducers 9
1.5· A Synopsis ofAlgorithmic Issues 13
1.6. Computational Approaches to Morphology and Syntax 16

PART I. COMPUTATIONAL APPROACHES
TO MORPHOLOGY

2. The Formal Characterization of Morphological
Operations 23
2.1. Introduction 24
2.2. Syntagmatic Variation 27

2.2.1. Simple Concatenation 27
2.2.2. Interlude: Prosodic Circumscription 29
2.2·3· Prosodically Governed Concatenation 31
2.2·4· Phonological Changes Induced by Affixation 35
2.2·5· Subsegmental Morphology .36
2.2.6. Subtractive Morphology .37
2.2·7· Extrametrical Infixation 39
2.2.8. Positively Circumscribed Infixation 40
2.2·9· Root-and-Pattern Morphology 41

2.2.10. Morphomic Components 46
2·3· Paradigmatic Variation 49
2·4· The Remaining Problem: Reduplication 5.3
2·5· Summary 61

VI CONTENTS
CONTENTS Vll

3. The Relevance of Computational Issues for
Morphological Theory
3.1. Introduction: Realizational versus

Incremental Morphology
3.2. Stump's Theory
3.3. Computational Implementation of Fragments

3.J.l. Stem Alternations in Sanskrit
3.3.2. Position Classes in Swahili
3.3.3. Double Plurals in Breton

3-4. Equivalence of Inferential-Realizational and
Lexical-Incremental Approaches: A Formal Analysis

3.5. Conclusions
Appendix 3A: Lextools
Appendix 3B: XFST Implementation of Sanskrit

4. A Brief History of Computational Morphology

4.1. Introduction
4.2. The KIMMO Two-Level Morphological Analyzer

4.2.1. KIMMO Basics
4.2.2. FST Intersection
4.2.3. Koskenniemi's Rule Types
4.2.4. Koskenniemi's System as a Historical A<:fident

4.3. Summary

5. Machine Learning of Morphology
5.1. Introduction
5.2. Goldsmith, 2001

5.2.1. Candidate Generation
5.2.2. Candidate Evaluation

5.3. Schone and Jurafsky, 2001
5.4. Yarowsky and Wicentowski, 2001
5.5. Discussion

PART II. COMPUTATIONAL APPROACHES
TO SYNTAX

6. Finite-state Approaches to Syntax
6.1. N-gram Models

6.1.1. Background
6.1.2. Basic Approach

62

62
66
67
68

73
79

83
85
86

95

100

100

102

103
105

109
110

113

116

116

119

121
122
124
129
132

139
139
139
141

6.1.3. Smoothing
6.1.4. Encoding
6.1.5. Factored Language Models

6.2. Class-based Language Models
6.2.1. Forward Algorithm

6.3. Part-of-Speech Tagging
6.3-1. Viterbi Algorithm
6.3.2. Efficient N-best Viterbi Decoding
6.3.3. Forward-backward Algorithm
6.3-4. Forward-backward Decoding
6.3.5. Log-linear Models

6.4. NP Chunking and Shallow Parsing
6.5. Summary

7. Basic Context-free Approaches to Syntax
7.1. Grammars, Derivations and Trees
7.2. Deterministic Parsing Algorithms

7.2.1. Shift-reduce Parsing
7.2.2. Pushdown Automata
7.2.3. Top-down and Left-corner Parsing

7.3. Non-deterministic Parsing Algorithms
7.301. Re-analysis and Beam-search
7.3.2. CYK Parsing
7.3.3. Earley Parsing
7.34 Inside-outside Algorithm
7.3.5. Labeled Recall Parsing

74 Summary

8. Enriched Context-free Approaches to Syntax
8.1. Stochastic CFG-based Parsing

8.1.1. Treebanks and PCFGs
8.1.2. Lexicalized Context-free Grammars
8.1.3. Collins Parser
8.1.4. Charniak Parser

8.2. Dependency Parsing
8.3. PCFG-based Language Models
84 Unsupervised Grammar Induction
8.5. Finite-state Approximations
8.6. Summary

143
148

15°
151

154
159
160
162
164
168
170

173
174

176

176
180
181
182
184
189
191

19.3
201
203

206
208

209
209
210

221
226

23°
234
238
240

244
246

viii CONTENTS

9. Context-sensitive Approaches to Syntax
9.1. Unification Grammars and Parsing
9.2 • Lexicalized Grammar Formalisms and Parsing

9.2.1. Tree-adjoining Grammars
9.2.2. Combinatory Categorial Grammars
9.2..3. Other Mildly Context-sensitive Approaches
9.2 4 Finite-state and Context-free Approximations

9.3. Parse Selection
9.3.1. Stochastic Unification Grammars
9.3.2. Data-oriented Parsing
9.3.3. Context-free Parser Re-ranking

9.4. Transduction Grammars
9.5. Summary

References
Name Index
Language Index
Index

248
248
257
258
265
270
271

273
273
275
277
279
28.3

285
.307

.312

.313

General Preface

Oxford Surveys in Syntax and Morphology provides overviews of the
major approaches to subjects and questions at the centre of linguistic
research in morphology and syntax. The volumes are accessible, critical,
and up-to-date. Individually and collectively they aim to reveal the
field's intellectual history and theoretical diversity. Each book pub
lished in the series will characteristically contain: (1) a brief historical
overview of relevant research in the subject; (2) a critical presentation
of approaches from relevant (but usually seen as competing) theoret
ical perspectives to the phenomena and issues at hand, including an
objective evaluation of the strengths and weaknesses of each approach
to the central problems and issues; (3) a balanced account of the cur
rent issues, problems, and opportunities relating to the topic, showing
the degree of consensus or otherwise in each case. The volumes will
thus provide researchers and graduate students concerned with syntax,
morphology, and related aspects of semantics with a vital source of
information and reference.

The current volume, Computational Approaches to Morphology and
Syntax by Brian Roark and Richard Sproat, is the first volume in the
series to examine analyses of morphology and syntax from outside of
linguistics proper, in this case from computer science. The discussion
presupposes a basic background in computational linguistics and not
only surveys various computational procedures but also draws out their
implications for morphological and syntactic theories.

Robert D. Van Valin, Jr
General Editor

Heinrich Heine University, Dusseldorf

University at Buffalo, The State University of New York

Preface

This book provides an introduction to the current state-of-the-art in
computational modeling of syntax and morphology, with a particular
focus on the computational models that are used for these problems.
As such it is not intended as a "cookbook". The reader should not
in general expect to come away knowing how a particular system is
implemented; rather he or she should expect to understand the general
algorithms that are involved in implementing such a system. So, for
example, in our treatment of computational models of morphology,
we shall focus largely on the regular operations that are involved in
describing morphological phenomena. In principle there are a number
of different ways that one might implement a morphological analyzer
for a particular language, so rather than focus on such particulars, we
prefer to give the reader an understanding of the formal operations
that any such system would either implement directly or be formally
equivalent to.

Where possible we shall attempt to show the relevance of compu
tational models to theoretical questions in linguistic~. There has tra
ditionally been a bit of a disconnect between theoretical and computa
tionallinguistics. Computational linguists have often been uninterested
in the subtler questions that trouble theoretical linguists, while theoret
icallinguists have often been unimpressed by computational arguments
for one or another position. This state of affairs is poised to change as
larger and larger sources oflinguistic data become available for linguists
to test theoretical claims, and more and more well-designed linguistic
features are needed for ever more sophisticated machine learning algo
rithms.

Needless to say we have not been able to cover all topics that are
relevant to the theme of the book. In most cases, we hope, this is not
because we are ignorant of said topics, but merely because we have
chosen to emphasize certain aspects of the problem over others. Where
possible and relevant, we have justified such omissions.

Computational linguistics is an interdisciplinary field. As anyone
who has taught an introductory course on this topic can attest, it is a
real challenge to uniformly engage students from different disciplinary

PREFACE Xl

backgrounds. Every attempt has been made to make the material in this
book broadly accessible, but many readers will find unfamiliar notation
of one form or another. For some, linguistic glosses for an obscure
language may be intimidating; for others, pseudocode algorithms with
operations on sets or vectors. In many cases, apparently complex nota
tion is actually relatively simple, and is used to facilitate presentation
rather than complicate it. We encourage readers to spend the time to
understand unfamiliar notation and work through examples.

There are a number of people who have not been involved in the
production of this book, but who have had a profound influence on
our understanding of the issues that we discuss, and we would like
to acknowledge their influence here. First and foremost we would like
to thank the former AT&T Labs researchers-Michael Riley, Mehryar
Mohri, Fernando Pereira, and Cyril Allauzen-who were instrumental in
the creation of the AT&T weighted finite-state tools upon which much
of our own work has been based. We would also like to acknowledge
Mark Johnson, Eugene Charniak, and Michael Collins for insightful
discussions of issues related to syntactic processing, language modeling,
and machine learning. Ken Church has had an important influence
on the field of computational linguistics as a whole, and directly or
indirectly on our own work.

On the material presented here, we have received helpful feedback
from Lauri Karttunen, Dale Gerdemann, audiences at the Workshop
on Word-Formation Theories (25-26 June, 2005, Presov, Slovakia) and
the Universite du Quebec aMontreal, and classes at the University of
Illinois at Urbana-Champaign and Oregon Health & Science Univer
sity. Thanks to Emily Tucker, Meg Mitchell, and Kristy Hollingshead
for detailed comments on early drafts. We have also benefited from
comments from two anonymous reviewers for Oxford University Press.

Finally, we would like to thank our editors, Robert Van Valin at the
University at Buffalo and John Davey at Oxford University Press, for
their support and patience with our continual delays in bringing this
work to completion.

34

2·9

4·1.

2.8.

LIST OF FIGURES Xlll

5·3 The log v:: estimator from Yarowsky and Wicentowski (2001), smoothed and

normalized to yield an approximation to the probability density function for the

VBDIVB ratio 131

6.1. Deterministic finite-state representation of n-gram models with negative log

probabilities (tropical semiring) 149

62. Hidden Markov Model view of class-based language modeling 152

5 6.,3. Finite-state transducer view of class-based language modeling 153

64· Pseudocode of the Forward algorithm for HMM class-based language modeling 156
6

Example of the Forward algorithm for some made-up probabilities for a made-up6·5·
sentence 157

10
Pseudocode of the Viterbi algorithm for HMM decoding 16066.

14
Example of the Viterbi algorithm using the probabilities from Figure 6.5 1616."1

15
Pseudocode of a simple N-best Viterbi algorithm for HMM decoding, and an6.8.

34 improved algorithm for the same.. 163

38
6·9 Pseudocode of an iteration of the Forward-backward algorithm for HMM

39 parameter estimation 166

40 6..10. Backward probabilities and posterior probabilities using the example from Figure 6.5 167

45 6..11.. Representing NP Chunks as labeled brackets and as B/IIO tags 174

"11. A context-free grammar 177

46 7.2. Parse tr'ee for example string 178

55 "1,3 A context-free grammar in Chomsky Normal Form 179

"l4 One-to-one mapping of parse trees corresponding to original and Chomsky
56 Normal Form CFGs 180

"15 The initial moves in the shift-reduce derivation, encoded as a pushdown automaton 183
60

Tree resulting from a left-corner grammar transform 1877·6

71 "1"1 The order of node recognition in the (a) shift-reduce; (b) top-down; and (c)

left-corner parsing algorithms 189

78 Three possible parse trees for the example sentence 190
72

7·9· Rule productions from a PCFG covering example trees 191

73 7·10. A chart representation ofthe first tree in Figure 7.8 193

711. Chomsky Normal Form PCFG weakly equivalent to the grammar in Figure "19 196

74 "1.l2. All constituent spans spanning the string, given the CNF PCFG in Figure "111 197

713.. Pseudocode ofbasic chart-filling algorithm 198

75 "114. Pseudocode of the CYK algorithm 200

"115· Two different chart cell orderings for the CYK algorithm 201
77

Dotted rules at start index x =0 from the PCFG in Figure "111716. 203
78

Left-child and right-child configurations for calculating the backward probability71"1. 205
82

8.1. Example tree from the Penn Wall St. Journal Treebank (Marcus et al.. 1993) 211
104

Four right-factored binarizations of a flat NP: (a) standard right-factorization;8.2.

(b) Markov order-2; (c) Markov order-I; (d) Markov order-o 215
126

8,3. (a) Parent label annotated onto non-PaS-tag children labels; (b) First two
128

children labels annotated onto parent label 218

Transducer L, which converts> to -um- and inserts [+be] at the end of the word

Representation of the Arabic duuris, following Beesley and Karttunen (2000)

Filler acceptors representing the root drs and the template acceptor CWCVC,
following Beesley and Karttunen (2000)

2"1 A transducer for Gothic Class VII preterite reduplication

Schematic form for a transducer that maps a Gothic stem into a form that is

indexed for copy checking

The Gothic Class VII preterite form haihald "held" under Morphologi2.aJ

Doubling theory

Lextools symbol file for implementation of a mini-fragment ofSanskrit,

following Stump (2001)

Transducers 1-,3 for implementation of a mini-fragment of Sanskrit, following

Stump (2001)

Transducers 4-5 for implementation of a mini-fragment of Sanskrit, following

Stump (2001)

Transducers 6-8 for implementation of a mini-fragment ofSanskrit, following

Stump (2001)

Transducer 9 and lexicon for an implementation of a mini-fragment ofSanskrit,

following Stump (2001)

Lextools symbol file for an implementation ofa mini-fragment ofSwalIili,

following Stump (2001)

An implementation of a mini-fragment of SwalIili, following Stump (2001)

An implementation ofa mini-fragment of Breton

Schematic representation of Koskenniemi's two-level morphology system

51. A sample trie showing branches for potential suffixes NULL, -s and -ed: from

Schone and Jurafsky (2001, Figure 2)

Semantic transitive closure ofPPMVs, from Schone and Jurafsky (2001)52

.3·8.

,3.6

3·2.

list of Figures

2.6..

2·4

1.1 A simple finite-state automaton accepting the language ab*cdd*e

1.2. A simple finite-state transducer that computes the relation

(a:a)(b:b)*(c:gled: fled: f)*(e:e)

1.,3. Representations of several pronunciations of the word data, with transcriptions

inARPAbet

1.4 Two transducers with epsilons

1.5. Naive composition of the transducers from Figure 1.4

2.1. Yowlumne durative template CVCVV(C)

2.2. Koasati plural truncation transducer

2.,3. Marker insertion transducer M for Bontoc infixation

XlV LIST OF FIGURES

84 Example tree from Figure 8.1 with head children in bold, and lexical heads in

square brackets

85 (a) Basic 5-ary lexicalized CFG production; (b) Same production, factored into

bilexical CFG productions; and (c) Factored bilexical productions with a Markov

assumption

8.6. Complement annotated tree for use in Collins' Model 2

8;Z Two-stage mapping from parse tree to dependency tree

88. Three possible dependency trees for the trees in Figure ;:8

8.9 Unlabeled parse tree, and cells in chart

8.10.. Illustration of the effect of the Mohri and Nederhof (2001) grammar transform

on trees, resulting in strongly regular grammars

9.1. Use of co-indexation to indicate that the subject of the main clause is the same as

the (empty) subject of the embedded clause; and a re-entrant graph

representation ofthe same

9.2. Tree of f-structures for string "the player wants to play"

9,3. Tree of partially unexpanded f-structures for string "the player wants to play"

94. Elementary and derived trees

9.5 Unlabeled derivation trees, showing either elementary tree number or the anchor

word of the elementary tree

96.. Chart built through the CYK-like algorithm for TAGs, using elementary trees in

Figure 9.4

9.;Z Pseudocode of chart-filling algorithm for Tree-adjoining Grammars

9.8. Pseudocode of algorithms called by chart-filling algorithm for TAGs in Figure 97

99 CCG categories for example string from last section

910. CCG derivation using forward and backward application, represented as a tree

911 CCG derivation for non-constituent coordination using both type lifting and

forward composition

9..12. Two valid parse trees

9.13 Six DOP fragments out of a possible sixteen for this parse of the string "the player plays"

9.14 Alignment English to Yodaish that cannot be captured using ITG

915. Dependency tree and head transducer for example in Figure 914.

222

224

229

233

235

242

247

251

252

260

261

268

274

276

282

283

List of Tables

11. Phrasal reduplication in Bambara

1..2 Closure properties for regular larrguages arrd regular relations

21. Comparative affixation in English

2.2 Template- and non-template-providing affixes in Yowlumne

2,3. Diminutive suffixation in German

2.4 Irish first declension genitive formation

25 Initial consonarrt mutation in Welsh

2.6 Koasati plural stem truncation

2..;: Infixation of -um- in Bontoc

2.8. Infixation in Ulwa

2.9. Arabic active verb stems derived from the root ktb "notion of writing"

2.10 Latin third stem derivatives

2.11. The five major Latin noun declensions

2..12. Rewrite rules mapping concrete morphosyntactic features to an abstract

morphomic representation

2.13. Fragment for Latin nominal endings

2.14. Gothic Class VII preterites after Wright (1910)

215. Unbounded reduplication in Bambara after Culy (1985)

2.16. Basic and modified stems in Sye (Inkelas and Zoll, 1999)

3.1. Partial paradigm of Finnish noun talo "house'; after Spencer

3 2. The four logically possible morphological theory types, after Stump (2001)

3.3. Stem alternation in the masculine paradigm of Sanskrit bhagavant "fortunate"

(=Stump's Table 6.1)

,3.4. Stem alternation in the masculine paradigm ofSanskrit tasthivans "having stood"

(=Stump's Table 6.3)

.35. Positional classes in Swahili, for taka "warrt" after Stump (2001, Table 5..1)

3

7

31

32

.35

36

37

38

39

40

42

47

50

52

53

54

55

59

64

65

68

51.. Top ten signatures for English from Goldsmith (2001), with a sample ofrelevant stems 123

5.2 Comparison of the F-scores for suffixing for full Schone arrd Jurafsky method with

Goldsmith's algorithm for English, Dutch, and Germarr 129

53 The performance of the Yarowsky-Wicentowski algorithm on four classes of

English verbs from Yarowsky arrd Wicentowski (2001, Table 9) 133

5-4 Comparison of three methods of morphological induction 134

7.1.. Shift-reduce parsing derivation 181

7.2 .. Top-down parsing derivation 184

7.3 .. Left-corner parsing derivation

;:4. Top-down derivation with a left-corner grammer

186

188

xvi LIST OF TABLES

81 Baseline results of CYK parsing using different probabilistic context-free grammars

82. Parent and initial children annotated results of CYK parser versus the baseline, for

Markov order-2 factored granlffiars

8..3 Performance of Collins' Models 1and 2 versus competitor systems

8.4 Performance ofCharniak's two versions versus Collins' models

9.1. Example sentences illustrating grammaticality constraint

9. 2 Transduction grammar notation from Lewis and Stearns (1968) and

corresponding Inversion Transduction grammar notation from Wu (1997) for

ternary production

217

219

228

249

281

ABL

ACC

Adj

Adv

argmax

argmin

ASR

BITG

CCG

CFG

CKY

CLR

CNF

COMP

CRF

CS

CYK

DAT

DATR

DECOMP

DEF

Det

DFA

DOP

DP

DT

EM

exp

FEM

FSA

FSM

FSRA

FST

fut

FV

Abbreviations

ablative

accusative

Adjective

Adverb

the value resulting in the highest score

the value resulting in the lowest score

Automatic Speech Recognition

Bracketing ITG

Combinatory Categorial Grammar

Context-free Grammar

variant of CYK

function tag in Penn Treebank (close-related)

Chomsky Normal Form

complement

Conditional Random Fields

Context Similar itY

Cocke-Younger-Kasami dynamic programming parsing algor ithm

dative

a language for lexical knowledge representation

a module of the MITalk text-to-speech synthesis system

definite

Determiner

Deterministic Finite Automaton

Data Oriented Parsing

Determiner phrase

Determiner POS-tag (Penn Treebank)

Expectation Maximization

exponential

feminine

Finite-state Automaton

Finite-state Machine

Finite-state Registered Automaton

Finite-state Transducer

future

Final vowel

xviii ABBREVIATIONS ABBREVIATIONS XIX

GCFG

GEN

GEN

HMM

HPSG

iff

INF

IPA

ITG

JJ

KATR

KIMMO

LC

LCFRS

LFG

LHS

LL(k)

log

LP

LR

LR(k)

LS

MAS

max

MaxEnt

MCTAG

MD

MDL

min

ML

MT

N

NCS

NER

NLP

NN

NNP

NNS

NOM

Generalized Context-free Grammar

Candidate generation mechanism in OT

genitive

Hidden Markov Model

Head-driven Phrase Structure Grammar

if and only if

infinitive

International Phonetic Alphabet

Inversion Transduction Grammars

Adjective POS-tag (Penn Treebank)

Kentucky version of DATR

Koskennierni's first name, used first by Lauri Karttunen to refer to the two-level

morphology system that Koskenniemi invented

left context

Linear context-free rewriting systems

Lexical Functional Grammar

Left-hand side ofa context-free production

Left-to-right, Leftmost derivation with k lookahead items

logarithm

Labeled precision

Labeled recall

Left-to-right, Rightmost derivation with k lookahead items

Levenshtein similarity

masculine

maximum

Maximum Entropy

Multicomponent TAG

Modal verb POS-tag (Penn Treebank)

Minimum description length

minimum

Maximum Likelihood

Machine Translation

Noun

Normalized cosine score

Named entity recognition

Natural Language Processing

common noun POS-tag (Penn Treebank)

proper noun POS-tag

plural common noun POS-tag (Penn Treebank)

nominative
fJ

..•.~.

NP

NUM

OT

PA

PARC

PARSEVAL

PC

PCFG

PF

PL

POS

PP

PPMV

RB

RC

RHS

RR

<s>

<Is>

S

SBAR

SG

SLM

SPE

SUBJ

SuperARV

TAG

TDP

TMP

V

VB

VBD

VBG

VBN

VBP

VBZ

VP

WCFG

WFSA

WFST

noun phrase

number

Optimality Theory

Pushdown Automaton

Palo Alto Research Center

Parse evaluation metrics

Personal computer

Probabilistic CFG

paradigm function

plural

Part-of-speech

Prepositional phrase

pair of potential morphological variants

Adverb POS-tag (Penn Treebank)

right context

Right-hand side ofa context-free production

realization rule

beginning of string

end ofstring

sentence

subordinate clause

Singular

Structured language model

Sound Pattern of English

Subject

a finite-state class-based language modeling approach

Tree-adjoining Grammar

Top-down parsing

temporal

Verb

Infinitival verb POS-tag (Penn Treebank)

Past tense verb POS-tag (Penn Treebank)

Gerund verb POS-tag (Penn Treebank)

Past participle ver b POS-tag (Penn Treebank)

Non-third person singular present verb POS-tag (Penn Treebank)

Third person singular present verb POS-tag (Penn Treebank)

Verb phrase

Weighted CFG

Weighted FSA

Weighted FST

xx ABBREVIATIONS

wSJ Wall St. Journal

XFST Xerox FST tools

XLE Xerox Linguistic Environment

XTAG TAG grammar from University of Pennsylvania

1

Introduction and Preliminaries

1.1 Introduction

Computational approaches to morphology and syntax are generally
concerned with formal devices, such as grammars and stochastic mod
els, and algorithms, such as tagging or parsing. They can range from
primarily theoretical work, looking at, say, the computational com
plexity of algorithms for using a certain class of grammars, to mainly
applied work, such as establishing best practices for statistical language
modeling in the context ofautomatic speech recognition. Our intention
in this volume is to provide a critical overview ofthe key computational
issues in these domains along with some (though certainly not all)
of the most effective approaches taken to address these issues. Some
approaches have been known for many decades; others continue to be
actively researched.

In many cases, whole classes of problems can be addressed using
general techniques and algorithms. For example, finite-state automata
and transducers can be used as formal devices for encoding many mod
els, from morphological grammars to statistical part-of~speech taggers.
Algorithms that apply to finite-state automata in general apply to these
models. As much as possible, we will present specific computational
approaches to syntax and morphology within the general class to which
they belong. Much work in these areas can be thought of as variations
on certain themes, such as finite-state composition or dynamic pro
gramming.

The book is organized into two parts: approaches to morphology and
approaches to syntax. Since finite-state automata and transducers will
figure prominently in much ofthe discussion in this book, in this chap
ter we introduce the basic properties of these devices as well as some
of the algorithms and applications. For reasons of space we will only
provide a high-level overview, but we will give enough references to

2 1. INTRODUCTION AND PRELIMINARIES 1.2 FINITE-STATE AUTOMATA AND TRANSDUCERS 3

1.2 Finite-State Automata and Transducers

The study of finite-state automata (FSA) starts with the notion of a
language. A language is simply a set of expressions, each of which is
built IT'Om a set of symbols from an alphabet, where an alphabet is itself
a set: typical alphabets in speech and language processing are sets of
letters (or other symbols from a writing system), phones, or words.

The languages of interest here are regular languages, which are lan
guages that can be constructed out of a finite alphabet - conventionally
denoted ~ - using one or more of the following operations:

recent work on finite automata and their applications so that interested
readers can follow up on the details elsewhere.

One thing we hope to convey here is how to think of what automata
compute in algebraic and set-theoretic terms. It is easy to get lost in
the details of the algorithms and the machine-level computations. But
what is really critical in understanding how finite automata are used
in speech and language processing is to understand that they compute
relations on sets. One of the critical insights of the early work by Kaplan
and Kay from the 1970S (reported finally in Kaplan and Kay, 1994) was
that in order to deal with complex problems such as the compilation
of context-sensitive rewrite rules into transducers, one has to abandon
thinking of the problem at the machine level and move instead to
thinking of it at the level of what relations are being computed. Just
as nobody can understand the wiring diagram of an integrated circuit,
neither can one really understand a finite automaton of any complexity
by simply looking at the machine. However, one can understand them
easily at the algebraic level, and let algorithms worry about the details
of how to compile that algebraic description into a working machine.

We assume that readers will be at least partly familiar with basic
finite-state automata so we will only briefly review these. One can find
reviews of the basics of automata in any introduction to the theory of
computation such as Harrison (1978), Hopcroft and Uilman (1979), and
Lewis and Papadimitriou (1981).

Any finite set of strings from a finite alphabet is necessarily a regular
language, and using the above operations one can construct another
regular language by taking the union of two sets A and B; the concate
nation of two or more such sets (i.e. the concatenation of each string in
A with each string B); or by taking the transitive closure (i.e. zero or
more concatenations of strings from set A).

Despite their simplicity, regular languages can be used to describe
a large number of phenomena in natural language including, as we
shall see, many morphological operations and a large set of syntactic
structures. But there are still linguistic constructions that cannot be
described using regular languages. One well-known case from mor
phology is phrasal reduplication in Bambara, a language ofWest Mrica
(Culy, 1985), some examples of which are given in Table 1.1. Bambara
phrasal reduplication constructions are of the form X-o-X, where
-0- is a marker of the construction and X is a nominal phrase. The
problem is that the nominal phrase is in theory unbounded, and so
the construction involves unbounded copying. Unbounded copying
cannot be described in terms of regular languages; indeed it cannot
even be described in terms of context-free languages (which we will
return to later in the book).

A couple of important regular languages are the universal language
(denoted ~*) which consists of all strings that can be constructed out
of the alphabet ~, including the empty string, which is denoted E; and
the empty language (denoted 0) consisting of no strings.

The definition given above defines some of the closure properties
for regular languages but regular languages are also closed under the
following operations:

"whichever dog
searcher"

"whichever rice
searcher watcher"

"whichever dog"

e.g., {a, b, c} n {e, d} = {c}
e.g., {a, b, e} - {c}= {a, b}
e.g.,A= ~*-A
e.g., (abe)R =eba

denoted "n"
denoted "-"
denoted "X"
denoted "XR"

o wulu
MARKER dog
o wulunyinina
MARKER dog searcher
o malonyininafilela
MARKER rice searcher watcher

wulu
dog
wulunyinina
dog searcher
malonyininafilela
rice searcher watcher

TABLE 1..1 Phrasal reduplication in Bambara

• intersection
• difference
• complementation
• string reversal

e.g., {a, b} U {c, d} = {a, b, c, d}
e.g., abc· def =abcdef
e.g., a* denotes the set of
sequences consisting of 0 or
more a's

denoted "u"
denoted "."
denoted "*,,

• set union
• concatenation
• transitive closure

(Kleene star)

4 1. INTRODUCTION AND PRELIMINARIES 1.2 FINITE-STATE AUTOMATA AND TRANSDUCERS 5

I The cross-product of two sets creates a set of pairs, with each member of the
first set paired with each member of the second set. For example, {a, b} x {e, d} =
{(a, e),(a, d),(b, e),(b, d)}. Thus the transition relation ais from state/symbol pairs to
states.

This is a relatively abbreviated list, but sufficient to understand
the regular expressions used in this book to denote regular
languages.

\
Finite-state automata are computational devices that compute regu-

lar languages. Formally defined:

Definition 1 A finite-state automaton 1S a quintuple M = (Q, s,
F, ~, 8) where:

1. Q is a finite set ofstates
2. s is a designated initial state
3. F is a designated set offinal states
4. ~ is an alphabet ofsymbols
,5. 8 is a transition relation from Q x (~ U E) to Q, where A x B

denotes the cross-product! ofsets A and B

Kleene's theorem states that every regular language can be recognized by
a finite-state automaton; similarly every finite-state automaton recog
nizes a regular language.

db

2 An exception is Kiraz (2000), who uses n-relations, n > 2 for expressing non
concatenative Semitic morphology; see Section 2,,2,,9.

FIGURE l.I A simple finite-state automaton accepting the language ab*edd*e

A diagram of a simple finite-state automaton, which accepts the
language ab*cdd*e, is given in Figure 1.1. A string, say abbcddde, that is
in the language of the automaton is matched against the automaton as
follows: starting in the initial state (here, state 0), the match proceeds by
reading a symbol ofthe input string and matching it against a transition
(or arc) that leaves the current state. If a match is found, one moves
to the destination state of the arc, and tries to match the next symbol
of the input string with an arc leaving that state. If one can follow a
path through the automaton in such a manner and end in a final state
(denoted here with a double circle) with all symbols of the input read,
then the string is in the language of the automaton; otherwise it is not.
Note that the operation of intersection of two automata (see Section 1.5)

follows essentially the same algorithm as just sketched, except that one
is matching paths in one automaton against another, instead ofa string.
Note also that one can represent a string as a single-path automaton, so
that the string-matching method we just described can be implemented
as automata intersection.

We turn from regular languages and finite-state automata to regular
relations and finite-state transducers (FST). A regular relation can be
thought ofas a regular language over n-tuples ofsymbols, but it is more
usefully thought of as expressing relations between sets of strings. The
definition of a regular n-relation is as follows:

1. 0 is a regular n-relation
2. For all symbols a E [(~ U E) X ... x (~ U E)], {a} is a regular

n-relation
3. If Rl> Rz, and R are regular n-relations, then so are

(a) R1 • Rz, the (n-way) concatenation of R1 and Rz: for everyrl E

R1 and rz E Rz, rlrZ E R1 • Rz
(b) R1 U Rz
(c) R*, the n-way transitive (Kleene) closure of R.

For most applications in speech and language processing n = 2, so that
we are interested in relations between pairs of strings. 2 In what follows
we will be dealing only with 2-relations.

e.g.,(abc)? denotes {0, abc}
e.g., (a I b)? denotes the set of
strings with zero or one occurrence
of either a or b, i.e., {0, a, b}
e.g., (-.a)* denotes the set of strings
with zero or more occurrences of
anything other than a

denoted "-."

denoted "?"
denoted "I"
orU

• negation

• "zero or one"
• disjunction

Regular languages are commonly denoted via regular expressions,
which involve the use of a set of reserved symbols as notation. Some of
these reserved symbols we have already seen, such as "*", which denotes
"zero or more" of the symbol that it follows: recall that a* denotes
the (infinite) set of strings consisting of zero or more a's in sequence.
We can denote the repetition of multi-symbol sequences by using a
parenthesis delimiter: (abc)* denotes the set of strings with zero or
more repetitions of abc, that is, {0, abc, abcabc, abcabcabc, ...}.
The following summarizes several additional reserved symbols used in
regular expressions:

6 1. INTRODUCTION AND PRELIMINARIES 1.2 FINITE-STATE AUTOMATA AND TRANSDUCERS 7

FrGURE 1.2 A simple finite-state transducer that computes the relation (a:a)(b:b)*
(c:g)(d: f)(d: f)*(e:e)

Analogous to finite-state automata are finite-state transducers,
defined as follows:

Definition 2 A (2-way) finite-state transducer is a quintuple M =
(Q, s, P, b x b, 0) where:

1. Q is a finite set ofstates
2. s is a designated initial state
3. P is a designated set offinal states
4. b is an alphabet of symbols
5. 0 is a transition relation from Q x (b U EX b U E) to Q

A simple finite-state transducer is shown in Figure 1.2. With a trans
ducer, a string matches against the input symbols on the arcs, while
at the same time the machine is outputting the corresponding output
symbols. Thus, for the input string abbcddde, the transducer in Fig
ure 1.2 would produce abbgfffe. A transducer deterplines if the input
string is in the domain of the relation, and if it is, computes the corre
sponding string, or set of strings, that are in the range of the relation.

The closure properties of regular relations are somewhat different
from those of regular languages, and the differences are outlined in
Table 1.2. The major differences are that relations are not closed under
intersection, a point that will be important in Chapter 4 when we
discuss the KIMMO morphological analyzer (see Section 4.2.1); and
that relations are closed under a new property, namely composition.
Composition - denoted 0 - is to be understood in the sense of com
position of functions. If f and g are two regular relations and x a
string, then [f 0 g](x) = f (g (x)). In other words, the output of the
composition of f and g on a string x is the output that would be
obtained by first applying g to x and then applying f to the output
of that first operation.

Composition is a very useful property of regular relations. There
are many applications in speech and language processing where one
wants to factor a system into a set of operations that are cascaded
together using composition. A case in point is in the implementation

TABLE 1.2 Closure properties for regular lan
guages and regular relations

Property Languages Relations

concatenation yes yes
Kleene closure yes yes
union yes yes
intersection yes no
difference yes no
composition yes
inversion yes

of phonological rule systems. Phonological rewrite rules of the kind
used in early Generative Grammar can be implemented using regular
relations and finite-state transducers.3 Traditionally such rule systems
have involved applying a set of rules in sequence, each rule taking as
input the output of the previous rule. This operation is implemented
computationally by composing the transducers corresponding to the
individual rules.

Table 1.2 also lists inversion as one of the operations under which
regular relations are closed. Inversion consists of swapping the domain
of the relation with the range; in terms of finite-state transducers, one
simply swaps the input and output labels on the arcs. The closure of
regular relations under composition and inversion leads to the follow
ing nice property: one can develop a rule system that compiles into a
transducer that maps from one set of strings to another set of strings,
and then invert the result so that the relation goes the other way. An
example of this is, again, generative phonological rewrite rules. It is
generally easier for a linguist to think of starting with a more abstract
representation and using rules to derive a surface representation. Yet in
a morphological analyzer, one generally wants the computation to be
performed in the other direction. Thus one takes the linguist's descrip
tion, compiles it into finite-state transducers, composes these together
and then inverts the result.

Of course, regular relations resulting from such descriptions are
likely to be many-to-one, as in many input strings mapping to one
output string; for example, many underlying forms mapping to the

3 We will not discuss these compilation algorithms here as this would take us too fill
afield; the interested reader is referred to Kaplan and Kay (1994) and Mohri and Sproat
(r996),

8 1. INTRODUCTION AND PRELIMINARIES 1.4 WEIGHTED FINITE-STATE AUTOMATA AND TRANSDUCERS 9

same surface form. In such a case, the inversion yields a one-to-many
relation, resulting in the need for disambiguation between the many
underlying forms that could be associated with a particular surface
form.

1.3 Weights and Probabilities

Disambiguation in morphological and syntactic processing is often
done by way of stochastic models, in which weights can encode pref
erences for one analysis versus another. In this section, we will briefly
review notation for weights and probabilities that will be used through
out the book.

Calculating the sum or product over a large number ofvalues is very
common, and a common shorthand is to use the sum (2] or product
(0) symbols ranging over variables. For example, to sum the numbers
one through nine, we can write:

i<lO

L i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =45 (1.1)
i=l

Similarly, to multiply them:

i<lOni = 1 *2 * 3 *4 * 5 * 6 * 7 *8 *9 = 362880 (1.2)
i=l

extremely small floating point numbers. Another nice property is that
log is order preserving. That is, if x > y, then log(x) > log(y).

Briefly, let us introduce simple empirically estimated probabilities of
the sort we will mainly be considering in this book. All of the prob
abilistic models that we will be discussing are discrete distributions,
where there are k discrete outcomes (such as different words from a
vocabulary ~ of size k) each with its own parameter. When k = 2, this
is known as a binomial distribution; when k > 2, this is a multinomial
distribution. For example, we can assign a probability to each word w in
a vocabulary ~; this is a multinomial distribution with I~ Iparameters
(oneparameterP(w)foreachwordw E ~)whereLwEI;P(W) = 1.

If we have a corpus of N words taken from a vocabulary ~, we can
calculate the probability of any observed word w E ~ in that corpus
using relativefrequency estimation:

P(w) = f(w) (1.6)
N

where f(w) is the frequency of the word (its count). Note that using
relative frequency estimation leads us to give zero probability to words
that have not occurred in our corpus, a problem that is discussed later
in the book.

We might want to find the most probable word in the corpus, that
is, the word with the maximum probability. The maximum probability,
here denoted p, is

p =maxP(w)
w

If we want to know the word that provides us with this maximum
probability, we use "argmax":

Logarithms (log) and exponentials (exp) are also very common, and
we will by convention use naturallogarithm,4 base e. Recall the basic
relationship between them: for any x, y

log(exp(x)) = log(eX
) = x

exp(log(y)) = e1og(y) = y
w=argmaxP(w)

w
(1.8)

One ofthe nicest properties oflogs is that the log of a product is a sum:

(

i<lO) i<lO

log Di =~ log(i)

This is nice because the log of each i can be taken separately, prior
to combination, rather than having to combine them before taking
the log. This is critical when the product leads to extremely large or

4 When multiple bases are used, natural log is sometimes denoted In, but here we will
just use log"

Then, by definition, P(w) = p.
Ofcourse, ifwe are using negative log probabilities, the order reverses,

hence we will be more interested in the "min" and "argmin", which are
defined similarly.

1.4 Weighted Finite-State Automata and Transducers

Finite-state automata and transducers can be extended to include
weights or costs on the arcs. Such machines are termed weighted ,finite
state automata (WFSA) and weighted ,finite-state transducers (WFST).

10 1. INTRODUCTION AND PRELIMINARIES 1.4 WEIGHTED FINITE-STATE AUTOMATA AND TRANSDUCERS 11

ax/l.O 0
FIGURE 1..3 Representations ofseveral pronunciations ofthe word data, with transcriptions
inARPAbet

The weights can serve a number of functions, but the most frequent
use in speech and language processing is to represent probabilities, or
more commonly, negative log probabilities, of different analyses.

An example is shown in Figure 1.3. In this example, several plausible
pronunciations are shown for the word data, with associated probabili
ties; note that the probabilities for all arcs leaving a given state must sum
to one. (The four pronunciations correspond to the IPA transcriptions
/deIta/, /dreta/, /deIra/, and /drera/.) The probability of a particular
path is given by multiplying the individual arc probabilities along the
path. In this example, for instance, the pronunciation /d ey t ax! has the

probability 1 * 0.4 * 0.2 * 1 =0.08.
In a toy example like the one we have just examined, it is reasonable

to represent probabilities as themselves, but in any realistic scenario
this presents a computational problem since the pro"l:'abilities along any
given path can be very small and will generally lead to difficulties in
floating point represention of the values. Thus it is more common to
represent probabilities in the log domain and, more specifically, to rep
resent them in terms of negative logs. Note that in this representation,
smaller numbers correspond to more probable events. Recall that, ifwe
use negative log probabilities, we must sum the weights along the path
rather than multiply them.

When automata and transducers are given weights, the interpreta
tion of those weights must be provided. In addition to specifying how
weights are combined along a path (which for probabilities is by mul
tiplication), one must also specify how weights are combined between
paths. For example, suppose there are two paths in an automaton with
the same symbols on the arc labels of the paths, and we want to collapse
those into a single path. How are the weights combined? When dealing
with straight probabilities, in order to ensure proper normalization,
the weights (probabilities) of two paths are added together. Different
kinds of weights - e.g., logs or probabilities - will have different ways
of combining the weights along the path (which we will generally term

the times operation) and between paths (which we will term the plus
operation).

The different interpretations of weights are usefully unified in terms
of semirings. Before we can introduce the notion of a semiring, we first
need the definition of a monoid:

Definition 3 A monoid is a pair (M, .), where M is a set and. is a
binary operation on M, obeying the following rules:

1. closure: for all a, b in M, a • b is in M
2. identity: there exists an element e in M, such that for all a in M,

a • e = e. a = a. This is termed the neutral element.
3. associativity:. is an associative operation; that is, for all a, b, c in

M, (a. b). c = a. (b. c)

A monoid (M, .) is commutative if a • b = b. a for all a, b in M.
We can take this notion of monoid and define semirings in terms of
notional summation and multiplication as follows:

Definition 4 A semiring is a triple OK, EB, @), where JK is a set and EB
and @ are binary operations on JK, obeying the following rules:

1. (JK, EB) is a commutative monoid with neutral element denoted by 0

2. (JK, @) is a monoid with neutral element denoted by 1
.3. The product (@) distributes with respect to the sum (EB), i.e.,

a@(bEBc) = (a@b)EB(a@c)
4. For all a in JK, a @ 0 = 0 @ a = 0

Since most applications use real numbers as the semiring set, one typi
cally denotes a particular semiring with a pair (EB, @) that specifies the
actual instantiation of the notional plus and times operations. Com
mon semirings used in speech and language processing are the (+, x)
or "real" semiring, and the (min, +) or "tropical" semiring.5 The (+, x)
semiring is appropriate for use with probabilities: to get the probability
of a path, one multiplies along the path; to get the probability of a
set of paths, one sums the probabilities of those paths. The (min, +)
semiring is appropriate for use with negative log probabilities: one sums
the weights along the path, and one computes the minimum of a set of
paths - which is useful if one is looking for the best scoring path, since
lower scores are better with negative logs.

5 So called because the mathematician who pioneered this semiring, Imre Simon, was
from Brazil.

12 1. INTRODUCTION AND PRELIMINARIES 1.5 A SYNOPSIS OF ALGORITHMIC ISSUES 13

Weighted finite-state automata (and the corresponding weighted
languages) are closed under intersection. When one combines two
paths via intersection, the resulting cost is obtained by using the semi
ring Q9 operation. Note that Q9 is often referred to as the extend opera
tion, since it is the operation that one uses when one extends a path by
an additional arc.

A formal definition of a weighted finite automaton is as follows:

Definition 5 A weighted finite-state automaton is an octuple
A = (Q, s, F, I:, 8,..\, a, p), where:

1. (Q, s, F, I:, 8) is a finite-state automaton
2. An initial outputfunction ..\: s -+ lK assigns a weight to entering the

automaton
3. An outputfunction a: 8 -+ lK assigns a weight to transitions in the

automaton
4. A final output function p: F -+ lK assigns a weight to leaving the

automaton

For any transition d E 8, let i [d] E (I: U E) be its label; p [d] E Q its
origin state; and n[d] E Q its destination state. A path 7T =d1 ••• dk
consists ofk transitions d1, ... , dk E 8, where n [d j] = P[d j +1] for all j,
i.e., the destination state of transition dj is the origlh state of transition
d j +1• We can extend the definitions oflabel, origin and destination to
paths: let i[7T] = i[dd ... i[dk];p[7T] = p[dd;andn[7T] = n[dk]. A cycle
is a path 7T such that p [7T] = n [7T], i.e., a path that starts and ends at the
same state. An acyclic automaton or transducer has no cycles.

We can also extend the definition of the a function of Definition
5 to paths: a[7T] = a[dd Q9 •.. Q9 a[dk]. Let P(q, x, q') be the set of
paths 7T such that p [7T] = q, i [7T] = x, and n [7T] = q'. Given a semiring
(lK, EB, Q9), the weight associated by A to a string x E :E* can be defined
as follows:

[[A]](x) = E9 E9 ..\(s) Q9 a(7T) Q9 p(f)
fEF 7TEP(.S,X,f)

Weighted finite-state transducers are an obvious extension of finite
state transducers and weighted automata. A WFST computes a regular
relation, but in addition it associates each mapping with a weight. For
example, in a transducer encoding a rewrite rule system, the weights
might represent the probabilities of a particular rule application.

1.5 A Synopsis of Algorithmic Issues

The basic texts on automata theory that we have already cited give
algorithms for various finite-state operations including concatenation,
Kleene closure, union, intersection, complementation, determiniza
tion, and minimization. While these algorithms obviously produce
correct results and work fine for small automata and transducers,
they are often not efficient enough to handle the very large machines
that are typical of serious speech- and language-processing applica
tions. Furthermore, the textbook algorithms do not deal with weighted
automata, and the correct treatment of weights turns out to be critical
for efficient processing. Some algorithmic issues that have been very
important in the application to speech and language processing include
efficient algorithms for composition, minimization, determinization,
and epsilon removal. In this section we will provide a brief high-level
overview of some of these algorithmic issues, with pointers to some
papers that deal with them in depth.

One of the most fundamental algorithms that we will be assuming
for much of our discussion of finite-state methods in this book is com
position, so it is useful to have a basic understanding of how this works.
At its core, composition is essentially the same as automata intersection
as defined in standard texts. We start by reminding the reader how
intersection works. The basic algorithm for intersection is as follows.
Given two automata M = (Q, s, F, I:, 8) and M' = (Q', s', F', I:', 8'),
construct a new automaton M" such that:

• Its set of states Q" = Q x Q' is the cross-product of the states of
the individual machines.

• s" = (s, s')
• p" = p x p'

• I:" = I: n I:'
• 8"((p, p'), x) = (q, q') just III case 8(p, x) =q IS III M and

8'(p', x) = q' is in M'.

The basic algorithm for transducer composition is essentially the same,
with the difference that with transducers one is matching the output
label of one transducer with the input label of the other. The resulting
arc has as its input label the input label ofthe arc from the first machine
and as its output label the output label of the arc from the second
machine. Automata can be seen as a special case of transducers, where
the input and output symbols are always identical.

14 1. INTRODUCTION AND PRELIMINARIES 1.5 A SYNOPSIS OF ALGORITHMIC ISSUES 15

FIGURE 1,4 Two transducers with epsilons. Example taken from Pereira and Riley (1997)

6 Note that the same issue arises with epsilons in the intersection of acceptors, and the
same solution applies" However, note also that acceptors can always have their epsilons
removed before intersection, whereas with transduceIs it is not generally possible to remove
epsilons when the epsilon is only on one side ofthe arc label pair.

~~
~~

FIGURE 1.5 Naive composition of the transducers from Figure 1.4. Example taken from
Pereira and Riley (1997)

To see this, consider the two transducers in Figure 1.4, from Pereira
and Riley (1997). In composing A with B, what is at issue is how to
move from state 1 through 2 and 3 in machine A and at the same time
move from state 1 to 2 in machine B. Since these operations consume
no output in A or input in B, there are in principle a number of ways
one could do this. One could, for example traverse both arcs from states
1 to 3 in A before traversing any arc in B; or one could traverse the arc
between 1 and 2 in B before traversing any arcs in A; or one could
choose to move from 1 to 2 in A, then stay in 2 in A while moving
from 1 to 2 in B, and then complete the transition to 3 in A. These
various options are diagrammed in Figure 1.5. These multiple paths lead
to inefficiency in unweighted transducers but are otherwise correct.
In weighted transducers, however, they yield the wrong result for the
simple reason that the weights from the two original paths will be
combined in each ofthe alternatives (via 0); these multiple alternatives
will then be combined (via EB), meaning that in many semirings the
resulting cost ofthe intersection ofthe two original paths will be wrong.
The solution to this problem is to insert an epsilon filter F between the
transducers A and B so that in effect one is composing A 0 FoB; the
transducer F forces the result to have just one of the paths, specifically
the bold-marked path in Figure 1.5.7

Beyond composition, other algorithmic issues that arise relate
to determinization, minimization and epsilon removal. Weighted
automata and transducers (whether weighted or not) cannot in gen
eral be determinized, but certain types of machines, including acyclic

7 The actual algorithm is somewhat more complicated than what we have sketched here,
and the epsilon filter transducer is simulated rather than actually constructed; see Pereira
and Riley (1997) for further details"

A:

B:

When one is dealing with weighted intersection or composition, as
we noted above, one computes the weights of the resulting path as the
extend (0) of the weights of the two input paths.

Even with the basic algorithms there are various efficiency issues.
Computation of the transition function 0" for a new state (p, p') and
label x requires efficient search. For example, suppose we are looking at
transducer M, at state p, and at an arc with an output label x. We wish
to find in M ' , state p', the set of arcs, if any, that have input labels x.
If the arcs of the second machine are arranged in no particular order,
then one has no choice but to search linearly through the arcs in M ' to
find any that have input label x, and this will be inefficient if there are a
large number of arcs exiting p'. A solution is to index M' on the input
side, so that for any state the arcs are sorted by input label, allowing
for a more efficient search method, such as a binarf search. Even more
efficient methods are possible.

The complication with transducers involves epsilons: arcs where the
output side (ifon the first transducer) or the input side (ifon the second
transducer) are labeled with the empty-string symbol E. Epsilons allow
one to implement different-length relations (as opposed to same-length
relations) so that, for example, one can implement a rule that deletes
symbols in certain contexts. In such a case the transducer would contain
arcs labeled with the symbols in question on the input side and E on
the output side. The problem with epsilons is that they introduce non
determinism over and above the non-determinism that one would have
due to one or both of the input machines being non-deterministic, and
hence inefficiency. 6 With weighted transducers the situation is worse:
one will actually get the wrong result.

16 1. INTRODUCTION AND PRELIMINARIES 1.6 APPROACHES TO MORPHOLOGY AND SYNTAX 17

machines, can be. (See Mohri, 1997, for a rigorous characterization
of the class of determinizable machines.) Since machine minimization
requires a determinized machine (Harrison, 1978; Hopcroft and Ull
man, 1979; Lewis and Papadimitriou, 1981), this also implies that not
all weighted acceptors or transducers can be minimized, though, again,
some classes of machine can be. Transducers and weighted acceptors
that fall into the class of determinizable and minimizable machines
include machines that are useful in speech and language processing. For
example, a dictionary can be modeled as an acyclic transducer, map
ping input words to some other property such as their part of speech
or pronunciation; and a lattice of possible analyses output by a speech
recognizer can be modeled as an acyclic weighted acceptor. Determiniz
ing and minimizing such machines can provide large efficiency gains
(Mohri and Riley, 1999).8 Epsilon removal with weighted automata
is an interesting algorithmic issue in particular because epsilon arcs
may have weights, and one must therefore be careful to distribute the
weights correctly once the epsilon arcs are removed (Mohri, 2002).

1.6 Computational Approaches to Morphology and Syntax

One might wonder why so much attention is paid to finite-state meth
ods in this book, even in the sections that are devotefl to syntax. Weren't
finite-state techniques mostly relegated to the dustheap during the
1970S? That has certainly been one common view. In the mid 1990S
one of the authors gave a talk at a major industrial research lab in the
Seattle, Washington area. He presented some work on applications of
finite-state methods to text analysis for text-to-speech synthesis. Sev
eral natural language researchers in the audience reacted negatively to
his presentation, claiming that finite-state methods were outdated and
belonged in the 1970S not the 1990S.

Developments over the past decade have proved this view to be ill
founded: there has been a veritable explosion of research in finite
state methods with applications in a number of areas of speech and
language processing including morphology and phonology (in which
there was already substantial work by the mid 1990S and as we shall dis
cuss further below), the computational analysis of syntax (e.g., Vouti
lainen, 1994; Mohri, 1994, and see Chapter 6), language modeling for
speech recognition (Pereira and Riley, 1997; Mohri et aI., 2002), text

8 Even for machines that cannot be determinized, it is often possible to locally deter
minize them (Mohri, 1997).

normalization systems for speech synthesis (Sproat, 1997a), pronuncia
tion modeling (Mohri et al., 2002), the analysis of document structure
(Sproat et aI., 1998), inter alia. Outside speech and language processing,
finite-state methods have found applications in other fields, such as
computational biology (Durbin et al., 1998). Thus, if we seem to dwell
too much on finite-state methods in this book, it is for a reason: such
methods have a broad range ofapplications and students of speech and
language processing would do well to master them.

Despite the broad applicability of finite-state methods, however,
there is a fundamental difference between computational approaches
to morphology and computational approaches to syntax, in that the
former (we shall argue) can be accomplished entirely with finite-state
methods, while the latter cannot. Finite-state approaches to syntax
can be extremely efficient and useful for many applications requiring
some amount of syntactic processing, but it has been widely known
since Chomsky (1957) that many syntactic phenomena simply cannot
be described without context-free or even context-sensitive grammars.
Grammars built for computational syntactic processing must typically
trade-off the richness ofsyntactic description provided by the grammar
with the computational cost of using it. Often the utility of a syntactic
annotation will not justify - within the context of a particular appli
cation - the cost of annotating it. This is much less of an issue for
morphological processing, since finite-state models and algorithms are
generally sufficient for morphological description.

Computationally, a grammar may be used for syntactic processing
in several ways. First, it may be used to generate word strings in the
language described by the grammar. It may also be used to recognize
(or accept) strings in the language and reject strings that are not in
the language. The grammar may additionally be used to provide some
useful annotation to the accepted strings, such as, labels, delimiters, or
perhaps a numerical score. Very often it is this annotation, and not just
acceptance or rejection, that makes grammars useful computationally.

The quality of a grammar (or syntactic model) is usually inversely
related to the efficiency with which the model can be built and
used. Very rich syntactic formalisms that find favor with syntacticians
because they do a good job of accepting just those sentences that are
grammatical in a language are often not used because explicit, detailed
grammars require significant expertise and a relatively long time to
write, and because the most efficient recognition algorithms that make
use of such grammars are simply not efficient enough for particular

18 1. INTRODUCTION AND PRELIMINARIES 1.6 APPROACHES TO MORPHOLOGY AND SYNTAX 19

applications. The most commonly implemented syntactic models fall
far short of what linguists would expect from a grammar in terms of
describing languages, yet they provide useful information and are both
easy to build and efficient to use. These latter considerations will carry
the day, unless a compelling difference in application performance can
be demonstrated.

A very important consideration is robustness in the face of noise.
Unless the application is severely constrained, for example, machine
translation of official weather reports, the language usage will be varied
and noisy. In more natural, less constrained settings, any grammar
will be presented with false starts, disfluencies, sentence fragments,
out-of-vocabulary words, misspellings, run-on sentences, or just plain
ungrammaticalities. A parser is usually expected to yield some useful
information to an application beyond rejection, even in the face ofthese
phenomena.

Issues of efficiency and robustness have made simple, weighted
finite-state methods very popular. However, much research is currently
focused on enriching robust syntactic models, and making richer syn
tactic formalisms more efficient and robust. Part II of this book (chap
ters 6-9) will look at various computational approaches to syntax, start
ing with the simplest and most efficient techniques before moving on
to richer ones. The inclusion ofscores among syntai;tic annotations will
be particularly emphasized, since this particular annotation, as shall
be seen, can make the difference between a useless model and a very
useful one. It is in computational linguistics, more than any other sub
discipline of linguistics, where statistical and probabilistic approaches
to disambiguation have been investigated, and it is this most of all that
distinguishes computational approaches to syntax from other perspec
tives.

Many of the most successful computational models of syntax share
much in common with constraint-based linguistic formalisms, such
as Optimality Theory (aT), with some simple differences. What is
shared is the notion of a feature or constraint that encodes some
informative linguistic distinction. General, effective automatic feature
induction methods are beyond the current state-of-the-art in Natural
Language Processing, so that effective manual feature selection - often
based on linguist-documented generalizations - is a key part of build
ing effective syntactic analyzers. Computational approaches typically
differ from aT approaches primarily in terms of how the evidence
of various features/constraints is combined, but also in terms of the

explicitness of the candidate generation mechanism, known as GEN in
aT. Chapters 6-9 will present just how serious a problem efficient can
didate generation can be, and a range of computational solutions. Dis
ambiguation through candidate ranking will be presented in Chapter 9.

In Chapter 2, we will show that models ofmorphology can be imple
mented in a unified framework of finite-state transducers. That is not
the case for syntax, which brings efficiency to center stage. As a result,
Part II (Computational Approaches to Syntax) will have much more of
a focus on the accuracy/efficiency trade-off than Part I (Computational
Approaches to Morphology), with efficient approximations that pro
vide useful annotations receiving much attention. Efficient algorithms
will be explicitly presented, to dearly illustrate why computational
linguists are forced to make the choices they do. Differences in focus
between the two parts of the book reflect differences in the key issues
driving the two topic areas.

Part I

Computational Approaches
to Morphology

2

The Formal Characterization
of Morphological
Operations

In this chapter we focus on the ways in which different languages
encode information morphologically, with particular attention paid
to the formal devices that are used. The point of this discussion is
not merely to present a taxonomy but in addition to argue that all
morphology can be understood in terms of a single regular operation,
namely composition.

This is a somewhat different view from the one normally pre
sented in work on computational morphology. For example, Beesley
and Karttunen (2000) observe that concatenation is sufficient for
straightforward concatenative morphology (see Section 2.2.1). For non
concatenative morphology such as that found in Semitic languages
(Section 2.2.9) or reduplication (Section 2.4), they propose the oper
ation compile-replace (which we will describe in more detail in Sec
tion 2.2.9).

Indeed when we look at straightforward cases of concatenative mor
phology, we are naturally seduced by the idea that regular concatena
tion is the operation of choice. While this is perfectly viable, as we shall
argue below, not only can concatenative morphology be handled by
composition, but this is in fact the preferred mechanism, since many
cases of affixation also have either restrictions on what kinds of bases
they can attach to or impose modifications on their bases. As we shall
see, such additional stipulations fall out naturally from treating affixa
tion in terms of composition.

But we are getting ahead of ourselves. Let us start out with some
background on morphological analysis and what it is about.

24 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.1 INTRODUCTION 25

2.1 Introduction

Suppose you are studying Latin. You come across an unfamiliar form:
scrIpserunt. Naturally enough, you want to know what it means. You
already know the verb scrIbo "I write'~ and you guess that there is
enough similarity between the forms that perhaps scrIpserunt is actually
a form of the verb "write': Sure enough, with a little delving into your
grammar, you find that this is correct and that the form scrIpserunt
is in fact the THIRD PERSON, PLURAL, PERFECT, ACTIVE, INDICATIVE

form of the verb "write": "they wrote". You also learn that scrIpserunt
can be decomposed into the stem scrIb "write" (which becomes scrIp
before /sl), the perfect stem-forming affix -s-, which characterizes third
conjugation verbs, and the (perfect) third plural suffix -erunt.

Relating word forms and detecting the structure of word forms is
what morphological analysis is all about. The task of relating a given
form to a canonical form is called lemmatization. Thus in the Latin
example, we would lemmatize scrIpserunt to scrIM: note that the lemma
is typically the form of the word that we find in a dictionary, which
in the case of Latin is the FIRST PERSON, SINGULAR, PRESENT, ACTIVE,

INDICATIVE form.
Both lemmatization and the decomposition into parts have their

uses. For tasks that involve meaning (such as information retrieval or
machine translation), we would typically be inter~sted in lemmatizing
words to some canonical form.

For applications such as text-to-speech synthesis, we may also be
interested in the analysis of a word into its parts. Clearly in a speech
synthesizer we do not want the system to speak the lemma - e.g. to say
scrTbo when the text has scrIpserunt. However, we may want the system
to know something about the decomposition of the word, since such
knowledge can affect its pronunciation. In Standard German, for exam
ple, knowing that a word-internal s is a compound linking morpheme
is important for determining whether it is pronounced /s/ or Iff. Thus
the middle /s/ in Staatsprotokoll "state record" is a linking morpheme,
and therefore does not belong to the onset of the following syllable;
thus it is pronounced lsi, and not /f/, which is what we would expect if
it were part of the same syllable as the following /p/.

In this discussion we will be neutral as to whether we are considering
decomposition or lemmatization. In fact, one is formally derivable
from the other. To see this, consider that lemmatization can be viewed
as a combination of decomposition followed by normalization to the

lemmatized form. Anticipating somewhat, ifyou have a function D that
transmutes a word to its morphological decomposition, we can com
pose that function with another function [, that determines, for each
decomposed stem, what the appropriate lemma would be. Thus we can
lemmatize a given form by applying the function D 0 [, to that form.

In the case of our Latin example, D would map scrIpserunt to
scrIb+s+erunt, tagging the form as THIRD PERSON, PLURAL, PERFECT,

ACTIVE, with the stem scrIb:
scrIb+sPERFECT+eruntTHIRD PERSON, PLURAL, ACTIVE, INDICATIVE'
[, would then map the stem scrIb to the canonical first person present
active form, and remove other non-featural material, yielding:
scrIboPERFECT,THIRD PERSON, PLURAL, ACTIVE, INDICATIVE'
The task ofmorphological analysis then is to take word forms and relate
them to other word forms; while at the same time deriving featural
information about the form.

It is customary in discussions of morphology to talk about inflec
tional versus derivational morphology, in terms of the kinds of features
each of these encodes. We will not have much to say about this dis
tinction here. Rather we will concentrate purely on the computational
mechanisms for performing morphological analysis and how these
mechanisms can represent two kinds of linguistic information:

• The formal properties of morphological operations - i.e. the
syntagmatic combinations of morphological elements.

• The paradigmatic relation between forms.

It will be argued that the most general operation that allows us to
describe nearly all of morphology with purely finite-state devices is
composition. This demonstration will occupy the bulk of the next two
sections of this chapter. The third section deals with paradigms and
how these can be represented computationally. We end in the fourth
section with a discussion of reduplication, the one kind of morphology
that seemingly requires special treatment in any finite-state approach.
This computational approach to morphology has some important
implications for debates in theoretical morphology; we will address
those matters in the next chapter.

Throughout this discussion we will assume that we can notate the
features of complex morphological forms as a string of feature values,
as in the above Latin examples. We will consider this as a shorthand
for a more articulated feature-structure-style representation. Thus we

26 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 27

I On a related noted, Kornai (1991) presents a linearization ofmultidimensional autoseg
mental representations in phonology.

will assume that scr"ibOPBRFECT, THIRD PERSON, PLURAL, ACTIVE, INDICATIVE is a
shorthand for something like the following:

LEX scr"ib

ASPECT PERFECT

PERSON THIRD

NUMBER PLURAL

It is not obvious to us that there is any loss in descriptive power.1

Of course, the sequence does have to encode the features so that, for
instance, PLURAL is a feature of NUMBER and not of; say, VOICE. But
this is trivially arranged by making sure that each feature value is
uniquely associated with a given feature.

One note on notation: There is not a lot that different theories
of morphology agree on, but one thing they do seem to agree on is
that morphological pieces come in two flavors. One flavor is affixes or
affixation processes. Generally these have some set of restrictions on
their attachments and can thus be said to select for a particular kind of
base. The other is the things they attach to, which are words, stems or
roots, depending upon the affix (or process) involved, but in any event
things that are more "word-like" in the sense that\hey lack selectional
requirements for attachment. Simply put, in a word like dogs, it is the s
that selects for dog, not the other way around. In the formal expressions
in what follows, we will indicate affix-like entities with lower-case Greek
letters and word-like entities with upper-case Greek letters.

Second, we will per normal convention assume an alphabet b that
comprises the alphabet of all symbols (e.g., phonemes, letters) that
make up the morphological pieces we are examining. For clarity, we
will never use b to represent a word-like entity. We will also use E for
the empty string. Again for darity, we will never use E to represent an
affix-like entity.

There are two issues that we wish to make clear at the outset. The
first is that while the analyses presented in the ensuing discussion are
toys, it should be understood that there have been many large-scale
implementations ofmorphology using finite-state techniques. Much of
that work has been done using Two Level Morphology (Koskenniemi,

An obvious example of this operation is regular plural formation in
English, where a singular noun is suffixed (orthographically) with -5 or
-es.

Note, however, that it is possible to analyze it instead as follows.
Suppose, instead of treating j3 as a string on a par with A, we instead

2.2 Syntagmatic Variation

2.2.1 Simple Concatenation

At first glance, the most natural implementation of concatenative mor
phology would make use of the regular operation of concatenation. For
example, if we have a stem A and a suffix j3, we can combine them into
a form [' using regular concatenation as in 2.1:

['=A·j3

1983) or the Xerox finite-state tools (Beesley and Karttunen, 2003), but
there have also been systems developed using many other toolkits, such
as the systems for German, French, Spanish, Russian, and Italian, which
were part of the Bell Labs multilingual text-to-speech system (Sproat,
1997a, b), and were developed using the lextools toolkit.

Second, there has been a significant amount of work on inflec
tional morphology using the nonmonotonic inheritance network lan
guage DATR (Corbett and Fraser, 1993; Andry et al., 1993; Barg, 1994,
inter alia), and extensions such as KATR (Finkel and Stump, 2002).
DATR is particularly well-suited to handling the kinds ofpartial inheri
tances common in inflectional morphology. For example, it is very easy
in DATR to handle cases where a word inflects mostly according to a
particular pattern, except in a few cases where there is a local override. It
is easy to indicate, for example, that all English verbs form their present
participles in -ing, that a subset of verbs form their passive participles
in -en, and that the particular verb rise has its past tense form as
rose. DATR is a perfectly reasonable high-level language for describing
these kinds of phenomena. But as with, for example, context-sensitive
rewrite rules (Kaplan and Kay, 1994; Mohri and Sproat, 1996), DATR
descriptions of morphology can be compiled down into finite-state
automata (see Evans and Gazdar, 1989b). The fact that we do not discuss
DATR-based approaches in this book says nothing about the utility of
such approaches. Rather, what it reflects is the fact that DATR does not
add to the formal· power of the finite-state approaches that we will be
describing.

ACTIVE

INDICATIVE

VOICE

MOOD

28 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 29

think of it as a function f3' that takes as input a string, and produces as
output that string concatenated with f3. f3' would be defined as in 2.2

and the whole construction as in 2.3:

this yields

n=5oa'

Prosodic morphological operations can then be defined to apply either
to the prosodically defined unit B: or to the residue B I. Thus, given an
operation 0, we can define operations 0: and 01 as follows:

2.2.2 Interlude: Prosodic Circumscription

In their work on Prosodic Morphology, McCarthy and Prince (1986;

1990) present the notion ofprosodic circumscription:

Prosodic Circumscription of Domains. The domain to which morphological opera
tions apply may be circumscribed by prosodic criteria as well as by the more familiar
morphological ones, In particular, the minimal word within a domain may be selected
as the locus ofmorphological transformation in lieu ofthe whole domain"
(McCarthy and Prince, 1990)

Our new affix a' adds the suffix and makes the appropriate modifica
tions in one fell swoop.

We return below to other cases where affixes have a more drastic
effect on their bases, thus further motivating the use of composition.
But before that we need to introduce the concept of Prosodic Circum
scription, which will be useful in our later discussions.

(2.8)B = B: * BI

Prosodic circumscription starts with factoring a base into a prosodically
defined unit and its residue. For example, we might define a syllable at
the right edge of a stem as a prosodically defined unit, in which case the
whole stem to the left of the final syllable is the residue. Or we might
define the initial onset of the stem as the prosodically defined unit,
in which case the remainder of the stem after the onset would be the
residue. In McCarthy and Prince's notation, a base B would be factored
into a prosodically defined unit" B:" concatenated ("*"), in some order,
with a residue "Bj":2

n = [5· a] 0 T

(Note that here and henceforth we will use ~* - a specification of
a regular language - to represent a regular relation that maps strings
into themselves. In the notation of Kaplan and Kay (1994), this would
be represented as Id(~*), but we will dispense with this more correct
notation as long as no ambiguity arises.)

What are the advantages of doing this? From a computational point
of view this is not immediately clear, since while concatenation as in
2.1 is a constant time operation, the composition in 2.3 is linear in the
length of A, because minimally each symbol in A must be read to match
with ~*.

But it is frequently the case that when affixes combine they also
either trigger some phonological, spelling, or morphological change
that affects the stem, or the affix, or both; or else they select for some
prosodic property of the base. And in these cases composition is neces
sarily involved at some level since phonological rules are implementable
using composition (c. D. Johnson, 1972; Kaplan and Kay, 1994; Mohri
and Sproat, 1996), and composition also affords a natural way of imple
menting prosodic selection, as we shall see. Further examples will be
given below, but for now note the obvious case of English plural's',
which is lizl after apical fricatives and affricates, Izl after voiced sounds,
and lsi elsewhere. This rule can be implemented with a transducer T.
If we assume that the plural suffix a is attached to the stem 5 with
concatenation, for a plural form n we have:

i=Aof3'

f3' = ~*[E : f3]

Now, we can refactor this as:

n = 5 0 [~*[E: a]] 0 T

And ifwe then define a' to be:

0:= O(B:) * B1

01 = B: * O(BI)

a' = [~*[E : a]] 0 T (2.6)
2 The ":" and "*" operators are McCarthy and Prince's notation and are not to be

confused with the use of those symbols in regular expressions,

So, with 0: we first factor the base into B: and B/, apply 0 to B:, and
then reconstitute 0 (B:) with B /. Contrariwise, with 0/ we factor the
base, apply 0 to B / and then reconstitute the result.

0/ is the case of extrametricality: we define B: as a prosodic domain
to ignore, apply an operation to the residue, and then reconstitute the
whole. 0: is the case of positive circumscription: we define B: as the
prosodic domain to which operations apply.

Both of these phenomena are common in morphology. Extrametri
cality is exemplified by infixation in many Philippine languages, where
one ignores the first onset of a word, and attaches the infix as a prefix
to the remainder. Thus in Tagalog we have tawag "call" but tumawag
"call (perfective)"; see Section 2.2.7.

The converse situation is illustrated by infixation in Ulwa where, as
we shall see in Section 2.2.8, the infix is placed after an initial iambic
foot.

Specifics aside, we can completely characterize prosodic circumscrip
tion in terms of the finite-state operation of composition. The defi
nition of the prosodic unit can be implemented as a transducer that
inserts a marker after (or before) the prosodic unit of interest. For
concreteness, consider the example of infixation in Tagalog, where the
prosodic unit to be identified is the initial onset of the stem, if any. We
wish to insert a marker, say >, after this constituel\t C and then leave
the rest of the base alone. The marker transducer M that accomplishes
this can be defined as follows:

2.2.3 Prosodically Governed Concatenation

The English comparative affix -er and the superlative affix -est are good
examples of affixes that have prosodic restrictions on their attachment.
The affixes are restricted to bases that are monosyllabic or disyllabic
adjectives; see Table 2.1. 3

Assuming this is the correct characterization of English comparative
formation, we can characterize the base to which the comparative affix

conception, but at the level of computational implementation, the dis
tinction is immaterial.

This computational understanding of prosodic circumscription is
important for what follows since when we get beyond the most straight
forward concatenation into increasingly complex modes of morpho
logical expression, we find that the bases ofthe morphological processes
involved are restricted prosodically in various ways. In such cases the
~* of expression 2.2 is replaced by a more complex regular relation.

312.2 SYNTAGMATIC VARIATION

fat fatter fattest
dumb dumber dumbest
silly sillier silliest
yellow yellower yellowest
timid timider timidest
curious *curiouser *curiousest

TABLE 2.1 Comparative affixation
in English

(2.11)M=C?[E:>]V~*

2. FORMAL CHARACTERIZATION OF MORPHOLOGY30

One can then use the marker > as an anchor to define the domain of
other operations. For example, in Tagalog, one would use > to define
where to place the infix -um-. One can then implement the actual
infixation as a transducer that simply rewrites > as -um-: again, see
Section 2.2.7.

In one sense the description just given is simpler than that of
McCarthy and Prince: note that once one has defined the placement
of the marker, subsequent operations merely need to reference that
marker and have no need of notions like "prosodically defined unit"
or "residue". Thus, if we handle Tagalog infixation as sketched above,
we could characterize -um- as "prefixing" to the residue (e.g., -awag),
but we could equally well characterize it as suffixing to the prosodically
defined unit (e.g., t-). The former may make more sense as a linguistic

3 One class ofadjectives that do not admit ofcomparative affixation are participles.. Thus
more known, but *knowner"

The other class ofprima facie exceptions to the generalization are adjectives prefixed with
un- such as unhappier" Note that the interpretation of unhappier is the same as that of more
unhappy, suggesting that -er is attached outside unhappy, Some previous literature - e.g.,
Pesetsky (1985) and Sproat (1985) - has analyzed these cases as bracketing paradoxes, with
mismatching syntactic and phonological structures" On this view, the syntactic and hence
the semantic interpretation has -er outside unhappy, but the phonological structure has -er
attaching only to happy, in line with expectations"

More recently, Stump (2001) has characterized cases like unhappier as head operdtions,
whereby the operation in question, in this case the operation of comparative formation,
operates on the head of the word (happy) rather than the whole word" Thus, again, the
prosodic conditions of the comparative and superlative affixes are met

4vc(c) = CV[V: E]*C[V: E]*C?

This ensures that only the first vowel of the root is preserved, and
in particular deletes any vowels after the second consonant. Thus the
result of composing 4vc(c) with particular stems is as follows:

match the template CVC(C); and -faa, which requires the template
CVCVV(C). Thus a stem such as diiyl "guard", must shorten its vowel
to conform to CVC(C), when attaching to -inay (diylinay). Similarly, it
must shorten the stem vowel, but then insert a long copy of the stem
vowel between the second and third consonants in order to attach to
-faa (diyiil?aan).

The template Tcvc(c) for CVC(C) is easily characterized as follows:

332.2 SYNTAGMATIC VARIATION2. FORMAL CHARACTERIZATION OF MORPHOLOGY

TABLE 2.2 Template- and non-template-providing affixes in Yowlumne

Neutral Affixes Template Affixes"
Root -al -t -inay -faa

"dubitative" "passive aorist" "gerundial" "durative"
CVC(C) CVCVV(C)

caw "shout" caw-al caw-t caw-inay cawaa-?aa-n
cuum "destroy" cuum-al cuum-t cum-inay cumuu-?aa-n
hoyoo "name» hoyoo-al hoyoo-t hoy-inay hoyoo-?aa-n
diiyl "guard" diiyl-al diiyl-t diyl-inay diyiil-?aa-n
?ilk "sing" ?ilk-al ?ilk-t ?ilk-inay ?iliik-?aa-n
hiwiit "walk" hiwiit-al hiwiit-t hiwt-inay hiwiit-?aa-n

a For template-providing affixes, the form of the provided template is given in boldface.

32

S = CV[E : V]?C(V U [V: ED(V U [V : EDC?

See Figure 2.1. The desired transducer Tcvcvv(c) is then simply the inverse
ofthe composition of F and S; since we want the vowels to be identical

This transducer will force the first V to match the vowel of the root,
will allow an optional second vowel in the root's first syllable, then will
allow either zero, one or two vowels, followed optionally by a consonant
following this first syllable. This is not quite enough, however, since
it does not guarantee that the Vs are all identical. To get that, we can
implement a simple filter F specified as follows:

(2.16)

(2.17)

(2.18)

(2.20)

caw 0 Tcvc(c) =caw

diiylo Tcvc(c) =diyl

hiwiit 0 Tcvc(c) = hiwt

F = (C U i)* U (C U a)* U (C U 0)* U (C U u)*

The expression for Tcvcvv(c) (CVCVV(C)) is somewhat more compli
cated since it involves copying vowel material in the root. In order to
see how to do this, it is somewhat easier to start by considering deriving
possible roots from the durative form. Roots must have at least one V,
matching the first vowel of the durative stem, but may have as many as
three Vs as in cases like hoyoo and hiwiit. There mayor may not be a
final (third) consonant. This range of possibilities can be derived from
the template CVCVV(C), ifwe assume a transducer specified as follows:

The comparative affix K would then be characterized as follows:

K = B[E: er[+coMP]]

B = C*VC*(VC*)? (2.12)

attaches as in Equation 2.12: 4

Composing a base adjective A with K as in Equation 2.14 would yield a
non-null output r just in case the base A matches B.

More dramatic are cases where the affix provides the template for the
stem, rather than merely selecting for stems that have certain prosodic
forms. A well-known example is provided by Yowlumne (Yawelmani),
as discussed in Newman (1944) and Archangeli (1984); see Table 2.2,

which is copied from Bat-EI (2001). The two template-providing affixes
shown here are -inay, which requires that the stem be reconfigured to

4 As a reviewer has pointed out, Pullum and Zwicky (1984) argued against a phono
logical account, suggesting instead that comparative affixation was a case of "arbitrary
lexical conditioning.." This conclusion was motivated by a particular theoretical position
on the phonology/syntax interface, and their evidence consisted in the observation that
many examples of adjectives that should allow comparative affixation were nonetheless
unacceptable. The problem is that many of the adjectives they list as unacceptable - among
them wronger, iller, afraider, unkemptest, aloner - are readily found via a Google search.
Of course we cannot tell how many of these uses are intentionally jocular (such as Lewis
Carroll's use of curiouser) but it is a fair bet that not all are. In any case it is clear that English
speakers readily accept comparatives of nonce adjectives that fit the prosodic criteria (John
is a lot dribber than Mary), and just as readily reject those that do not (?John is a lot
dramooliger than Mary). Given these considerations, it does not seem that we can so easily
dismiss a prosodic account of the phenomenon..

2.2 SYNTAGMATIC VARIATION 35

on both sides of the transducer, we impose the filter on both sides:

Tcvcvv(c) = [F 0 So F]-l

TABLE 2 ..3 Diminutive suffixation in German

Kl = 4vc(c)[E: inay[+GER]]

x = Tuml [E : chen]

"dog"
"house"
"leaf"
"mouse"
((woman"
(diminutive = "young woman")
"rose'Roslein

Hiindchen
Hauschen
Blatchen
Mauschen
Fraulein

Hund
Haus
Blatt
Maus
Frau

Rose

Composing a stem with X produces the affixed form with umlaut
applied to the stem.

K2 = Tcvcvv(c)[E: ?aa[+DuR]]

Given Tcvc(c) and Tcvcvv(c), we can now represent the morphemes
-inay and -faa as follows:

Again, composition of these affixes with the roots yields the observed
forms.

2.2.4 Phonological Changes Induced by Affixation

In the case of Yowlumne, affixes impose a particular prosodic shape
on the base. A milder variety of this phenomenon involves phono
logical changes that are induced by affixes, which do not involve
major prosodic rearrangements of the base material. An example is
the diminutive suffixes -chen, and -Zein in Standard German. Generally,
these affixes induce umlaut (fronting) on the vowel ofthe stem to which
they attach. Some examples are given in Table 2.3. Assuming this rule is
productive, then we can implement it in a way that is straightforwardly
parallel to the Yowlumne case. That is, we assume a transducer Tuml

that will change vowels into their appropriate umlauted forms. (Only
lal, 101 and lui, and the diphthong laul, undergo umlaut.) Then the
entry for -chen would be as follows:

2.2 SYNTAGMATIC VARIATION 37

TABLE 2.5 Initial consonant mutation in Welsha

pen "head" a ben a phen (If!) fy mhen (lmh/)
tad "father" a dad a thad (IS/) fy nhad (lnh/)
cath "cat» agath a chath (Ix!) fy nghath (luhl)
bachgen "boy" a fachgen (Iv/) fymachgen
damwain "accident" a ddamwain (lo/) fynamwain
gwraig «wife" a wraig fyngwraig
mam "mother" a farn (Iv/)
rhosyn "rose" a rosyn
llais (Ii/) «voice" a lais

36 2. FORMAL CHARACTERIZATION OF MORPHOLOGY

TABLE 2.4 Irish first declension genitive formationa

Nominative Genitive Gloss

bad Idl baid IdYl "boat"
cat ItI cait WI "cat"
eolas lsi eolais If! "knowledge"
leabhar Irl leabhair /IYI "book"
mac Ik/ mic IkYI "son"
naomh Ivl naoimh IvYI «saine)
paipear /II pmpeir IrYI "paper"
sagart !rtl sagairt /IYtYI "priest"

Base Gloss Soft - a 'his X' Asp. - a 'her X' Nas. -fy 'my'

a Shown are the nominative (base) form, the final consonant cluster of
that base form, the genitive and the final consonant of the genitive,

2.2.5 Subsegmental Morphology

Morphological alternants can also be indicated with subsegmental
information, such as a change of a single feature. A straightforward
example of this is provided by genitive formation in Irish, exemplified
in Table 2.4. In these forms, the genitive is marked by palatalizing the
final consonant (sequence) of the base (nominative) stem. (Note that
the palatal variant of /s/ in Irish is regularly /s/.) A standard linguistic
analysis of this alternation would be to assume that the feature [+high]
is linked to the final consonant (Lieber, 1992). Th.e genitive can be
represented by a transducer y that simply changes the final consonant
(sequence) in the described way; y can be compiled from a context
dependent rewrite rule, using algorithms described in Kaplan and Kay
(1994) and Mohri and Sproat (1996). The genitive form r is then pro
duced from the nominative form N by composition:

r = Noy

a Illustrated are (one variant of) "soft" mutation (lenition), nasal mutation, and aspirate mutation,
along with example-triggering morphemes" Entries left blank have no change in the relevant celL
Phonetic values of the initial consonants are indicated where this may not be obvious

morphosyntactic triggers including many function words (preposi
tions, possessive markers, articles with following feminine nouns),
word-internally with various prefixes and in compounds, and (in the
case of lenition) by various syntactic environments such as the initial
consonant of an NP following another NP (Harlow, 1981).

Many treatments and descriptions of the mutation system of Welsh
have been published - Lieber (1987), Harlow (1989), and Thorne (1993)
are just three examples, though the most complete analysis is proba
bly still Morgan (1952). Some examples of the mutations are given in
Table 2.5.

Ifwe assume three transducers -;\ for lenition, v for nasalization and
4> for aspirate mutation - then morphemes that select for the different
mutations would be indicated as inducing the relevant mutation on the
base. Thus to take a concrete example, the possessive marker dy "your
(sg.)" would be specified as follows:

r = Boo

The second person singular possessive marking ofa noun B would thus
be constructed as follows:

2.2.6 Subtractive Morphology

One case of subtractive morphology, also called truncation, involves
plural stem formation in Koasati, exemplified in Table 2.6 (Lombardi
and McCarthy, 1991). The generalization is that the final rime of the

A more complex instance of subsegmental morphology is illustrated by
initial consonant mutation in the related Celtic language Welsh) Ini
tial mutations are of three basic types: "soft" mutation, or lenition,
which involves voicing unvoiced consonants, spirantizing or deleting
voiced consonants, and otherwise leniting others; "aspirate" mutation,
which involves spirantizing voiceless stops; and nasal mutation, which
causes nasalization of stops. The mutations are induced by various

5 All modern Celtic languages, including Irish, have consonant mutation, but the muta
tion system of the Brythonic languages - Welsh, Cornish, and Breton - is more complex
than that of the Goidelic languages - Irish, Scots Gaelic, and Manx.

0= [E: dy];\ (2.26)

2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 39

TABLE 2.6 Koasati plural stem truncation TABLE 2.7 Infixation of -um- in Bontoc

T = /[E: [+PL]]

pitaf~fi-n pit-li-n "to slice up the middle"
Ipitaf-li-nl
lataf~ka-n lat-ka-n "to kick something"
tiwap-li-n tiw-wi-n "to open something"

Itiw-li-nl
atma-li-n atak-li-n "to hang something"
icoktma-li-n icoktak-li-n "to open one's mouth"
albitfi-Ii-n albit-li-n "to place on top of"
ciHp-ka-n dt-ka-n "to spear something"
facoo-ka-n fas-ka-n "to flake off"

Ifac-ka-nl
onasanay-li-n onasan-niici-n "to twist something on"
iyyakohOp-ka-n iyyakOf-ka-n "to trip"

liyyakoh-ka-nl
koyOf~fi-n koy-li-n "to cut something"
Ikoyof~li-nl

singular stem, consisting of a final vowel and any following consonant,
is deleted in the formation of the plural stem. The onset of the final
syllable of the singular stem is retained.

Lombardi and McCarthy, who offer an analysis in terms of Prosodic
Circumscription theory argue that the retention of the onset follows
from phonotactic considerations due to a generalization of root-final
heaviness. Be that as it may, the analysis in terms of finite-state opera
tions is clear. We assume a truncation transducer T' that deletes the final
rime ofthe base. The whole plural transducer is as in Equation 2.28, and
is depicted in Figure 2.2.

"I am getting taller"
"I am getting better"
"I am getting poorer"

umantj'oak
kum'awisat
pum'usiak

"tall"
"good"
«poor"

antj'oak
k'awisat
p'usiak

A singular stem A, composed with T, will result in a truncated form
tagged as morphologically plural:

2.2.7 Extrametricallnfixation

An example of extrametrical infixation can be found in Bontoc
(Seidenadel, 1907), as well as many other languages of the Philippines.
In Bontoc, the infix -um- marks a variety of different kinds of semantic
information. In the examples in Table 2.7 the alternation involves what
Seidenadel terms progressive quality. The infix is prefixed to the word,
ignoring the first consonant, if any.

It is perhaps simplest to think of this infixation as involving two
components computationally. The first component inserts a marker
> (> tj. ~) in the appropriate location in the word, and the second
converts the marker to the infix -um-. Note that the other infix in the
language, -in- (which among other things marks parts of the body as
wounded), also attaches in the same position as -um-, so it makes sense
to factor out placement of the infix from the actual spellout of the infix.

Marker insertion can be accomplished by the simple transducer M
in Figure 2.3. The infixation transducer L will map > to -um- and will
simultaneously add a morphosyntactic feature marking the construc
tion - call it [+be] - to the end of the word. This is shown in Figure 2.4.
Infixation of -um- is then accomplished by composing the input word
A with M and L:

GlossPlural

Data from Lombardi and McCarthy (1991)

Singular

r=AoMoL

FIGURE 2.3 Marker insertion transducer M for Bontoc infixation.. "V" represents a vowel,
and "c" a consonant

v:£

v:£

FIGURE 2.2 Koasati plural truncation transducer

40 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 41

>:um

c-()~
~:..::b..:..e_"'·0

FIGURE 2.4 Transducer L, which converts > to -um- and inserts [+be] at the end of the
word

Again, we can precompose M and L:

so that now

context-dependent rewrite rules:

E ---+> rC?(VClVVIVVClVCVV?C)_$

Here, ''I\'' and "$" indicate the beginning and end ofstring, respectively.
The first rule introduces> after initial (C)VC, (C)VV and (C)VCVV?
before a following CV. The second introduces > after initial (C)VC,
(C)VVC, (C)VV, and (C)VCVV?C before a following end-of-string.

Once again, a machine L will convert the marker to one of the infixes
so that the infixed form r of base A is again defined as follows, where
once again we can reassociate:

r = A 0 MOL = A 0 [M 0 L] = A 0 fJ,

2.2.8 Positively Circum.scribed Infixation

U~wa (Nicaragua) (CODIUL, 1989) provides a good example of infix
atIOn that attaches to a prosodically defined portion of the base. Some
examples are given in Table 2.8. In this case the prosodic unit is an
iambic foot, and the generalization is that the infixes in question - in
Ulwa, the set of personal possessive markers - suffix to the first foot of
the word. Iambic feet include disyllables with a short vowel followed
b: either a long or short vowel (bilam, anaa), and\monosyllables with
either a long vowel (dii) or a dosed syllable with VC (sik). If the word
is a single foot, as in the case of bilam "fish" or dii "snake" the affix is
merely a suffix; otherwise the affix attaches to the first foot as in liima
"1 'emon".

As with Bontoc, Ulwa infixation can be factored into two compo
nents, t~e. first of which introduces a marker into the relevant post
foot pOSitIOn, the second of which transduces that marker to the rel
evant infixes. The marker machine M can be described using a set of

TABLE 2,,8 Infixation in Ulwa

bilam
dii
liima
sikbilh
onyan
baa
mistu
anaalaka

"fish"
«snake"
"lemon"
"horsefly"
«onion"

"excrement"
"cat')
«chin"

bilamkJ.
diimamuih
liikama
sik!1ibilh
onkinayan
baamana
mi.skanatu
anaakanalaka

"my fish"
"your (sg,,) snake"
"his lemon"
"our (incl..) horsefly"
"our (excL) onion"
"your (pI.) excrement"
"their cat"
"their chin"

2.2.9 Root-and-Pattern Morphology

The best-known example of root-and-pattern morphology is the
derivational morphology of the verbal system of Arabic, which was
given the first formal generative treatment by McCarthy (1979). As is
well known, Semitic languages derive verb stems - actual verbs with
specific meanings - from consonantal roots, where the overall prosodic
"shape" ofthe derivative is given by a prosodic template (in McCarthy's
original analysis a CV template), and the particular vowels chosen
depend upon the intended aspect (perfect or imperfect) and voice
(active or passive). Some examples for the active forms with the ubiqui
tous root ktb "notion of writing" (Kiraz, 2000) are given in Table 2.9.

6

For the sake of the present discussion we will assume that we are
combining two elements, the root and the vocalized stem; the analysis
would only be marginally more complicated ifwe chose to separate out
the vowel as a separate morpheme as in most autosegmental (and some
computational- see Kiraz, 2000) treatments of the phenomenon.

We will assume that the root morpheme, such as ktb, is represented
as a sequence of consonants as it would be represented in traditional

6 While tables such as Table 2.9 are often referred to as "paradigms" it is important
to understand that the relations expressed here are not inflectional as in a standard verb
paradigm for a language like Spanish, but derivational: each line in Table 2.9 represents a
different verb, much as .stand, understand, and withstand are different verbs in English.

42 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 43

TABLE 2.9 Arabic active verb stems derived from the root ktb
"notion ofwriting'~.Note that the use of the vowel lal indicates
that the stem is active

Pattern Template Verb stem Gloss

To get a transducer corresponding to all of the above templates, one
simply takes the union:

T= U Tp

pEpatterns

I C j aCZaC3 katab "wrote"
II C j aCZCZaC3 kattab "caused to write"
III C j aaCZaC3 kaatab "corresponded"
IV aC j CZaC3 aktab "caused to write"
VI taC j aaCZaC3 takaatab "wrote to each other"
VII nC j aCZaC3 nkatab "subscribed"
VIII C j taCzaC3 ktatab "copied"
X staC j CZaC3 staktab "caused to write"

analyses. Thus we could define the root P as follows:

P = ktb

Similarly, we assume that the templates are represented more or less as
in the standard analyses, except that the additional affixes that one finds
in some of the patterns - the n- and sta- prefixes in VII and X or the -t
infix in VIII - will be lexically specified as being inserted. This serves
the dual purpose of making the linking transducer (below) simpler
to formulate and underscoring the fact that these devices look like
additional affixes to the core CV templates (and presumably historically
were):

Tr = CaCaC (2·37)

TIl = CaCCaC (2..38)

TIll = CaaCaC (2.39)

Trv = [E : a]CCaC (2.40)

TVI = [E: ta]CaaCaC (2.41)

TVIl = [E : n]CaCaC (2.42)

TVIIl = C[E: t]aCaC (2.43)

TX = [E : sta]CaCaC (2.44)

Finally we need a transducer to link the root to the templates; this
transducer will serve as the computational implementation of the
association lines in the standard autosegmental analysis. The linking
transducer must do two things. First it must allow for optional vowels
between the three consonants of the root. Second, it must allow for
doubling of the center consonant to match the doubled consonant
slot in pattern II. The first part can be accomplished by the following
transducer:

Al = C[E : V]*C[E : V]*C

The second portion - the consonant doubling - requires rewrite rules
(Kaplan and Kay, 1994; Mohri and Sproat, 1996) of the general form:

This optional rule (in a brute force fashion) allows a copy of the center
consonant; call this transducer A2. Then the full linking transducer A
can be constructed as:

The whole set of templates for ktb can then be constructed as follows:

f=PoAOT

Given that composition is closed under association, we can factor this
problem differently. For example, if we prefer to view Arabic verbal
morphology as involving just two components - a root and a pattern
component, sans the linking component - then we could analyze the
pattern as, say, consisting of A0 T, and then this new transducer (call it
/) would be composed with the root machine. This would bring Arabic
root-and-pattern morphology more in line with a number of other
examples we have considered in that it would involve the composition
of two elements. But this would be a purely theoretical move, not
computationally motivated.

It should be noted that while what we have described works for Ara
bic, as a practical matter, most large-scale working systems for Arabic,

44 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 45

such as Buckwalter (2002), sidestep the issue ofconstructing verb stems,
and effectively compile out the various forms that verbs take. This is
not such an unreasonable move, given that the particular forms that
are associated with a verbal root are lexically specified for that root, and
the semantics of the derived forms are not entirely predictable.

Another approach taken is that of Beesley and Karttunen (2000)

who propose new mechanisms for handling non-concatenative mor
phology including an operation called compile-replace. The basic idea
behind this operation is to represent a regular expression as part of
the finite-state network, and then to compile this regular expression on
demand. To see how this works, consider a case of total reduplication
(see Section 2-4) such as that found in Malay: thus a form like bagi "bag"
becomes bagibagi "bags'~ In Beesley and Karttunen's implementation, a
lexical-level form bagi +Noun +Plural would map to an intermediate
surface form bagiA

2. This itself is a regular expression indicating the
duplication of the string bagi, which when compiled out will yield the
actual surface form bagi-bagi. Thus for any input string w, the redupli
cation operation transforms it into the intermediate surface form W A 2,

which compile-replace then compiles out and replaces with the actual
surface form.

For Semitic templatic morphology, Beesley and Karttunen propose
an additional device that they call merge. The oReration of merge is
simple to understand by example. Consider a root drs "read" and a tem
plate CWCVc. The root is viewed as afiller for the template. The merge
operation walks down the filler and the template in parallel, attempting
to find a match between the template slot and what is available in the
current position of the filler; note that this presumes that we have a
table that indicates that, say, C will match consonants such as d, r or s.
As described by Beesley and Karttunen (2000: 196):7

1. If a successful match is found, a new arc is added to the current
result state. The arc is labeled with the filler arc symbol; its des
tination is the result state that corresponds to the two original
destinations"

2. If no successful match is found for a given template arc, the arc
is copied into the current result state.. Its destination is the result
state that corresponds to the destination of the template arc and
the current filler state..

7 The operation described here is in many ways similar to the mechanism described in
Beesley (1989) and discussed in Sproat (1992) ..

Lexical: drs =Root C V V eve =Template u * i =Voc
Surface: A[drs .m>. C V V eve .. <m. u * i A]

FIGURE 2.5 Representation of the Arabic duuris, following Beesley and Karttunen (2000,

Figure 16) .. The surface form is a regular expression involving two mergers between the root
drs, the pattern u*i and the template CWCVC The surface form is derived via compile
replace

Beesley and Karttunen distinguish leftwards and rightwards merge
depending upon whether the filler is on the right or left, respectively.
These are expressed as .m>. and .<m.. in the Xerox regular expression
formalism (Beesley and Karttunen, 2003). An example is shown in
Figure 2.5, where the surface form duuris is constructed out of a root
drs, a vocalism u*i (where "*,, has the normal Kleene closure interpre
tation) and a root CWCvc. Once again, the intermediate surface form
derives the surface form via compile-replace.

While this is a clean model ofArabic morphology, it is important to
remember that the system has no more computational power than a
model based solely upon composition. In particular, the merge opera
tion is really a specialized version of intersection or composition. The
second option in the algorithm sketched above is straightforwardly
simulated by adding to the filler a loop over a label that will match the
current template position. Consider the case illustrated in Figure 2.6,

consisting of the root drs and the template CWCVc. Suppose we have
read the first d of the root and have matched it with the first C of
the template. Thus we are in state 1 in the root machine and 1 in the
template machine, or state {I,l} in the merged machine. Now we go to
read the V in the template machine, and find that there is nothing to
match it in the root machine. In Beesley and Karttunen's algorithm we
advance the template machine into state 2, leaving the root machine
in state 1, putting us in state {2, I} in the merged machine. But the
equivalent resulting state is achieved through standard intersection if
we replace the root machine at the top ofFigure 2.6 with the augmented
root machine at the bottom. In that case we will follow the loop on V in
the root machine, matching it against the V linking states 1 and 2 in the
template machine, putting us into state {2, I} in the resulting intersected
machine. This is equivalent to the description of Semitic morphology
that we presented earlier in this section. Therefore, not surprisingly,
Beesley and Karttunen's merge operation is equivalent tQ standard
intersection with a filler machine augmented with loops that will match
the template elements not otherwise matched by the elements in the

2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.2 SYNTAGMATIC VARIATION 47

a. Root machine

TABLE 2.10 Latin third stem derivatives

Verb 3rd Stem Derived Form

b.o Template machine

c. Augmented root machine

FIGURE 2.6 Filler acceptors representing the root drs (a) and the template acceptor
CWCVC (b), following Beesley and Karttunen (2000) .. The third acceptor (c) is the root
augmented with loops on V

root. Indeed, there should be no difference in efficiency between the
standard intersection algorithm and the merge operation since in both
cases we have to check the current state ofthe filler machine for arcs that
match arcs leaving the current state of the template machine and move
each machine into the appropriate next state. Thus, while the merge
operation allows us to represent the roots and vowel templates in a
somewhat simpler way (without the explicit selfloops), this amounts to
syntactic sugar. The operation ofBeesley and Karttunen's whole system
using merge and compile-replace is entirely equivalent to the model
based on composition that we had previously sketched.8

Perfect Participle

Future Participle

Supine

Agentive Noun

-io Noun

-iir Noun

Desiderative Verb

Intensive Verb

Iterative Verb

laudare "praise" laudat- laudatus
ducere "lead" duct- ductus
vehere "carry" vect- vectus
premere "press" press- pressus
ferre "bear" lat- latus

laudare "praise" laudat- laudatiirus
ducere "lead" duct- ductiirus
vehere "carry" vect- vectiirus
premere "press" press- pressiirus
ferre "bear" lat- latiirus

piscare "fish" piscat- piscatum
dicere "say" dict- dictum

vincere "defeat" vict- victor "winner"
tondere "shear" tons- tonsor "barber"

cogitare "think" cogitat- cogitatio "thought"
convenire "meet" convent- conventio "meeting"

scrIbere "write" script- scriptiira "writing"
pingere "paint" pict- pictiira "painting"

edere "eat" es- esurlre "be hungry"
emere "buy" empt- empturIre "want to buy"

iacere "throw" iact- iactare "fling"
trahere "drag" tract- tractare "drag"

videre "see" vIs- visitare "see often, visit"
scrlbere "write" script- scriptitare "write often"

2.2.10 Morphomic Components

Aronoff (1994) discusses morphological functions that he terms mor
phomic, which are purely morphological constructs. One example is
the English passive participle and past participle (eaten, fried, wrung,
etc.), which are always identical in form, yet have clearly different
morphosyntactic functions. The forms also differ morphophonolog
ically: some verbs mark the form with -en (eaten), others with -ed
(fried) or -t (dealt), still others with a vowel change (wrung). Aronoff
therefore argues that the forms are identical at a purely morpholog
ical level and makes the general substantive claim that "the mapping
from morphosyntax to phonological realization is not direct but rather

8 We realize that the description just presented violates the maxim we introduced in
Chapter I to avoid thinking at the machine level. However, it is necessary to delve down
into the machine-level computations when comparing the efficiency of two algorithms..

Participles are given in their masculine, singular, nominative form; supines in their accusative
form; agentive and other nouns in their nominative singular

passes through an intermediate level" (page 25). So in English two mor
phosyntactic functions, namely past participle and passive participle,
are mapped to a single morphome, which Aronofflabels Fen, and thence
to various surface morphophonological forms, depending upon the
verb.

Another more complex example discussed by Aronoff is the third
stem of Latin verbs, which forms the basis for the further derivation
ofnine distinct deverbal forms. The third stem is the base of the perfect
participle, but also forms the basis for the future participle, the supine,
agentive nouns in -or/-rix, abstract denominals in -io and -iir, desider
ative verbs, intensive verbs and iterative verbs. Some examples are given
in Table 2.10.

2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.3 PARADIGMATIC VARIATION 49

Aronoff argues that there is no basis for regarding any of the nine
forms as semantically basic, hence there is no reason to believe that any
of the forms are derived from one another. However, they all share a
common morphological base, the third stem, which thus, in Aronoff's
analysis, has a morphomic status.

Clearly in any analysis of these data, we must assume that the nine
morphological processes outlined above have the property that they
select for the third stem: this is true whether we believe, contra Aronoff,
that one of the forms is systematically basic, or with Aronoff that there
is no basis for such a belief. Thus any computational model of the
formation of each of these nine deverbal forms must start from the
assumption that there are two processes: one that maps a verb to its
third stem form, and another that selects that third stem form, and
(possibly) affixes additional material. For concreteness, let us consider
the formation of agentive nominals in ~or.

Assume for the sake ofargument that we wish to derive the third stem
of a verb from its first stem - i.e., the one that we find in the present
tense, or generally with the infinitive.9 For the verb scriba "write': the
first stem is scrib-. For many verbs, the derivation ofthe third stem from
the first stem is predictable, though a quick examination of Table 2.10

will suggest that this is not always the case. For first conjugation verbs
(infinitive in -are), third stems are regularly for~ed by suffixing -t to
the first stem. Thus lauda- "praise" forms its third stem as laudat-.
Third conjugation verbs such as scrib- frequently also suffix t (with
regular devoicing of the Ibl to Ipl): script-.

We assume in any case that the third stem can be formed by a
transducer that makes appropriate changes to the first stem and tags
them with a marker >3st> where >3st~ :E. Call this transducer T.

Morphological processes that select for third stem forms will then be
specified so as to combine only with stems that are marked with >3st.

Agentive -or, for example, will look as follows:

Given a first stem F, then we will derive agentive forms i as follows:

i=FoTof3

9 AJ; we argued in Section 2.1, it is immaterial whether we relate derived forms to
underlying stems or citation forms ofwords.

Formally, this is just an instance of prosodic selection of the kind we
saw for Yowlumne in Section 2.2.3. In this analysis, then, morphomic
elements are purely morphological in the sense that they serve as an
intermediate step in the composition of a full form. In this regard they
are no different from several other kinds of morphology that we have
seen.

2.3 Paradigmatic Variation

We have talked in this chapter about syntagmatic aspects of morphol
ogy, or in other words, how the pieces of morphology are put together.
We have said nothing about another important aspect, namely how
morphologically complex forms are related to one another. One kind
of relationship is paradigmatic, and we turn now to a brief discussion
of this.

Traditional grammars oflanguages like Latin present inflected forms
of words in a type of table called a paradigm. A paradigm is a (usually)
two dimensional, though in principle n-dimensional (where n is the
number of features expressed by the morphology), array where each
cell in the array corresponds to a particular combination of features:
for example, in Latin nouns, a combination of one case setting from
the set {NOMINATIVE, GENITIVE, DATIVE, ACCUSATIVE, ABLATIVE} and
one number setting from the set {SINGULAR, PLURAL}.

Aword form that occupies a given cell in a paradigm is understood as
bearing the features associated with that cell. In languages of the type
exemplified by highly inflected Indo-European languages, words of a
particular part-of~speech may be divided into a number of different
classes. Each of these classes, by and large, shares the same paradigm
structure as the other classes, but the forms are different. A very typical
example, involving the five major Latin noun declensions, is given in
Table 2.11.

The derivation of the different forms exemplified in Table 2.11 is at
one level trivial in that the forms consist simply of stems that bear the
meaning of the word and endings that mark the inflectional features.
Thus the genitive plural of "barn" can be derived by taking the stem
horre- and concatenating it with the suffix -arum. If this were all there
were to it, then paradigms would have little status beyond being conve
nient ways of presenting grammatical data.

But various scholars, including Matthews (1972), Carstairs (1984),
Stump (2001), and others have argued that paradigms have more

50 2. FORMAL CHARACTERIZATION OF MORPHOLOGY

TABLE 2.11 The five major Latin noun declensions

Singular Plural Gloss

Declension 1, F
NOMINATIVE remina reminae ((womann

GENITIVE reminae reminarum
DATIVE reminae reminis
ACCUSATIVE reminam reminas
ABLA:IIVE remina reminis

Declension 2, M
NOMINATIVE asinus asini ((ass"

GENITIVE asini asinarum
DATIVE asina asinis
ACCUSA:fIVE asinum asinas
ABLATIVE asina asinis

Declension 2, N
NOMINATIVE honeum honea "barn"
GENITIVE horrel horrearum
DATIVE honea horreis
ACCUSATIVE honeum honea
ABLATIVE honea honeis

Declension .3, F
NOMINATIVE fax facE's "torch"
GENITIVE fads facum
DA:TIVE fad fadbus

.~

ACCUSATIVE facem faces
ABLATIVE face fadbus

Declension .3, N
NOMINATIVE opus opera "work"
GENITIVE operis operum
DATIVE operl operibus
ACCUSA:IIVE opus opera
ABLATIVE opere operibus

Declension 4, F
NOMINATIVE manus manus "hand"
GENITIVE manus manuum
DATIVE manul manibus
ACCUSATIVE manum manus
ABLATIVE manu manibus

Declension 5, F
NOMINATIVE res res "thing"
GENITIVE reI rerum
DA:TIVE reI rebus
ACCUSATIVE rem res
ABLATIVE re rebus

C'F') :::: FEMININE, "Iv!" = MASCUlINE, {(N') :::: NEUIER.

2.3 PARADIGMATIC VARIATION 51

significance than that and actually have a first-class status in any theory
of morphology. Part of the motivation for this belief is the existence
of regularities that transcend particular forms and seem to character
ize the paradigms themselves. For example, a cursory examination of
the paradigms in Table 2.11 will reveal that although the dative and
ablative are distinct cases in that they typically have different forms in
the singular, they are uniformly identical in the plural. This is true for
all nouns in all genders and all declensions: no matter what suffix is
used in the dative plural, the ablative plural will always be the same. A
more circumscribed but nonetheless equally universal generalization is
that the nominative and accusative forms of neuter nouns are always
identical (and indeed, always marked by -a in the plural). Once again,
whatever the form of the nominative, the accusative (for the same
number) is always the same. These generalizations are distinct from,
say, the identity in the first and second declension between the genitive
singular and the nominative plural; this generalization does not extend
beyond these two declensions, and does not even hold of neuter nouns
of the second declension. Rather, the identity of dative and ablative
plurals, and nominative and accusative neuters, are a general fact of
the language, transcending any particularities of form: knowing these
identities is part ofwhat it means to know Latin.

What is an appropriate computational characterization of these reg
ularities? We can divide the problem into two components, the first
of which relates morphosyntactic features to abstract morphomic fea
tures, and the second of which relates those forms to particular surface
forms for a particular word class. We will illustrate this with a small set
drawn hom the first three declensions, which are the most widespread.

The abstract representation can be derived by a set of rewrite rules,
compiled as a transducer; see Table 2.12. The first two rules handle
the fact that for any neuter noun, the nominative and accusative are
identical. The rules third and second from the end handle the fact that
the dative and ablative plurals are always the same and are gender inde
pendent, since the forms are identical in the first (mostly feminine) and
second (masculine and neuter) declensions. The final rule handles the
fact that the forms in the third declension are gender independent. The
remaining rules map case/number combinations to abstract features. lO

10 Note that we could abstract away from gender further than in just the third declension,
in that many of the endings of the first and second declensions are identical: thus the
genitive plural is identical- viz.. equOrum, feminarum - once we discount the stem voweL

52 2. FORMAL CHARACTERIZATION OF MORPHOLOGY 2.4 THE REMAINING PROBLEM: REDUPLICATION 53

TABLE 2.12 Rewrite rules mapping con
crete morphosyntactic features to an
abstract morphomic representation

NEUT NOMUACC SG ---+ NEUTNASG

NEUT NOMUACC Pl ---+ NEUTNAPL

NOMSG ---+ NOMSG

ACCSG ---+ AccSG

GENSG ---+ GENSG

DA:I SG ---+ DATSG

ABLSG ---+ ABLSG

NOMPl ---+ NOMPl

ACC Pl ---+ ACCPl

GENPL ---+ GENPL

GENDER DAT PL ---+ DA:rABlPL

GENDER ABl Pl ---+ DATABlPl

GENDER ---+ E / IlIa

a III denotes third declension,

A second transducer maps from the abstract endings to actual forms.
We can express this in terms ofaffixes that select for stems with particu
lar abstract morphomic features, as in Table 2.1,3. Note that this descrip
tion is a fragment; in particular it does not account for first declension
masculine nouns (nauta "sailor") or second declension nouns in -r
(puer "boy"), and it assumes that all non-neuter thlrd declension nouns
end in -5 in the nominative singular which, on the surface at least, is
not true. Call the transducer defined in Table 2.12 a and the transducer
defined in Table 2.13 a. Then given a set of bases B annotated with
morphosyntactic features, we can define the set of inflected forms of
B as follows:

f=Boaoa

The above analysis accords with a number of treatments of paradig
matic variation in that it assumes an abstract level at which mor
phomic features like DATABLPL have a first-class status. On the other
hand, as with the treatment of Arabic root-and-pattern morphology
in Section 2.2.9, we can also use the observation that composition is
associative to precompile a and a into a new transducer a' = a 0 a. This
new a' will now produce endings based on the surface morphosyntactic
features of B; the abstraction a is now hidden in the combined trans
ducer. We will develop this point much further in Chapter 3.

TABLE 213 Fragment for Latin
nominal endings

~* [I-IIa DATABlPl : is]
~* [NEUINAPl : a]
~* [I-II NEUTNASG : urn]
~* [I-II FEM ABlSG : a]
~* [I-II FEM ACCPl : as]
~* [I-II FEM AccSG: am]
~* [I-II FEM DATSG : ae]
~* [I-II FEM GENPL: arum]
~* [I-II FEM GENSG : ae]
~* [I-II FEM NOMPL: ae]
~* [I-II FEM NOMSG: a]
~* [I-II MAS ABlSG: 0]
~* [I-II MAS ACCPL: os]
~* [I-II MAS AccSG : urn]
~* [I-II MAS DATSG: 0]
~* [I-II MAS GENPl : orum]
~* [I-II MAS GENSG: i]
~* [I-II MAS NOMPL: i]
~* [I-II MAS NOMSG: us]
~* [I-II NEUT ABLSG: 0]
~* [I-II NEUT DArSG: 0]
~* [I-II NEur GENPL: orum]
~* [I-II NEUT GENSG: i]
:E* [III ABlSG : e]

~* [III ACCPl: es]
~* [III AccSG: em]
~* [III DATABlPl : ibus]
~* [III DATSG : i]
~* [III GENPl : urn]
~* [III GENSG : is]
~* [III NEUTNASG : E]
~* [III NOMPl : es]
~* [III NOMSG: s]

I-II denotes nouns of declensions I
and II

2.4 The Remaining Problem: Reduplication

The one apparent significant exception to the generalization that all
morphological operations can be cast in terms of composition is redu
plication. The basic reason why reduplication is problematic is that it
involves copying, and finite-state devices do not handle unbounded
copying. A key point is contained in this last statement: finite-state
devices are in principle capable, albeit inelegantly and non-compactly,

TABLE 215 Unbounded reduplication in Bambara after Culy (1985)

FIGURE 2 ..7 A transducer for Gothic Class VII preterite reduplication.. Here ai represents
the vowel ai, and V represents all other vowels

wulu wulu "whichever dog"0

dog MARKER dog

wulu-nyinina wulu-nyinina "whichever dog0

dog searcher MARKER dog searcher searcher"

malo-nyinina~fizeza 0 malo-nyinina~filela "whichever rice
rice searcher watcher MARKER rice searcher watcher searcher watcher"

f:f

----01 19 l-----""~-__+

2.4 THE REMAINING PROBLEM: REDUPLICATION 55

___---I 21)------ --'-V-'-':v'---- ~

E:ai

Inelegance converts into impossibility when we turn to unbounded
reduplication, a well-known example ofwhich is Bambara noun redu
plication, discussed in Culy (1985). The construction takes a noun X
and forms a construction X-o-X, where -0- is a semantically empty
marker, and the meaning of the whole construction is "whichever X";
see Table 2.15. The key issue, as shown in these examples, is that X is
in principle unbounded. So, compounds such as wulu-nyinina "dog
searcher" or malo-nyinina-filela "rice searcher watcher" can readily
serve as input to the process. If the input to the reduplication process is

54 2. FORMAL CHARACTERIZATION OF MORPHOLOGY

TABLE 2.14 Gothic Class VII preterites
after Wright (1910)

Infinitive Gloss Preterite
E:f

falpan "fold" faifalp
haldan "hold" hamald
ga-staldan "possess" ga-staistald
af~aikan "deny" af-aiaik
maitan ((cut" maimait
skaidan "divide" skaiskaip
slepan "sleep" saislep
gretan "greet" gaigrot
ga-redan "reflect upon" ga-rairop
tekan "touch" taitok
saian «sow" saiso

of dealing with any bounded copying. Basically we need as many paths
as we have strings that are in the domain of the copying operation.

For example, consider the reduplication found in the past tense of
Class VII verbs in Gothic in Table 2.14 (Wright, 1910). In forming
the preterite, some verbs undergo stem changes, as in the alternation
between gret and grot, in addition to reduplication; prefixes such as ga
or af- are not part of the stem and are prefixed oU,tside the reduplicated
stem. Putting these issues to one side, the rule for" reduplication itself is
simple:

• Prefix a syllable of the form (A)Cai to the stem, where C is a
consonant position and (A) an optional appendix position.

• Copy the onset of the stem, if there is one, to the C position. If
there is a pre-onset appendix lsi (i.e., lsi before an obstruent such
as Ip,t,kl), copy this to the (A) position.

A fragment of a transducer that introduces the appropriate redupli
cated prefix for Gothic Class VII preterite reduplication is shown in
Figure 2.7. The model is naive in that it simply remembers what was
inserted, and then imposes the requirement that the base match appro
priately. Thus there are as many paths as there are distinct reduplicated
onsets. Given that Gothic reduplication is limited, this is not an overly
burdensome model. ll It is, however, clearly inelegant.

11 Indeed, Gothic reduplication is even more limited than we have implied since it only
applies to Class VII verbs, and this is a closed class.

572.4 THE REMAINING PROBLEM: REDUPLICATION

12 Gains in size are offset, in general, by losses in runtime performance, however..

There have been various proposals in the literature for handling redu
plication that are formally equivalent to the mechanisms we have just
sketched. For example, Walther (2000a; 2000b) adds two new types of
arcs to finite-state automata to handle reduplication:

• Repeat arcs, which allow moving backwards within a string, allow
ing for repetition of part of the string;

• Skip arcs, which allow us to skip forward over portions of the
string.

A more general solution that handles reduplication and other types
of non-concatenative morphology is finite-state registered automata
(FSRAs), introduced in Cohen-Sygal and Wintner (2006). FSRAs
extend finite-state automata with the addition of finite registers; note
that since the registers are finite, the resulting machine is computation
ally equivalent to a potentially much larger FSA. The transition func
tion of the automaton is extended to include operations that read or
write designated elements of the register, and, depending upon the suc
cess or failure of those operations, allow the machine to move to a des
ignated next state. Cohen-Sygal and Wintner demonstrate a substantial
reduction in machine size for non-concatenative morphology such as
Hebrew templatic morphology over a naive finite-state implementa
tion, such as the one that we described in Section 2.2.9.12 FOJ redupli
cation they introduce a particular subclass of FSRA - FSRA* - where

iEindices sEsegments
U

A number of approaches could be taken to check matches of the
indexed arcs. One way is to impose a set of finite-state filters, one for
each index. For example the following filter imposes the constraint that
arcs indexed with "1" must be identical; it consists of union of paths
where for each indexed segment s1, there must be a matching indexed
segment. The overbar represents complementation and we use Si as
shorthand for any single segment that is not Si.

For a finite number of indices - a viable assumption for bounded
reduplication - we can build a filter that handles all matches as follows:

U [I:*SlI:*SlI:*]
5 Esegments

FIGURE 2.8 Schematic form for a transducer that maps a Gothic stem into a form that
is indexed for copy checking. Here V represents any vowel, ai is the vowel lail, $ is lsi,
o is an obstruent stop, C is any other consonant, and X stands for any consonant in the
reduplicated portion, which has to be checked for identity per the introduced indices

2. FORMAL CHARACTERIZATION OF MORPHOLOGY

unbounded, then simply precompiling out all of the copies as we did in
the case of Gothic is not feasible.

To handle bounded reduplication elegantly, and unbounded redu
plication at all, we have to add an additional memory device that can
remember what has been seen already in the copy, and then match
that to what comes afterwards in the base. (In the case of suffixing
reduplication it is the copy that follows the base, but the mechanism
is the same.)

It is useful to think of reduplication in terms of two separate compo
nents. The first component models the prosodic constraints, either on
the base, the reduplicated portion, or both. In the case of Gothic, for
example, the constraint is that the reduplicated portion is of the fOrm
(A)Cai, where C is a consonant and A is an optio\lal preonset appendix.
The second component - the copying component - verifies that the
prefix appropriately matches the base. It is useful to separate these two
components since the prosodic check can be handled by purely finite
state operations, and it is only the copying component that requires
special treatment.

Breaking down the problem as just described, we can implement
Gothic reduplication as follows. First, assume a transducer R, which
when composed with a base f3, produces a prefixed version of f3, and in
addition to the prefix, adds indices to elements in the prefix and base
that must match each other:

Here, f3' is an appropriately indexed version of f3. The transducer R is
shown schematically in Figure 2.8.

For example, if we have the stem skaip "divide" and compose it with
the transducer R it will produce the output X1Xzais1kzaip, where X here
ranges over possible segments.

disyllabic. Note that in neither alternative is the prefixed material iden
tical to what follows. Another constraint in Kinande is a Morpheme
Integrity constraint that states that no morpheme may be truncated in
the copy; thus hum-ir-e (cultivate-APPLICATIVE-SUBJ) is reduplicated
as hum-a+hum-ir-e. The form hum-i+hum-ir-e is ruled out since this
form would result in a violation of the Morpheme Integrity constraint
because the integrity of -ir would be violated.

Following Cohen-Sygal and Wintner's approach, we could of course
design a machine that required identity on only some of the elements
between the reduplicant and the stem. But such machines would have
to be quite lexically specific in their application. In Sye, the modified
stem is only partly and unpredictably related to the basic stem, so
we would have to construct our copy machines on a stem by stem
basis. Similarly, in Kinande, with cases like gendya+gendesya involving
a truncated version of the causative morpheme in the copy, we would
have to have the reduplication machine be sensitive to the particular
stem involved: as it turns out, not all causative verbs allow the truncated
alternate, and in those cases where this alternate is not available, a
reduplicated form like gendya+gendesya is not possible. While we could
certainly develop an analysis ala Cohen-Sygal and Wintner along these
lines, it would somewhat defeat the purpose since if we require a set of
lexical specifications on how the copy machines operate, then we may
as well simply precompile out the reduplicated forms beforehand.

2. FORMAL CHARACTERIZATION OF MORPHOLOGY

register-write operations record what was seen in the copy, and register
read operations verify subsequently that the base matches.13

There are two limitations on Cohen-Sygal and Wintner's approach.
First, FSRA*s are defined for finite-length copies, which covers nearly
all cases of reduplication but fails to cover the Bambara case described
above. The second limitation is that the register-read operations pre
sume exact matches between the copy and the base. While this is fre
quently the case, there are also many cases where the copied material
undergoes modification due to phonological rules or for other reasons.

A number ofsuch cases are discussed in Inkelas and Zoll (1999, 2005).
A simple example is Dakota kicaxcaya "he made it for them quickly':
where the second syllable of the base kicax is reduplicated, but shows
up as cay for phonetic reasons. 14 But more dramatic examples can be
found, such as in the case of Sye. In Sye, verb stems have, in addition
to their basic form, a modified form that shows up in a variety ofenvi
ronments. Some examples, from Inkelas and Zoll (1999) are given in
Table 2.16. In verbal reduplication, which has an intensifying meaning
in Sye, we find two copies of the entire stem, but if the environment
requires a modified stem, only the first copy shows up in the modified
form. Thus, from omol, we find cw-amol-omol (3pl.fut-fallmod-fallbas)
"they will fall all over".

Another example comes from Kinande where ~. variety of constraints
conspire to yield situations in which the copy in a reduplicative con
struction does not match exactly what follows. One constraint is that
the copy - a prefix - must be disyllabic. This is straightforwardly
met in an example like huma+huma "cultivate here and there" from
huma "cultivate': where the latter is itself morphologically complex,
consisting of a base hum and a final vowel (FV) marker -a. With a base
like gend-esy-a (gO-CAUSE-FV) "make go", we find gend-a+gend-esy-a,
where the stem gend in the copy is augmented with the FV -a to make
it disyllabic. However, we can also find an alternative form involving
a shortened causative morpheme -y (ct the full form -esy): gend-y
a+gend-esy-a, where again the copy is augmented with -a to make it

13 Dale Gerdemann, p.C", argues that the XFST extension offlag diacritics (Beesley and
Karttunen, 2003) is more effective than FSRAs" Flag diacritics amount to a form of "lazy
composition", where we can limit the size of the automaton, and check correspondences
between portions of the input at runtime"

14 Note that this particular feature was not what interested Inkelas and Zoll in this
particular example, but rather the palatalization of the onset of the second syllable of the
base from /kJ (kikax) to /C! (kicax) in both the stem and the copy.

2-4 THE REMAINING PROBLEM: REDUPLICATION

TABLE 2,,16 Basic and modified stems
in Sye

Basic Modified Gloss

evcah ampcah "defecate"
evinte avinte "look after"
evsOl amsor "wake up"
evtit avtit «meet"
ocep agkep "fly"
ochi aghi ((see it"

omol amol "fall"
OlliC anduc "bathe"
ovoli ampoli ((turn it"

ovyu- avyu- (causative prefix)
owi awi "leave"
pat ampat "blocked"
vag ampag "eat"

Source: Inkelas and Zoll (1999)

59

FIGURE 2,9 The Gothic Class VII preterite form haihald "held" under Morphological
Doubling theory. Each copy is derived via a purely regular relation mapping (depicted by
the shaded boxes) from the underlying form hald to either hai or hald. Restrictions on
matching between the two halves reside at the level ofmorphosyntactic features, so that the
final form haihald is licensed by the match between the two [+pret] forms

Interestingly, Inkelas and Zol1's point in discussing such examples is
to argue for an alternative theory of reduplication to the "Correspon
dence Theory" that has dominated nearly all work on reduplication
in theoretical morphology - and all work in computational morphol
ogy. Under their analysis, reduplication does not involve phonologi
cal copying at all, but rather is the result of morphological doubling,
effectively meaning that we have two copies of the same (possibly com
plex) lexical form. Phonological similarity is thus expected in many
cases (we are dealing with two copies of the ~ame basic form) but
not required (since different environments can require different actual
forms to surface). Put in another way, under Inkelas and Zol1's Mor-·
phological Doubling theory, there are constraints on how each copy
is spelled out phonologically, but no constraints relating the redupli
cated phonological form to the base, as we find in Correspondence
Theory. This analysis has an interesting computational implication: if
it is correct, it effectively removes the only exception to the generaliza
tion that formal morphological operations can be handled by purely
finite-state mechanisms. If there is no phonological copying, there is
no need to resort to special mechanisms to extend the finite-state
apparatus beyond what is needed for the remainder of morphological
operations.

To see this, consider again the case of Gothic preterite reduplication.
Under Morphological Doubling theory, each component ofa form like
haihald "held" is generated separately. In each case, we can model the
mapping - either from hald to hai or from hald to itself - as a regular
relation. It is up to the morphosyntax to validate the form as involving
two identical morphosyntactic feature bundles. See Figure 2.9.

2.5 Summary

Composition of regular relations is the single most general com
putational operation that can handle the formal devices found in
natural language morphology. The only exception to this is redupli
cation, which seems, at least for an elegant account, to require a non
regular operation, namely copying. However, even reduplication can be
reduced to purely regular mechanisms ifInkelas and Zol1's Morpholog
ical Doubling theory is correct.

The fact that composition is so general has interesting implications
for theoretical views of morphology. In particular, morphologists have
argued for decades about whether morphology should primarily be
viewed as the construction of words out of small lexical pieces
morphemes - or whether instead it is better viewed as involving the
modification of stems or roots via rules. The argument over "Item
and-Arrangement" versus "Item-and-Process" approaches has effec
tively divided the field. In the next chapter we shall argue that at least
from a computational point ofview, there is really very little difference
between the two approaches.

612.5 SUMMARY

haLhald hold

o
~ hili hald
..,.. [+ retl '"'""""i-l

hai hald

2. FORMAL CHARACTERIZATION OF MORPHOLOGY60

3

The Relevance of
Computational Issues for
Morphological Theory

3.1 Introduction: Realizational versus
Incremental Morphology

For many decades a central debate in the theory of morphology has
been whether morphology is best thought of in terms of constructing
a complex form out of small pieces, usually called morphemes, which
are roughly on a par with each other; or, alternatively, as involving base
forms (stems, or roots) modified by rules. Hockett (1954) termed these
two approaches "item-and-arrangement" versus "item-and-process':

Item-and-process theories are older; they are th'e theories that were
implicitly assumed by, for example, traditional grammatical descrip
tions. In a traditional grammar of Latin, for example, one would be
presented with paradigms listing the various inflected forms of words
and their functions, as well as rules for deriving the inflected forms.
But item-and-process approaches have also characterized much work
in recent theories of morphology, including Matthews (1972), Aronoff
(1976), Anderson (1992), Aronoff again (1994), and most recently
Stump (2001).

Item-and-arrangement theories are particularly associated with the
American structuralists, but they have been adopted by at least some
generative morphologists including Lieber (1980), Sproat (1985), and
Lieber again (1992).

To some extent these different approaches were motivated by the
properties of different languages. For traditional grammarians the
core languages of interest were highly inflected Indo-European lan
guages such as Latin, Classical Greek, and Sanskrit. For these lan
guages, it seems to make sense to think in terms of morphological

3.1 REALIZATIONAL VS. INCREMENTAL MORPHOLOGY 63

rules rather than morphemes. For one thing, it is typical in such hin
guages that many morphosyntactic features are expressed in a single
affix, so that in Latin, for instance, the verbal ending -0 does not only
represent 1ST SINGULAR but in fact something more like 1ST SINGU

LAR PRESENT ACTIVE INDICATIVE; change anyone of those features and
the form changes. Second, one often finds the kind ofmorphomic stem
alternations that we have already discussed in the previous chapter, so
that it is typically not an issue of merely affixing a particular affix to
a stem, but rather affixing to a particular variant of the stem. Finally,
the affixes themselves may change, depending upon the particular par
adigm the base word belongs to. So first and second declension Latin
nominals have the suffix -is for the DATIVE/ABLATIVE plural; but third
declension nominals use -ibus to encode the same morphosyntactic
features. So all around it seems more obvious for these kinds of lan
guages to think in terms of rules that introduce affixes according to
whatever features one wishes to encode, rather than assuming separate
morphemes that encode the features. In addition to being sensitive to
morphosyntactic features, the rules can also be sensitive to features such
as the paradigm affiliation ofthe word, and furthermore they can effect
the particular stem form required for the affix in question.

In contrast, if one looks at agglutinative languages like Finnish,
one finds that morphosyntactic features are encoded fairly systemat
ically by individual morphemes that are arranged in particular linear
orders. Consider, for example, the partial paradigm for Finnish listed
in Tablep. 1 As will be readily seen, each word form consists of either
one, two or three pieces: the base tala, a possible affix marking number,
and a possible case affix. The case affixes are consistent across singular
and plural, so that, for instance, NOMINATIVE is always marked with
-0, ELATIVE with -sta and GENITIVE with -(e)n. With a single exception,
the alternations in form of the affixes are due to phonological rules,
as in -en versus -n for the GENITIVE, and the spelling of the plural
affix -i as a glide ~j in intervocalic position. 2 The single exception is
the appearance of the plural affix as -t in the NOMINATIVE PLURAL.

1 Adapted from Andrew Spencer's course notes for a morphology course at Essex, L.372,
available at http://privatewww..essex..ac..ukI~spena/372/372_ch7.pdf. Curiously, Spencer
uses the Finnish example to illustrate the difficulties of morpheme-based approaches to
inflection.

2 Some of the suffixes do change form in another way, namely due to vowel harmony:
This is, however, a completely regular phonological process in Finnish, and does not target
particular morphological operations..

3. MORPHOLOGICAL THEORY

TABLE .3-1 Partial paradigm of
Finnish noun tala "house'; after
Spencer

3.1 REALIZATIONAL vs. INCREMENTAL MORPHOLOGY

REALIZATIONAL

Distributed Morphology
Matthews, Anderson, Stump

INCREMENTAL

Lieber
Articulated Morphology

Lexical
Inferential

TABLEp The four logically possible morphological theory types, after
Stump (2001)

pIsg

With this one exception, the system looks as if it is most straightfor
wardly accounted for by assuming that there are in each case three
morphemes, namely the stem morpheme which introduces the basic
semantics of the word ("house", or whatever) and the number and
case affixes. As is typical with such morphemic approaches, one would
assume empty morphemes in the case of SINGULAR number and NOMI

NATIVE case. The number affix introduces the morphosyntactic feature
SINGULAR or PLURAL; the case affix introduces the appropriate case
feature. The representation of the number affixes 'Vyould be encoded so
as to select for the base stem (i.e., without a case ending). Similarly,
the case affixes would be marked so as to select for forms that are
already marked for number. One could in principle treat the alterna
tion in the plural morpheme (-if -J vs. -t) as a case of selection: one
would have two allomorphs of the plural affix, with the -t variant
being selected by the NOMINATIVE affix, and the -if -.i variant by all
others.

The item-and-arrangement versus item-and-process debate has
often been cast in terms of this simple binary choice, with possible
sub-choices under each main choice. But more recently Stump (2001)
has presented a two-dimensional classification. The first dimension is
lexical versus inferential. Lexical theories are those theories in which all
morphemes are given lexical entries, so that the third singular verbal
affix -s in English has an entry associated with the features 3RD SIN

GULAR, PRESENT, and INDICATIVE. In contrast, inferential theories posit
rules which are sensitive to such morphosyntactic features; a form like
likes is inferred from like due to a rule that associates a suffix -s with a
particular set of morphosyntactic features (3RD SINGULAR).

Nominative
Genitive
Partitive
Inessive
Elative
Adessive
Ablative
Allative

talo
talo-n
talo-a
talo-ssa
talo-sta
talo-lla
talo-lta
talo-lle

talo-t
talo-j-en
talo-j-a
talo-i-ssa
talo-i-sta
talo-i-lla
talo-i-lta
talo-i-lle

The second dimension is incremental versus realizational. Incremen
tal theories assume that rules or morphemes always add information
when they are applied. Thus likes has its meaning by virtue of the
addition of -s to like. Under realizational theories, in contrast, the intro
duction of form is licensed by particular morphosyntactic features.

All four logically possible combinations of these contrasts are found;
see Table 3.2.

Thus a classic lexical-incremental theory is that of Lieber (1992); in
that theory, affixes are lexical entries with features just like roots and
stems. Combinations of affixes are controlled by subcategorization and
features are combined by percolation. 3 A lexical-realizational theory
is that of Halle and Marantz (1993). Here, morphosyntactic features
are combined in the syntax, but the expression of these features in the
morphology is controlled by insertion rules that pick affixes that are
compatible (given their lexical entries) with the syntax-derived features.

Inferential-incremental theories are exemplified by Articulated Mor
phology (Steele, 1995), wherein affixal material is introduced by rule,
rather than affixes having separate lexical entries. Here, rules not
only introduce the phonological changes to the word, but also effect
changes in the morphosyntactic feature matrices. Finally, inferential
realizational theories include those of Matthews (1972), Anderson
(1992), Aronoff (1994), and Stump himself Needless to say, Stump's
major objective is to argue that the facts of morphology dictate an
inferential-realizational theory rather than any of the other three logi
cal possibilities.

In what follows we will consider only the two extremes of Stump's
four possible theories, namely lexical-incremental versus inferential
realizational, and argue that at least at a computational level, there is no
difference between the two approaches. To the extent that this argument

3 In more sophisticated lexical-incremental theories, feature combination would involve
unification of attribute-value matrices.

is convincing to the reader, it will follow that the other two types of
theories are also amenable to the same reduction.

Before proceeding, we note that Karttunen (200.3) reached much
the same conclusion as we will reach here. In that paper, he argued
that Stump's theory was in fact reducible to finite-state operations.
From this observation it follows straightforwardly that Stump's theory
is formally equivalent to any other morphological models that can be
reduced to finite-state mechanisms.

3.2 Stump's Theory

Stump's inferential-realizational theory, which he calls Paradigm Func
tion Morphology, is arguably the most carefully articulated theory of
morphology to have appeared in recent years, and so we shall use
his theory as the example of recent theoretical work in morphology.
Stump's main goal, as we have noted already, is to argue that the data
from morphology support an inferential-realizational theory of the
kind that he presents. On the other hand, when one considers this issue
from a computational point of view - i.e., from the point of view of
someone who is trying to build a system that actually implements mor
phological alternations - the distinctions that Stump draws between
his approach and a lexical-incremental theory are{ess clear. But we are
getting ahead of ourselves.

Stump presents two fundamental arguments in favor of realiza
tional over incremental approaches to inflectional morphology. First,
inflectional morphology often exhibits extended exponence, by which
is meant that a given morphosyntactic feature bundle may be spelled
out by material scattered across the word. An example is Breton double
noun plurals such as bagouigou "little boats" (sg. bagig), where the
boldface suffix -OU occurs twice, once after the stem bag and once after
the diminutive suffix -ig. This is, on the face of it, problematic for incre
mental theories since the expectation is that a single morphosyntactic
feature bundle should be expressed by a single morphological object. In
contrast, realizational theories make weaker claims in this regard, and
thus are fully compatible with extended exponence.

A second argument for realizational theories over incremental ones
comes from cases where there is no overt marker for a particular mor
phosyntactic feature bundle, and the form of the word thus underde
termines the actual morphosyntactic features ofthat word. Stump gives
the example of Bulgarian verb inflection where the first singular form

66 3. MORPHOLOGICAL THEORY 3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS

in both the imperfect and aorist consists of a verb stem, followed by
a vowel indicating the aspect/tense, followed by a stem-forming suffix;
thus krad-'a-x ("steal" imperfect Isg) and krad-o-x ("steal" aorist Isg)
consist of the stem krad, the thematic vowel Ca, 0) and the stem
forming suffix -x. Crucially there is no overt mark for first person singu
lar. The only way to handle this case under an incremental theory is to
assume a zero morpheme. Again, such phenomena are fully compatible
with the weaker assumptions of realizational theories.

In a similar vein, cases such as the Breton example given above
would seem to mitigate against lexical theories, whereas they are fully
compatible with inferential theories. As Stump notes, in a lexical theory
such as Lieber's (1980), a morphosyntactic feature bundle should be
traceable to one and only one lexical item, consisting of a single affix.
In contrast, in an inferential theory, since the only requirement is that
a rule be sensitive to a particular set of morphosyntactic features, one
expects to find cases where a given set triggers more than one rule: since
morphosyntactic features are a property of a given word and are always
present, there is nothing to stop more than one rule firing - or, as in the
case of Breton, the same rule firing more than once - at different stages
of the construction of a word form.

Thus, it seems that there are large differences between lexical
incremental theories on the one hand, and inferential-realizational
theories on the other, and furthermore there is evidence favoring the
latter types of theory over the former. It is therefore perhaps surprising
that at least from a computational point of view, there turns out to
be essentially no difference between the two types of theory. We turn
directly to a discussion of this topic.

3.3 Computational Implementation of Fragments

In what follows, we present a computational analysis of data discussed
in Stump, with a view to showing that, at least from a computational
point of view, there is no fundamental difference between lexical
incremental theories and inferential-realizational theories. In each case
the example is a fragment of the morphology in question: we do not
attempt to offer as complete a treatment as Stump (although note that
his descriptions are fragments also). However, we believe that we have
provided proof~of..concept implementations of the selected phenom
ena.

TABLE .".,3 Stem alternation in the masculine paradigm of San
skrit bhagavant "fortunate", with strong stem bhagavant and
middle stem bhagavat

.3 ..3.7 Stem Alternations in Sanskrit
In highly inflected languages, it is common to find alternations in the
shape of stems depending upon the particular position in a paradigm.
Often these alternations are quite systematic, in that words might have,
say, two distinct stems, and each of these two stems will be associated
with particular paradigm slots. For example, one might find that Stem I
is used in the nominative singular, accusative singular and genitive
plural; and that Stem II is used in all other cases. This pattern will
likely be found for any lexeme that belongs to the inflectional class in
question. While the stem alternations will be predictable at an abstract
level, it will frequently not be the case that the form of the alternation
is predictable in any general way. Thus, different lexemes may have
different mechanisms for forming different stems so that if one knows
how a lexeme Ai forms Stem I and Stem II, it will not necessarily tell us
how A; forms those two stems. The alternations are thus morphomic, in
Aronoff's (1994) sense. To complicate matters further, a language may
have a fixed set of mechanisms for forming stem alternants, but for a
particular alternation for a particular paradigm, the mechanisms may
distribute differently across different lexemes. Stump discusses a case of
this kind from Sanskrit.

Tables 3.3 and 3.4 give a flavor of the issues. Table 3.3 shows the mas
culine declension of the adjective bhagavant "fortunate". This adjective
has two stems, a strong stem, which is used in the nominative and
accusative, singular and dual, as well as in the nominative plural; and a
middle stem, which is used elsewhere.

Some forms have three stems. So Table 3.4 shows the masculine
declension of tasthivans. The strong stem for tasthivans is distributed

3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS

tasthiv~s-as

tasthU?-as
tasthivad-bhis
tasthivad-bhyas
tasthivad-bhyas
tasthU?-am
tasthivat-su

PI

tasthiv~s-au

tasthiv~s-au

tasthivad-bhyam
tasthivad-bhyam
tasthivad-bhyam
tasthU?-os
tasthU?-os

DU

tasthivik
tasthiv~s-am

tasthu?-a
tasthu?-e
tasthU?-as
tasthU?-as
tasthU?-i

SG

(= Stump's Table 6.3, page 174)

NOM

ACC

INSTR

DAT

ABI

GEN

LOC

TABIE.3-4 Stem alternation in the masculine paradigm of San
skrit tasthivans "having stood", with strong stem tasthiv~s,

middle stem tasthivat, and weakest stem tasthU?

the same way as the strong stem for bhagavant, but in addition this
lexeme has both a middle and weakest stem. The weakest stem is used
throughout the singular (except for the nominative and accusative), in
the dual genitive and locative and in the plural accusative and genitive.

Cross-cutting these stem alternations are another class of alterna
tions, namely the grade alternations of vrddhi, gUI:la and zero grade. For
the stem piid- "foot': for example, the vfddhi form is piid-, the gUI:la is
pad- and the zero is pd-. The stem alternations cannot be reduced to
these grade alternations. In particular the strong stem may be either
Vfddhi or gUI:la, or in some cases a stem form that is not one of the
standard grades, depending upon the lexeme. Similarly, the middle
stem may be either zero, or one of a number of lexeme or lexeme
class specific stems, again depending upon the lexeme. Finally, for those
lexemes that have a weakest stem, this may occasionally be a zero stem,
but it is more often one of a number oflexeme or lexeme-class specific
stems. For bhagavant the strong stem is gUI:la grade and the middle
stem is zero grade. For tasthivans the strong stem is vfddhi grade, and
the middle and weakest stems are derived by mechanisms that are
particular to the class to which tasthivans belongs.

Stump uses these facts to argue for the Indexing Autonomy Hypoth
esis, whereby a stem's index, which indicates which particular stem
(e.g., strong, middle, weakest) will be used, is independent of the form
assigned to that stem. Stem alternants are thus highly abstract objects.
They seem to serve no particular function other than a purely morpho
logical one. Neither can they in general be reduced to other alternations
such as the vrddhi/gUly.a/zero grade alternation. They are, in Aronoff's
terms, purely morphomic.

SG DU PI

NOM bhagavan bhagavant-au bhagavant-as
ACC bhagavant-am bhagavant-au bhagavat-as
INSTR bhagavat-a bhagavad-bhyam bhagavad-bhis
DAr bhagavat-e bhagavad-bhyam bhagavad-bhyas
ABL bhagavat-as bhagavad-bhyam bhagavad-bhyas
GEN bhagavat-as bhagavat-os bhagavat-am
LOC bhagavat-i bhagavat-os bhagavat-su

(= Stump's Table 6.1, page 170)

3. MORPHOLOGICAL THEORY68

Morphology = Lexicon 0 Suffixes

The entire morphology for this fragment can then be implemented as
follows:

713.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS

And then one can affix this particular suffix to the base as follows:

[bh]agavant[GZN] [MascNoun] 0 Suffixinstr,du (3.4)

If this looks like an ordinary case of lexical, incremental affixation, this
is no accident. Note in particular that the full form is being constructed
using composition, which we argued in the previous chapter to be the
most general single operation that can handle all forms of morpholog
ical expression. Furthermore, the feature specifications are introduced
with the suffix, for example, Suffixinstr,du' In no sense is it the case, in
the above factorization, that the particular form of the affix (in this
case -bhyam), is introduced by a rule that is sensitive to features already
present, and thus the operation would appear to be incremental. In a
similar fashion it would appear to be lexical: the suffix is a separate
entity that includes the case and number features and which combines
with the base to form the fully inflected noun.

Now there is no question that an approach such as Stump's has
some benefit at elucidating generalizations about Sanskrit paradigms.

certain feature specifications. Thus, for instance, we can select the set of
instrumental dual suffixes as follows:

Suffixinstr,du = Suffixes 0 (}:*[noun gen = masc

case = instr num = du] }:*) (3.3)

vShort a e i 0 u au ai
VLong a= e= i= 0= U= a=u a=i
Vowel VShort VLong
ucons k c t t P
VCons g j d .. d b
UCons kh ch t. h th ph
vcons gh jh d .. h dh bh
SCans n·~ n n m
UCons sh s s f
SCons v Y
Cons UCons VCons SCons
Seg Cons Vowel
gend rnasc fern neut
case nom ace instr dat abl gen loc
nurn sg du pI
Category: noun case gend nurn
Grade Guna Vrddhi Zero ivat us
GradeClass GZN VIUs
Diacritics Ending MascNoun
Diacritics Strong Middle Weakest
Diacritics Grade GradeClass
Class MascNoun

FIGURE 31 Lextools symbol file for implementation of a mini-fragment of Sanskrit, fol
lowing Stump (2001). Note that the labels ivat and us are used to mark stem alternations
needed for bhagavant and tasthivans

Fig. 3.2

Fig. 3.1

Fig. 3.2

Fig. 3.2

Fig. 3.3

Fig. 3.4
Fig. 3.4

Fig. 3.4
Fig. 3.5
Fig. 3.5

3. MORPHOLOGICAL THEORY70

· Symbol file: Lextools file of symbols
• DummyLexicon: Template for lexical forms
· Features: Rules introducing predictable morphosyntactic

feature sets given the specification of the lexical class of the
lexeme

• Endings: Realizational rules that spell out endings appro
priate to the features
Referral plus Filter: Rules of referral to handle syncretic
forms, plus a filter to filter out forms that did not undergo
the rules of referral

· Stem: Stem selection rules
· Grademap: Lexeme-specific map between the morphomic

stems and the grade
· Grade: Phonological forms of the grade
· Phonology: Phonological alternations

Lexicon: Toy minilexicon containing entries for bhagavant
and tasthivans

In Figures ,3.1-3.5 we give a lextools implementation ofa tiny fragment
of Sanskrit, following Stump's description. Included are the following
basic components:4

The fragment of Sanskrit above can be implemented by composing the
transducers 1-9 together as follows: 5

Suffixes = DummyLexicon 0 Features 0 Endings 0

Referral 0 Filter 0 Stem 0

Grademap 0 Grade 0 Phonology

But note now that we can factor this problem in another way. In par
ticular, we can easily select out portions of the Suffixes FST that match

4 This and other fragments discussed in this chapter are downloadable flom the web site
for this book, <http://compling.ai.. uiuc..edu/catms> .. Information on lextools can be found
in Appendix 3A See Appendix 3B for an XFST implementation of the Sanskrit data due to
Dale Gerdemann, p.. c..

5 The function of the DummyLexicon is in part to keep this composition tractable, by
limiting the left-hand side of the composition to a reasonable subset of ~* ..

72._-=3:.:...-.-:M::..:::..:O:.::R=P:.::H.::.O.:::.=.LO.::..:G.::.IC.::.A=L....:T:.::H.::.E.::.·O.::..::.:R.::.Y~ ~ _

###
Transducer 1. DummyLexicon

Template for lexical entries: they consist of
a string of segments followed by a grade class
such as GZN (Guna-Zero-Nothing), or VIUs (Vrddhi-ivat-us);
followed by a class, such as MascNoun

[Beg] * [GradeClass] [Class]

###
Transducer 2 Features

This rule introduces the actual feature matrices, given the lexical
class of the stem Note that nouns (actually nominals, including
adjectives) are specified for case and number in addition to
gender. The following rule thus produces a lattice of possible
feature specifications, with only the gender· feature specified. The
Ending diacritic is just a placeholder for where the endings will
go.

3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS

###
Transducer 4 Referral

These are the rules of referral that specify the syncretic
relations in the paradigm

optional

[noun case=abl gend=masc num=sg] -> [noun case=gen gend=masc num=sg]

[noun case=nom gend=masc num=du] -> [noun case=acc gend=masc num=du]
[noun case=instr gend=masc num=du] -> [noun case=dat gend=masc num=du]
[noun case=instr gend=masc num=du] -> [noun case=abl gend=masc num=du]
[noun case=gen gend=masc num=du] -> [noun case=loc gend=masc num=du]

[noun case=nom gend=masc num=pl] -> [noun case=acc gend=masc num=pl]
[noun case=dat gend=masc num=pl] -> [noun case=abl gend=masc num=pl]

###
Transducer 5. Filter

73

[MascNoun] -> [noun gend=masc] [Ending]

###
Transducer 3 Endings

This spells out the endings given the feature specifications of the
base .. These are thus straight realizational rules These are just
the endings applicable to masculine adjectives such as
bhagavant and tasthivans

[Ending]
[Ending]
[Ending]
[Ending]
[Ending]
[Ending]

[<epsilon>] / [noun case=nom gend=masc num=sg]
-> am / [noun case=acc gend=masc num=sg]
-> [a=] / [noun case=instr gend=masc num=sg)
-> e / [noun case=dat gend=masc num=sg] _i-
-> as / [noun case=abl gend=masc num=sg]
-> i / [noun case=loc gend=masc num=sg] _

This filters out all strings ending in the diacritic Ending.
This simply eliminates all forms that have not had an ending
added Note that the realizational ending rules above do not have
specifications for feature combinations that are created by the
rules of referraL This means that if we have a combination such as
[noun case=abl gend=masc num=pl], and it is generated by the base
rule in "Features" it will not get an ending; it will thus end in the
Ending diacritic and be filtered out. The only case of
[noun case=abl gend=masc num=pl] that will pass the filter is that
created by the rules of referral.

[<sigma>] * ([<sigma>] - [Ending])

FIGURE J3 Transducers 4-5 for implementation of a mini-fragment of Sanskrit, following
Stump (2001)

[Ending] ->
[Ending]
[Ending] - >

[a=]u / [noun case=nom gend=masc num=du]
[bh]y[a=]m / [noun case=instr gend=masc num=du]
os / [noun case=gen gend=masc num=du]

one to view morphology as realizational-inferential rather than, say,
lexical-incremental, at a mechanistic level. The two are no more than
refactorizations of each other.

[Ending] -> as / [noun case=nom gend=masc num=pl]
[Ending] -> [bh]is / [noun case=instr gend=masc num=pl]
[Ending] [bh]yas / [noun case=dat gend=masc num=pl] _
[Ending] -> [a=]m / [noun case=gen gend=masc num=pl] _
[Ending] -> su / [noun case=loc gend=masc num=pl]

FIGURE J2 Transducers I~3 for implementation of a mini-fragment of Sanskrit, following
Stump (2001)

Take the rules of referral, for example. The rules, as we have presented
them, crosscut many paradigms and are not just properties ofparticular
lexical items. As such, it is useful to have a notion of "paradigm" to
which such rules can refer (though in actual fact, they refer to mor
phosyntactic feature combinations, rather than paradigm cells per se).
But no matter: what is clear is that whatever the descriptive merits
of Stump's approach, it is simply a mistake to assume that this forces

3.3.2 Position Classes in Swahili

In many languages, complex words are built up by concatenating classes
of morphemes together in a fixed order. In Finnish, for example, as
we saw above, inflected nouns consist of a stem, a number affix and a
case affix. In Swahili, inflected verbs have a fixed set of prefixal position
classes so that, for example, many verbs have the structure: (NEG)
SUBJECTAGREEMENT-TENSE-STEM.

On the face of it such facts would appear to call most naturally
for an item-and-arrangement, or in Stump's terms, lexical-incremental
view. After all, the complex words would seem to be composed out of
distinct pieces, and each of these pieces would appear to be identifiable
with a clear set of morphosyntactic features. But realizational theories

###
Transducer 6. Stern

These are the stern selection rules. By default introduce the
Weakest stern, but modify it to Strong for a particular set of
features, to Middle for everything in the GZN grade class, and to
Middle everywhere else

[<epsilon>] -> [Weakest] / [GradeClass]

[Weakest] -> [Strong] / [GradeClass] [noun gend=masc case=nom]
[Weakest] -> [Strong] / [GradeClass] [noun gend=masc case=acc num=sg]
[Weakest] -> [Strong] / [GradeClass] [noun gend=masc case=acc num=du]

[Weakest] -> [Middle] / [GZN]

[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=instr num=du]
[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=dat num=du]
[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=abl num=du]
[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=instr num=pl]
[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=dat num=pl]
[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=abl num=pl]
[Weakest] -> [Middle] / [GradeClass] [noun gend=masc case=loc num=pl]

75

A mini lexicon for the two adjectives "bhagavant ll 'fortunate' and

lltasthivans" 'having stood'

3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS

###

10. Lexicon

[bh] agavant [GZN] [MascNoun]
tas [th] iv[a=]ms [VIUs] [MascNoun]

FIGURE 3.5 Transducer 9 and lexicon for an implementation of a mini-fragment of San
skrit, following Stump (2001)

(vantlv[a=]ms) -> v[a=]n / _ [noun] [<eos>]
vat -> vad / [noun] [VCons]

Finally, this implements some phonological rules such as the
expression of II-vantil or II-v[a=]ms" as "-v[a=]n" in the nominative
singular and the voicing of "t" to "d" before a following voiced
consonant .. Note that [<bos>] and [<eos>] denote the beginning and
end of string, respectively.

###
Transducer 9. Phonology

3. MORPHOLOGICAL THEORY74

###
Transducer 7 Grademap

This maps the selected stern to the particular grade given the grade
class of the lexeme

[Middle] [GZN] -> [Zero]
[Strong] [GZN] -> [Guna]
[Strong] [VIUs] -> [Vrddhi]
[Middle] [VIUs] -> [ivat]
[Weakest] [VIUs] -> [us]

###
Transducer 8 Grade

This implements the phonological expression of the grade .. Thus
lIavant" becomes "avat" in Zero grade

avant -> avat / [Zero]

iv[a=]ms -> u[s] / [us]
iv[a=]ms -> ivat / [ivat]

[Grade] -> [<epsilon>]

FIGURE 3.4 Transducers 6-8 for implementation of a mini-fragment of Sanskrit, following
Stump (2001)

are committed to the idea that affix material is introduced by rule,
and inferential theories are committed to the idea that such rules are
triggered by morphosyntactic features.

Within a lexical-incremental theory, the structure of complex words
such as those in Swahili would be described in terms of a "word syntax':
which would either specify slots into which morphemes of particular

classes could be placed, or else would specify subcategorization require
ments that would guarantee that affixes would attach in a particular
order; another alternative is to assume a principle such as Baker's Mirror
Principle (Baker, 1985), whereby the construction of morphologically
complex words is controlled by aspects of phrasal syntax. But no mat
ter: within lexical-incremental theories the construction of complex
words is stated in terms of syntactic conditions on the arrangement of
discrete morphemes, each ofwhich bears morphosyntactic features.

Within realizational-inferential theories, such phenomena are han
dled by positing blocks of rules, with ordering among the blocks. So for
Swahili, in Stump's analysis there is a block of rules that applies first to
add tense affixes to the stem; then a block ofrules adds prefixes that spell
out subject agreement morphology; and finally, if the verb is marked as
negative, a rule block introduces the negative morpheme.

Stump uses Swahili as an example of portmanteau rule blocks, by
which he means cases where a single morph apparently occupies the
position of two or more contiguous rule blocks. Consider the partial
verbal paradigms for taka "want" in Table 3.5. The forms in these
paradigms exemplify up to three position classes. The innermost block,
Block III, comprises tense morphemes, which may also include indi
cations of polarity, namely separate negative forms. Block IV; the
next block, comprises subject agreement affixes. Finally, the optional
Block V comprises the negative affix ha-. Each block is exemplified
by one affix in a given paradigm entry, and vice versa, so that there

76 3· MORPHOLOGICAL THEORY

TABLE .3.5 Positional classes in Swahili, for taka "want"

V IV III Stem

Past
ISG ni- li- taka
2SG u- li- taka
.3SG (CLASS 1) a- li- taka
IPI tu- li- taka
2PI m- li- taka
.3PI (CLASS 2) wa- li- taka

Negative Past
ISG si- ku- taka
2SG ha- u- ku- taka (---+ hukutaka)
.3SG (CLASS 1) ha- a- ku- taka (---+ hakutaka)
IPL ha- tu- ku- taka
2PI ha- m- ku- taka
.3PI (CLASS 2) ha- wa- ku- taka

Future
ISG ni- ta- taka
2SG u- ta- taka
.3SG (CLASS 1) a- ta- taka
IPI tu- ta- taka
2PL m- ta- taka
.3PI (CLASS 2) wa- ta- taka

Negative Future
ISG si- ta- taka)
2SG ha- u- ta- taka (---+ hutataka)
.3SG (CLASS 1) ha- a- ta- taka (---+ hatataka)
IPI ha- tu- ta- taka
2PI ha- m- ta- taka
.3PL (CLASS 2) ha- wa- ta- taka

Source: Stump (2001), Table 5,1, p 140,

is a one-to-one relation between affixes and blocks, with one notable
exception: in the case of the first singular, whereas we would expect to
get the Block V + Block IV sequence ha-ni-, what we find instead is si-.
This is an example of a portmanteau rule block: si- spans both Block IV
and Block V.

Stump accounts for the use of si- by a rather intricate mechanism
involving a default multi-block rule of referral. This defaults to the
modes of expression of the individual blocks, but is available for
Paninian override by a more specific rule that refers to those par
ticular blocks. This analysis thus reifies a superblock - in this case

3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS 77

Vowel a e i 0 U

UCons k t P
VCons g d b
SCons n m
UCons sh s f h
SCons w y I
Cons UCons VCons SCons
Seg Cons Vowel
num sg pI
per 1 2 3
pol pos neg
tns pst fut
gen 1,2
Category: verb num per pol tns
Label Verb

FIGURE 306 Lextools symbol file for an implementation of a mini-fragment of Swahili,
following Stump (2001)

BlocklV +V - which will be expressed as a single morph under the
condition that a specific rule referring to that block exists (as in the
case of si- expressing first person and negative polarity features), and
will be expressed as the sequence of the individual blocks otherwise.

Putting aside the merits of this particular approach over other con
ceivable approaches, let us consider a computational implementation
along the same lines. Figures 3.6 and 3.7 show a lextools implementation
of the Swahili fragment that Stump discusses. As with the Sanskrit
example, we assume a lexicon that generates all possible feature expres
sions for a given stern. Then, affixation rules are introduced block by
block to spell out morphosyntactic features on the stern.

To construct the complex forms, one simply composes the stern with
each of the blocks in turn:

Dummy 0 Blockl I I 0 BlocklV 0 BlockV

So far so good, but what about the case of si-? In the analysis in
Figure 3.7, this is accomplished by doing a slight refactorization of the
above composition and then combining the si- morpheme in a slightly
different way. In particular the system is combined by composing the
lexicon with Block III. Blocks IV and V are composed together, but
we need to take care of the case where the expected ha-ni sequence is
replaced by si-. This can be handled straightforwardly by priority union;
see Definition 7, Section 4.3. The desired operation is:

si Up [BlocklV 0 BlockV]

The range of the relation for si- is all entries with the specifications
[verb per=l num=sg pol=neg]. In such cases, the string prefix si- is
inserted at the beginning of the string. The priority union ensures that

For a particular verb such as taka[VerbJwe have the following compo
sition:

But note again that one can easily factor the problem differently. For
example one can trivially redefine Block III as follows:

3. MORPHOLOGICAL THEORY

###
Transducer definitions:

1 Lexicon
Note that the feature [verb] expands into all possible ways of
expressing number, person, polarity and tense, as defined in the

symbol file.

taka [Verb]

3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS

taka [Verb] 0 Prefixes

79

(3.8)

[8eg] + ([Verb]: [verb])

lA Dummy lexical entry that fills in the feature vector [verb]
for anything tagged with the label [Verb]

3 Rules for Block IV

[verb pol=neg tns=pst]
[verb pol=pos tns=pst]

[verb tns=fut] (3.9)

([<sigma>]*)
([<sigma>] *)

([<sigma>] *)

This defines a transducer that on the one hand introduces a prefix
ku-, li-, or ta- - and on the other adds a specification for polarity and
tense features to the verb. In this definition, the verbal feature matrix
added by the affix serves as a filter to restrict the verbal affixes of the
input, which are unconstrained with respect to the feature specifica
tions for polarity and tense. The input to Block III for the verb taka, for
example, would be:

taka [verb num={sg,pl} per={1,2,3} pol={pos,neg}

tns={pst,fut}]

([<epsilon>] :ku)
([<epsilon>] : li)

([<epsilon>] :ta)

[<sigma>]* [verb per=l num=sg]
[<sigma>]* [verb per=2 num=sg]
[<sigma>]* [verb per=3 num=sg gen=1,2]
[<sigma>] * [verb per=l num=pll
[<sigma>] * [verb per=2 num=pll
[<sigma>]* [verb per=3 num=pl gen=1,2]

[<sigma>]* [verb pol=neg tns=pst]
[<sigma>]* [verb pol=pos tns=pst]
[<sigma>]* [verb tns=fut]

[<bos>]
[<bos>]
[<bos>]
[<bos>]
[<bos>]
[<bos>]

-> ni /
-> U /

-> a /
-> tu /
-> m /
-> wa /

[<epsilon>]
[<epsilon>]
[<epsilon>]
[<epsilon>]
[<epsilon>]
[<epsilon>]

[<epsilon>] -> ku / [<bos>]
[<epsilon>] -> Ii / [<bos>]
[<epsilon>] -> ta / [<bos>]

2 Rules for Block III

4. Rules for Block V

[<epsilon>] -> ha / [<bos>] _ [<sigma>]* [verb pol=neg]

5 Regular expression for II si" pr'efix

6. Phonological "cleanup" rules

aa -> a
au -> u

FIGURE 37 An implementation of a mini-fragment of Swahili, following Stump (2001)

verbs matching this feature specification can only pass through the si
transducer. Verbs with any other feature specification will pass through
Blocks IV and V. This is a straightforward way to implement Stump's
notion ofa portmanteau rule block that competes with a set ofcascaded
blocks.

Thus, the combination of all the blocks is as follows:

Prefixes = Dummy 0 BlockIIlo [si Up [BlockIVo BlockV]] (3.7)

In other words, in this specification taka is a verb with no restrictions
on the specifications of the features NUM, PER, POL, or TNS. The new
definition of Block III above will restrict these features and simulta
neously introduce the related affixes. But this is completely equivalent
to a unification mechanism that combines the affixal features with the
(underspecified) features of the stem. The result is then:

kutaka[verb num={sg,pl} per={1,2,3} pol=neg tns=pst]
litaka[verb num={sg,pl} per={1,2,3} pol=pos tns=pst]
tataka[verb num={sg,pl} per={1,2,3} pol={pos,neg}

tns=fut] (3-11)

Once again, the realizational-inferential theory turns out to be formally
equivalent under refactorization to a lexical-incremental theory.

3.3.3 Double Plurals in Breton

Another issue that Stump discusses is the issue of multiple exponence.
We have already seen an example of that in Swahili, where negative
polarity is spelled out in a couple of places, specifically in the Block III
tense morpheme and as the Block V prefix ha-. Another example is
Breton diminutive plurals such as bag+oiHig+ou "little boats': where
the base is bag "boat': the diminutive suffix is -ig and the two -ou's

80 3. MORPHOLOGICAL THEORY 3.3 COMPUTATIONAL IMPLEMENTATION OF FRAGMENTS 81

RR1,{NUM:pl},N(< bagouig, a »

of a word-to-stem derivative is the same as applying that word-to-stem
derivation to the inflected form of the base. Thus we have, for bagig,
bagouig.

Here the assumption of two blocks for plural formation comes into
play so that we have as an intermediate step in the derivation:

While this account might be criticized as ad hoc or non-explanatory,
it is far from obvious that it is less ad hoc than Stump's account, or
any less explanatory. And it does have the advantage of being easier to
understand.

As before, it is possible to refactor the analysis so that the inferential
realizational rules that we have presented above are recast as lexical
incremental. For example, the plural rule can be rewritten as a pair of
rules:

bag
bagig
bagou
bagouigou

bag [ou] [noun num=sg]
bag [ou] [noun num=sg]
bag [ou] [noun num=pl]
bag[ou] [noun num=pl]

The default rule for pluralization in Block 1 is to suffix -au, so we end
up with the observed form bagouigou.

The universal word-to-stem metarule is applied in this case in Bre
ton, and also in another similar example in Kikuyu. Some of Stump's
other assumptions, however, seem rather more specific to Breton, and
it is hard to tell how universal these could reasonably be expected
to be.

We turn now to a computational treatment of the same phe
nomenon. A mini-grammar in lextools format is given in Figure 3.8.
This grammar produces the following forms for the singular and
plural diminutives and non-diminutives, with the diminutive forms
being derived via the optional rule that introduces diminutive
features:

If X, Yare roots and M is a word-to-stem rule such that M(X)=Y, then for each set a

of morphosyntactic properties such that PF(< X, a » is defined, ifPF(< X, a » =

< Z, a' >, then RRo, a, {l-index(Y)j(< Y, a" >)=def < M(Z), d' >,

Here, "Nar" is the narrowest applicable rule where "narrowest" is
defined in the Paninian sense: the rule whose featural domain specifica
tions are the narrowest in a block of rules that still subsumes the form
in question. For normal plurals, it seems, only the inner "zero" block
has an associated plural rule. "PF" denotes Paradigm Function, that is,
a function that mediates the spell out of a cell in a paradigm. More
specifically a Paradigm Function is "a function which, when applied to
the root of a lexeme L, paired with a set of morphosyntactic properties
appropriate to L, determines the word form occupying the correspond
ing cell in 1's paradigm" (Stump, 2001, page 32). For bag "boat': the
narrowest applicable rule applying on the inner block simply attaches
the default plural affix -au. \

In the case of bagig 'little boat', things are more interesting. Stump
assumes a diminutive rule for Breton defined as a "word-to-stem" rule
(page 204):

represent the plural; note that the singular diminutive is bagig "little
boat': so that it seems that both the stem and the diminutive affix have
a plural marker.

Stump analyzes this as a case of word-to-stem derivation, whereby
-ig suffixation derives a stem from the base bag. Stump's derivation
is complex and depends upon a number of assumptions. The first is
that Breton pluralization involves two rule blocks, although for normal
(non-diminutive) nouns, there is typically just one plural suffix:

PF(< X, {Num: a} » =def Narl(Naro(< X, {Num: a} ») (3.12)

He assumes a "universal metarule for word to stem derivatives" (=
Stump's 28, page 204):

Here, RR is Stump's designation for a realization rule - a rule that
phonologically realizes a particular set of morphosyntactic features,
and RRo,a,{L-index(Y)} designates a realization rule that applies in a par
ticular block (here, Block 0), for a particular set of morphosyntactic
features (a), to a particular lexical item (designated as "L-index(Y)").
In plain language, Stump's universal metarule states that the inflection

[ou] -> ou
[sg] - > [pl]

This pair of rules introduces the suffix -au, and changes the number
feature of a singular base to plural. These two rules can be repre
sented as a single transducer P, which can then be composed with
a singular base to produce the plural form. Thus, again, the feature

bag [ou] [noun]

Lextools symbol file for Br'eton
Letter abc d e f g h i j k 1 m n 0 p q r stu v w x y z
Note: no nasalized or accented vowels in this shor't fr'agment
num sg pl
Feat dim num
Category: noun num
ed marks nouns that take plurals in -ed
InflClass ou ed

2 Diminutive rule

##
This optionally introduces the feature [dim] Then it
introduces an affix "-ig", if the feature [dim] is present The
affix is marked to go after the inflection class marker (the
indicator of which plural affix the noun takes) The diminutive
suffix itself is marked to take -ou, but again if one prefers it
could be marked with a generic diacritic

The past form in Sentence 1, the perfect participle in Sentence 2, and
the passive participle in Sentence 3 all share the same phonological
property. In other West Germanic languages, some of these forms may
have additional material. Thus in German:

3-4 FORMAL ANALYSIS

3.4 Equivalence of Inferential-Realizational and
Lexical-Incremental Approaches: A Formal Analysis

It is also possible to argue for the equivalence of inferential
realizational and lexical-incremental approaches on the basis of a for
mal analysis of the semantics of morphological operations. The argu
ment is the same as what we have already presented in computational
terms, but stated a bit differently.

As an example consider Blevins' (2003) analysis of West Germanic.
Blevins provides an analysis of the stem morphology of weak verbs in
English, German, Frisian, and Dutch within the realizational frame
work ofStump (2001). He observes that in all West Germanic languages,
the past tense, perfect participle, and passive participle all share the
same stem, which is formed with a dental. In English, this is exemplified
by examples such as the following:

1. PAST: John whacked the toadstool
2. PERF: John has whacked the toadstool
3. PASS: The toadstool was whacked

[<eos>]

3. MORPHOLOGICAL THEORY

optional
[<epsilon>] -> [dim] /

###
Transducer definitions:

##
1 Lexicon

##
Her'e we define the entry for "bag" 'boat' I which has a diacJ::'itic
[ou] indicating that the plural is -ou If one objects that -ou
should be the default, then one can always replace this with a
generic diacritic -- e"g" '[xx]' -- which will get spelled out as
[ou] if no other plural mark is ther'e

##
[noun] has all possible feature specifications for nouns

82

obligatory
[<epsilon>] -> ig[ou] / [InflClass] __ [<sigma>]_ [dim]

3 Plural spell out

##
Note that this spells out every [ou] as "-ou" in the context of a
plural marking, The result: double plural marking for "bagig"

lou] -> ou / __ [<sigma>] * [noun num=pl]

4. PAST: Er mahte das Heu
"He mowed the hay"

5. PERF: Er hat das Heu gemaht
"He has mowed the hay"

6. PASS: Das Heu wurde gemaht
"The hay was mowed"

4 Clean up rule, This just deletes feature specification and
category information to derive the surface form

[InflClass] I [Feat] I [<category>] - > [<epsilon>]

FIGURE 3.8 An implementation ofa mini-fragment ofBIeton

"plural" is now introduced by an affix rule under the generic affixation
operation of composition. And once again, the difference between an
inferential-realizational approach and a lexical-incremental approach
turns out to be a matter of factorization.

The common feature ofthe forms is the dental-t, but there is additional
material in each case: in the past there is a stem vowel -e, and in the
perfect and passive participles, there is the prefix ge-.

Blevins argues that one cannot view the dental suffix as being a
single morpheme with a common semantics, and indeed this is also
the conclusion reached by analyses based on morphemes, such as that
of Pinker (1999), who argues for a set of distinct homophonous dental
morphemes. This duplication is an embarrassment for lexiccil accounts
to be sure, but it is important to bear in mind that it is simply a fact of
the data and has to be incorporated somewhere in the model.

3. MORPHOLOGICAL THEORY

In realizational accounts, such as the one Blevins provides, such
duplications are handled by allowing many-to-one mappings between
semantic features and the morphological exponents of those features.
Thus a realization function ffi: is defined as follows, for English, where
Fd(X) = Xd is a function that suffixes -d to the stem:

ffi:([PAST]) = Fd(X)
ffi:([PERF]) = Fd(X)
ffi:([PASS]) = Fd(X)

Thus we have a many-to-one mapping between three semantic features
and a single exponent.

Let us try to define these notions more formally as follows. First of
all, we will use the abstract catenation operator "." to represent the
catenation of -d with the stem, and so we can redefine Fd(X) as a single
place function that concatenates -d to a stem, as follows:

3.5 CONCLUSIONS

Here < PAST, d > is simply a pairing of the morphosyntactic/semantiC
feature with the phonological exponence. We use < EB, . > to repre
sent a catenation pair which combines elements on the morphosyn
tactic/semantic side using EB and elements on the phonological side
using"·"; see Sproat (2000) for a similar binary catenation pair applied
to the simultaneous combination of linguistic elements with linguistic
elements and graphemic elements with graphemic elements. In this
formulation, we also need to consider X to be a morphosyntactic
phonological pairing, but we will leave this implicit in our notation.
The above expression thus just describes a function that takes an
element X and combines it (via < EB, . » with another expression
<PAST, d >. This is clearly just a formulation of a standard lexical
incremental modeL

3.5 Conclusions

6 Note that this statement is neutral as to incremental versus realizational approaches..
In any case, one has as input a form that lacks a set of morphosyntactic features and
a particular morphological exponent; and one ends up with a new form that has the
morphosyntactic features and the particular exponent.

Here, 1\ simply denotes the fact that both the feature combination
and the catenation operations take place. But, we can condense this
expression further by collapsing the two combinatoric expressions into
one:

Second, the realization expressions presumably do not just realize, say,
[past], but realize it with respect to a certain base, the same base to
which -d is ultimately attached. Let us assume an operator EB to repre
sent the addition of the relevant feature. Thus we. would write:

Now, one assumes that what it means to realize a particular feature
or set of features on a stem by means of a particular morphological
exponent is that one adds the feature and realizes the exponent of that
feature. 6 So we should be able to collapse the above into:

For the past half century there has been a debate in morphological
theory between, on the one hand, theories that maintain that mor
phology involves the assembly of small atomic meaning-bearing pieces
(morphemes); and on the other, theories that maintain that the basic
operations ofmorphology are rules that introduce or modify meanings
and simultaneously effect phonological changes on the bases to which
they apply. From a purely computational or formal point ofview, as we
have argued, the differences between such approaches are less signifi
cant than they at first appear to be.

In many cases there may be bona fide reasons for preferring one
approach over another. For example, to explain the complex paradigms
of Sanskrit nominal morphology, one would like to have recourse to a
model where the morphological function - the cells in the paradigm
and their associated features - are dissociated from the actual spellout
of those features. On the other hand, there seems to be little benefit in
such a model if the task is to account for, say, noun plural formation
in Kannada, where this simply involves attaching the plural morpheme
-guJu to the end of the noun. As much as anything else, what is at issue
here is not whether inferential-realizational or lexical-incremental the
ories are sometimes motivated, but whether they are always motivated,
and whether there is any justification in the all-or-nothing view that has
prevailed in morphological thinking. Such a monolithic view is often
justified on the basis of Occam's razor: if a theory can account for cer
tain phenomena elegantly, and is at least capable ofaccounting for other

(3.17)

(3.18)

(3.16)

(3.19)

Fd(X) = '\(X)[X·· d]

'\(X) [X EB PAST 1\ X . d]

'\(X)[X < EB, . >< PAST, d >]

ffi:('\(X)[X EB PAST]) = '\(X)[X . d]

phenomena, if not so elegantly, then that theory is to be preferred over
another theory that fails to account for certain kinds of data. Unfortu
nately this is not the situation that obtains with morphological theories.

Both lexical-incremental theories and inferential-realizational theo
ries can account for the data; we have seen that they are formally and
computationally equivalent. Of course, as a reader of an earlier version
of this book pointed out to us, if someone is interested in how humans
process morphology, rather than the formal computational description
of such processing, they might be inclined to wonder: "so what?" But
this clearly appeals to psycholinguistic evidence, and there the data
does not seem to be that friendly to either side: there is increasing
evidence that human morphological processing involves a powerful
set of analogical reasoning tools that are sensitive to various effects
including frequency, semantic and phonetic similarity, register, and so
on (Hay and Baayen, 2005; Baayen and Moscoso del Prado Martin,
2005). It is not clear that the mechanisms at work particularly favor
lexical-incremental over inferential-realizational models. What these
issues ultimately come down to are matters of taste. There is of course
nothing wrong with taste, but it is something that is less obviously in
the purview of Occam's razor.

APPENDIX 3A: LEXTOOLS

Category labels are described below.

basic1 basic2 basic3

catname feat1 feat2 feat3Category:

superclass1

The one exception is a category expression which is specified
as follows:

You may repeat the same superclass label on multiple (possibly
non-adjacent) lines: whatever is specified in the new
line just gets added to that superclass. The "basic" labels
can also be superclass labels: in that case, the superclass
in the first column recursively inherits all of the labels
from these superclass labels.

The lines in a symbol file look as follows:

Superclass labels are collections of basic labels: a superclass
inherits all of the integral values of all of the
basic labels (or superclass labels) that it contains.

Basic labels are automatically assigned a unique integer
representation (excluding 0, which is reserved for
"<epsilon>"), and this information is compiled by lexmakelab
into the basic label file, which is in the format specified
in fsm(5) .

3. MORPHOLOGICAL THEORY86

Appendix 3A: lextools

The following unix manual page describes the file formats and reg
ular expression syntax for the lextools grammar development toolkit.
It is a copy of the manual page available at the AT&T web
site (http://www.research.att.com/...-.alb/lextools/lextools.5.htm). and
also available at the web page for this book http://compling.
ai.uiuc.edu/catms.

NAMES
Lextools symbol files, regular expression syntax, general
file formats, grammar formats - lextools file formats

The literal "Category:" must be the first entry: it is case
insensitive. "catname" should be a new name. "feat1" labels
are their values.

The following sample symbol file serves to illustrate:
dletters abc d e f g h i j kIm n 0 p
dletters q r stu v w x y z
uletters ABC D E F G H I J K L M N 0 P
uletters Q R STU V W X Y Z
letters dletters uletters
gender masc fern
case nom ace gen dat
number sg pI
person 1st 2nd 3rd
Category: noun gender case number
Category: verb number person

DESCRIPTION
Symbol Files
The lextools symbol file specifies the label set of an
application. Labels come in three basic flavors:

Basic labels

For this symbol set, the superclass "dletters" will contain
the labels for all the lower case labels, "uletters" the
upper case letters, and "letters" both. Defined categories
are "noun" and "verb"" "noun", for instance, has the features
"gender", "case" and "number"" The feature "gender"
can have the values "masc" and "fern""

Superclass labels
(NB: this way of representing features is inherited in concept
from Lextools 2" 0")

Category labels

Some caveats:

Symbol files cannot contain comments, Backslash continuation
syntax does not work.

You should not use the reserved terms "<epsilon>" or
"<sigma>" in a symbol file .. If you use the -L flag to
lexmakelab you should also not use any of the special
symbols that it introduces with that flag (see lextools(l)},

APPENDIX 3A: LEXTOOLS

food[noun case=nom number=sg]

The internal representation of such feature specifications
looks as follows: "food[_noun] [nom] [sg] [fern] ".

food[noun case=nom number=sg gender=fem]

Unspecified features will have all legal values filled in,
Thus

3. MORPHOLOGICAL THEORY88

Regular Expressions
Regular expressions consist of strings, possibly with specified
costs, conjoined with one or more operators.

strings are constructed out of basic and superclass labels,
Labels themselves may be constructed out of one or more
characters .. Characters are defined as follows:

will produce a lattice with both [fern] and [masc] as
alternatives. Inappropriate feature values will cause a
warning during the compilation process. Since features
use superclasses, again, in order to compile such expressions,
the superclass file must have been specified using the
-S flag ..

If 2-byte characters are specified (Chinese, Japanese,
Korean .. , ..), a character can be a pair of bytes if the
first byte of the pair has the high bit set ..

In all other conditions a character is a single byte,

Costs can be specified anywhere in strings .. They are specified
by a positive or negative floating point number within
angle brackets. The current version of lextools assumes the
tropical semiring, so costs are accumulated across strings
by summing. Thus the following two strings have the same
cost:

abc [fool <3 .. 0>
a<-1 .. 0>b<2 .. 0>c<1 .. 0> [foo] <O .. S><O.S>

Note that a cost on its own -- i.e. without an accompanying
string -- specifies a machine with a single state, no arcs,
and an exit cost equal to the cost specified,

Regular expressions can be constructed as follows .. First of
all a string is a regular expression .. Next, a regular
expression can be constructed out of one or two other regular
expressions using the following operators:

In general the same restrictions on these operations apply
as specified in fsm(l}, For example, the second argument to
"-" (difference) must be an unweighted acceptor, Note also
that the two argument to ":" (cross product) must be acceptors,
The argument n to "A" must be a positive integer. The
arguments to "@" (composition) are assumed to be transducers ..

Kleene star
Kleene plus
power
optional
negation
union
intersection
cross product
composition
difference

regexp2
regexp2
regexp2

@ regexp2
- regexp2

regexpl*
regexpl+
regexplAn
regexpl?
!regexpl
regexpl I
regexpl &
regexpl
regexpl
regexpl

abc [fool
[<epsilon>]ab[<sigma>]

Note that the latter uses the superclass "<sigma>" (constructed
by lexmakelab to include all symbols of the alphabet
except "<epsilon>"): in order to compile this expression,
the superclass file must have been specified using the
-S flag"

food[noun gender=fem number=sg case=nom]

Multicharacter tokens MUST BE delimited in strings by a left
bracket (default: "[") and right bracket (default: "] ") .
This includes special tokens "<epsilon>", "<sigma>", "<bos>"
and "<eos>" .. This may seem inconvenient, but the regular
expression compiler has to have some way to figure out what a
token is .. Whitespace is inconvenient since it you have a
long string made up of single-character tokehs, you don't
want to be putting spaces between every character: trust me ..
You may also use brackets to delimit single-character tokens
if you wish"

Order of the feature specifications does not matter: the
order is determined by the order of the symbols in the symbol
file .. Thus the following is equivalent to the above:

Some well-formed strings are given below:

If features are specified in the label set, then one can
specify the features in strings in a linguistically appealing
way as follows:

Spaces are never significant in regular expressions ..

The precedence of the operators is as follows (from lowest
to highest), the last parenthesized group being of equal
precedence:

91

regexp

un [++] I [<epsilon>]
grammatical I able
grammatical
abil : able
[++] ity

ROOT
FINAL
SUFFIX
SUFFIX
FINAL
1.0

APPENDIX 3A: LEXTOOLS

Paradigms
The paradigm file specifies a set of mor'phological paradigms,
specified as follows"

START
ROOT
ROOT
ROOT
SUFFIX
FINAL

Note that cost here should be a floating point number not
enclosed in angle brackets. State names need not be enclosed
in square brackets: they are not r'egular expressions ..

the following three formats:

The following example, for instance, specifies a toy grammar
for English morphology that handles the words,
"grammatical", "able", "grammaticality", "ability" (mapping
it to "able + ity"), and their derivatives in "un-":

instate outstate
finalstate
finalstate cost

3. MORPHOLOGICAL THEORY9°

The algorithm for parsing regular expressions finds the
longest stretch that is a string, and takes that to be the
(first) argument of the unary or binary operator immediately
to the left, or the second argument of the binary operator
immediately to the right.. Thus "abed I efgh" represents the
union of "abed" and "efgh" (which is reminiscent of Unix
regular expression syntax) and "abcd*" represents the
transitive closure of "abed" (Le .. , not "abc" followed by the
transitive closure of d, which is what one would expect on
the basis of Unix regular expression syntax) ..

But this is hard to remember, and in the case of multiple
operators, it may be complex to figure out which elements
get grouped first .. The use of parentheses is highly
recommended:
use parentheses to disambiguate "! (abc I def)" from
"(!abc) I def" ..

Each morphological paradigm is introduced by the
(case insensitive), followed by a bracketed name
the paradigm:

Escapes, Comment Syntax and Miscellaneous other Comments
can appear in input files, with the exception, of
symbol files, Comments are preceded by "#" and continue to
the end of the line, Paradigm [m1a]

word "Paradigm"
for

Following this are specifications of one of the following forms:

One may specify in a third field in the "Paradigm" line
another previously defined paradigm from which the current
paradigm inherits forms:

The liter'a1s "Suffix", "Prefix" and "Circumfix" are matched
case-insensitively, The remaining two fields are regular
expressions describing the phonological (or orthographic)
material in the affix, and the features .. The "Circumfix"
specification has a special form, namely "regexp, ",regexp" ..
The three adjacent dots, which must be present, indicate the
location of the stem inside the circumfix, In all cases,
features are placed at the end of the morphologically complex
form.. There is no provided mechanism for infixes,
though that would not be difficult to add,

You can split lines or regular expressions within lines onto
multiple lines if you include "\ " at the end of the line,
right before the newline character,

Special characters, including the comment character, can be
escaped with "\" To get a "\ ", escape it with "\ ": "\ " ..

Lexicons
The input to lexcomplex is simply a list of regular expressions ..
The default interpretation is that these expressions
are to be unioned together, but other interpretations are
possible: see lextools(l) for details ..

If any of the regular expressions denotes a relation (i .. e .. ,
a transducer) the resulting union also denotes a relation,
otherwise it denotes a language (i,e" an acceptor),

Arclists
An arclist (borrowing a term from Tzoukermann and Liberman's
1990 work on Spanish morphology) is a simple way to specify
a finite-state morphological grammar .. Lines can be of one of

Suffix
Prefix
Circumfix

Paradigm

suffix features
prefix features
circumfix features

[mo1a] [m1a]

A sample set of paradigms (for Russian) is given below:

In such a case, a new paradigm will be set up, and all the
forms will be inherited from the prior paradigm except those
forms whose features match entries specified for the new
paradigm: in other words, you can override, say, the form
for "[noun num=sg case=dat]" by specifying a new form with
those features .. (See the example below ..) One may also add
additional entries (with new features) in inherited paradigms ..

By default the start symbol is assumed to be the first non
terminal mentioned in the grammar; see lextools(l) for further
details "

93APPENDIX 3A: LEXTOOLS

context-free grammars that can be handled.

The following grammar implements the toy English morphology
example we saw above under Arclists, this time putting
brackets around the constituents (and this time without the
mapping from "abil" to "able"):

3. MORPHOLOGICAL THEORY92

Paradigm [mla]
Suffix [++] [noun num=sg case=nom]
Suffix [++]a [noun num=sg case=gen]
Suffix [++]e [noun num=sg case=prep]
Suffix [++]u [noun num=sg case=dat]
Suffix [++]om [noun num=sg case=instr]
Suffix [++]y [noun num=pl case=nom]
Suffix [++]ov [noun num=pl case=gen]
Suffix [++]ax [noun num=pl case=prep]
Suffix [++]am [noun num=pl case=dat]
Suffix [++]ami [noun num=pl case=instr]
Paradigm [molal [mla]
Paradigm [mle] [mla]
Suffix [++] "ov [noun num=pl case=gen]
Suffix [++] "ax [noun num=pl case=prep]
Suffix [++] "am [noun num=pl case=dat]
Suffix [++] "ami [noun num=pl case=instr]

Note that" [mola]" inherits all of "[mla] ", whereas" [mle] "
inherits all except the genitive, prepositionp.l, dative and
instrumental plurals.. 1

See lextools(l) for some advice on how to link the paradigm
labels to individual lexical entries in the lexicon file
argument to lexparadigm ..

Context-Free Rewrite Rules
The input to lexcfcompile is a set of expressions of the
following form:

NONTERMINAL -> regexp

[NOUN] -> \ [(\ [[ADJ] \] I \ [[NEGADJ] \]) ity \]
[NOUN] - > \ [[ADJ] \] I \ [[NEGADJ] \]
[NEGADJ] - > un \ [[ADJ] \]
[ADJ] -> grammatical I able

Context-Dependent Rewrite Rules
A context-dependent rewrite rule file consists of specifications
of one of the following two forms:

phi -> psi / lambda rho
phi => psi / lambda rho

In each case "phi", "psi", "lambda" and "rho" are regular
expressions specifying languages (acceptors) .. All but "psi"
must be unweighted (a requirement of the underlying GRMCd
Compile; see grm(l), grm(3)) .. The connectors "->", "=>", and
"/" must literally occur as such .. The underbar separating
"lambda" and "rho" can be any number of consecutive underbars ..
The interpretation of all such rules is that "phi" is
changed to "psi" in the context "lambda" on the left and
"rho" on the right ..

The difference between the two productions, "->" and "=>" is
the following" "- >" denotes a mapping where any element of
"phi" can be mapped to any element of "psi", with "=>", the
inputs and outputs are matched according to their order in
the symbol file: this is most useful with single (superclass)
symbol to single (superclass) symbol replacements ..
For example, suppose you have the following entries in your
symbol file:

[-voiced] -> [+voiced] / V V
will replace any symbol in {p,t,k} with any symbol in
{b,d,g} between two vowels .. Probably what you want in this
case is the following:

[-voiced] => [+voiced] / V

The "->" must be literally present. "NONTERMINAL" can actually
be a regular expression over nonterminal symbols,
though the only useful regular expressions in this case are
unions of single symbols .. The "regexp" can in principle be
any regular expression specifying a language (i.e .. , not a
relation) containing a mixture of terminals and non
terminals" However, while lexcfcompile imposes no restrictions
on what you put in the rule, the algorithm implemented
in GRMCfCompile, which lexcfcompile uses, can only handle
certain kinds of context-free grammars.. The user is
strongly advised to read and understand the description in
grm(l) to understand the restrictions on the kinds of

v
+voiced
-voiced

The rule:

a e i 0 u
b d g
P t k

V

A line may also consist of one of the following specifications
(which are case insensitive) :

Beginning of string and end of string can be specified as
"[cbos>]" and" [ceos>] ", respectively: these are added to
the label set by default if you use the -L flag to lexmakelab"

This will replace "p" with "b", "t" with "d" and "k" with
"g"" The matching is done according to the order of the symbols
in the symbol file .. If you had specified instead:

95

Appendix 38: XFST Implementation of Sanskrit

Dale Gerdemann has very kindly provided us with his XFST (Beesley
and Karttunen, 2003) reimplementation of the lextools model of San
skrit presented in Section .3.3.1. We reproduce his implementation ver
batim below.

APPENDIX 3B: XFST IMPLEMENTATION OF SANSKRIT

Note that the whitespace separator MUST BE A TAB: the regular
expressions themselves may contain non-tab whitespace,
There must therefore be four tabs. You must still have tabs
separating entries even if you split an entry across multiple
lines (with "\ "),

Each entry is a regular expression. See lextools(l) for a
description of the function of the entries,

sym major-expr point minor-expr large-number

Currency Expressions
Currency specification files contain lines of the following
form:

See also grmreplace in grm(l) ..

you will foo,fst for "b", "c" and "d", and bar"fst for "a",

b d g
P t k x

b g d
p t k

would be replaced with "g" and "k" with "d", Similarly

3. MORPHOLOGICAL THEORY94

+voiced
-voiced

then "t"
with

+voiced
-voiced

"p", "t" and "k" would be replaced as in the first case, but
"x" would be ignored since there is nothing to match it to:
nothing will happen to "x" intervocalically .. Use of the
matching rule specification "=>" thus requires some care in
labelset management ..

left-to-right
right-to-Ieft
simultaneous
optional
obligatory

define Class MascNoun;

define DummyLexicon Seg* GradeClass Class;

ph I

bh;

th

dh

t%"h

d%"h

kh I ch

gh I jh
I y;

p

define VShort a I eli I 0 I u I au I ai;
define VLong a= I e= I i= I 0= I u= I a=u I a=i;
define Vowel VShort I VLong;
define UCons k I c I t%, I t
sh I S%., I s If;
define VCons g I j d% I d b
define SCons n%~ I n%" I n I m I v
define Cons UCons I VCons I SCons;
define Seg Cons I Vowel;
define gend masc I fern I neut;
define case nom I acc I instr I dat I abl I gen I loc;
define num sg I du I pI;
define noun Noun case= case gend= gend num= num;
define Grade Guna I Vrddhi I Zero I ivat I us;
define GradeClass GZN I VIUs;
define Diacritics Ending I MascNoun I Strong I Middle I Weakest
I Grade I GradeClass;

The first three set the direction of the rule application;
the last two set whether the rule application is obligatory
or optional; see grm(l) , All specifications are in effect
until the next specification or until the end of the file,
The default setting is obligatory, left-to-right, In prac
tice the user will rarely need to fiddle with these default
settings"

foo"fst

Replacements
A replacement specification (for lexr'eplace) is a file
consisting of lines like the following:

The first column specifies a single fsm that must exist in
the named file, The remainder of the line specifies a union
of labels to be replaced in the topology fsm argument to
lexreplace with said fsm" Specified substitutions for a
given label will override any previous substitutions .. In the
following case:

foo"fst
bar"fst define Features MascNoun -> [noun & $masc] Ending;

-> {as} I I ease= nom gend= mase num= pI \

3. MORPHOLOGICAL THEORY

define Referral
ease= abl gend= mase num= sg (-» ease= gen gend= mase num= sg
,0 ..

97APPENDIX 3B: XFST IMPLEMENTATION OF SANSKRIT

define Grade [
{avant} -> {avat} II \ Zero
,0 ..

{iv}a={ms} -> {u}s%" II \ us
.0"

{iv}a={ms} -> {ivat} II \ ivat
.. 0"

Grade -> 0
] ;

define Grademap [
[Middle GZN] -> Zero
.. 0.

[Strong GZN] -> Guna
,,0 ..

[Strong VIUs] -> Vrddhi
.0"

[Middle VIUs] -> ivat
,,0.,

[Weakest VIUs] -> us
] ;

define Stem [
[",,] -> Weakest II _ GradeClass
.,0 ..

Weakest -> Strong II _ GradeClass [noun & $mase & $nom]
.. 0.,

Weakest -> Strong II _ GradeClass [noun & $mase & $aee & $sg]
.0.
Weakest -> Strong II _ GradeClass [noun & $mase & $aee & $du]
.,0.

Weakest -> Middle II _ GZN
..0.

Weakest -> Middle II _ GradeClass [noun & $mase & $instr & $du]
.0 ..

Weakest -> Middle II \ GradeClass [noun & $mase & $dat & $du]

.0"

Weakest -> Middle II \ GradeClass [noun & $mase & $abl & $du]
.. 0.,

Weakest -> Middle II \ GradeClass [noun & $mase & $instr & $pl]
,,0,

Weakest -> Middle II \ GradeClass [noun & $mase & $dat & $pl]
.,0 ..

Weakest -> Middle II \ GradeClass [noun & $mase & $abl & $pl]
,0.

Weakest -> Middle II \ GradeClass [noun & $mase & $loe & $pl]
] ;

bh{is} I I ease= instr gend= mase num= pI _

bh{yas} I I ease= dat gend= mase num= pI \

a= m I I ease= gen gend= mase num= pI \

{su} I I ease= 1oc gend= mase num= p~ \
\ -

Ending
.. 0"

Ending ->

,,0,

Ending ->

"0,,

Ending .. >

.. 0 ..

Ending ->

] ;

define Endings
Ending -> 0 I I ease= nom gend= mase num= sg \
.0.

Ending -> {am} I I ease= ace gend= mase num= sg \
"0,,

Ending -> a= I I ease= instr gend= mase num= sg _
.. 0 ..

Ending -> e I I ease= dat gend= mase num= sg \
,,0.

Ending -> {as} I I ease= abl gend= mase num= sg \
.. 0.

Ending -> i I I ease= loe gend= mase num= sg _
,,0.

Ending -> a={u} I I ease= nom gend= mase num= du \
"0,,

Ending -> bh{y}a={m} I I ease= instr gend= mase num= du _
.. 0 ..

Ending -> {os} I I ease= gen gend= mase num= du _
,,0 ..

ease= nom gend= mase num= du (-» ease= ace gend= mase num= du
.0.

ease= instr gend= mase num= du (-» ease= dat gend= mase
num= du
,0 ..

ease= instr gend= mase num= du (-» ease= abl gend= mase
num= du
.. 0.,

ease= gen gend= mase num= du (-» ease= loe gend= mase num= du
.. 0 ..

ease= nom gend= mase num= pI (-» ease= ace gend= mase num= pI
.0.

ease= dat gend= mase num= pI (-» ease= abl gend= mase num= pI
] ;

define Filter- [?* Ending];

define Phonology [
[{vant} I{v} a= {ms }] - > {v} a= {n} II _ noun . #
.. 0.

{vat} -> {vad} II \ noun VCons
] ;

3. MORPHOLOGICAL THEORY

define Suffixes
DummyLexicon
"0,,

Features
.0"

Endings
.0"

Referral
.0"

Filter
.0"

Stem
.0.

Grademap
.0"

Grade
"0,,

Phonology
] ;

define Lexicon [bh{agavant} GZN MascNoun]
[{tas}th{iv}a={ms} VIUs MascNoun];

APPENDIX 3B: XFST IMPLEMENTATION OF SANSKRIT

define MorphologicalTagger [
o <- noun ,0" [Lexicon, 0" Suffixes] ,,1 .0. Seg -> 0
] ;

read regex Morphology ,0, Spacing;
read regex Lemmatizer;
read regex MorphologicalTagger ,0" Spacing;

99

Add spaces for nice printout

\backslash[Seg I case I gend Inurn]
"0,,

define Spacing [
[, ,] -> % II \

[, ,] - > % I Inurn \
] ;

define Morphology [
Lexicon "0,, Suffixes
] ;

Morphology (as above) defines a transducer with input:
##
{tasthiv[a=]ms[VIUs] [MascNoun], bhagavant[GZN] [MascNoun]}*
*Multicharacter symbols marked up as in FSM
##
These inputs are mapped to
##
{tasthivat[Noun case=loc gend=masc num=pl]su
tasthivad[Noun case=instr gend=masc num=du]bhy[a=]m
##
bhagavat[Noun case=acc gend=masc num=pl]as
bhagavat [Noun case=instr gend=masc num=sg] [a=]
##
##
##

define Lemmatizer [
[Morphology ,0, noun -> 0] "i "0,, [Class I GradeClass] -> 0
] ;

4

A Brief History of
Computational Morphology

4.1 Introduction

Automatic morphological analysis dates back to the earliest work in
computational linguistics on Machine Translation during the 1950S
(Andron, 1962; Woyna, 1962; Bernard-Georges et aI., 1962; Boussard and
Berthaud, 1965; Vauquois, 1965; Schveiger and Mathe, 1965; Matthews,
1966; Brand et al., 1969; Hutchins, 2001). There have been manyappli
cations over the years including the Porter stemmer (Porter, 1980)
heavily used in information retrieval applications (Dolby et al., 1965;
Attar et aI., 1978; Choueka, 198.3; Buttel et aI., 1986; Meya-Lloport, 1987;
Choueka, 1990; Koskenniemi, 1984), spelling correction (McIlroy, 1982;
Hankamer, 1986), text input systems (Becker, 1984; Abe et al., 1986),
and morphological analysis for text-to-speech synthesis (Allen et al.,
1987; Church, 1986; Coker et aI., 1990). Many of these earlier applica
tions used quite ad hoc approaches including hard-coding much of
the linguistic information into the system. For example, in the system
reported in Coker et aI. (1990), a lot of the morphological analysis is
mediated by tables coded as C header files and spelling-change rules
written as C functions.

In many of the early applications, there was little interest in getting
the morphological analysis correct as long as the resulting behavior
served the purpose of the system. For example McIlroy's spell program
(McIlroy, 1982) was concerned only with those derivations that would
affect the performance of the program. Thus, as McIlroy notes (page
94):

.. ,we are interested in soundness of results, not of method" Silly derivations like
forest = fore+est are perfectly acceptable and even welcome. Anything goes, provided
it makes the list [of elements needed in the dictionary] shorter without impairing its
discriminatory power.

4.1 INTRODUCTION 101

But the most interesting work in computational morphology both froni
a theoretical and a computational point of view, has been more prin
cipled than this and has depended heavily upon finite-state meth~ds.

Indeed the history of computational morphology over the last thIrty
years has been completely dominated by finite-state app~oa~hes. As ~e
saw in Chapter 2, with the possible exception of reduphcatIOn, whICh
(at least for reasons of elegance) may require further mechanisms, there
are no morphological phenomena that fall outside the regular domain.
Even non-local dependencies (of the German ge-. .. -en variety), can be
handled by purely finite-state devices, at the cost of having duplica
tion of structure. So it is natural that computational implementations
should seek this lower bound.!

Dominating finite-state morphology since the early 1980s has been
the approach based on finite-state transducers, originally investigated
in the 1970S by Ron Kaplan and Martin Kay at Xerox PARC, whose
first practical implementation was due to Koskenniemi (Koskenniemi,
1983). Because ofits centrality in the history ofcomputational morphol
ogy, we will focus in this chapter on a review ofKoskenniemi's approach
and attempt to elucidate some of its theoretical underpinnings.

Alternative approaches to computational morphology have largely
been of two varieties. The first is explicitly finite-state approaches
that are based on an explicitly finite-state model of morphotactics but
with more or less ad-hoc computational devices (e.g., C functions) to
implement spelling change or phonological rules. Such systems include
the DECOMP module of the MITalk text-to-speech synthesis system
(Allen et al., 1987) and Hankamer's ket;i Turkish morphological ana
lyzer (Hankamer, 1986).

More ad hoc approaches include the work of Byrd and colleagues
(Byrd et aI., 1986) and Church (Church, 1986). In these two pieces of
work, for example, affixation is modeled as stripping rules that relate
a derived word to another word. For example, a rule that strips off
-able and replaces it with -ate would relate evaluable to evaluate. These
kinds of approaches are reminiscent of the early work on "suffix strip
ping" found in McIlroy's SPELL program (McIlroy, 1982) and the Porter
stemmer (Porter, 1980).

1 Dale Gerdemann (p.c..) points us to an interesting example of local dependency
in Kanud (<http://www..cogsci.uni-osnabrueck.de/o/o7Ejt/kanud/>), wher~ person "and
number are marked with eitller prefixes or suffixes, but not botll: as he pomts out, one
way or anotller, a finite-state network must record tlle fact that you get a prefix just in case
you don't get a suffix, and tllis involves doubling the size of the network"

102 4. A BRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

Then there are extensions to basic finite-state models. For exam
ple, both Bear (1986) and Ritchie et al. (1992) present systems that
integrate finite-state morphology and phonology, with unification of
morphosyntactic features. Rather than relying entirely upon finite-state
morphotactics to restrict combinations of affixes, these systems control
the combinatorics by insisting that the morphosyntactic feature matri
ces associated with the morphemes correctly unify. So, for example,
one need not have separate continuation lexica (see below) expressing
the different possible suffixes that might follow a noun, a verb, or an
adjective stern. Rather one could have a single suffix sublexicon, with
the stern-suffix combinations filtered by feature unification. And as
we have already discussed, there has been a lot of work in the DATR
framework that has allowed for sophisticated models of morphological
inheritance that are nonetheless finite-state equivalent.

One thing to bear in mind in relation to the discussion in Chapter .3
is that virtually all practical approaches to computational morphology
have assumed a lexical-incremental approach. The formal equivalence
of this and inferential-realizational approaches, at least at the com
putational level, has already been discussed and will not be repeated
here. But even those proponents of inferential-realizational approaches
who were not convinced by the preceding arguments should still find
the ensuing discussion to be of interest. Koske~miemi's Two-Level
approach, in particular, has been used to develop wide-coverage mor
phological analyzers for a wide range of languages. If the ability to
describe and implement a large number of linguistic phenomena is
a valid metric of success, then one would have to agree that these
approaches to morphology have been quite successful, even if one does
not agree with their fundamental theoretical assumptions.

4.2 The KIMMO Two-level Morphological Analyzer

The KIMMa two-level morphological analyzer has been described in a
number of places including Antworth (1990); Sproat (1992); Karttunen
and Beesley (2005). In the early descriptions, as in Koskenniemi's orig
inal presentation, the system is presented at the level of the machine
rather than in terms of the algebraic operations that are involved in the
system. But it is the algebraic operations that are really more important
in understanding how the system works, and we will thus focus mostly
on this aspect here.

4.2 THE KIMMO TWO-LEVEL MORPHOLOGICAL ANALYZER 103

Let us start with an illustration ofthe difference between a "machine~
level" view and the "algebraic" view, a distinction that we have alluded
to previously. Suppose we want to describe how we might check if a
string is in a regular language, and therefore if it is accepted by the
deterministic finite automaton (DFA) corresponding to the language.
In that case we might describe how we would start the machine in its
initial state and start reading from the beginning of the string. Each
time we read a character from the string, we check the state we are in,
see which arc is labeled with the character we are reading, and move
into the state pointed to by that arc. We keep doing this until we get
to the end of the string, or we fail because we get to a state where we
are unable to read the current input character. (Since the machine is
deterministic, we are guaranteed that in that case we cannot backtrack
and try a different path.) If, once we have read all the characters in
the string, we find ourselves in a final state of the automaton, then the
string is in the regular language of the automaton; otherwise the string
is not in the regular language of the automaton. This is a machine
level description since it describes the process in terms of the low-level
operations of the machine.

An alternative description eschews the machine-level details and
concentrates instead on what regular algebraic operations are involved
in the process. In this case, the operation is simple. Represent the string
as a trivial finite-state automaton with a single path. Then intersect
the string machine with the language DFA. If the intersection is non
null (and in fact in this case it will be identical to the string-machine)
then the string is in the language of the DFA, otherwise it is not. The
machine-level operations described in the previous paragraph still go
on here: they are part ofthe implementation ofthe intersection opera
tion. But the algebraic view allows one to ignore the algorithmic details
and focus instead on the algebraic operation that is being performed.
With these issues in mind, let us turn to the core ideas in the KIMMa
system.

4.2.1 KIMMO Basics

In Koskenniemi's (1983) presentation, there are three aspects of the
system that are central. The first is the representation of dictionaries
as tries, following Knuth (1973). The second is the representation of
morphological concatenation via continuation lexica. If one is reading
a word, and reaches a leaf node of a trie before one has completed

104 4. A BRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

;n-a-t-o-[+nounl

/-a-d-[+nounl s-[+pl]

t-a-k-e-[+verb s-[+.3sg]

t a k e s

FrGURE 4.1 Schematic representation of Koskenniemi's two-level morphology system.. The
input "takes" is matched via a set of parallel FSTs to the lexicon, which is represented as a
set of tries. A fragment of these tries is shown here, with the main lexicon containing the
words "take", "toad", and "tomato", and continuation lexica containing the suffixes for noun
plural and verbal third singular

reading the word, one can look at the leaf node of the trie and see if
there are pointers to other tries where one can continue the search;
these other tries are the continuation lexica. Note that this is com
pletely equivalent to splicing the continuation lexicon tries onto the leaf
nodes in the first tree. Finally, there are the finite-state transducers that
implement the surface-lexical phonological correspondences, processes
that in Koskenniemi's original Finnish version included vowel harmony
and consonant lenition. Koskenniemi somewhat quaintly describes the
ul

~

I' es as serving the function of "slightly distorting lenses" through
which one views the lexicon. As a practical matter -- and this is the
distinctive property that gives Koskenniemi's system the name of"Two
Level Morphology" (though more properly it is "Two-Level Phonol
ogy") - each transducer reads the lexical and surface "tapes" simul
taneously. This requires that the lexical and surface strings be passed
by each of the transducers, or in other words that the strings must be
members ofthe regular relations implemented by each ofthe individual
machines. Or in other words again, the transducers are logically inter
sected. As Koskenniemi notes, it is possible to replace all the individual
machines with one "big machine;' which is simply the intersection of
all the individual rule machines. A schematic figure ofthe Koskenniemi
system is given in Figure 4.1.

Tries and continuation lexica can straightforwardly be replaced by
finite-state automata, with which they are completely formally equiva
lent. One can think of a trie as simply a finite-state automaton where
each path leads to a distinct final state.

Continuation lexica are easily modeled by grafting a continuation
lexicon onto the terminal node(s) that allow the continuation in

4.2 THE KIMMO TWO-LEVEL MORPHOLOGICAL ANALYZER 105

question. One could even model this using concatenation, but this is
not in general correct since concatenation would allow every "leaf"
node of a stem transducer to proceed to the continuation lexicon.
However, this problem can easily be solved by "tagging" both the end
of the stem and the beginning of a matching continuation lexicon with
a distinctive tag, different for each continuation lexicon. One could
then concatenate the lexica and filter illicit combinations of tags using
a regular filter. Let B' and A' be, respectively, the stem lexicon and the
affix set augmented as just described. Let T be a set of tags and T an
individual tag. Then the appropriate construction is:

\IT E T, (B' . A') n -(E*T[T - T]E*)

This just states that one can obtain the desired result by concatenating
the continuation lexicon A with B and then filtering illegal combina
tions, namely, each T followed by something that is in T but is not T.

The situation with the transducers is more tricky, since Kosken
niemi's system depends upon intersection, for which regular relations
are not in general closed. However, all cases involving a non-regular
result of intersection involve unbounded deletions or insertions, which
Koskenniemi (obviously) never needs. It can be shown, in fact, that as
long as one bounds the number ofdeletions or insertions by some finite
k, then regular relations are dosed under intersection. We turn to this
point in the next subsection.

4.2.2 FST Intersection

Ofcourse, regular relations are not in general dosed under intersection.
Kaplan and Kay (1994) demonstrate this using a simple counterexam
ple. Consider two regular relations:

• R1 = {< an, bnc* > In ~ OJ, which can be expressed as the regular
expression (a : b)*(E: c)*

• R2 = {< an, b*cn > In ~ OJ, which can be expressed as the regular
expression (E : b)*(a : c)*

The intersection of these two relations is:

This is clearly not regular, since the right-hand language bncn is well
known not to be regular.

106 4. A BRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

The construction above depends upon there being an unbounded
difference in length between the input and output strings. Indeed, one
can show that as long as one allows only a finite bound k on the
difference between any pair of input and output strings in a relation,
then regular relations are closed under intersection. More formally we
define k-Iength-difference-bounded regular relations as follows:

Definition 6 A regular relation R is k-length-difference-bounded iff
3k, such that'V(x, y) E R, -k ~ Ixl - Iyl ~ k.

We then state the following theorem:

Theorem 4.1 k-length-difference-bounded regular relations S are
closed under intersection, for all k.

The proof depends upon the following lemma:

Lemma 4.1 Same-length regular relations are closed under intersec-
tion.

Lemma 4.1 is discussed in Kaplan and Kay (1994). We prove Theorem 4.1
by reduction of k-Iength-difference-bounded relations to same-length
relations.

Proof of Theorem 4.1. Consider first the case where:

RI =< Xl, YI >
and

Rz =< Xz, Yz >,

two regular relations, are exact k-Iength-difference relations such
that for any string Xl in the domain of Rl> and every corre
sponding YI = RI(XI) (a string in the image of Xl under R1),

abs(lxil - IYII) = k; and similarly for Rz. Without loss of gen
erality, we will assume that the output of R I is the shorter so that
IXII - IYII = k; and similarly for Rz.

Now, consider for a moment the case of two regular languages
L 1 and L z and their intersection L 3 = LIn L z. Let 'E be the
alphabet of L I and Lz, let ~ be a symbol not in 'E, and ~k a k
length string of~. Then clearly the following equality holds:

L 3 • ~k = L I . gk n L z . ~k

4.2 THE KIMMO TWO-LEVEL MORPHOLOGICAL ANALYZER 107

That is, intersecting the result of concatenating L 1 with ~k and L z
with ~k yields L.3 =LIn Lz concatenated with ~k •

Returning to RI and Rz, observe that YI and Yz- the right-hand
sides of these two relations - are regular languages and that by
assumption any string in Y I or Yz is exactly k symbols shorter than
the corresponding string in Xl or Xz. Consider then the relation
8k> which simply adds a string ~k to the end of any input string. It
is easy to show that 8k is a regular relation: it can be implemented
by an FST that has self loops to the start state over all elements
in 'E and then terminates by a sequence of arcs and states k long,
mapping from E to ~. Thus, R~ = RI 0 8k and R~ = Rz 0 8k are
regular relations since regular relations are closed under composi
tion. Indeed, by construction R~ and R~ are same-length relations,
and thus by Lemma 4.1 their intersection is also a regular relation.
Furthermore, the right-hand side of R~ n R~ is just

YI . ~k n Yz . ~k = (YI n Yz) . ~k,

so R~ n R~ =< Xl n xz, (YI n Yz) . ~k >. Finally, note that 8-1
,

which removes a final string of ~k, is a regular relation (since
regular relations are closed under inversion) so we have:

< Xl n Xz, (YI n Yz) . gk > 0 8 ~ 1 = < Xl n XZ, YI n Yz >

= R1 n Rz

Thus RI n Rz must be a regular relation, again because regu
lar relations are closed under composition. Thus exact k-Iength
difference regular relations are closed under intersection.

The final step is to extend this result to k-Iength-difference
bounded regular relations. For any such relation R we can parti
tion the relation into a union of relations Ui=O~k Ri , where each
Ri is an exact i-length-difference relation (where Ro is a same
length relation). To see this, observe that since R is k-Iength
difference-bounded, it must be implemented by a transducer T in
which any cycles must be length preserving. Now consider any
path p from the initial state qo to a qf E F (F the set of final
states), where no state on the path is visited more than once - the
path does not pass through a cycle. By assumption this path must
implement an i-length-difference relation for 0 ~ i ~ k. Since all
cycles must be length preserving, one can add to p any cycles that
start and end at any qi E p, and still have an i-length-difference

108 4. A BRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

relation; call this resulting sub-transducer p. Clearly, for any i
such that 0 .:::: i .:::: k, one can find the (possibly empty) set P of
all Pi such that Pi is an i-length-difference relation. P, a sub
transducer of T, is itself a finite-state transducer and thus imple
ments a regular relation. Thus each Ri is a regular relation, and
more particularly an i-length-difference regular relation.

Now consider two k-length-difference-bounded relations R l and
Rz. We divide each into R l ; 's and Rz;'s, respectively, as above. We
have already shown that the intersection ofeach pair R l ; and Rz; is
also a regular relation. Furthermore Rl n Rzis just Ui=0--* k (R l ; n
RzJ: this is because for Rl ; n RZj to be non-null, it must always
be the case that i = j, since otherwise a string pair < Xl, Yl > in
R1; could never match any < xz, yz > in Rz;, since on at least one
side ofthe pairs, the string lengths would not match. Since regular
relations are closed under union, we have completed the proof:

Note that the above construction does not work for the non
k-length-difference-bounded relations R l = {< an, bnc* >} and Rz =
{< an, b*cn >} discussed in Kaplan and Kay (1994). Consider R l • For
us to be able to use the construction, one would have to know how
many gs to add to the a side in order to match the extra cs. This could
be done by factoring R l into a series of zero-lengt~-difference-bounded
(same length), 1-1ength-difference-bounded, 2-1ength-difference-bounded
relations and so forth as above. The problem is that the factorization is
infinite and there is therefore no way to enumerate the cases. The same
holds for Rz.

Koskenniemi did not explicitly describe his system in terms of inter
section, much less in terms of k-length-difference-bounded regular rela
tions. But his algorithms were in effect computing intersections of
multiple transducers that allowed both insertions and deletions, and in
fact he had to take special care to ensure that the transducers did not get
arbitrarily out ofalignment. Indeed, rewrite rules involving deletions or
insertions are not in general k-length-difference-bounded relations. But
if this is the case, how can Koskenniemi's system actually be modeled
as the intersection of a set of rule transducers since this would appear
to involve the intersection of a set of non-k-length-difference-bounded
relations? One way around this is to observe that the intersection of
a non-k-length-difference-bounded relation with a k-length-difference
bounded relation is a k-length-difference-bounded relation. Thus, so long
as one can impose a hard upper bound on the length difference between

4.2 THE KIMMO TWO-LEVEL MORPHOLOGICAL ANALYZER 109

the input and output, there is no problem implementing the system in
terms of relation intersection.

Note, finally, that Koskenniemi's system is not the only system that
depends upon intersections of transducers. The decision-tree compi
lation algorithm reported in Sproat and Riley (1996) models decision
trees (and more generally decision forests) as the intersection of a set
of weighted rule transducers, each one representing a leaf node of the
tree.

4.2.3 Koskenniemi's Rule Types

The other innovation of Koskenniemi's approach was his formalization
of two-level rewrite rules; while he did not provide a compiler for
these rules, the rules served to specify the semantics underlying the
transducers that he built by hand. All rules in his system followed a
template in that they were all of the following form:

CorrespondencePair operator LeftContext _ RightContext

That is, the rules specified conditions for the occurrence of a corre
spondence pair - a pairing of a lexical and a surface symbol (one of
which might be empty, modeling deletion or insertion) - in a given
left or right context. The contexts could be regular expressions, but the
correspondence pair was a single pair of symbols, and thus was not
as general as the 0/ --+ ,p formulation from Kaplan and Kay (1994); See
Section 4.2.4.

Koskenniemi's rules came in four flavors, determined by the partic-
ular operator used. These were:

Exclusion rule a:b /{::: LC RC
Context restriction rule a:b:::} LC RC
Surface coercion rule a:b {::: LC RC
Composite rule a:b -¢} LC RC

The interpretation of these was as follows:

• Exclusion rule: a cannot be realized as b in the stated context.
• Context restriction rule: a can only be realized as b in the stated

context (i.e., nowhere else).
• Surface coercion rule: a must be realized as b in the stated context.
• Composite rule: a is realized as bobligatorily and only in the stated

context.

Note that in many ways Koskenniemi's formalism for rules was better
defined than the ones that had previously been used in generative

2 Recall Bill Gates' 1981 statement that "640k ought to be enough for anybody."

C. Douglas Johnson's PhD thesis (c. D. Johnson, 1972) that "context~

sensitive" rewrite rules of the kind that had become familiar in
generative phonology described regular relations and could thus be
implemented using finite-state transducers (FSTs). By the late 1970S
Ron Kaplan and Martin Kay at Xerox PARC were developing algorithms
for the automatic compilation of FSTs from rewrite rules in a format
that would be familiar to linguists, namely:

1114.2 THE KIMMO TWO-LEVEL MORPHOLOGICAL ANALYZER

Here, ¢' 1, ,\ and p could be arbitrary regular expressions. Furthermore,
since regular relations are closed under composition, this meant that
one could write a series of ordered rules of the kind found in SPE
(Chomsky and Halle, 1968), compile each ofthe rules into a transducer
and then compose the entire series of rules together to form a single
transducer representing the entire rule system. Kaplan and Kay finally
published their algorithm many years later (Kaplan and Kay, 1994),
and there has been subsequent work on a simpler and more efficient
algorithm (Mohri and Sproat, 1996).

But in the late 1970S and early 1980s there was just one problem: com
puters were simply not fast enough, nor did they have enough memory
to compile rule systems of any serious complexity. Indeed complex rule
systems of several tens of rules over a reasonable-sized alphabet (say,
100 symbols) can easily produce FSTs with several hundred thousand
states with a similar number of arcs, with a total memory footprint of
several megabytes. While any PC today could easily handle this, this was
simply not viable around 1980.2 So Koskenniemi proposed a compro
mise: avoid the space complexities of rule compilation and composition
by instead hand-coding transducers and intersecting them rather than
composing them. By hand-coding the transducers, and using various
space-saving techniques (e.g., the use of "wildcard" symbols to repre
sent arcs that would be traversed if no other arc matched the current
symbol), Koskenniemi was able to build a very compact system. By
carefully specifying an algorithm for traversing the arcs in the multiple
machines - thus implementing the intersection algorithm "on the fly"
he was able to avoid doing full transducer intersection.

Koskenniemi's two-level morphology was remarkable in another
way: in the early 1980s most computational linguistic systems were toys.
This included parsers, which were usually fairly restricted in the kinds

110 4. A BRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

4.2.4 Koskenniemi's System as a Historical Accident

Koskenniemi's development of Two-Level Morphology can be thought
of as a fortuitous accident of history. It had been known since

phonology. For one thing, each rule type specified a direct relation
between the underlying and surface forms, something that was not
possible within generative phonology due to the arbitrary number of
ordered rewrite rules: in general, in generative phonology there was
no way to know how a given lexical form would surface, short of
applying all rules in the specified order and seeing what the outcome
was. Koskenniemi's rules, in contrast, specified the relation directly.

Ignoring for the moment that traditional generative phonological
rules were not two-level, one can ask which of Koskenniemi's rules
correspond to the rule types (basically just obligatory or optional
rewrite rules) of generative phonology. In fact only the surface coercion
rule has a direct counterpart: it corresponds pretty directly to an
obligatory rewrite rule. All the other two-level rule types depend upon
global knowledge of the system. Thus the context restriction rule is
equivalent to a situation in a traditional generative account where
there is but one optional rule that changes a into b; but note that this
is a property of the system, not of a specific rule. The composite rule,
which is just a combination of context restriction and surface coercion is
similar, but in this case the unique rule changing a into b is obligatory.
Note that since one could write, say, a context restriction rule that
relates a to b in one environment, and then also write another context
restriction rule that allows a to become b in another environment, it
is perfectly possible in Koskenniemi's system to write an inconsistent
grammar. A lot of the work in designing later two-level systems
involved writing de-buggers that would catch these kinds of conflicts.
Finally, the exclusion rule is again global in nature: it is equivalent to
the situation in a traditional generative grammar where there is no rule
that relates a to b in the specified environment.

But really, Koskenniemi's rules can best be thought of as involv
ing constraints on correspondence pairs. Constraints were virtually
non-existent as a device in early generative phonology, but have since
become quite popular in various theories of phonology including
Declarative Phonology (Coleman, 1992), One-Level Phonology (Bird
and Ellison, 1994) and Optimality Theory (Prince and Smolensky,
1993).

or in other words

1134.3 SUMMARY

Definition 8 The lenient composition 0 L of two regular relations R1

and Rz is defined as follows:

Definition 7 The priority union Up oftwo regular relations R1 and Rz
is defined as fallows, where 771 denotes projection onto thefirst dimension
(domain) of the relation, and the overbar represents the complement of
the language:

4.3 Summary

This chapter has given a very brief selective overview of the history of
computational morphology. We have focused here on the dominant
paradigm, namely finite-state approaches; a more complete and "eclec
tic" survey can be found in Sproat (1992). The dominant paradigm
within the dominant paradigm has been two-level morphology, pio
neered by Koskenniemi. While this approach was clearly an accident of
history it has had an enormous influence on the field. While two-level
rules are no longer strictly speaking necessary - compilation of large
sets of cascaded rewrite rules are well within the capability of current
computers - it is sometimes convenient to be able to describe phenom
ena in terms of reference to both surface and underlying levels. And in
any case, since one ends up with a finite-state transducer that computes
the desired relation, it is of little consequence how that transducer was
constructed.

The latter point has been brought out especially nicely in Karttunen
(1998). In that paper, Karttunen argues that Optimality Theory (Prince
and Smolensky, 1993) can be implemented via a cascade of transducers
that are combined using lenient composition. Lenient composition is
defined in terms ofpriQrity union, which itself is defined as follows:

In other words, the priority union of R1 and Rz maps any string in the
domain of R1 to its image under R1 and any strings not in the domain
of R1 to their image under Rz.

Lenient composition is then defined as follows:

112 4. A BRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

of sentences they could handle; dialog systems, which only worked in
very limited domains; and models of language acquisition, which were
only designed to learn simple grammatical constraints. In contrast,
Koskenniemi's implementation of Finnish morphology was quite real
in that it handled a large portion of inflected words that one found in
real Finnish text. To some extent this reflects the fact that it is easier
to get a quite complete coverage of morphology in any language than
it is to have a similar coverage of syntax, let alone dialog. But it also
reflects Koskenniemi's own decision to develop a full-fledged system,
rather than present a mere "proofof concept" ofhis ideas.

While two-level morphology was originally motivated by the diffi
culties, at the time, with Kaplan and Kay's approach to cascaded rewrite
rules, the model quickly took on a life of its own. Koskenniemi took it
to be a substantive theoretical claim that only two levels ofanalysis were
necessary, a claim that was fairly radical in its day (at least in contrast to
generative phonology), but which has since been superseded by claims
that only one level is needed (Bird and Ellison, 1994) or even that
synchronic accounts in phonology are not needed since phonological
systems are merely a residue ofthe process ofhistorical change (Blevins,
200.3).

Nevertheless, practical considerations of developing morphological
a.nalyz~rs have led people to not rely wholly on th~two-level assump
tIOn. Smce transducers can be combined both by composition (under
which they are always closed) and by intersection (under which they are
closed under certain conditions), combinations ofthese two operations
may be used in any given system; see, for example, Karttunen et al.
(1992). Indeed, one of the beauties of finite-state techniques is that
the calculus of the combination of regular languages and relations is
expressive enough that one can develop modules of systems without
regard to following any particular overall design: thus, for handling
certain phenomena it may be more convenient to think in terms of a
two-level system; for others, it may be easier to write cascaded rules.
No matter: the two components can be combined as if one had built
them both in one way or the other.

While Koskenniemi certainly did not invent finite-state approaches
to morphology and phonology, he was the first to develop a system that
worked fully using finite-state techniques, and he is thus to be given
much credit for bringing the field of finite-state morphology to matu
rity and building the way for the renaissance of finite-state approaches
to language and speech that has developed over the past two decades.

plished within the framework by implementing multiple violations of a single constraint
as a single violation Of a version of the constraint that "counts" an exact number of
violations; and then cascading the set of such count-specific constraint versions via lenient
composition. Of course, this approach cannot handle more than a bounded number of
violations of any given constraint, though as Karttunen notes, this is unlikely to be a
practical problem. However, as Dale Gerdemann points out, even with reasonable bounds,
Karttunen's automata can grow large.. More recent work by Gerdemann and van Noord
(2000) addresses this problem by replacing Karttunen's counting method with a method
based on exact matching.. Their method, like Karttunen's, uses lenient composition.

OT finger of salvation will point at the forms that are rescued from C i

and survive the lenient composition of all subsequent constraints.
But as Karttunen points out, this raises an interesting question: sets

of traditional generative rewrite rules can be modeled by a single FST
constructed by composition of the individual rules. Depending upon
whether the rules involved are obligatory or optional, and depending
upon how they are written, one could achieve either a unique output
or a lattice of possible outputs. In a similar vein, an Optimality Theory
system can be implemented by a single FST constructed by lenient
composition of GEN and the individual constraints. Again the resulting
FST may have a single optimal output or a set of optimal outputs. At
a computational level, then, there is no difference between these two
approaches despite the fact that in the linguistics literature, the two
approaches are considered to be as different as night and day. This is
not to say that it may not be easier or more natural to describe certain
phenomena in Optimality Theoretic terms than in traditional terms.
But this is not always the case. A good example of where it is not is
San Duanmu's (1997) treatment of cyclic compounds in Shanghai. In
that article Duanmu presents a traditional cyclic analysis of stress in
Shanghai noun compounds, an analysis that takes up about a page
of text. He then spends the remaining ten or so pages of the article
laying out a fairly complex Optimality Theory analysis. While for some
this may count as an advance in our understanding of the linguistic
phenomenon in question, it is far from obvious to us that it does. Given
the reductionist argument that Karttunen presents, it is not clear, given
the ultimate computational equivalence ofthe two approaches, why one
has to shoehorn data into one theory or the other.

In the previous chapter, we already applied the same reductionist
reasoning to argue that views that are considered radically different in
the literature on theoretical morphology are really notational variants
of one another when looked at from a computational point ofview.

114 4. ABRIEF HISTORY OF COMPUTATIONAL MORPHOLOGY

Thus, under the lenient composition of R1 and R2, strings that are in
the domain of R1 0 R2 will undergo the composition of the two rela
tions, but strings not in that domain will undergo only the relation R1.

For Optimality Theory, lenient composition can represent the com
bination of the "generator function" GEN and some violable constraint
C. Recall that the job of GEN is to generate a candidate list of analyses
given some input string. For example, the input might be a segment
sequence ak, and GEN will generate for that sequence a possibly infinite
set of candidate syllabifications. The role of a constraint C is to rule
out a particular configuration; for example, the sequence ak with a
generated syllabification []ons [a] nuez[k] coda might violate a constraint
FILLONS which requires onsets to be non-empty.3 Let us say that C
is the constraint FILLONS, and for the sake of simplicity assume that
this constraint is checked immediately on the output of GEN. In that
case, and assuming that all the outputs of GEN for ak have an empty
onset, then GEN 0 FILLONS will produce no output at all for ak. In
that case, lenient composition "rescues" ak by allowing all the outputs
of GEN. In another case, such as ka, for which GEN might produce
[k]on> [a]nucl [leoda, the output ofGEN would pass FILLONS and so would
pass through the normal composition GEN 0 FILLONS, filtering any of
GEN'S outputs that happen to violate FILLONS; but other constraints
might be violated later on. ~

As Karttunen shows, a rank-ordered list of constraints can be mod
eled using lenient composition. In particular, if one leniently com
poses the constraints together in a cascade in the order in which the
constraints are ranked - the constraint at the left-hand side of an OT
tableau first, and so on - then it is guaranteed that the selected output
will be the one that violates the lowest ranked constraint among the
violated constraints (or no constraint at all). This is because lenient
composition will rescue an input to GEN from a constraint C if and only
ifall analyses produced by GEN for that input, and available as the input
to C, violate C. So, for a sequence ofranked constraints C1, C2 , .•• Cn,
lenient composition will rescue analyses only for the first Ci for which
no analyses whatever pass. All constraints prior to Ci must involve
regular composition (the first half of the priority union), and therefore
some analyses will potentially be filtered for any given input.4 So the

3 As Karttunen shows, constraints such as FrnONS can readily be implemented in terms
of regular languages or relations

4 The model just sketched does not deal with cases where one must distinguish differing
numbers of violations of the same constraint As Karttunen shows, this can be accom-

4.3 SUMMARY 115

5

Machine learning of
Morphology

5.1 Introduction

There is a disconnect between computational work on syntax and com
putational work on morphology. Traditionally, all work on compu
tational syntax involved work on parsing based on hand-constructed
rule sets. Then, in the early 1990S, the "paradigm" shifted to statisti
cal parsing methods. While the rule formalisms - context-free rules,
Tree-Adjoining grammars, unification-based formalisms, and depen
dency grammars - remained much the same, statistical information
was added in the form of probabilities associated with rules or weights
associated with features. In much of the work on statistical parsing,
the rules and their probabilities were learned from t}eebanked corpora;
more recently there has been work on inducing probabilistic grammars
from unannotated text. We discuss this work elsewhere.

In contrast, equivalent statistical work on morphological analysis
was, through much of this time period, almost entirely lacking (one
exception being Heemskerk, 1993). That is, nobody started with a
corpus of morphologically annotated words and attempted to induce
a morphological analyzer of the complexity of a system such as
Koskenniemi's (1983); indeed such corpora of fully morphologically
decomposed words did not exist, at least not on the same scale as
the Penn Treebank. Work on morphological induction that did exist
was mostly limited to uncovering simple relations between words,
such as the singular versus plural forms of nouns, or present and past
tense forms of verbs. Part of the reason for this neglect is that hand
constructed morphological analyzers actually work fairly well. Unlike
the domain of syntax, where broad coverage with a hand-built set
of rules is very hard, it is possible to cover a significant portion of
the morphology of even a morphologically complex language such

5.1 INTRODUCTION 117

as Finnish, within the scope of a doctoral-dissertation-sized research
project. Furthermore, syntax abounds in structural ambiguity, which
can often only be resolved by appealing to probabilistic information
- for example, the likelihood that a particular prepositional phrase is
associated with a head verb versus the head of the nearest NP. There is
ambiguity in morphology too, as we have noted elsewhere; for example,
it is common for complex inflectional systems to display massive syn
eretism so that a given form can have many functions. But often this
ambiguity is only resolvable by looking at the wider context in which
the word form finds itself, and in such cases importing probabilities
into the morphology to resolve the ambiguity would be pointless.

Recently, however, there has been an increased interest in statisti
cal modeling both of morphology and of morphological induction
and in particular the unsupervised or lightly supervised induction of
morphology from raw text corpora. One recent piece of work on sta
tistical modeling of morphology is Hakkani-Tur et al. (2002), which
presents an n-gram statistical morphological disambiguator for Turk
ish. Hakkani-Tur and colleagues break up morphologically complex
words and treat each component as a separate tagged item, on a par
with a word in a language like English. The tag sequences are then
modeled with standard statistical language-modeling techniques; see
Section 6.l.

A related approach to tagging Korean morpheme sequences is pre
sented in Lee et al. (2002). This paper presents a statistical language
modeling approach using syllable trigrams to calculate the proba
ble tags for unknown morphemes within a Korean eojeol, a space
delimited orthographic word. For eojeol-internal tag sequences involv
ing known morphemes, the model again uses a standard statistical
language-modeling approach. With unknown morphemes, the system
backs off to a syllable-based model, where the objective is to pick the
tag that maximizes the tag-specific syllable n-gram model. This model
presumes that syllable sequences are indicative of part-of-speech tags,
which is statistically true in Korean: for example, the syllable conven
tionally transcribed as park is highly associated with personal names,
since Park is one of the the most common Korean family names.

Agglutinative languages such as Korean and Turkish are natural
candidates for the kind of approach just described. In these kinds of
languages, words can consist of often quite long morpheme sequences,
where the sequences obey "word-syntactic" constraints, and each mor
pheme corresponds fairly robustly to a particular morphosyntactic

feature bundle, or tag. Such approaches are harder to use in more
"inflectional" languages where multiple features tend to be bundled
into single morphs. As a result, statistical n-gram language-modeling
approaches to morphology have been mostly restricted to agglutinative
languages.

We turn now from supervised statistical language modeling to the
problem of morphological induction, an issue that has received a lot
of attention over the past few years. We should say at the outset that
this work, while impressive, is nonetheless not at the stage where one
can induce a morphological analyzer such as Koskenniemi's system
for Finnish. For the most part, the approaches that have been taken
address the issue of finding simple relations between morphologically
related words, involving one or two affixes. This is not by any means to
trivialize the contributions, merely to put them in perspective relative
to what people have traditionally done with hand-constructed systems.

Automatic methods for the discovery of morphological alternations
have received a great deal of attention over the last couple of decades,
with particular attention being paid most recently to unsupervised
methods.

It is best to start out with a definition of what we mean by morpho
logical learning since there are a couple of senses in which one might
understand that term. The first sense is the discoyery, from a corpus
of data, that the word eat has alternative forms eats, ate, eaten and
eating. Thus the goal is to find a set of morphologically related forms
as evidenced in a particular corpus. In the second sense, one wants to
learn, say, that the past tense of regular verbs in English involves the
suffixation of -ed, and from that infer that a new verb, such as google,
would (with appropriate spelling changes) be googled in the past tense.
In this second sense, then, the goal is to infer a set of rules from which
one could derive new morphological forms for words for which we have
not previously seen those forms.

Clearly the second sense is the stronger sense and more closely relates
to what human language learners do. That is, while it is surely true that
part of the process of learning the morphology of a language involves
cataloging the different related forms of words, ultimately the learner
has to discover how to generalize. For the present discussion we may
remain agnostic as to whether the generalization involves learning rules
or is done via some kind of analogical reasoning (d. the classic debates
between Rumelhart and McClelland (1986) and Pinker and Prince
(1988)). Suffice it to say that such generalization must take place.

118 5. MACHINE LEARNING OF MORPHOLOGY 5.2 GOLDSMITH, 2001 119

This stronger sense was the problem to which earlier supervised
approaches to morphology addressed themselves. Thus the well-known
system by Rumelhart and McClelland (1986) proposed a connectionist
framework which, when presented with a set of paired present- and
past-tense English verb forms, would generalize from those verb forms
to verb forms that it had not seen before. Note that "generalize" here
does not mean the same as "generalize correctly," and indeed there was
much criticism of the Rumelhart and McClelland work, most notably
by Pinker and Prince (1988) (and see also Sproat, 1992: Chapter 4).
Other approaches to supervised learning of morphological generaliza
tions include van den Bosch and Daelemans (1999) and Gaussier (1999).

Supervised approaches of course have the property that they assume
that the learner is presented with a set of alternations that are known
to be related to one another by some predefined set of morphologi
cal alternations. This begs the question of how the teacher comes by
that set in the first place. It is to the latter question that the work on
unsupervised learning of morphology addresses itself in that, as noted
above, it aims to find the set of alternate forms as evidenced in a partic
ular corpus. Indeed, while it is obviously an end goal of unsupervised
approaches to not only learn the set of alternations that are found in
a corpus, but also to generalize from such forms, the former is an
interesting and hard problem in and ofitselfand so some ofthe work in
this area has tended to focus on this first piece. Note, that it is reasonable
to assume that once one has a list of alternation exemplars, one could
apply a supervised technique to learn the appropriate generalizations;
this is the approach taken, for example, in Yarowsky and Wicentowski
(2001).

Since most ofthe work in the past ten years has been on unsupervised
approaches, we will focus in this discussion on these, and in particular
three recent influential examples, namely Goldsmith (2001), Yarowsky
and Wicentowski (2001) and Schone and Jurafsky (2001). Other recent
work in this area includes Sharma et al. (2002); Snover et al. (2002);

Baroni et al. (2002); Creutz and Lagus (2002); Wicentowski (2002);

H. Johnson and Martin (200.3).

5.2 Goldsmith, 2001

We start with a discussion of Goldsmith's minimum description length
(MDL) approach - called Linguistica - to the learning of affixation
alternations. While this is not the first piece of work in unsupervised

120 5. MACHINE LEARNING OF MORPHOLOGY

morphological acquisition, it is certainly the most cited, and since
Goldsmith has made his system available on the Internet, it has come to
represent a kind of standard against which other systems are compared.

Goldsmith's system starts with an unannotated corpus of text of a
language - the original paper demonstrated the application to English,
French, Spanish, Italian, and Latin - and derives a set ofsignatures along
with words that belong to those signatures. Signatures are simply sets
of affixes that are used with a given set of stems. Thus, one signature in
English is (using Goldsmith's notation) NULL.er.ing.s, which includes
the stems blow, bomb, broadcast, drink, dwell,farm,feel, all ofwhich take
the suffixes 0, -er, -ing and -s in the corpus that Goldsmith examines.
One is tempted to think of signatures as being equivalent to paradigms,
but this is not quite correct, for two reasons.

First of all, notice that NULL.edng.s contains not only the clearly
inflectional affixes -ing and -s, but the (apparently) derivational affix
-er. Whether or not one believes in a strict separation of derivational
from inflectional morphology - cf Beard (1995) - is beside the point
here: most morphologists would consider endings such as -s and -ing
as constituting part of the paradigm of regular (and most irregular)
verbs in English, whereas -er would typically not be so considered.

Second, notice also that the set is not complete: missing is the
past tense affix, which does show up in other ~ignatures, such as
NULL.ed.er~ing.s - including such verbs as attack, back, demand, and
flow. An examination of the verbs belonging to the NULL.er.ing.s sig
nature will reveal why: many of them - blow, broadcast, drink, dwell,
fee! - are irregular in their past tense form and thus cannot take -ed.
However neither bomb norfarm are irregular, and the reason they show
up in this signature class is presumably because they simply were never
found in the -ed form in the corpus. A system would have to do more
work to figure out that bomb and farm should perhaps be put in the
NULL.ed.edng.s class, but that the other verbs in NULL.edng.s should
be put in various different paradigms. Goldsmith briefly discusses the
more general problem of going from signatures to paradigms, but
note in any case that his system is not capable of handling some of the
required alternations, such as blow/blew, since his methods only handle
affixation - and are tuned in particular to suffixation.

The system for deriving the signatures from the unannotated cor
pus involves two steps. The first step derives candidate signatures and
signature-class membership, and the second evaluates the candidates.
We turn next to a description of each of these.

5.2 GOLDSMITH, 2001 121

5.2.1 Candidate Generation

The generation of candidates requires first and foremost a reason
able method for splitting words into potential morphemes. Goldsmith
presents a couple of approaches to this, one which he terms the take
all-splits heuristic and the second which is based on what he terms
weighted mutual information. Since the second converges more rapidly
on a reasonable set, we will limit our discussion to this case.

The method first starts by generating a list of potential affixes. Start
ing at the right edge of each word in the corpus, which has been padded
with an end-of...word marker "#': collect the set ofpossible suffixes up to
length six (the maximum length of any suffixes in the set of languages
that Goldsmith was considering), and then for each of these suffixes,
compute the following metric, where Nk here is the total number of
k-grams:

The first 100 top ranking candidates are then chosen, and words in
the corpus are segmented according to these candidates, where that
is possible, choosing the best parse for each word according to the
following metric, also used in the take-all-splits approach, which assigns
a probability to the analysis of a word W into a stem Wl,i and a suffix
Wi+ 1,1, where 1is the length of the word:

where

H(Wl,i, Wi+l,l) = -(ilogUreq(stem = WI,i))

+(1 - i)logUreq(suffix = Wi+l,j))) (5 ..3)

Finally, suffixes that are not optimal for at least one word are discarded.
The result of this processing yields a set of stems and associated suf

fixes including the null suffix. The alphabetized list ofsuffixes associated
with each stem constitutes the signature for that stem. Simple heuristic
weeding is possible at this point: remove all signatures associated with
but one stem and all signatures involving one suffix. Goldsmith terms
the remaining signatures regular signatures, and these constitute the set
of suffixes associated with at least two stems.

5.2 GOLDSMITH, 2001 123

-log(P(suffix(w)la(w»)] (5.9)

TABLE 5-l Top ten signatures for English from Goldsmith (2001), with a
sample of relevant stems

accent, afford, attempt
adolescent, amendment, association
attack, charm, flow
aberration, abstractionist, accommodation
achiev, compris, describ
advertis, enforc, pac
applaud, bloom, cater
blow, drink,feel
abbreviate, balance, costume
acclaim, bogey, burden

L NULLed..ing.s
2 's.NULL.s
.3. NULLed..ering.s
4. NULLs
5. e..ed..es.ing
6. e.ed.er..es.ing
7. NULLed.ing
8. NULLer.ing.s
9 NULL.d.s
10. NULL.ed.s

L [w][-log(P(a(w») -log(P(stem(w)la(w)))
WEW

,,[][1 [W] 1 [a(w)] I [a(w)]]
~ W og[a(w)] + og[stem(w)] + og[suffix(w) E a(w)]

(5.8)
or in other words, assuming the maximum likelihood estimate for
probabilities:

As noted above, Goldsmith tested his method on corpora from English,
French, Italian, Spanish, and Latin. For each of these languages, he
lists the top ten signatures. For English these are reproduced here in
Table 5.1, along with associated stems. Goldsmith also evaluated the
results for English and French. Having no gold standard against which
to compare, he evaluated the results subjectively, classifying the analy
ses into the categories good, wrong analysis, failed to analyze, spurious
analysis. Results for English, for 1,000 words, were 824Yo in the good
category, with 5.2% wrong, 3.6% failure, and 8.3% spurious. Results for
French were roughly comparable.

As we noted in the introduction to this section, Goldsmith's work
stands out in that it has become the de facto gold standard for subse
quent work on unsupervised acquisition ofmorphology, partly because
he has made his system freely available, but partly also because he
has provided a simple yet powerful metric for comparing morpho
logical analyses. Goldsmith's method, of course, makes no explicit use

Finally the compressed length of the corpus in terms of the morpho
logical model is given by:

A(T} + A(F} + A(I:}

T is the set of stems, [W] is the number of word tokens in the corpus
and [t] is the number of tokens of the particular stem t: here and
elsewhere [X] denotes the number of tokens of X. (The log(26) term
assumes an alphabet of twenty-six letters.)

The term A(F} (where F is Goldsmith's notation for suffixes) is:

" [WA]LJ (log(26) * length(f) + log T1f)
/Esuffixes .

5.2.2 Candidate Evaluation

The set of signatures and associated stems constitutes a proposal for the
morphology of the language in that it provides suggestions on how to
decompose words into a stem plus suffix(es). But the proposal needs to
be evaluated: in particular, not all the suggested morphological decom
positions are useful, and a metric is needed to evaluate the utility of
each proposed analysis. Goldsmith proposes an evaluation metric based
on minimum description length. The best proposal will be the one that
allows for the most compact description of the corpus (in terms of the
morphological decomposition) and the morphology itself. This is, of
course, a standard measure in text compression: a good compression
algorithm is one that minimizes the size ofthe compressed text plus the
size of the model that is used to encode and decode that text.

The compressed length of the model- the morphology - is given by:

122 5. MACHINE LEARNING OF MORPHOLOGY

Here, A(T} represents the length (in bits) of a list of pointers to (T)
stems, where T is the set of stems, and the notation () represents the
cardinality of that set. A(F) and A(I:) represent the equivalent pointer
list lengths for suffixes and signatures, respectively.

The first ofthese, A(T}, is given by:

[Wfl
I)log(26) * length(t) + log [tf) (5.5)

tET

Llog [W]
aE:E [a]

where I: is the set of signatures.

Here, [WA] is the number oftokens ofmorphologically analyzed words,
and [f] is the number of tokens of the suffix f.

The signature component's contribution can be defined, for the
whole signature component, as:

124 5. MACHINE LEARNING OF MORPHOLOGY

of semantic or syntactic information. An obvious objection to his
approach as a model of what human learners do is that children clearly
have access to other information besides the set of words in a corpus
of (spoken) language: they know something about the syntactic envi
ronment in which these words occur and they know something about
the intended semantics of the words. But Goldsmith argues that this is
a red herring. He states (page 190):

Knowledge of semantics and even grammar is unlikely to make the pIOblem of mor
phology discovery significantly easier" In surveying the various approaches to the prob
lem that I have explored (only the best of which have been described here), I do not
know of any problem (of those which the present algorithm deals with successfully)
that would have been solved by having direct access to either syntax or semantics.

But while no one can yet claim to have a model that well models the
kind of syntactic or semantic information that a child is likely to have
access to, it has been demonstrated in subsequent work that having a
system that models syntactic and semantic information does indeed
help with the acquisition of morphology. We turn now to a discussion
of some of this subsequent work.

5.3 Schone and Jurafsky, 2001

Schone and Jurafsky's approach, a development o~ their earlier work
reported in Schone and Jurafsky (2000), uses semantic, orthographic,
and syntactic information derived from unannotated corpora to arrive
at an analysis of inflectional morphology. The system is evaluated for
English, Dutch, and German using the CELEX corpus (Baayen et ai.,
1996).

Schone and Jurafsky note problems with approaches such as Gold
smith's that rely solely on orthographic (or phonological) features. For
example, without semantic information, it would be hard to tell that
ally should not be analyzed as all+y, and since Goldsmith's approach
does not attempt to induce spelling changes, it would be hard to tell
that hated is not hat+ed. On the other hand, semantics by itself is not
enough. Morphological derivatives may be semantically distant from
their bases - consider reusability versus use - so that it can be hard to use
contextual information as evidence for a morphological relationship.
Furthermore, contextual information that would allow one to derive
semantics can be weak for common function words, so there is effec
tively no information that would lead one to prevent as being derived
from a+s.

5.3 SCHONE AND JURAFSKY, 2001 125

Previous approaches also tend to limit the kinds of morphological
alternations they handle. As we have seen Goldsmith's method was
developed with suffixational morphology in mind (though it could cer
tainly be extended to cover other things). Schone and Jurafsky's system
at least extends coverage to prefixes and circumfixes. Their system, then,
according to their own summary (page 2):

• considers circumfixes
• automatically identifies capitalizations by treating them similarly

to prefixes
• incorporates frequency information
• uses distributional information to help identify syntactic proper

ties, and
• uses transitive closure to help find variants that may not have been

found to be semantically related but which are related to mutual
variants.

Schone and Jurafsky use the term circumfix somewhat loosely to denote
apparently true circumfixes such as the German past participle circum
fix ge-t, as well as combinations ofprefixes and suffixes more generally.
Their method for finding prefixes, suffixes and circumfixes is as follows:

1. Strip off prefixes that are more common than some predeter
mined threshold.1

2. Take the original lexicon, plus the potential stems generated in the
previous step, and build a trie out of them.

3. As in Schone and Jurafsky (2000), posit potential suffixes wher
ever there is a branch in the trie, where a branch is a subtrie of a
node where splitting occurs. See Figure 5-1.

4. Armed with a set of potential suffixes, one can obtain potential
prefixes by starting with the original lexicon, stripping the poten
tial suffixes, reversing the words, building a trie out ofthe reversed
words, and finding potential suffixes of these reversed strings,
which will be a set of potential prefixes in reverse.

5. Identify candidate circumfixes, defined as prefix-suffix combina
tions that are attached to some minimum number of stems that
are also shared by other potential circumfixes. The stems here are
actually called pseudostems since, of course, they may not actually
correspond to morphological stems. Note that since NULL will

1 As Schone and Jurafsky note, if you do not do this initial step some potential circum
fixes may be missed"

126 5. MACHINE LEARNING OF MORPHOLOGY

Assuming random NCS are normally distributed as N(O, 1) and sim
ilarly the distribution of means and variances of true correlations as
N (/LT, a}), we can define a function that gives the area under the curve
of the distribution from NCS to infinity:

100 _(-eX-I'))2
<DNCS = e a dx

NCS

The probability that an NCS is non-random is then given by:

P(NCS) = nT<DNCS(/LT, aT)
(nR - nT)<DNCS(O, 1) + nT<DNCS(/LT, aT)

5.3 SCHONE AND JURAFSKY, 2001 127

where nT is the number ofterms in the distribution oftrue correlations.
Finally the probability that WI and Wz are related is given by:

Schone and Jurafsky assume a threshold for Psem (0.85 in their imple
mentation) above which a potential relationship is considered valid.

The semantic probability is supplemented with an "orthographic"
probability defined as follows:

2af(C I =} Cz)
Par th = (5.15)

maxYZf(CI =} Z) + maxYWf(W =} Cz)

Here f (A =} B) is the frequency of the alternation involving circumfix
A and circumfix B, and a is a weight between °and 1. Thus the
probability of an alternation is the weighted ratio of the count of the
alternation over the sum of the count ofthe alternation between the left
circumfix and all circumfixes, and all circumfixes and the right circum
fix. The orthographic probability is combined with the semantic prob
ability as follows (Ps- o denotes the combined semantic-orthographic

Each word W is assigned the semantic vector Q w = UwDb where Uw is
the row of U corresponding to wand Dk are the first k singular values
from Equation 5.10.

It is then necessary to compute a similarity between pairs of words,
and this is accomplished using normalized cosine scores (NCS). For each
word Wb k E (1,2), vectors for 200 other words are randomly selected,
and the means (/Lk) and variances (ak) of the cosine values between Wk
and each of the 200 other words are computed. The cosine of WI and
Wz are then normalized, and the NCS is computed as follows:

. COS(QwI, Qwz) - /Lk
NCS(WI, wz) = mtnkE(l,Z) (5.n)

ak

(5.10)M= UDVT

in general be among the potential prefixes and suffixes found in
previous stages, pure suffixes or prefixes will simply be circumfixes
where one of the components is NULL. Schone and Jurafsky also
define a rule to be a pair of candidate circumfixes sharing some
minimum number of pseudostems.

FIGURE 5,,1 A sample trie showing branches for potential suffixes NULL (empty circle), -,5

and -ed: from Schone and Jurafsky (2001, Figure 2), Used with permission of the authors
and the Association for Computational Linguistics

The output of these steps for English, German, and Dutch, with par
ticular settings for the minima mentioned above, p'toduces a large set
of rules (about 30,000 for English) of which some are reasonable (e.g.
-s=} 0, -ed=}-ing) but many of which are not (e.g. s-=} 0, as induced
from such seeming alternations as stick/tick or spark/park.)

To compute semantic information, Schone and Jurafsky use a version
of Latent Semantic Analysis introduced by Schiitze (1998), that uses
an N x 2N term-term matrix. N represents the N - 1 most frequent
words, plus a "glob" in the Nth position corresponding to all other
words. For each row, the first N columns represent words that occur
in a window to the left of the row's word, and the last N columns words
that occur within a window to its right. Singular value decomposition
is then performed on a normalized version of the N x 2N matrix M,
to produce the product of two orthogonal matrices U and V T and
the diagonal matrix of squared eigenvalues (singular values) D. The
diagonal squared eigenvalue entries in D are ordered so that the first k
of them account for the first k most significant dimensions of the IMI
dimensional space.

P(valid) = Ps- o + Psyntax - (Ps-oPsyntax)

FIGURE 5,2 Semantic transitive closure of PPMVs, from Schone and Jurafsky (2001,

Figure 4)" Used with permission of the authors and the Association for Computational
Linguistics

75,8

85 8
Linguistica 81,8

Schone & Jurafsky 881

English German Dutch

5.4 YAROWSKY AND WICENTOWSKI, 2001 129

5.4 Yarowsky and Wicentowski, 2001

Yarowsky and Wicentowski (2001) present a lightly supervised method
for inducing analyzers ofinflectional morphology. The method consists
oftwo basic steps. First a table of alignments between root and inflected
forms is estimated from data. For example, the table might contain
the pair take/took, indicating that took is a particular inflected form
of take. Second, a supervised morphological analysis learner is trained
on a weighted subset of the table. In considering possible alignment
pairs, Yarowsky and Wicentowski concentrate on morphology that is
expressed by suffixes or by changes in the root (as in take/took).

The method depends upon the following resources:

• A table of inflectional categories for the language; such a table for
English would indicate that verbs have past tense forms. Along with
these inflectional categories, a list of canonical suffixal exponents
of these categories is needed. For past tense verbs in English, for
example, canonical suffixes would be -ed, -t and -0, the latter being
found in cases like took.

• A large corpus of text.
• A list of candidate noun, verb, and adjective roots, which can be

obtained from a dictionary, plus a rough method for guessing parts
of speech of words in the corpus.

TABLE 5.2 Comparison of the F-scores for suffixing
for full Schone and Jurafsky method with Goldsmith's
algorithm for English, Dutch, and German

The output of Schone and Jurafsky's method is a set of what they
term conflation sets - a directed graph linking words to their relatives.
The conflation sets can then be compared to the evaluation corpus
CELEX - by computing the correct, deleted, and inserted members of
the found set against the true set. These scores can then be converted to
F-scores. F-scores for Goldsmith's method, in comparison with Schone
and Jurafsky's full method, are shown in Table 5.2, evaluating for suf
fixes only since Goldsmith's system only handles suffixes. (Schone and
Jurafsky also evaluate their own system for circumfixes.)

(5-16)

1,0

:0,02
I

buses

abusing . 098 abusive

1,0 ---------X060

abuse \
0,94/ ",0:.79 \
/ 056 ' '

Abuse ----:..------- abuses
1,0 f :

abused '-I--1--1 ___

/ //
abusers ---- --

026

1,0

Ps-o(valid) = Psem + Porth - (PsemPorth)

128 5. MACHINE LEARNING OF MORPHOLOGY

probability):

The similarities of local syntactic context between pairs of an alterna
tion are also computed. For words that are members of each side of
an alternation - the pair ofpotential morphological variants or PPMV
- one first computes contextual words that are e~ther far more fre
quent or far less frequent than expected by chance~ these sets are the
signatures for the words. Signatures are also collected for randomly
chosen words for the corpus, and for unvalidated PPMVs. Lastly, one
computes the NCS and the probabilities between the signatures of the
ruleset and the unvalidated PPMVs. (The probability of the syntactic
correspondence is computed as in Equation 5.13.) The probability of
a correspondence being valid is given as a combination of the ortho
graphic/semantic probability Ps- o and the syntactic environment
based probability Psyntax:

The above method, while it captures a lot of valid PPMVs, still fails
to capture some that are valid because, for example, they are not
sufficiently represented in the corpus. However many of these can be
reconstructed by following the transitive closure of PPMVs. This is
exemplified in Figure 5.2. The probability of an alternation given a sin
gle path is modeled as the product of the probabilities of the individual
links, along with a decay factor. For multiple paths between two nodes
the probabilities of the paths are summed.

005 taked/take (-10~) I sang/singe (5.1)
-/Singed/sin~ rh ~

o l!:...-__~bD......LL.LL.L...L.:LLl....L..L..L..I::'____;------;

-10 -5 0 5 10

log(VBD/VB)

FIGURE 5.3 The log VBD estimator from Yarowsky and Wicentowski (2001, Figure 1),
smoothed and norm~ized to yield an approximation to the probability density function
for the VBD/VB ratio., Correct pairings took/take, sanglsing and singedlsinge are close to the
mean ofthe distribution., Incorrect pairs singedlsinge, sang/singe and taked/take are far out
in the tails of the distribution; note that taked occurred once in the corpus, presumably
as a typo., Used with permission of the authors and the Association for Computational
Linguistics

indication that two forms are related, since even though semantically
related words such as sip and drink will also show similar contexts, such
words are still more dissimilar than are morphologically related forms.

Also as with Schone and Jurafsky (2001), Yarowsky and Wicentowski
use orthographic similarity between the putative root and inflected
form, using a weighted Levenshtein distance. Costs for character or
character-sequence substitutions are initialized to a predefined set
of values. Thus, for example consonant-consonant substitutions are
assigned an initial cost of 1.0, whereas single vowel-vowel substitutions
are assigned a cost of 0.5. However, these costs are re-estimated as
the system converges to a more accurate set of root-inflected form
correspondences.

Yarowsky and Wicentowski are not only interested in producing
a table of accurate correspondences for particular roots and their
inflected forms but are also interested in producing a morphological
analyzer that can extend to new cases. The task here is to find the
probability of a particular stem change, given a root, a suffix, and a
part-of-speech tag:

0.1

131

(5-18)P (stemchangelroot, suffix, P OS)

5-4 YAROWSKY AND WICENTOWSKI, 2001

02

0.3...------.----,;------,-------,
J. took/take (-035)

fsang/sing (0.17)

tinged/Singe (L5)

015

0.25

130 5. MACHINE LEARNING OF MORPHOLOGY

• A list of consonants and vowels for the language.
• A list of common function words (optional).

The suffixes are useful for providing plausible alignments for many
pairs of root and inflected form. For example, the existence ofannounce
and announced in a corpus, along with the knowledge that -ed is a
possible past-tense suffix, is sufficient to propose that the two words in
question should be paired with announce being the root and announced
the inflected past form.

But in many cases the suffixes are not sufficient. For example, we
would like to pair the root sing with sang, not with singed. A key to
deciding such cases is the observation that there is a substantial dif
ference in frequency between, on the one hand, sang/sing (ratio: 1.191r

in Yarowsky and Wicentowski's corpus), and on the other singed/sing
(0.0071r). However, this is not quite enough, since a priori we have no
way of deciding which of the two ratios is a more reasonable ratio for
a past tense/present tense pair: some inflectional categories, for exam
ple, may be systematically f~H less frequent than their roots. Yarowsky
and Wicentowski address this issue by computing the distribution of
ratios over the corpus for word pairs from a given inflectedlroot class.
Figure 5.3 shows the distribution of log v:;;, where VBD and VB are
the Penn Treebank tags for, respectively, past teri~e verbs and verb
roots. One problem is that the computation ofthe log v:;; distribution
depends upon knowing the correct inflected/non-inflected pairs, which
by assumption we do not know. Yarowsky and Wicentowski get around
this problem by observing that the distribution is similar for regular
and irregular verbs in English. They then estimate the distribution from
regular verb pairs, which can be detected to a first approximation by
simply looking for pairs that involve stripping the regular affix (in this
case -ed). Initially the set of such pairs will be noisy; it will contain
bogus pairings like singed/sing above. However, the estimate can be
iteratively improved as improved alignments between inflected forms
and their roots are computed. One is also not limited to consider
ing the distribution of just one type of pair, such as VBD/VB. So,
for example, VBG/VBD (where VBG is the Penn treebank tag for the
gerund/participle ending in -ing) is also useful evidence for a putative
VBDform.

A second form of evidence for the relatedness of forms is contextual
evidence of the kind also used by Schone and Jurafsky (2001). Cosine
similarity measures between weighted contextual vectors give a good

132 5. MACHINE LEARNING OF MORPHOLOGY

This is estimated by an interpolated backoff model (see Section 6.1)

that is the weighted sum of the probability of the stem change given
the last three characters of the root, the suffix, and the POS; the last
two characters of the root, the suffix, and the POS; and so on down to
just the suffix, and the POS; and finally the context-independent stem
change a -+ f3:

P(changelroot, suI, POS) = pea -+ f3lroot, suI, POS)

~ /IIP(a -+ f3llast3(root), suf, POS) +

(l - '\'1)('\'2 P (a -+ f3l last2(root), suf, P OS) +

(l - '\'2)('\'3P(a -+ f3l lastl (root), suf, P OS) +

(l - '\'3) (,\,4P (a -+ f3lsuf, P OS) +

(l - '\'4)P(a -+ f3)))) (5.19)

The '\'s are re-estimated on each iteration of the algorithm.
In addition to the statistical methods outlined above, Yarowsky and

Wicentowski impose a constraint, which they call the pigeonhole prin
ciple, that requires that there be only one form for a given inflection
for a particular word. Note that this is what would more normally be
called morphological blocking (Aronoff, 1976). Exce~tions to this prin
ciple such as dreamed/dreamt are considered to be sufficiently rare that
their existence does not detract significantly from the performance of
the model. The pigeonhole principle is used to greedily select the first
candidate inflected form for a given position in the paradigm from a
rank-ordered list ofputative forms.

Table 5.3 shows the performance of the algorithm on four classes of
verbs for the first iteration of each of the measures: frequency similarity
(FS); Levenshtein (LS); context similarity (CS); various combinations
of these metrics; and the fully converged system. As Yarowsky and
Wicentowski observe, none of the metrics perform well by themselves,
but by combining the metrics one can achieve very high performance.

5.5 Discussion

In this section we have reviewed three of the more prominent pieces of
work on morphological induction that have appeared in the past few
years.

Other recent work in this area includes:

5.5 DISCUSSION 133

TABLE 53 The performance of the Yarowsky-Wicentowski algorithm on four
classes of English verbs

Combination #of All Highly Simple Non-
of Similarity Iterations Words Irregular Concat. Concat
Models (3888) (128) (1877) (1883)

FS (Frequency Sim) (Iter 1) 9,.8 18,6 8.8 10,1
LS (Levenshtein Sim) (Iter 1) 31.3 19,6 20.0 34-4
CS (Context Sim) (Iter 1) 28.0 32.8 30.0 25,.8
CS+FS (Iter 1) 32,,5 64.8 32.0 30,,7
CS+FS+LS (Iter 1) 71..6 76,5 71,1 71.9
CS+FS+LS+MS (Iter 1) 965 74,0 97-3 97-4
CS+FS+LS+MS (Convg) 99,2 80-4 99·9 99,,7

From Yarowsky and Wicentowski (2001, Table 9)

• H. Johnson and Martin (2003) propose a method for detecting
morpheme boundaries based on what they term hubs. Hubs are
nodes in a minimized automaton representing the words of the
language that have in-degree and out-degree greater than one. As
Johnson and Martin note, their idea is an extension on previous
work such as Z. Harris (1951) and Schone and Jurafsky (2000).

• Snover et al. (2002) propose a method that estimates probabilities
for: the numbers of stems and suffixes; the lengths of the stems
and suffixes; the joint probability of hypothesized stem and suffix
sets; the number of paradigms; the number of suffixes in each
paradigm, and which suffixes are associated with each paradigm;
and the paradigm affiliation of stems. These estimates are then
used to assign a probability to a particular analysis of the data into
a set ofhypothesized stems, suffixes and paradigms. A novel search
algorithm is proposed for searching the set of possible analyses of
the data. The method is shown to outperform Linguistica in terms
of F-score on corpora of English and Polish.

• Baroni et al. (2002) propose another method similar to Schone and
Jurafsky (2000) that combines semantic and orthographic similar
ity for the discovery of morphologically-related words. They use
an edit-distance measure for orthographic similarity and mutual
information for semantic similarity. The reported performance of
this method is hard to compare to the results of other work but
seems to be degraded from what one would expect from other
methods.

134 5. MACHINE LEARNING OF MORPHOLOGY

TABLE 5.4 Comparison of methods of morphological
induction

5.5 DISCUSSION 135

of a paradigm share phonological properties (go/went is an obvi
ous counterexample), it is overwhelmingly the most common sit
uation. Note that the notion of sharing phonological properties
can be quite varied and needs to be parameterized to language
particular cases. Methods such as Yarowsky and Wicentowski
(2001) and Schone and Jurafsky (2001) go fin towards dealing with
a variety of cases involving circumfixation or stem changes. But no
published work to date handles infixation, the kind of interdigita
tion found in Semitic morphology, or productive reduplication.
The key here is clearly to allow for a variety of possible ways in
which two forms may be phonologically related, without opening
the flood gates and allowing all kinds of silly correspondences.
The current approaches, in addition to being too limiting in the
correspondences they allow, are also too limiting in another sense:
they target the kinds of alternations that are known to be active
in the languages they are being applied to. Obviously this is not
realistic as a model for morphological induction in the general
case.
A traditional linguistic approach to this issue would be to con
strain the search for possible correspondences to those kinds of
alternations that ate known to occur across languages. So one
might start with a taxonomy of morphological alternations (one
such taxonomy is given in Sproat, 1992) and allow correspondences
only within those classes of alternations. This would be a rea
sonable approach, but it is also worth considering whether one
could induce the range of observed alternation types completely
automatically.

• Syntactic context. Various methods for morphological induction
depend upon related forms occurring in similar syntactic contexts.
This is reasonable for some instances of inflectional morphology.
For example in English, plural nouns have roughly the same syn
tactic distribution as singular nouns, modulo the fact that as sub
jects they co-occur with different verb forms. Similarly, there is no
syntactic difference between present and past tense verb forms.
But such similarity in syntactic context is not a feature of inflec
tional variants in general. For example, in many languages nouns
are case marked precisely to mark differing syntactic contexts for
the noun forms in question. So one would not in general expect,
for example, a nominative and ablative form of a noun to occur in
similar syntactic environments.

Incorrect

20.6%

37-4%
32 ..8%

Incomplete

29·7'Yo
153%

24·1%

Correct

49. 6%
47-3%

4.3-1%

Method

From Creutz and Lagus (2002, Table 3).

Recursive MDL
Sequential ML
Linguistica

• Creutz and Lagus (2002) propose a recursive MDL-based
approach. Words are segmented all possible ways into two parts,
including no split, and the segmentation that results in the mini
mum total cost is chosen. If a split is chosen, then the two chosen
components are recursively submitted to the same procedure. As
Creutz and Lagus note, this approach has the danger of falling
into local optima. To avoid this, words that have already been
segmented are resegmented when they occur again (since this may
lead to a reanalysis of the word).
A second method involved a maximum likelihood estimate of the
P (data Imodel), estimated using Expectation Maximization; in this
case a linear rather than recursive procedure is used, starting with
a random segmentation of the corpus. \
A comparison of the two methods proposed by Creutz and Lagus,
along with the performance of Linguistica on morpheme bound
ary detection in a sample of 2,500 Finnish words is shown in Table
5.4 (Creutz and Lagus' Table 3). Note that correct means that all
critical morpheme boundaries were detected, incomplete means
that only some of the boundaries were detected, and incorrect
means that at least one boundary was incorrect.

One clear principle that can be gleaned from the more successful work
in morphological induction is that multiple sources of evidence are
crucial. Thus morphological induction is similar to other problems in
natural language processing, such as Named Entity Recognition - e.g.
Collins and Singer (1999) - in that one often does better by combining
evidence from multiple sources than from relying on just one kind of
evidence.

Relevant evidence for morphological induction includes:

• Orthographic or phonological similarity between morphologi
cally related forms. While it is not always the case that members

136 5. MACHINE LEARNING OF MORPHOLOGY

Even tense marking on verbs can result in different syntac
tic contexts in some languages. For example in Georgian (A.
Harris, 1981; Aronson, 1990), different verb tenses imply different
case markings on subjects and direct objects. Aorist verbs, for
example, take ergative-absolutive marking, whereas present verbs
take nominative-accusative marking. Assuming one tags different
nominal case forms with different syntactic tags, these tense differ
ences would therefore correspond to different syntactic environ
ments.
And once one moves away from inflectional morphology into more
derivational kinds of alternations, especially those that result in a
change of grammatical category, one expects quite different syn
tactic environments.

• Semantic context. Words that are morphologically related tend to
occur in semantically similar environments. Thus eat will tend to
occur in environments that are similar no matter what the tense
is. Similarly, one would expect a nominative singular form such
as equus "horse" in Latin to occur in similar semantic environ
ments to other inflected forms such as equl (nominative plural)
or equorum (genitive plural).
Semantic context is expected to be more stable than syntactic con
text across derivational relatives. Thus both qonate and donation
might be expected to co-occur with such context words as money,
fund, dollars, and charity. Semantic drift will, of course, contribute
to a weakening of this expectation: transmit and transmission (in
the automotive sense) will dearly tend to occur in different seman
tic contexts. It is a fair question, however, whether native speakers
even recognize such forms as related.

Thus despite the substantial progress in recent years on automatic
induction of morphology, there are also still substantial limitations
on what current systems are able to handle. Nonetheless, the prob
lems described in the preceding bullet items are just that: problems,
and problems which we have every reason to believe will be seriously
addressed in subsequent work.

Part II

Computational Approaches
to Syntax

284 9. CONTEXT-SENSITIVE APPROACHES TO SYNTAX

approaches, and the use ofre-ranking as a post-process for context-free
(or finite-state) approaches. Going beyond context-free models comes
at an additional efficiency cost, but many rich linguistic dependencies
are difficult to model with context-free grammars. Some of the most
interesting approaches use models of varying complexity at various
stages, to try to get rich and accurate annotations at bargain basement
efficiencies. It is clear that more research must be done to understand
the most effective trade-offs between these levels of the Chomsky hier
archy.

While computational approaches to syntax have turned increasingly
to statistical methods based on large annotated corpora, this does not
mean that there is less need for the kind oflinguistic knowledge that has
driven grammar engineering over the years. More than ever, the formal
mechanisms exist to apply rich constraints for syntactic processing
and disambiguation; the search for such constraints (or features) will
continue to be largely driven by linguistic knowledge. There is much
potential in approaches that combine the flexibility of some of the
stochastic approaches we have discussed with linguistically informed
feature exploration.

References

Abe, M., Ooshima, Y., Yuura, K., and Takeichi, N., 1986. "A Kana-Kanji trans
lation system for non-segmented input sentences based on syntactic and
semantic analysis." In: Proceedings of the 11th International Conference on
Computational Linguistics (COLING), pp. 280-285.

Abney, S., 1996. "Partial parsing via finite-state cascades." Natural Language
Engineering 2 (4), .3.37-.344.

-- 1997. "Stochastic attribute-value grammars." Computational Linguistics
2.3 (4),597-617.

Aho, A. V., Sethi, R., and Ullman, J. D., 1986. Compilers, principles, techniques,
and tools. Addison-Wesley, Reading, MA.

Ajdukiewicz, K., 19.35. "Die syntaktische konnexitat:' In: McCall, S. (Ed.),
Polish Logic 1920-1939. Oxford University Press, Oxford, pp. 207-2.31.

Allauzen, c., Mohri, M., and Roark, B., 200.3. "Generalized algorithms for
constructing language models." In: Proceedings of the 41st Annual Meeting
ofthe Association for Computational Linguistics (ACL), pp. 40-47.

Allen, J., Hunnicutt, M. S., and Klatt, D., 1987. From Text to Speech: the MITalk
System. Cambridge University Press, Cambridge, UK.

Alshawi, H., Srinivas, B., and Douglas, S., 2000. "Learning dependency trans
lation models as collections offinite-state head transducers." Computational
Linguistics 26 (1),45-60.

Anderson, S., 1992. A-Morphous Morphology. Cambridge University Press,
Cambridge, UK.

Andron, D., 1962. ''Analyse morphologique du substantif russe." Tech. rep.,
Centre d'Etudes pour la Traduction Automatique, Universite de Grenoble
1.

Andry, E, Fraser, N., Thornton, S., and Youd, N., 199.3. "Making DATR work
for speech: lexicon compilation in SUNDIAL." Computational Linguistics
18 (.3),245-267.

Antworth, E., 1990. PC-KIMMO: A Two-Level Processor for Morphological
Analysis. Occasional Publications in Academic Computing, 16. Summer
Institute of Linguistics, Dallas, TX.

Archangeli, D., 1984.. "Underspecification in Yawelmani phonology and mor
phology:' Ph.D. thesis, MIT.

Aronoff, M., 1976. Word Formation in Generative Grammar. MIT Press, Cam
bridge, MA.

-- 1994· Morphology by Itself: Stems and Inflectional Classes. No. 22 in
Linguistic Inquiry Monographs. MIT Press, Cambridge, MA.

286 REFERENCES

Aronson, H., 1990. Georgian: A Reading Grammar~ Slavica, Columbus, OH.
Attar, R, Choueka, Y., Dershowitz, N., and Fraenkel, A., 1978. "KEDMA

linguistic tools for retrieval systems:' Journal ofthe ACM 25, 55-66.
Baayen, R. H., and Moscoso del Prado Martin, E, 2005. "Semantic density and

past-tense formation in three Germanic languages." Language 81 (3), 666

698.
-- Piepenbrock, R, and van Rijn, H., 1996. The CELEX Lexical Database

(CD-rom). Linguistic Data Consortium.
Baker, T., 1979. "Trainable grammars for speech recognition:' In: Speech Com

munication papers for the 97th Meeting of the Acoustical Society ofAmerica,
pp. 547-550.

Baker, M., 1985. "The mirror principle and morphosyntactic explanation:'
Linguistic Inquiry 16 (3),373-416.

Bar-Hillel, Y., 1953. "A quasi-arithmetical notation for syntactic description:'

Language 29, 47-58.
Barg, P., 1994. "Automatic acquisition of DATR theories from observations."

Tech. rep., Heinrich-Heine Universitat, Dtisseldorf~ theories des Lexicons:
Arbeiten des Sonderforschungsbereichs 282.

Baroni, M., Matiasek, T., and Trost, H., 2002. "Unsupervised discovery ofmor
phologically related words based on orthographic and semantic similarity:'
In: Proceedings of the ACL-02 Workshop on Morphological and Phonological
Learning, pp. 48-57.

Bat-El, 0., 2001. "In search for the roots of the C-root: The essence
of Semitic morphology." Paper presented at the Work~hop on Roots
and Template Morphology, Los Angeles, USC, handout available at:
< http://www.tau.ac.il/humanities/lingui/downloads/batel/c_root.rtf> .

Bear, T., 1986. ''A morphological recognizer with syntactic and phonological
rules." In: Proceedings ofthe 11th International Conference on Computational
Linguistics (COLING), pp. 272-276.

Beard, R., 1995. Lexeme-Morpheme Base Morphology. SUNY, Albany, NY.
Becker, J., 1984. Multilingual word processing. Scientific American (July 1984),

96-107.
Beesley, K., 1989. "Computer analysis of Arabic morphology: a two-level

approach with detours." In: Proceedings of the 3rd Annual Symposium on
Arabic Linguistics. University of Utah, pp. 155-172.

-- and Karttunen, 1., 2000. "Finite-state non-concatenative morphotac
tics." In: Proceedings of the 5th Workshop ofthe ACL Special Interest Group on
Computational Phonology (SIGPHON-2ooo), pp. 1-12.

-- -- 2003. Finite State Morphology. CSLI Publications. University of
Chicago Press.

Bernard-Georges, A., Laurent, G., and Levenbach, D., 1962. ''Analyse mor
phologique du verbe allemand." Tech. rep., Centre d'Etudes pour la Tra
duction Automatique, Universite de Grenoble 1.

REFERENCES 287

Besag, T., 1974. "Spatial interaction and the statistical analysis oflattice systems
(with discussion):' Journal ofthe Royal Statistical Society, Series D 36,192

236.
Bikel, D. M., 2004. "Intricacies of Collins' parsing model:' Computational

Linguistics 30 (4),479-511.
Billot, S., and Lang, R, 1989. "The structure of shared parse forests in ambigu

ous parsing:' In: Proceedings ofthe 27th AnnualMeeting ofthe Association for
Computational Linguistics (ACL), pp. 143-151.

Bilmes, T., 1997. ''A gentle tutorial on the EM algorithm and its application
to parameter estimation for Gaussian mixture and hidden Markov mod
els." Tech. rep., ICSI-TR-97-021, International Computer Science Institute,
Berkeley, CA.

-- and Kirchhoff, K., 2003. "Factored language models and generalized
parallel backoff." In: Proceedings of the Human Language Technology Con
ference of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL), Companion Volume, pp. 4-6.

Bird, S., and Ellison, T., 1994. "One-level phonology: Autosegmental repre
sentations and rules as finite automata." Computational Linguistics 20 (1),

55-90.
Black, E., Abney, S., Flickenger, D., Gdaniec, c., Grishman, R., Harri

son, P., Hindle, D., Ingria, R., Telinek, E, Klavans, T., Liberman, M.,
Marcus, M. P., Roukos, S., Santorini, R, and Strzalkowski, T., 1991. ''A
procedure for quantitatively comparing the syntactic coverage of Eng
lish grammars:' In: DARPA Speech and Natural Language Workshop,
pp. 306-311.

Blaheta, D., and Charniak, E., 2000. ''Assigning function tags to parsed text:'
In: Proceedings of the lSt Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 234-240.

Blevins, T., 2003. "Stems and paradigms:' Language 79 (4),737-767.
Bod, R, 1993a. "Data-oriented parsing as a general framework for stochastic

language processing:' In: Sikkel, K., and Nijholt, A. (Eds.), Proceedings of
Twente Workshop on Language Technology (TWLT6). University of Twente,

The Netherlands, pp.. 37-46.
-- 1993b. "Using an annotated corpus as a stochastic grammar:' In: Pro

ceedings of the 6th Conference ofthe European Chapter ofthe Association for
Computational Linguistics (EACL), pp. 37-44.

-- 1998. Beyond Grammar: An Experience-Based Theory ofLanguage. CSLI
Publications, Stanford, CA.

-- 2001. "What is the minimal set offragments that achieves maximal parse
accuracy?" In: Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 66-73-

B6hmova, A., Hajic, T., Hajicova, E., and Hladka, R V., 2002. "The Prague
dependency treebank: Three-level annotation scenario:' In: Abeille, A.

288 REFERENCES

(Ed.), Treebanks: Building and Using Syntactically Annotated Corpora.
Kluwer Academic Publishers, Dordrecht, pp. 10.3-127.

Boussard, A., and Berthaud, M., 1965. "Presentation de la synthese mor
phologique du fran<;:ais." Tech. rep., Centre d'Etudes pour la Traduction
Automatique, Universite de Grenoble 1.

Brand, I., Klimonow, G., and Niindel, S., 1969. "Lexiko-morphologische
Analyse:' In: Niindel, S., Klimonow, G., Starke, I., and Brand, I.
(Eds.), Automatische Sprachilbersetzung: Russisch-deutsch. Akademie
Verlag, Berlin, pp. 22-64.

Brew, c., 1995. "Stochastic HPSG." In: Proceedings of the 7th Conference ofthe
European Chapter of the Association for Computational Linguistics (EACL),
pp.8.3-89·

Brown, P. E, Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek, E, Lafferty,
J. D., Mercer, R. 1., and Roossin, P. S., 1990. ''A statistical approach to
machine translation." Computational Linguistics 16 (2),79-85.

-- Della Pietra, V. J., deSouza, P. V., Lai, J. c., Mercer, R 1., 1992. "Class
based n-gram models ofnatural language." Computational Linguistics 18 (4),
467-479.

Buchholz, S., and Marsi, E., 2006. "CoNLL-X shared task on multilingual
dependency parsing." In: Proceedings of the 10th Conference on Computa
tional Natural Language Learning (CoNLL), pp. 149-164.

Buckwalter, T., 2002. Buckwalter Arabic morphological analyzer, version 1.0.
Linguistic Data Consortium, Catalog # LDC2002L49, ISBN 1-58563-257-0.

Butt, M., Dyvik, H., King, T., Masuichi, H., and Rohrer, C.:~2002. "The par
allel grammar project." In: Proceedings of the COLING-2002 Workshop on
Grammar Engineering and Evaluation, pp. 1-7.

Biittel, I., Niedermair, G., Thurmair, G., and Wessel, A., 1986. "MARS: Mor
phologische Analyse fur Retrievalsysteme: Projektbericht." In: Schwarz, C.,
and Thurmair, G. (Eds.), Informationslinguistische Texterschliessung. Georg
Olms Verlag, Hildesheim, pp. 157-216.

Byrd, R, Klavans, J., Aronoff, M., and Anshen, E, 1986. "Computer methods
for morphological analysis:' In: Proceedings of the 24th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 120-127.

Carroll, G., and Charniak, E., 1992. "Two experiments on learning probabilis
tic dependency grammars from corpora." In: Weir, c., Abney, S., Grishman,
R., and Weischedel, R (Eds.), Working Notes ofthe Workshop on Statistically
Based NLP Techniques. AAAI Press, Menlo Park, CA, pp. 1-1.3.

Carstairs, A., 1984. "Constraints on allomorphy in inflexion:' Ph.D.
thesis, University of London, Indiana University Linguistics
Club.

Charniak, E., 1997. "Statistical parsing with a context-free grammar and word
statistics:' In: Proceedings of the 14th National Conference on Artificial Intel
ligence, pp. 598-603.

REFERENCES 289

-- 2000. ''A maximum-entropy-inspired parser." In: Proceedings of the 1st
Conference of the North American Chapter of the Association for Computa
tional Linguistics (NAACL), pp. 132-1.39.

-- 2001. "Immediate-head parsing for language models." In: Proceedings
of the 39th Annual Meeting of the Association for Computational Linguistics

(ACL), pp. 116-12.3.
-- and Johnson, M., 2005. "Coarse-to-fine n-best parsing and MaxEnt

discriminative reranking:' In: Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 17.3-180.

Chelba, c., 2000. "Exploiting syntactic structure for natural language
modeling:' Ph.D. thesis, The Johns Hopkins University, Baltimore,

MD.
-- and Jelinek, E, 1998. "Exploiting syntactic structure for language mod

eling:' In: Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics (ACL) and 17th International Conference on Com
putational Linguistics (COLING), pp. 225-2.31.

-- -- 2000. "Structured language modeling." Computer Speech and Lan

guage 14 (4), 283-332.
Chen, S., and Goodman, J., 1998. ''An empirical study ofsmoothing techniques

for language modeling:' Tech. rep., TR-1O-98, Harvard University.
Chomsky, N., 1957. Syntactic Structures. Mouton, The Hague.
-- 1995. The Minimalist Program. MIT Press, Cambridge, MA.
-- and Halle, M., 1968. The Sound Pattern ofEnglish. Harper and Row, New

York.
Choueka, Y., 198.3. "Linguistic and word-manipulation in textual information

systems:' In: Keren, c., and Perlmutter, 1. (Eds.), Information, Documenta
tion and Libraries. Elsevier, New York, pp. 405-417.

-- 1990. "Responsa: An operational full-text retrieval system with linguis
tic components for large corpora:' In: Zampolli, A. (Ed.), Computational
Lexicology and Lexicography. Giardini, Pisa, p. 150.

Church, K., 1986" "Morphological decomposition and stress assignment for
speech synthesis:' In: Proceedings of the 24th Annual Meeting ofthe Associa
tionfor Computational Linguistics (ACL), pp. 156-164.

Clark, S., 2002. "Supertagging for combinatory categorial grammar." In: Pro
ceedings of the 6th International Workshop on Tree Adjoining Grammars and
Related Frameworks (TAG+6), pp. 19-24.

-- and Curran, J. R, 2004. "Parsing the WSJ using CCG and log-linear
models." In: Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 104-111.

-- Hockenmaier, J., and Steedman, M., 2002. "Building deep dependepcy
structures with a wide-coverage CCG parser:' In: Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics (ACL), pp.

.327-.334·

290 REFERENCES

Cocke, T., and Schwartz, T. T., 1970. "Programming languages and their com
pilers: Preliminary notes:' Tech. rep., Courant Institute of Mathematical
Sciences, New York University.

CODIUL, 1989. "Diccionario elemental del Ulwa (sumu meridional)." Tech.
rep., CODIUL/UYUTMUBAL, Karawala Regi6n Aut6noma Athintico Sur,
Nicaragua; Centro de Investigaciones y Documentaci6n de la Costa
Atlantica, Managua and Bluefields, Nicaragua; Center for Cognitive Sci
ence, MIT, Cambridge, MA.

Cohen-Sygal, Y., and Wintner, S., 2006. "Finite-state registered automata for
non-concatenative morphology." Computational Linguistics.32 (1),49-82.

Coker, c., Church, K., and Liberman, M., 1990. "Morphology and rhyming:
Two powerful alternatives to letter-to-sound rules for speech synthesis." In:
Bailly, G., and Benoit, C. (Eds.), Proceedings ofthe ESCA Workshop on Speech
Synthesis, pp. 8.3-86.

Coleman, T., 1992. "Phonological representations - their names, forms and
powers." Ph.D. thesis, University of York.

Collins, M. T., 1997. "Three generative, lexicalised models for statistical pars
ing:' In: Proceedings of the 35th Annual Meeting of the Association for Com
putational Linguistics (ACL), pp. 16-23.

-- 1999. "Head-driven statistical models for natural language parsing."
Ph.D. thesis, University of Pennsylvania.

-- 2000. "Discriminative reranking for natural language parsing." In: Pro
ceedings of the 17th International Conference on Machine L(:arning (ICML),
pp. 175-182. \

-- 2002. "Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms." In: Proceedings of
the 2002 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp.I-8.

-- and Duffy, N., 2002. "New ranking algorithms for parsing and tagging:
Kernels over discrete structures and the voted perceptron:' In: Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 26.3-270.

-- and Koo, T., 2005. "Discriminative reranking for natural language pars
ing." Computational Linguistics.31 (I), 25-69.

-- and Roark, B., 2004. "Incremental parsing with the perceptron algo
rithm." In: Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 111-118.

-- and Singer, Y., 1999. "Unsupervised models for named entity classifica
tion." In: Proceedings of thepd Conference on Empirical Methods in Natural
Language Processing (EMNLP) and Very Large Corpora, pp. 100-110.

Corbett, G., and Fraser, N., 199.3. "Network morphology: a DATR
account of Russian nominal inflection:' Journal of Linguistics 29,
11.3-142.

REFERENCES 291

Creutz, M., and Lagus, K, 2002. "Unsupervised discovery of morphemes.;'
In: Proceedings of the ACL-02 Workshop on Morphological and Phonological
Learning, pp. 21-.30.

Culy, c., 1985. "The complexity of the vocabulary ofBambara:' Linguistics and
Philosophy 8, .345-.351.

Dolby, T., Earl, 1., and Resnikoff; H., 1965. "The application of English-word
morphology to automatic indexing and extracting:' Tech. Rep. M-21-65-1,
Lockheed Missiles and Space Company, Palo Alto, CA.

Duanmu, S., 1997. "Recursive constraint evaluation in Optimality Theory:
evidence from cyclic compounds in Shanghai:' Natural Language and Lin
guistic Theory 15, 465-507·

Durbin, R, Eddy, S., Krogh, A., and Mitchison, G., 1998. Biological Sequence
Analysis. Cambridge University Press, Cambridge, UK.

Earley, T., 1970. ''An efficient context-free parsing algorithm." Communications
oftheACM 6 (8),451-455.

Eisner, J" 1996a. "Efficient normal-form parsing for combinatory categorial
grammar:' In: Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 79-86.

-- 1996b. "Three new probabilistic models for dependency parsing: An
exploration:' In: Proceedings of the 16th International Conference on Com
putational Linguistics (COLING), pp. .340-345.

-- 1997. "Bilexical grammars and a cubic-time probabilistic parser." In: Pro
ceedings ofthe 5th International Workshop on Parsing Technologies (IWPT),

PP·54-65.
-- and Satta, G., 1999. "Efficient parsing for bilexical context-free gram

mars and head automaton grammars:' In: Proceedings of the 37th Annual
Meeting ofthe Association for Computational Linguistics (ACL), pp. 457-464·

Evans, R., and Gazdar, G., 1989a. "Inference in DATR:' In: Proceedings of the
4th Conference ofthe European Chapter ofthe Association for Computational
Linguistics (EACL), pp. 66-71.

-- -- 1989b" "The semantics of DATR:' In: Cohn, A. (Ed.), Proceedings
of the Seventh Conference of the Societyfor the Study ofArtificial Intelligence
and Simulation ofBehaviour (AISB). Pitman/Morgan Kaufmann, London,

PP·79-87.
-- -- and Weir, D., 1995. "Encoding lexicalized tree adjoining grammars

with a nonmonotonic inheritance hierarchY:' In: Proceedings of the 33rd
Annual Meeting of the Association for Computational Linguistics (ACL), pp.

77-84.
Finkel, R, and Stump, G., 2002. "Generating Hebrew verb morphology by

default inheritance hierarchies." In: Proceedings of the ACL-02 V\lorkshopon
Computational Approaches to Semitic Languages, pp. 9-18.

Francis, N. W., and Kucera, H., 1982. Frequency Analysis of English Usage:
Lexicon and Grammar. Houghton Mifflin, Boston.

292 REFERENCES

Frazier, 1., and Fodor, J. n, 1978. "The sausage machine: a new two-stage
parsing model:' Cognition 6, 291-325.

Freund, Y., Iyer, R., Schapire, R., and Singer, Y., 1998. "An efficient
boosting algorithm for combining preferences." In: Proceedings of the
15th International Conference on Machine Learning (ICML), pp. 170
178.

Gabbard, R., Marcus, M. P., and Kulick, S., 2006. "Fully parsing the Penn tree
bank." In: Proceedings ofthe 2006 Human Language Technology Conference of
the North American Chapter ofthe Association for Computational Linguistics
(HLT-NAACL 2006), pp. 184-191.

Gaussier, E., 1999. "Unsupervised learning of derivational morphology from
inflectional lexicons." In: Proceedings of the Workshop on Unsupervised
Learning in Natural Language Processing, pp. 24-30.

Geman, S., and Johnson, M., 2002. "Dynamic programming for parsing and
estimation ofstochastic unification-based grammars:' In: Proceedings ofthe
40th Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 279-286.

Gerdemann, D., and van Noord, G., 2000. ''Approximation and exactness in
finite state optimality theory." In: Proceedings ofthe 5th Workshop ofthe ACL
Special Interest Group on Computational Phonology (SIGPHON-2~00).

Gildea, D., 2001. "Corpus variation and parser performance:' In: Proceedings
of the 6th Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 167-202.

Goldsmith, J., 2001. "Unsupervised acquisition ofthe morphology ofa natural
language." Computational Linguistics 27 (2), 153-198.

Good, I. J., 1953. "The population frequencies of species and the estimation of
population parameters." Biometrica V 40 (3,4),237-264.

Goodman, J., 1996a. "Efficient algorithms for parsing the DOP model:' In:
Proceedings of the 1st Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 143-152.

-- 1996b. "Parsing algorithms and metrics." In: Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics (ACL), pp.
177-183·

-- 1998.. "Parsing inside-out." Ph.D. thesis, Harvard University.
Hakkani-Tilr, D., Oflazer, K, and Tilr, G., 2002. "Statistical morphological

disambiguation for agglutinative languages." Computers and the Humanities
36 (4),381-410.

Hall, K, 2004. "Best-first word-lattice parsing: Techniques for integrated
syntactic language modeling." Ph.D. thesis, Brown University, Providence,
RI.

-- and Johnson, M., 2004. ''Attention shifting for parsing speech:' In:
Proceedings ofthe 42nd Annual Meeting ofthe Association for Computational
Linguistics (ACL), pp. 40-46.

REFERENCES 293

-- and Novak, v., 2005. "Corrective modeling for non-projective depen
dency parsing." In: Proceedings ofthe 9th International Workshop on Parsing
Technologies (IWPT), pp. 42-52.

Halle, M., and Marantz, A., 1993. "Distributed morphology and the pieces of
inflection." In: Hale, K, and Keyser, S. J. (Eds.), The Viewfrom Building 20.
MIT Press, Cambridge, MA, pp. 111-176.

Hankamer, J., 1986. "Finite state morphology and left to right phonology:' In:
Proceedings of the West Coast Conference on Formal Linguistics, Volume 5·
Stanford Linguistic Association, Stanford, pp. 41-52.

Harlow, S., 1981. "Government and relativization in Celtic." In: Heny, F. (Ed.),
Binding and Filtering. Croom Helm, London, pp. 213-254.

-- 1989. "The syntax of Welsh soft mutation." Natural Language and Lin
guistic Theory 7 (3), 289-316.

Harris, A., 1981. Georgian Syntax: A Study in Relational Grammar. Cambridge

University Press, Cambridge, UK
Harris, Z., 1951. Structural Linguistics. University of Chicago Press, Chicago.
Harrison, M., 1978. Introduction to Formal Language Theory. Addison Wesley,

Reading, MA.
Hay, J., and Baayen, R., 2005. "Shifting paradigms: gradient structure in mor

phology:' Trends in Cognitive Sciences 9, 342-348.
Heemskerk, J., 1993. ''A probabilistic context-free grammar for disambigua

tion in morphological parsing:' In: Proceedings of the 6th Conference of the
European Chapter of the Association for Computational Linguistics (EACL),
pp. 183-192.

Henderson, J., 2003. "Inducing history representations for broad coverage
statistical parsing:' In: Proceedings of the 20()3 Human Language Technology
Conference of the North American Chapter of the Association for Computa
tional Linguistics (HLT-NAACL 20()3), pp. 103-110.

-- 2004. "Discriminative training of a neural network statistical parser." In:
Proceedings ofthe 42nd Annual Meeting ofthe Association for Computational
Linguistics (ACL), pp. 95-102.

Hindle, D., and Rooth, M., 1993. "Structural ambiguity and lexical relations."
Computational Linguistics 19 (1),103-120.

Hockenmaier, J., and Steedman, M., 2002. "Generative models for statistical
parsing with combinatory categorial grammar:' In: Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics (ACL), pp.

335-342.
-- -- 2005. "CCGbank manual:' Tech. rep., MS-CIS-05-09, Department

of Computer and Information Science, University of Pennsylvania.
Hockett, c., 1954. "Two models ofgrammatical description." Word 10, 210-231.
Hollingshead, K, Fisher, S., and Roark, B., 2005. "Comparing and com

bining finite-state and context-free parsers:' In: Proceedings of the 20()5
Human Language Technology Conference and Conference on Empirical

294 REFERENCES

Methods in Natural Language Processing (HLT-EMNLP) 2005, pp. 787

794·
Hopcroft, J., and Ullman, J. D., 1979. Introduction to Automata Theory, Lan

guages and Computation. Addison-Wesley, Reading, MA.
Huang, 1., and Chiang, D., 2005. "Better k-best parsing." In: Proceedings ofthe

9th International Workshop on Parsing Technologies (IWPT), pp. 5.3-64.
Hutchins, W. J., 2001. "Machine translation over 50 years:' Histoire,

Epistemologie, Langage 22 (1),7-.31, available at:
<http://ourworld.compuserve.com/homepages/wjhutchins/HEL.pdf>.

Inkelas, S., and Zoll, c., 1999. "Reduplication as morphological doubling:'
Tech. Rep. 412-0800, Rutgers Optimality Archive.

-- -- 2005. Reduplication: Doubling in Morphology. Cambridge Univer
sity Press, Cambridge, UK.

Jansche, M., 2005. ''Algorithms for minimum risk chunking:' In: Proceedings of
the 5th International Workshop on Finite-State Methods in Natural Language
Processing (FSMNLP).

Jelinek, E, 1998. Statistical Methods for Speech Recognition. The MIT Press,
Cambridge, MA.

-- and Lafferty, J. D., 1991. "Computation of the probability of initial
substring generation by stochastic context-free grammars." Computational
Linguistics 17 (3), .315-.32.3.

-- and Mercer, R. 1., 1980. "Interpolated estimation ofMarkov source para
meters from sparse data." In: Proceedings ofthe First Interrzational Workshop
on Pattern Recognition in Practice, pp. .381-.397. \

Jijkoun, V., and de Rijke, M., 2004. "Enriching the output of a parser using
memory-based learning." In: Proceedings ofthe 42nd Annual Meeting ofthe
Association for Computational Linguistics (ACL), pp. .311-.318.

Johnson, c.. D., 1972. Formal Aspects ofPhonological Description. Mouton, The
Hague.

Johnson, H., and Martin, J., 200.3. "Unsupervised learning of morphology
for English and Inuktitut:' In: Proceedings of the 2003 Human Language
Technology Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL 2003), Companion Volume, pp. 4.3

45·
Johnson, M., 1998a. "Finite-state approximation of constraint-based gram

mars using left-corner grammar transforms:' In: Proceedings of the 36th
Annual Meeting of the Association for Computational Linguistics (ACL) and
17th International Conference on Computational Linguistics (COLING), pp.
619-623.

-- 1998b. "PCFG models oflinguistic tree representations:' Computational
Linguistics 24 (4), 617-6.36.

-- 2002a. "The DOP estimation method is biased and inconsistent:' Com
putational Linguistics 28 (1),71-76.

REFERENCES 295

-- 2002b. ''A simple pattern-matching algorithm for recovering empty
nodes and their antecedents:' In: Proceedings of the 40th Annual Meeting
ofthe Association for Computational Linguistics (ACL), pp. 1.36-143.

-- and Roark, B., 2000. "Compact non-left-recursive grammars using the
selective left-corner transform and factoring." In: Proceedings of the 18th
International Conference on Computational Linguistics (COLING), pp. 355

.361.
-- Geman, S., Canon, S., Chi, Z., and Riezler, S., 1999. "Estimators for

stochastic 'unification-based' grammars." In: Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 5.35-541.

Joshi, A. K., 1985. "How much context-sensitivity is necessary for assigning
structural descriptions:' In: Dowty, D., Karttunen, 1., and Zwicky, A. (Eds.),
Natural Language Parsing. Cambridge University Press, Cambridge, UK, pp.

206-250.
-- and Schabes, Y., 1997. "Tree-adjoining grammars:' In: Rozenberg, G.,

and Salomaa, A. (Eds.), Handbook of Formal Languages. Vol 3: Beyond
Words. Springer-Verlag, Berlin/Heidelberg/New York, pp. 69-123·

-- and Srinivas, B., 1994. "Disambiguation of super parts of speech (or
supertags): Almost parsing." In: Proceedings ofthe 15th International Con
ference on Computational Linguistics (COLING), pp. 154-160.

-- Levy, 1. S., and Takahashi, M., 1975. "Tree adjunct grammars." Journal of
Computer and System Sc.iences 10 (1),1.36-16.3.

-- Vijay-Shanker, K., and Weir, D., 1991. "The convergence of mildly
context-sensitive formalisms:' In: Sells, P., Shieber, 5., and Wasow, T. (Eds.),
Processing ofLinguistic Structure. MIT Press, Cambridge, MA, pp. .31-81.

Kaplan, R. M., and Bresnan, J., 1982. "Lexical-functional grammar: A formal
system for grammatical representation." In: Bresnan, J. (Ed.), The Mental
Representation of Grammatical Relations. MIT Press, Cambridge, MA, pp..

173-281.
-- and Kay, M., 1994. "Regular models of phonological rule systems:' Com

putational Linguistics 20, .331-.378.
-- Riezler, S., King, T., Maxwell III, J. T., Vasserman, A., and Crouch, R.,

2004.. "Speed and accuracy in shallow and deep stochastic parsing." In:
Proceedings of the 2004 Human Language Technology Conference ofthe North
American Chapter of the Association for Computational Linguistics (HLT
NAACL 2004), pp. 97-104.

Karttunen, 1., 1998. "The proper treatment of optimality in computational
phonology:' In: Proceedings of the 2nd International Workshop on Finite
State Methods in Natural Language Processing (FSMNLP), pp. 1'-12.

-- 200.3. "Computing with realizational morphology." In: Gelbukh, A.
(Ed.), Computational Linguistics and Intelligent Text Processing. Vol. 2588 of
Lecture Notes in Computer Science. Springer Verlag, Heidelberg, pp. 205

216.

296 REFERENCES

Karttunen, 1., and Beesley, K., 2005. "Twenty-five years of finite-state
morphology." In: Arppe, A., Carlson, 1., Linden, K., Piitulainen,
J., Suominen, M., Vainio, M., Westerlund, H., and Yli-Jyra, A.
(Eds.), Inquiries into Words, Constraints and Contexts (Festschrift in
the Honour of Kimmo Koskenniemi and his 60th Birthday). Gum
merus Printing, Saarijarvi, Finland, pp. 71-83, available on-line at:
<http://cslipublications.stanford.edu/site/SCLO.html>.

-- Kaplan, R. M., and Zaenen, A., 1992. "Two-level morphology with com
position:' In: Proceedings of the 14th International Conference on Computa
tional Linguistics (COLING), pp. 141-148.

Kasami, T., 1965. "An efficient recognition and syntax analysis algorithm for
context-free languages:' Tech. rep., AFCRL-65-758, Air Force Cambridge
Research Lab., Bedford, MA.

Katz, S. M., 1987. "Estimation ofprobabilities from sparse data for the language
model component of a speech recogniser." IEEE Transactions on Acoustics,
Speech, and Signal Processing 35 (3),400-401.

Kay, M., 1986. "Algorithm schemata and data structures in syntactic process
ing." In: Grosz, B. J., Sparck-Jones, K., and Webber, B. 1. (Eds.),
Readings in Natural Language Processing. Morgan Kaufmann, Los Altos,

PP·35-7°.
Kiraz, G., 2000. Computational Approach to Non-Linear Morphology. Cam

bridge University Press, Cambridge, UK.
Klein, D., 2005. "The unsupervised learning of natural language structure:'

Ph.D. thesis, Stanford, Palo Alto, CA. '\
-- and Manning, C. D., 2002. ''A generative constituent-context model for

improved grammar induction." In: Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 128-135.

-- -- 2003a. ''A* parsing: Fast exact Viterbi parse selection." In: Pro
ceedings of the 2003 Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics (HLT
NAACL 2003), pp. 119-126.

-- -- 2003b. ''Accurate unlexicalized parsing:' In: Proceedings ofthe 41st
Annual Meeting of the Association for Computational Linguistics (ACL), pp.
423-430.

-- -- 2004. "Corpus-based induction of syntactic structure: Models of
dependency and constituency:' In: Proceedings of the 42nd Annual Meeting
ofthe Association for Computational Linguistics (ACL), pp. 478-485.

Kneser, R., and Ney, H., 1995. "Improved backing-off for m-gram language
modeling." In: Proceedings of the 1995 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 1995), pp. 181-184.

Knuth, D., 1973- The Art of Computer Programming. Vol. 3. Addison-Wesley,
Reading, MA.

Kornai, A., 1991. "Formal phonology." Ph.D. thesis, Stanford University, dis
tributed by Garland Publishers.

REFERENCES 297

Koskenniemi, K., 1983. "Two-level morphology: a general computational
model for word-form recognition and production." Ph.D. thesis, University

of Helsinki, Helsinki.
-- 1984. "FINSTEMS: a module for information retrieval:' In: Computa

tional Morphosyntax: Report on Research 1981-1984. University of Helsinki,

Helsinki, pp. 81-92.
Kumar, S., and Byrne, W., 2004. "Minimum Bayes-risk decoding for machine

translation." In: Proceedings of the 2004 Human Language Technology Con
ference of the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2004), pp. 169-176.

Lafferty, J. D., McCallum, A., and Pereira, F. C. N., 2001. "Conditional random
fields: Probabilistic models for segmenting and labeling sequence data." In:
Proceedings of the 18th International Conference on Machine Learning, pp.

282-289.
Lambek, J., 1958. "The mathematics of sentence structure." American Mathe-

matical Monthly 65, 154-169.
Lari, K., and Young, S., 1990. "The estimation ofstochastic context-free gram

mars using the inside-outside algorithm." Computer Speech and Language
4 (1),35-56.

Lee, G. G., Lee, J.-H., and Cha, J., 2002. "Syllable-pattern-based unknown
morpheme segmentation and estimation for hybrid part-of~speechtagging
of Korean:' Computational Linguistics 28 (1),53-70.

Levy, R., and Manning, C. D., 2004. "Deep dependencies from context-free
statistical parsers: Correcting the surface dependency approximation:' In:
Proceedings ofthe 42nd Annual Meeting ofthe Association for Computational
Linguistics (ACL), pp. 327-334.

Lewis, H., and Papadimitriou, c., 1981. Elements ofthe Theory ofComputation.
Prentice-Hall, Englewood Cliffs, NJ.

Lewis, R. 1., 1998. "Reanalysis and limited repair parsing: Leaping off
the garden path." In: Fodor, J. D., and Ferreira, F. (Eds.), Reanaly
sis in Sentence Processing. Kluwer Academic Publishers, Dordrecht, pp.

247-284.
Lewis II, P., and Stearns, R., 1968. "Syntax-directed transduction:' Journal of

the Association for Computing Machinery 15 (3),465-488.
Lieber, R., 1980. "On the organization of the lexicon:' Ph.D. thesis, MIT,

Cambridge, MA.
-- 1987. An Integrated Theory of Autosegmental Processes. SUNY Series in

Linguistics. SUNY Press, Albany, NY.
-- 1992. Deconstructing Morphology: Word Formation in a Government

Binding Syntax. University of Chicago Press, Chicago.
Lin, D., 1998a. "Dependency-based evaluation of minipar:' In: Workshop on

the Evaluation ofParsing Systems, pp. 48-56.
-- 1998b. ''A dependency-based method for evaluating broad-coverage

parsers." Natural Language Engineering 4 (2),97-114.

298 REFERENCES

Lombardi, 1., and McCarthy, T., 1991. "Prosodic circumscription in Choctaw
morphology:' Phonology 8, 37-72.

Magerman, D. M., 1995. "Statistical decision-tree models for parsing." In:
Proceedings of the JVd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 276-283.

-- and Marcus, M. E, 1990. "Parsing a natural language using mutual
information statistics:' In: Proceedings of the 8th National Conference on
Artificial Intelligence, pp. 984-989.

Mangu, 1., Brill, E., and Stokke, A., 1999. "Finding consensus among words:
Lattice-based word error minimization:' In: Proceedings ofthe 6th European
Conference on Speech Communication and Technology (Eurospeech), pp. 495
498.

Manning, C. D., and Carpenter, B., 1997. "Probabilistic parsing using left
corner language models." In: Proceedings of the 5th International Workshop
on Parsing Technologies (IWPT), pp. 147-158.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A., 1993. "Building a
large annotated corpus of English: The Penn Treebank:' Computational
Linguistics 19 (2),313-330.

Matthews, P., 1966. ''A procedure for morphological encoding:' Mechanical
Translation 9, 15-21.

-- 1972. Inflectional Morphology: a Theoretical Study Based on Aspects of
Latin Verb Conjugations. Cambridge University Press, Cambridge, UK.

Maxwell III, T. T., and Kaplan, R. M., 1998. "Unification-based parsers
that automatically take advantage of context freen~ss:' MS., Xerox
PARC, available at:
<http://www2.parc.com/istl/groups/nltt/xle/doc/xle-performance.ps>.

McCallum, A., and Li, W., 2003. "Early results for named entity recogni
tion with conditional random fields, feature induction and web-enhanced
lexicons." In: Proceedings of the 7th Conference on Computational Natural
Language Learning (CoNLL), pp. 188-191.

-- Freitag, D., and Pereira, F. C. N., 2000. "Maximum entropy Markov
models for information extraction and segmentation." In: Proceedings
of the 17th International Conference on Machine Learning (ICML), pp.
591-598.

McCarthy, T., 1979. "Formal problems in Semitic morphology and phonology:'
Ph.D. thesis, MIT, Cambridge, MA, distributed by Indiana University Lin
guistics Club (1982).

-- and Prince, A., 1986. "Prosodic morphology:' MS. University of Massa
chusetts, Amherst, and Brandeis University.

-- -- 1990. "Foot and word in prosodic morphology: The Arabic broken
plural." Natural Language and Linguistic Theory 8, 209-284.

McDonald, R., Pereira, F. C. N., Ribarov, K., and Hajic, T., 2005. "Non
projective dependency parsing using spanning tree algorithms." In:

REFERENCES 299

Proceedings of the Conference on Human Language Technology Conference
and Empirical Methods in Natural Language Processing (HLT-EMNLP), pp.

523-530 .

McIlroy, M. D., 1982. "Development of a spelling list:' IEEE Transactions on
Communications 30 (1),91-99.

Melamed, I. D., 2003. "Multitext grammars and synchronous parsers." In:
Proceedings ofthe 200,3 Human Language Technology Conference ofthe North
American Chapter of the Association for Computational Linguistics (HLT
NAACL 200,3), pp. 158-165.

-- Satta, G., and Wellington, B., 2004. "Generalized multitext grammars:'
In: Proceedings of the 42nd Annual Meeting of the Association for Computa
tional Linguistics (ACL), pp. 661-668.

Mel'cuk, I., 1988. Dependency Syntax: Theory and Practice. SUNY Press,

Albany, NY.
Meya-Lloport, M., 1987. "Morphological analysis of Spanish for retrieval:'

Literary and Linguistic Computing 2, 166-170.
Michaelis, T., 2001a. "Derivational minimalism is mildy context-sensitive:'

In: Moortgat, M. (Ed.), Logical Aspects of Computational Linguis
tics, LNCS/LNAI Vol. 2014. Springer-Verlag, Berlin/Heidelberg/New York,

pp. 179-198.
__ 20mb. "Transforming linear context-free rewriting systems into

minimalist grammars:' In: Retore, G. M. C. (Ed.), Logical Aspects
of Computational Linguistics, LNCS/LNAI Vol. 2099. Springer-Verlag,
Berlin/Heidelberg/New York, pp. 228-244·

Mohri, M., 1994. "Syntactic analysis by local grammars automata: an effi
cient algorithm." In: Papers in Computational Lexicography: COMPLEX
'94. Research Institute for Linguistics, Hungarian Academy of Sciences,

Budapest, pp. 179-191.
__ 1997. "Finite-state transducers in language and speech processing:' Com-

putational Linguistics 23, 269-311.

__ 2002. "Generic epsilon-removal and input epsilon-normalization algo
rithms for weighted transducers:' International Journal of Foundations of
Computer Science 13 (1),129-143.

-- and Nederhof~ M..-T., 2001. "Regular approximation of context-free
grammars through transformation:' In: Tunqua, T.-C., and van Noord, G.
(Eds.), Robustness in Language and Speech Technology. Kluwer Academic
Publishers, Dordrecht, pp. 153-163.

and Riley, M., 1999.. "Network optimizations for large
vocabulary speech recognition:' Speech Communication 28 (1),

1-12.

__ -- 2002. ''An efficient algorithm for the n-best-strings problem." In:
Proceedings of the International Conference on Spoken Language Processing

(ICSLP), pp. 1313-1316.

300 REFERENCES

Mohri, M., and Roark, B., 2006. "Probabilistic context-free grammar induc
tion based on structural zeros:' In: Proceedings ofthe 2006 Human Language
Technology Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL 2006), pp. 312-319.

-- and Sproat, R., 1996. ''An efficient compiler for weighted rewrite rules."
In: Proceedings of the 34th Annual Meeting of the Association for Computa
tional Linguistics (ACL), pp. 231-238.

-- Pereira, F. C. N., and Riley, M., 2002. "Weighted finite-state transducers
in speech recognition." Computer Speech and Language 16 (1), 69-88.

Montague, R., 1974. Formal Philosophy: Papers ofRichard Montague. Yale Uni
versity Press, New Haven, CT.

Moore, R. c., 2000. "Removing left recursion from context-free grammars:'
In: Proceedings of the 1st Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 249-255.

Morgan, T., 1952. Y Treigladau a'u Cystrawen. University of Wales Press,
Cardiff:.

Nederhof, M.-J., 2000. "Practical experiments with regular approximation of
context-free languages." Computational Linguistics 26 (1),17-44.

Newman, S., 1944. Yokuts Language ofCalifornia. Viking Fund Publications in
Anthropology, New York.

Ney, H., Essen, u., and Kneser, R., 1994. "On structuring probabilistic depen
dencies in stochastic language modeling." Computer Speech and Language 8,
1-38.

Nijholt, A., 1980" ContextJree Grammars: Covers, Normal Fo}ms, and Parsing.
Springer Verlag, Berlin/Heidelberg/New York.

Nivre, J., and Nilsson, J., 2005. "Pseudo-projective dependency parsing." In:
Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 99-106.

Pereira, F. C. N., and Riley, M., 1997. "Speech recognition by composition of
weighted finite automata." In: Roche, E., and Schabes, Y. (Eds.), Finite-State
Language Processing, MIT Press, Cambridge, MA, pp. 431-453.

-- and Schabes, Y., 1992. "Inside-outside reestimation from partially brack
eted corpora." In: Proceedings of the 30th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 128-135.

-- and Wright, R. N., 1997. "Finite-state approximation ofphrase-structure
gralllmars." In: Roche, E., and Schabes, Y. (Eds.), Finite-State Language
Processing. MIT Press, Cambridge, MA, pp. 149-173-

Pesetsky, D., 1985. "Morphology and logical form:' Linguistic Inquiry 16, 19.3
246.

Pinker, S., 1999. Words and Rules. Weidenfeld and Nicholson, London.
-- and Prince, A., 1988. "On language and connectionism: Analysis of a

parallel distributed processing model of language acquisition:' In: Pinker,

REFERENCES 301

S., and Mehler, J. (Eds.), Connections and Symbols. Cognition special issue,

MIT Press, pp. 73-193.
Pollard, c., 1984. "Generalized phrase structure grammars:' Ph.D. thesis, Stan-

ford University.
-- and Sag, 1., 1994. Head-Driven Phrase Structure Grammar. University of

Chicago Press, Chicago.
Porter, M., 1980. "An algorithm for suffix stripping:' Program 14 (3),

130-137.
Prince, A., and Smolensky, P., 1993. "Optimality theory:' Tech. Rep. 2, Rutgers

University, Piscataway, NJ.
Pullum, G., and Zwicky, A., 1984. "The syntax-phonology boundary and cur

rent syntactic theories:' In: Ohio State Working Papers in Linguistics. No. 29·
Department of Linguistics, The Ohio State University, Columbus, OH,

pp. 105-116.
Ratnaparkhi, A., 1996. ''A maximum entropy model for part-of-speech tag

ging." In: Proceedings of the 1st Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 133-142.

-- 1997. ''A linear observed time statistical parser based on maximum
entropy models:' In: Proceedings ofthe 2nd Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1-10.

-- 1999. "Learning to parse natural language with maximum entropy mod

els:' Machine Learning 34, 151- 175.
Resnik, P., 1992. "Left-corner parsing and psychological plausibility:' In: Pro

ceedings of the 14th International Conference on Computational Linguistics
(COLING), pp. 191-197.

Riezler, S., Prescher, D., Kuhn, J., and Johnson, M., 2000. "Lexicalized stochas
tic modeling of constraint-based grammars using log-linear measures and
EM training." In: Proceedings of the 38th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 480-487.
__ King, T., Kaplan, R. M., Crouch, R., Maxwell III, J. T., and John
son, M., 2002. "Parsing the Wall Street Journal using a lexical-functional
grammar and discriminative estimation techniques:' In: Proceedings of the
40th Annual Meeting ofthe Association for Computational Linguistics (ACL),

pp. 271- 278.
Ritchie, G., Russell, G., Black, A., and Pulman, S., 1992. Computational Mor

phology: Practical Mechanisms for the English Lexicon. MIT Press, Cam

bridge, MA.
Roark, B., 2001. "Probabilistic top-down parsing and language modeling."

Computational Linguistics 27 (2), 249-276.
__ 2002. "Markov parsing: lattice rescoring with a statistic(il parser;' In:

Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 287-294.

302 REFERENCES

Roark, B., 2004. "Robust garden path parsing." Natural Language Engineering
10 (1),1-24.

-- and Johnson, M., 1999. "Efficient probabilistic top-down and left-corner
parsing." In: Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 421-428. .

-- Saradar, M., Collins, M. J., and Johnson, M., 2004. "Discriminative
language modeling with conditional random fields and the perceptron
algorithm." In: Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 47-54.

Rosenfeld, R, 1996. ''A maximum entropy approach to adaptive statistical
language modeling." Computer Speech and Language 10, 187-228.

Rosenkrantz, S. J., and Lewis II, P., 1970. "Deterministic left corner parsing."
In: IEEE Conference Record of the 11th Annual Symposium on Switching and
Automata, pp. 139-152.

Rumelhart, D., and McClelland, J., 1986. "On learning the past tense ofEnglish
verbs." In: McClelland, J., and Rumelliart, D. (Eds.), Parallel Distributed
Processing, Volume 2. MIT Press, Cambridge, MA, pp. 216-271.

Saul, 1., and Pereira, E C. N., 1997. ''Aggregate and mixed-order Markov mod
els for statistical language processing." In: Proceedings ofthe 2nd Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 81-89.

Schabes, Y., Abeille, A., and Joshi, A. K, 1988. "Parsing strategies with 'lexical
ized' grammars: ~pplicationto tree adjoining grammars." In: Proceedings of
the 12th InternatlOnal Conference on Computational Lingui~tics (COLING),
pp. 578-583. .~

Scho~e, p, and Jurafsky, D., 2000. "Knowledge-free induction of morphology
usmg late?t semantic analysis:' In: Proceedings of the 4th Conference on
ComputatlOnal Natural Language Learning (CoNLL), pp. 67-72.

-- -- 2~0l. "Knowledge-free induction of inflectional morphologies."
In: Pr.oc~edtngs of the 2nd Conference of the North American Chapter of the
AssocratlOn for Computational Linguistics (NAACL), pp. 1-9.

Schutze, H., 1998. ''Automatic word sense discrimination." Computational Lin
guistics 24 (1), 97-124.

Schveiger, P., and Mathe, J" 1965· ''Analyse d'information de la dedinaison du
substantif en hongrois (du point de vue de la traduction automatique)."
Cahiers de Linguistique Theorique et Appliquee 2, 263-265.

Seidenadel, C. w., 1907. The Language Spoken by the Bontoc Igorot. Open Court
Publishing Company, Chicago.

Sha, E, and Pereira, E C. N., 2003. "Shallow parsing with conditional random

fields." In: Proce~dings ofthe 2003 Human Language Technology Conference of
the North Amencan Chapter ofthe Association for Computational Linguistics
(HLT-NAACL 2003), pp. 213-220.

Sharma, u., Jugal, K., and Das, R, 2002. "Unsupervised learning of morphol
ogy for building lexicon for a highly inflectional language." In: Proceedings

I
I
I

REFERENCES 303

of the ACL-02 Workshop on Morphological and Phonological Learning, pp.

1-10.

Shieber, S. M., and Schabes, Y., 1990. "Synchronous tree-adjoining grammars:'
In: Proceedings of the 13th International Conference on Computational Lin
guistics (COLING), pp. 253-258.

Snover, M., Jarosz, G., and Brent, M., 2002. "Unsupervised learning of mor
phology using a novel directed search algorithm: Taking the first step."
In: Proceedings of the ACL-02 Workshop on Morphological and Phonological
Learning, pp. 11-20.

Sproat, R., 1985. "On deriving the lexicon:' Ph.D. thesis, MIT, Cambridge, MA,

distributed by MIT Working Papers in Linguistics.
-- 1992. Morphology and Computation. MIT Press, Cambridge, MA.
-- 1997a. "Multilingual text analysis for text-to-speech synthesis:' Natural

Language Engineering 2 (4),369-380.
__ (Ed.), 1997b. Multilingual Text-to-Speech Synthesis: The Bell Labs

Approach. Kluwer Academic Publishers, Dordrecht.
-- 2000 .. A Computational Theory ofWriting Systems. Cambridge University

Press, Cambridge, UK
-- and Riley, M., 1996. "Compilation of weighted finite-state transducers

from decision trees:' In: Proceedings of the 34th Annual Meeting of the Asso
ciationfor Computational Linguistics (ACL), pp. 215-222.

-- Hu, J., and Chen, H., 1998. "EMU: An e-mail preprocessor for text-to
speech:' In: Proceedings of the IEEE Signal Processing Society Workshop on
Multimedia Signal Processing, pp. 239-244·

Srinivas, R, 1996. ''Almost parsing technique for language modeling:' In:
Proceedings of the International Conference on Spoken Language Processing
(ICSLP), pp. 1169-1172.

-- and Joshi, A. K, 1999. "Supertagging: an approach to almost parsing:'

Computational Linguistics 25 (2),237-265..
Stabler, E., 1997. "Derivational minimalism." In: Retore, C. (Ed.), Logical

Aspects ofComputational Linguistics, LNCS/LNAI Vol. 1328. Springer-Verlag,

Berlin/Heidelberg/New York, pp. 68-95·
Steedman, M., 1985. "Dependency and coordination in the grammar of Dutch

and English." Language 61, 523-568.
__ 1986. "Combinators and grammars:' In: Oehrle, R., Bach, E., and

Wheeler, D. (Eds.), Categorial Grammars and Natural Language Structures.
Foris, Dordrecht, pp. 417-442.

-- 1996. Surface Structure and Interpretation. MIT Press, Cambridge, MA.
Steele, S., 1995. "Towards a theory of morphological information:' Language

71, 260-3°9·
Stokke, A., 1995 .. ''An efficient probabilistic context-free parsing algorithm

that computes prefix probabilities:' Computational Linguistics 21 (2), 165

202.

304 REFERENCES

Stokke, A., and Segal, J., 1994. "Precise n-gram probabilities from stochastic
context-free grammars." In: Proceedings of thepnd Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 74-79.

-- Konig, Y., and Weintraub, M., 1997. "Explicit word error minimization in
n-best list rescoring:' In: Proceedings of the European Conference on Speech
Communication and Technology (Eurospeech), pp. 163-166.

Stump, G., 2001. Inflectional Morphology: A Theory of Paradigm Structure.
Cambridge University Press, Cambridge, UK

Thorne, D., 1993. A Comprehensive Welsh Grammar. Blackwell, Oxford.
Tjong Kim Sang, E. E, and Buchholz, S., 2000. "Introduction to the CoNLL

2000 shared task: Chunking:' In: Proceedings ofthe 4th Conference on Com
putational Natural Language Learning (CoNLL), pp. 127-132.

Tzoukermann, E., and Liberman, M., 1990. "A finite-state morphological
processor for Spanish." In: Proceedings of the 13th International Conference
on Computational Linguistics (COLING), pp. 277-286.

van den Bosch, A., and Daelemans, W., 1999. "Memory-based morphological
analysis." In: Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 285-292.

Vauquois, B., 1965. "Presentation d'un programme d'analyse morphologique
russe:' Tech. rep., Centre d'Etudes pour la Traduction Automatique, Uni
versite de Grenoble 1.

Vijay-Shanker, K, and Joshi, A. K, 1985. "Some computational properties of
tree adjoining grammars." In: Proceedings of the 23rd Annu{ll Meeting of the
Association for Computational Linguistics (ACL), pp. 82-93. \

-- and Weir, D., 1990. "Polynomial time parsing of combinatory categorial
grammars:' In: Proceedings ofthe 28th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 82-93.

-- -- 1993· "Parsing some constrained grammar formalisms:' Computa
tional Linguistics 19 (4),591-636.

-- -- and Joshi, A. K, 1987. "Characterizing structural descriptions
produced by various grammatical formalisms." In: Proceedings of the 25th
Annual Meeting of the Association for Computational Linguistics (ACL), pp.
104-111.

Voutilainen, A., 1994. "Designing a parsing grammar:' Tech. rep. 22, University
of Helsinki.

Walther, M., 2000a. "Finite-state reduplication in one-level prosodic mor
phology:' In: Proceedings of the 1st Conference ofthe North American Chapter
of the Association for Computational Linguistics (NAACL), pp. 296-302.

Walther, M., 2000b. "Temiar reduplication in one-level prosodic morphol
ogy:' In: Proceedings of the 5th Workshop of the ACL Special Interest Group
on Computational Phonology (SIGPHON-2000), pp. 13-21.

Wang, W., and Harper, M. P., 2002. "The superARV language model: Investi
gating the effectiveness of tightly integrating multiple knowledge sources."

REFERENCES 305

In: Proceedings of the 2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 238-2 47.

-- -- and Stokke, A., 2003. "The robustness of an almost-parsing lan
guage model given errorful training data:' In: Proceedings of the 2003 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP

2003), pp. 240-243.
Weir, D., 1988. "Characterizing mildly context-sensitive grammar formalisms."

Ph.D. thesis, University of Pennsylvania.
Wicentowski, R., 2002. "Modeling and learning multilingual inflectional mor

phology in a minimally supervised framework." Ph.D. thesis, Johns Hop

kins University, Baltimore, MD.
Witten, 1. H., and Bell, T. c., 1991. "The zero-frequency problem: Estimating

the probabilities of novel events in adaptive text compression:' IEEE Trans
actions on Information Theory 37 (4), 1085-1094.

Woyna, A., 1962. "Morphological analysis of Polish verbs in terms of machine
translation:' Tech. rep., Machine Translation Research Project, Georgetown

University.
Wright, J., 1910. Grammar of the Gothic Language. Oxford University Press,

Oxford.
Wu, D., 1997. "Stochastic inversion transduction grammars and bilingual pars

ing of parallel corpora:' Computational Linguistics 23 (3), 377-404.
XTAG Research Group, 2001. ''A lexicalized tree adjoining grammar for Eng

lish:' Tech. rep. IRCS-OI-03, IRCS, University of Pennsylvania.
Xu, P., Chelba, c., and Jelinek, E, 2002. ''A study on richer syntactic dependen

cies for structured language modeling:' In: Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 191-198.

-- Emami, A., and Jelinek, E, 2003. "Training connectionist models for
the structured language mode!:' In: Proceedings of the 2003 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 160-167.

Yarowsky, D., and Wicentowski, R., 2001. "Minimally supervised morpholog
ical analysis by multimodal alignment:' In: Proceedings of the 39th Annual
Meeting ofthe Association for Computational Linguistics (ACL), pp. 207-216.

Younger, D. H., 1967. "Recognition and parsing of context-free languages in
time 0 3." Information and Control 10 (2),189-208.

