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Abstract
The subregular hypothesis posits that all phonological markedness constraints can be described
by some principled, learnable subclass of the regular languages. We classify a wide range of
attested long-distance phonological markedness constraints, covering stress, harmony and tone,
with focus on interactions of constraints over multiple tiers. In doing so, we establish connections
between propositional logic over multiple tiers and algebraic properties of formal languages.
These techniques allow for mechanical verification or refutation of membership in a class.
Modelling the constraints and their induced patterns as formal languages, we demonstrate that the
entire range lies within the propositional level, including Uyghur backness harmony and Karanga
Shona tone, which have been presented as challenges to aspects of the subregular hypothesis.
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1. Introduction

One core question in phonology pertains to inherent typological restrictions: what
kinds of patterns can arise naturally in human language? Here and throughout, the
word ‘pattern’ refers generically to a constraint or a formal language. The subregular
hypothesis of phonotactics posits that there exists some principled, learnable subclass
of the regular languages that contains all attested phonological markedness constraints.
Heinz (2018) promoted two significantly stronger hypotheses. First there is the ‘strong’
subregular hypothesis, that all such constraints can be described with a restricted
propositional logic, there exemplified by the strictly local and strictly piecewise classes.
Then there is the ‘weak’ subregular hypothesis, that the constraints can be described
using at most some restricted form of first-order logic, there exemplified by the tier-based
strictly local class (Heinz et al., 2011).

Mayer & Major (2018) present Uyghur backness harmony as a rebuttal to even the
weaker subregular hypothesis, showing that these classes in particular are insufficient.
Jardine (2020) also points out aspects of constraints on tone in Karanga Shona that
challenge subregular classification. In this article, we introduce a collection of classes
at the propositional level, simpler than first-order logic, capable of describing these
heretofore challenging patterns. We demonstrate that these classes capture not only
these challenging patterns, but also a wide range of constraints in stress and harmony.
The simple algebraic structure of these classes greatly facilitated the analysis that led to
these results.

At this point, we do not seek one class that contains every possible pattern. Instead,
we seek to provide several plausible logical analyses of attested patterns. In doing so,
we find a collection of logical building blocks that can be used to describe patterns
we encounter in a natural way, and subsequent analysis can locate the patterns relative
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to others in terms of cognitive complexity. As we shall see in §4, the complexity
relations can invert under different logical systems. Understanding where patterns lie
when considering different representational assumptions and different logical systems
is thus key to understanding the typological and psychological pressures at play.
For instance, harmony constraints may require strong logical power to express over
adjacent substrings, while a comparatively weak logic may suffice over long-distance
subsequences. Our analysis shows a bias toward propositional constraints. These can be
learned and perceived with attention only to structures present in the words themselves,
without imposing additional logical structure over them.

The initial portion of this work focuses on this logical perspective. However, the
analyses in this article heavily relied upon algebraic techniques discussed in §6; these
techniques allow us to easily verify or refute class membership, which means that they
tell us which kinds of logical formulae are viable for describing a pattern.

The strictly local patterns, introduced by McNaughton & Papert (1971), have
played an important role in phonotactics (Heinz, 2018). Languages in this class are
defined by a set of forbidden substrings. A word is rejected if any of its substrings
is forbidden; otherwise all of its substrings are allowed and it is accepted. Here and
throughout, the terms ‘prefix’ and ‘suffix’ refer to substrings anchored to the left or
right edge of a string, respectively, and not to the morphological concept by the same
name. For instance, ‘c’ is a prefix of ‘concept’, and ‘ept’ is a suffix. An affix is a prefix
or suffix in this sense. A strictly 𝑘-local pattern can forbid prefixes or suffixes of length
up to 𝑘 − 1 and can forbid internal substrings of length up to 𝑘 .

This work focuses on a simpler class: the definite patterns introduced by Kleene
(1951) and further studied by Perles et al. (1963). These are even simpler: a 𝑘-definite
pattern forbids suffixes of length up to 𝑘 . We also explore related classes, such as the
reverse definite patterns which restrict the set of permissible prefixes.

Heinz et al. (2011) apply Goldsmith’s (1976) notion of the phonological tier to
strictly local patterns, yielding the tier-based strictly local class. Lambert (2023)
demonstrates how to extend this tier-based perspective to other classes. Essentially,
some alphabetic symbols, those not on the tier, are invisible to the pattern. When a
pattern can be described as a system of tier-based constraints of a given type, but the
tiers are not equivalent, then this pattern is a multitier pattern. Multitier perspectives
are natural in a logical and algebraic sense, and we show that many attested patterns,
including the challenging Uyghur backness harmony and Karanga Shona tone patterns,
have simple multitier affix-based descriptions.

The paper proceeds as follows. First §2 formally introduces the definite patterns and
related classes, including their tier-based and multitier extensions, in order to provide
a new analysis of bounded stress patterns, where primary stress must occur within
some fixed distance of a fixed edge of a word. Next, §3 applies the logical techniques
introduced in §2 to analyse unbounded stress patterns, where primary stress can appear
arbitrarily far from a word edge. After showing that these abstract patterns are captured
by logical formulae involving affixes on multiple tiers, we apply these analytical
techniques to the StressTyp2 database of Goedemans et al. (2015), which demonstrates
their wide coverage. Next, §4 characterises some harmony patterns, including Uyghur
backness harmony, which we show to be multitier definite. §5 characterises some tone
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patterns, including that of Karanga Shona, which we show to be multitier generalised
definite, using both tier-prefixes and tier-suffixes in its description. Then §6 revisits
some of these patterns to introduce the key algebraic techniques that lead to and
support these analyses. All analyses have been verified using the Language Toolkit, a
publicly available open-source software package designed for answering questions in
computational phonology, which implements the algebraic methods described (Lambert,
2024).1 Finally we conclude with reiteration of our findings that mere propositional
logic captures seemingly complicated attested patterns.

2. Analyses of bounded stress

This section presents three simple attested stress patterns: stress-final, where primary
stress is fixed to the final syllable, stress-penult, where it is fixed to the penult in words
of two or more syllables (else it appears on the only syllable), and stress-initial, where
it is fixed to the initial syllable. These patterns are all strictly local, but this single
perspective is limiting. We present long-distance analyses of these patterns in order to
introduce more classes of formal languages and the formal logics that define them. In
doing so, we introduce multitier extensions of classes, the primary contribution of this
work. Under these long-distance perspectives, these bounded stress patterns are not all
that different from the unbounded patterns that we explore in the next section.

We can use a simple logical language in the style of Rogers & Lambert (2019) to
describe patterns. If we have an alphabet Σ and two distinct end-markers ⋊ and ⋉ that are
not in Σ to mark the beginning and end of words, respectively, then a string 𝑢 over this
expanded alphabet is a literal, an atomic term in the logic. On its own, 𝑢 is a logical
formula, and a word 𝑤 satisfies 𝑢, written 𝑤 |= 𝑢, if and only if 𝑢 is a substring of ⋊𝑤⋉.
In other words, 𝑤 |= 𝑢 if and only if there exist strings 𝑥 and 𝑦 such that ⋊𝑤⋉ = 𝑥𝑢𝑦.
For example, we have that 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 |= 𝑐𝑒, because ‘ce’ is a substring of ‘⋊concept⋉’.

Where the formula 𝑢 describes a required substring, accepting only words that
contain 𝑢, its negation, written ¬𝑢, instead describes a forbidden substring. For
instance, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 |= ¬𝑎 because ‘a’ is not a substring of ‘⋊concept⋉’. We can forbid
multiple substrings with conjunction, written ∧ and read as ‘and’. For instance,
𝑐𝑜𝑛𝑐𝑒𝑝𝑡 |= ¬𝑎 ∧ ¬𝑏, because ‘a’ is not a substring of ‘⋊concept⋉’ and ‘b’ is not a
substring of ‘⋊concept⋉’.

This suffices to describe strictly local languages: each is defined by a conjunction of
negated literals. We refer to this as a restricted propositional logic. Adding
disjunction and negation gives propositional logic as a whole. Disjunction, the
logical inclusive or, is written ∨. We say 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 |= 𝑎 ∨ 𝑏 ∨ ⋊𝑐 because, while ‘a’
and ‘b’ are not substrings of ‘⋊concept⋉’, ‘⋊c’ is a substring. Any disjunct being true
suffices to make the entire expression true. More than one is allowed to be true; for
instance, 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 |= 𝑎 ∨ ¬𝑏 ∨ ⋊𝑐 as well.

Definition 2.1. The 𝑘 -definite languages (Σ∗D𝑘) are those that are definable by
propositional formulae over suffixes of length up to 𝑘 . The definite languages (Σ∗D)
are those that are 𝑘-definite for some fixed, finite 𝑘 .

1The Language Toolkit is available at https://hackage.haskell.org/package/language-toolkit, and the scripts used in our
analyses are available as supplementary material.

https://hackage.haskell.org/package/language-toolkit
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It is not a mistake to say that definite patterns may use the full propositional logic
rather than the restricted propositional logic. To require a particular suffix is to forbid
all incompatible suffixes. It is for this reason that definite patterns remain strictly local
despite having access to a more featureful logic.

All of the stress patterns that we discuss in this section are strictly local. However,
we present more analyses under different perspectives. We will add more features to
this propositional logical as we progress, in order to represent long-distance constraints.

2.1. Stress-final, stress-penult and definite patterns

Consider the following words of Iban, an Austronesian language, as reported by Omar
(1969: 78–79).

(1) a. (𝜎�́�) [b@"rap] ‘to embrace’
b. (𝜎𝜎𝜎�́�) [s@p@m@"rap] ‘measure of girth’
c. (𝜎�́�) [ma"nah] ‘beautiful’
d. (𝜎𝜎𝜎𝜎�́�) [dik@manah"ka] ‘is beautified’

Per Omar (1969: 70), stress is consistently word-final in Iban.
The basic unit is the syllable and there are two types: unstressed syllables (𝜎) and

stressed syllables (�́�). The alphabet is Σ = {𝜎, �́�}. In logical terms, this constraint
asserts that words end in a stressed syllable: �́�⋉.

This logical expression is satisfied by the words we have already seen, including 𝜎�́�

(like [b@"rap] and [ma"nah]) or 𝜎𝜎𝜎𝜎�́� (like [dik@manah"ka]). It is also satisfied by
words like �́��́��́�, where multiple syllables bear primary stress. Those will be ruled out
by a separate constraint, culminativity, that will be discussed in §2.3. For now, we
ignore culminativity and accept these extraneous words. That is, we now focus on the
stress-final constraint in isolation, not the culminative stress-final pattern that more
accurately models Iban. The form of our logical expression, a propositional formula
involving only suffixes, demonstrates that this stress-final constraint is definite.

Definition 2.2. The 𝑘 -suffix of a word is the last 𝑘 symbols of the word if it is of
length at least 𝑘 , else the entire word. The 𝑘 -prefix is defined analogously for the first
symbols.

Proposition 2.3. A language 𝐿 is 𝑘-definite if and only if whenever two words have the
same 𝑘-suffix, either both are in 𝐿 or neither is in 𝐿.

Proposition 2.3 provides a grammar-agnostic characterisation of the definite lan-
guages. The stress-final constraint is 1-definite: if the last syllable is stressed, then the
word is accepted, else it is rejected. None of the other syllables in the word influence
this in any way.

This constraint is equivalently expressed by a negative formula. Instead of requiring
the �́�⋉ suffix, we can forbid the incompatible suffixes: ¬⋊⋉ ∧ ¬𝜎⋉. The empty word
is forbidden because it has no final syllable on which to place stress, and word with
unstressed final syllables are forbidden, because this is incompatible with having final
stress.
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Next, consider the following words of Amara, another Austronesian language, as
reported by Thurston (1996: 205).

(2) a. (𝜎𝜎�́�𝜎) [ipo"nei
“
ki] ‘it’s full of water’

b. (𝜎�́�𝜎) [nAN"grikNe] ‘unripe, uncooked’
c. (�́�) ["kin] ‘they drink’

Per Thurston (1996: 205), primary stress in Amara is consistently fixed to the penultimate
syllable, except in monosyllables where it must occur on the only syllable. Like with
stress-final, we factor out culminativity and focus now on the placement constraint in
isolation. We can express this logically as a disjunction: either the word is a stressed
monosyllable (⋊�́�⋉) or it has at least two syllables of which the penultimate bears
stress (�́�Σ⋉). The latter form is convenient notation to express �́�𝜎⋉∨ �́��́�⋉, expanding
the set Σ into its elements. All together, the formula is �́�Σ⋉ ∨ ⋊�́�⋉. Application of
Proposition 2.3 reveals that this is not 1-definite, as �́� satisfies the constraint but 𝜎�́�
does not, despite sharing the same 1-suffix: �́�. However, it is 2-definite. The word is
accepted if and only if the first symbol of its 2-suffix is �́�.

Like the stress-final constraint, this stress-penult constraint can alternatively be
written in terms of forbidden suffixes. The incompatible suffixes are unstressed mono-
syllables (¬⋊𝜎⋉) and unstressed penults (¬𝜎Σ⋉), as well as the empty word (¬⋊⋉) so
the equivalent restricted propositional formula is ¬⋊⋉ ∧ ¬⋊𝜎⋉ ∧ ¬𝜎Σ⋉.

2.2. Stress-initial and reverse definite patterns

Next we explore a pattern that is not definite. Consider the following words of Finnish,
a Uralic language, as reported by Suomi et al. (2008: 76).

(3) a. (�́�𝜎) ["jærki] ‘sense’
b. (�́�𝜎𝜎) ["jærjet”øn] ‘senseless’
c. (�́�𝜎𝜎𝜎) ["jærjest”elmæ] ‘system’

Per Suomi et al. (2008: 75), primary stress in Finnish is consistently fixed to the initial
syllable. There is also secondary stress, not notated here.

Let us consider only the placement of primary stress and continue to ignore
culminativity. This stress-initial pattern is not definite because it cannot be 𝑘-definite
for any 𝑘 . For 𝑘 = 1, consider the accepted word �́�𝜎 and the rejected word 𝜎𝜎. Both
share the same length-one suffix 𝜎, so 1-suffixes cannot make the right distinctions.
Similarly, for 𝑘 = 2, consider the accepted word �́�𝜎𝜎 and the rejected word 𝜎𝜎𝜎. Both
share the same length-two suffix 𝜎𝜎, so 2-suffixes cannot make the right distinctions.
In general, �́�𝜎𝑘 satisfies the constraint while 𝜎𝜎𝑘 does not, despite the fact that they
share the length-𝑘 suffix 𝜎𝑘 .2 The suffix-oriented definite class cannot handle this
prefix-oriented pattern. While these counterexamples were hand-chosen, the algebraic
techniques introduced in §6 allow us to derive them automatically.

2Here and throughout, parameterised words witnessing nonmembership are chosen for simplicity, not for phonetic viability.
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Definition 2.4. The reverse 𝑘 -definite languages (Σ∗K𝑘)3 are those that are
definable by propositional formulae over prefixes of length up to 𝑘 . The reverse
definite languages (Σ∗K) are those that are reverse 𝑘-definite for some fixed, finite 𝑘 .

Proposition 2.5. A language 𝐿 is reverse 𝑘-definite if and only if whenever two words
have the same 𝑘-prefix, either both are in 𝐿 or neither is in 𝐿.

The stress-initial constraint asserts that the initial syllable must be stressed: ⋊�́�. Like
definite languages, reverse definite languages are strictly local, so this formula can be
written in negative form as well. Rather than requiring an initial primary stress, we
forbid the incompatible empty word and initial unstressed syllables: ¬⋊⋉ ∧ ¬⋊𝜎.

Some patterns are both definite and reverse definite. Specifically, any finite set of
words or the complement of such a set is both definite and reverse definite. We call
these the co/finite languages. They are defined by propositional formulae where all
substrings are entire words, anchored on both ends.

Definition 2.6. The co/finite languages (Σ∗N ) are finite sets of words and the
complements of such sets.4

2.3. Culminativity

In this section, we add culminativity to our bounded stress constraints to demonstrate
that strict locality is strictly more powerful than (reverse) definiteness, due to its ability
to restrict internal substrings. Culminative bounded stress patterns are strictly local,
but we present two alternative analyses as well, first using order-based constraints
(piecewise testability) and then again using projection-based constraints (tiers).

2.3.1. Culminative bounded stress with strict locality
Recall that culminativity is the constraint that forbids having multiple syllables with
primary stress. In this work, we use the term culminativity in the same sense as
Hyman (2009: 217): it is not the one-stress constraint, but only an upper bound
on the number of stressed syllables. The lower bound of one is enforced by separate
constraint: obligatoriness. Culminativity is satisfied by the empty word as well as
words like 𝜎, 𝜎�́�, 𝜎𝜎𝜎𝜎𝜎, and so on, because all have zero or one stressed syllables.
But it is not satisfied by �́��́� or �́�𝜎𝜎𝜎�́�, because each of these words has at least two
stressed syllables.

Culminativity is not strictly local in isolation. It rejects 𝜎𝑘�́�𝜎𝑘�́�𝜎𝑘 , but no 𝑘-factor
in this word can be forbidden, as they all appear in the accepted word 𝜎𝑘�́�𝜎𝑘 . If some
𝑘-factor were forbidden to trigger the rejection, then the latter word would be rejected
as well, because it, too, contains that factor. However, when coupled with a bounded
stress pattern, the system as a whole is strictly local.

For instance, with the stress-final constraint, the final syllable receives stress. In order
to enforce culminativity, stress need only be forbidden in nonfinal positions, before

3The name ‘K’ is traditional (cf. Almeida, 1995). Its origin is unclear, but given the mathematical tradition of using
German names, one likely candidate is the German kehren, ‘to turn around’.

4The name ‘N’ stands for ‘nilpotent’, an algebraic term for the kind of structure that these languages produce (cf. Almeida,
1995).
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some other syllable: ¬�́�Σ. Recall that the stress-final constraint can be written in strictly
local form as ¬⋊⋉ ∧ ¬𝜎⋉, and add this new constraint to describe the culminative
stress-final pattern: ¬⋊⋉ ∧ ¬𝜎⋉ ∧ ¬�́�Σ.

However, culminativity even alongside the stress-final constraint is not definite, as
the system is not 𝑘-definite for any 𝑘 . The crux of the argument is that there can be
arbitrarily many unstressed syllables intervening between the stressed final syllable and
earlier unwanted stress. We have that 𝜎𝜎𝑘�́� satisfies the constraint but �́�𝜎𝑘�́� does not,
despite the two sharing the same length-𝑘 suffix 𝜎𝑘−1�́�. This demonstrates that strict
locality is strictly more powerful than definiteness. From a processing perspective, a
mechanism capable of processing a strictly local language must be able to remember
whether a forbidden factor was encountered at any point in a word, while definiteness
only requires attending to the final 𝑘 symbols.

Recall that the stress-penult constraint is ¬⋊⋉ ∧ ¬⋊𝜎⋉ ∧ ¬𝜎Σ⋉. This only ensures
that the penult is stressed (or the only syllable in the case of monosyllables). To enforce
culminativity, we must ensure that stress does not appear in other positions. First, stress
should not occur before the penult:¬�́�ΣΣ. This still allows for stress on the final syllable.
We cannot simply forbid that configuration, as it would rule out monosyllables, but we
can forbid having two adjacent stressed syllables to achieve the desired effect: ¬�́��́�. If
the penult and final syllable were both stressed, then this forbidden configuration would
occur. The culminative stress-penult constraint is¬⋊⋉∧¬⋊𝜎⋉∧¬𝜎Σ⋉∧¬�́�ΣΣ∧¬�́��́�.
Like the culminative stress-final constraint, this is strictly local but not definite.

Finally, stress-initial is the reversal of stress-final and is captured with the following
formula: ¬⋊⋉∧¬⋊𝜎∧¬Σ�́�. Just as the culminative stress-final pattern was not definite,
this culminative stress-initial pattern is not reverse definite. We have that �́�𝜎𝑘𝜎 satisfies
the constraint while �́�𝜎𝑘�́� does not, despite sharing the same length-𝑘 prefix, �́�𝜎𝑘−1.
Strict locality is more powerful than reverse definiteness, for exactly the same reason
that it is more powerful than definiteness.

The definite and reverse definite classes may have access to a complete system
of propositional logical, but they are limited to constraints on suffixes and prefixes,
respectively. Having access to more parts of the word gives strict locality more power,
even with its weaker restricted propositional logic. That is, a conjunction of negated
literals where the literals are arbitrary substrings is strictly more powerful than a full
propositional formula where the literals can be only suffixes or only prefixes.

2.3.2. Culminative bounded stress with order
Another logically defined class, incomparable with (reverse) definite and strictly local, is
the piecewise testable languages (Simon, 1975). These are defined by propositional
logic not over substrings but over subsequences. Such patterns played a key role in
Heinz’s (2010) analysis of long-distance phonotactics.

Definition 2.7. A string 𝑢 = 𝑢1𝑢2 . . . 𝑢𝑛 is a subsequence of a string 𝑤 if and only if
there exist (possibly empty) strings 𝑣0, . . . , 𝑣𝑛 such that 𝑤 = 𝑣0𝑢1𝑣1 . . . 𝑢𝑛𝑣𝑛.

In other words, 𝑢 is a subsequence of 𝑤 if and only if 𝑤 contains all of the letters
of 𝑢 in order, but not necessarily adjacently. For example ‘net’ is a subsequence of
‘concept’. We represent subsequences with a new kind of literal: 𝑤 |= 𝑢1..𝑢2.. · · · ..𝑢𝑛
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if 𝑢1𝑢2 . . . 𝑢𝑛 is a subsequence of 𝑤. Boundary symbols are not used in subsequence
literals. They are not necessary, as every symbol in a word follows the start marker ⋊
and every symbol precedes the end marker ⋉.

Definition 2.8. A language 𝐿 is piecewise 𝑘 -testable (𝐿 ∈ Σ∗J𝑘)5 if and only if
whenever two words have the same subsequences of length up to 𝑘 , either both are
in 𝐿 or neither is in 𝐿. Then 𝐿 is piecewise testable (𝐿 ∈ Σ∗J ) if and only if it
is piecewise 𝑘-testable for some fixed, finite 𝑘 . These are the languages definable by
propositional formulae involving only subsequences.

None of the bounded stress constraints discussed so far are piecewise testable, but
their culminative versions are. We show the latter by presenting logical descriptions in
the appropriate form.

Culminativity forbids the �́�..�́� subsequence (Heinz, 2014). For the culminative
stress-final pattern, unstressed syllables are additionally forbidden after the stressed
syllable: ¬�́�..Σ. We must also enforce obligatoriness, the constraint that some
stressed syllable appears: �́�. The culminative stress-final pattern is overall �́� ∧ ¬�́�..Σ.
For the culminative stress-initial pattern, we reverse this: �́� ∧ ¬Σ..�́�.

The culminative stress-penult constraint is similar. Culminativity and obligatoriness
apply, and two syllables cannot follow the stressed syllable: �́� ∧ ¬�́�..�́� ∧ ¬�́�..Σ..Σ.

2.3.3. Culminative bounded stress with (multiple) tiers
Next we introduce the classes at the core of our contribution, the multitier extensions
of classes, which provide another way to describe long-distance constraints. Tier-
projection expresses some kinds of long-distance constraints by ignoring irrelevant
symbols and enforcing local constraints on the result. For culminativity, inserting or
removing unstressed syllables 𝜎 can never change a word from accepted to rejected
or vice versa. This is a neutral letter in the terminology of Mix Barrington et al.
(2001), and they are important to the study of tier-based extensions of classes, as neutral
letters are the symbols not on the tier.

These neutral letters prevent culminativity from being definite or reverse definite.
Clearly, �́� satisfies culminativity while �́��́� does not. We can freely insert the unstressed
𝜎 without changing this status on both the front and the back of these words in order to
saturate the length-𝑘 prefixes and suffixes: 𝜎𝑘�́�𝜎𝑘 is accepted while 𝜎𝑘�́��́�𝜎𝑘 is not.
They share the same 𝜎𝑘 suffix and prefix and are thus not (reverse) 𝑘-definite for any 𝑘 .

If we could first project to the tier of stressed syllables, then the only valid words on
the projection would be the empty string and the stressed monosyllable. In other words,
on the stress tier, the formula ⋊⋉ ∨ ⋊�́�⋉ holds. Culminativity is tier-based co/finite
on this tier. Heinz et al. (2011) offer a formalisation of tier-projection, applying a
constraint only after projection to some set of salient symbols. Originally applied only
to the strictly local languages, Lambert (2023) extends the concept to all classes.

Definition 2.9. For any class C, a language 𝐿 over Σ is in tier-based C (Σ∗TC) if
and only if there is some language 𝐿′ over some subset Γ ⊆ Σ such that 𝐿′ is in Γ∗C
and all symbols in Σ − Γ are neutral.

5The name ‘J’ is traditional (cf. Almeida, 1995). It refers to an algebraic property of the languages in the class.
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Additional notation in our propositional logic accounts for tiers: a word 𝑤 |= [𝜑]𝑆
if and only if the projection of 𝑤 to 𝑆 satisfies 𝜑. Culminativity is thus expressed
[⋊⋉ ∨ ⋊�́�⋉] { �́�} and is in TN .

However, tier-based classes per Definition 2.9 use only a single tier of projection.
This is limiting. For culminative bounded stress patterns, the stress-placement constraint
should operate on the entire word, while culminativity operates only over the tier of
stressed syllables.

Therefore we consider a propositional logic where the literals can project to different
tiers. As shown below, such a logical system can capture stress-final, stress-penult and
stress-initial, each with culminativity.

• Stress-final: �́�⋉ ∧ [⋊�́�⋉] { �́�}
• Stress-penult: (�́�𝜎⋉ ∨ ⋊�́�⋉) ∧ [⋊�́�⋉] { �́�}
• Stress-initial: ⋊�́� ∧ [⋊�́�⋉] { �́�}

Note that, as the stress-placement constraint guarantees that stress appears, the stress tier
cannot be empty. That is why we used simply [⋊�́�⋉] { �́�} to enforce culminativity. Also
note that stress-final and stress-penult with culminativity use only tier-suffixes, so they
are multitier definite. Similarly, stress-initial with culminativity uses only tier-prefixes
and is thus multitier reverse definite.

Definition 2.10. For any class C, its multitier extension BTC is the Boolean closure
of its tier-based extension TC. The tiers need not be the same between the parts.

Notice that we allow for arbitrary Boolean combinations of projected factors. This
differs from earlier treatments of multiple tiers, such as by De Santo & Graf (2019),
who explored extensions of the strictly local languages. As strictly local languages are
closed under intersection but not under union nor complement, De Santo & Graf (2019)
considered only intersection-closure. Because the weaker classes that we consider here
are closed under all Boolean operations, it is natural to use the full Boolean closure
for their multitier extensions, and as we shall see in §6, this results in useful algebraic
properties.

Interestingly, the multitier co/finite languages BTN form a subclass of the piecewise
testable languages J . To show this, consider 𝑢 = 𝑢1𝑢2 . . . 𝑢𝑛. The logical formula ⋊𝑢⋉
represents the word 𝑢, and this can also be achieved using subsequence constraints:
𝑢1..𝑢2.. · · · ..𝑢𝑛 asserts that the all of the letters in 𝑢 occur and are correctly ordered,
while ¬Σ..Σ.. · · · ..Σ forbids words with at least as many symbols as there are Σ.
Concretely, ⋊𝑎𝑏𝑐⋉ is equivalent to 𝑎..𝑏..𝑐 ∧ ¬Σ..Σ..Σ..Σ. The three letters occur in
order, and valid words do not have four or more letters. To represent [⋊𝑢⋉]Γ, we need
only replace the Σ with Γ: instead of saying that valid words do not have 𝑛 + 1 letters,
we say that valid words do not have 𝑛 + 1 letters on the tier. Tier-words are expressible
formulae over subsequences, so every multitier co/finite language is piecewise testable.
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2.4. Generalised definiteness and a small hierarchy

Definite languages are based on suffixes. Reverse definite languages use prefixes.
Generalised definite languages extend the propositional logic to allow both. For example,
⋊𝑎 ∨ 𝑏⋉ is neither definite nor reverse definite, but it is generalised definite.

Definition 2.11. The generalised 𝑘 -definite languages (Σ∗LI𝑘)6 are those that
are definable by propositional formulae over affixes of length up to 𝑘 . The generalised
definite languages (Σ∗LI) are those that are generalised 𝑘-definite for some fixed,
finite 𝑘 .

Proposition 2.12. A language 𝐿 is generalised 𝑘-definite if and only if whenever two
words have the same 𝑘-prefix and the same 𝑘-suffix, then either both are in 𝐿 or neither
is in 𝐿.

Generalised definite patterns extend definiteness in a way that is orthogonal to what
strict locality adds. The strictly local class is incomparable with LI, and, unlike strict
locality, moving to generalised definiteness does not suffice to describe culminative
bounded stress without tiers. Consider stress-final with culminativity. This accepts 𝜎𝑘�́�

but rejects 𝜎𝑘�́�𝜎𝑘�́�, despite the two words sharing the same length-𝑘 prefix, 𝜎𝑘 , and
the same length-𝑘 suffix, 𝜎𝑘−1�́�. Using both prefixes and suffixes will, however, allow
us to describe all of the bounded stress patterns under the same logical system. Further,
some unbounded stress patterns detailed in the next section require this additional power.

Culminative bounded stress patterns are strictly local (restricted propositional with
substrings), multitier definite or multitier reverse definite (propositional with tier-
suffixes or tier-prefixes), and piecewise testable (propositional with subsequences). The
simplicity of these patterns allows for description under many different propositional
logics. The next section explores the extent to which these systems can account for
unbounded stress.

3. Unbounded stress

In the previous section, we introduced several classes of formal languages associated
with particular forms of logical expressions, including the definite and reverse definite
languages and their multitier extensions. Our primary contributions are the logical
and algebraic characterisations of multitier classes, as well as the demonstrations that
the associated propositional logics describe some complex but attested phonological
constraints.

This section classifies unbounded stress patterns with respect to multitier classes.
Heinz (2014) shows that simple unbounded stress patterns are piecewise testable as
conjunctions of forbidden subsequences and one-stress. We add that they are also at
most multitier generalised definite. We further expand upon the work of Rogers &
Lambert (2019), who show that most of the stress patterns in the StressTyp2 database
(Goedemans et al., 2015) are propositional when using substrings and subsequences

6The name ‘LI’ refers to a particular kind of algebraic structure. First, I, the Roman numeral one, refers to there being
only one class of strings: everything is accepted or everything is rejected. The L operator means ‘locally’ and represents a
general operation, much like our T and B. For more information on LI and its constituent parts, see Almeida (1995).
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simultaneously. The main result is that the multitier generalised definite class, BTLI,
provides better coverage of the StressTyp2 database than the piecewise testable class, J .

First we work through the simple typology laid out by Hayes (1995). Unlike the
bounded stress patterns, these unbounded stress patterns are quantity-sensitive, so our
alphabet must distinguish light syllables (ℓ) from heavy syllables (ℎ). The alphabet
is now Σ = {ℓ, ℎ, ℓ́, ℎ́}. We use 𝜎 to denote the set {ℓ, ℎ}, and �́� to denote the set
{ℓ́, ℎ́}. Then we report on the actual patterns described in the StressTyp2 database of
Goedemans et al. (2015). Scripts used for this analysis are included as supplementary
materials.

3.1. Stress leftmost heavy, else leftmost

We first investigate monomorphemic words of Amele, a Trans-New Guinea language.
Consider the following words, from Roberts (1987: 346,358).

(4) a. (ℓℓℎ́) [gædO"lOh] ‘edge’
b. (ℓℓℎ́) [ItI"tOm] ‘righteous’
c. (ℓℎ́ℓ) [Jæ"wælti] ‘wind from north’
d. (ℓℎ́) [du"æn] ‘cold’
e. ( ℎ́ℎ) ["tubdoP] ‘to join’
f. (ℓ́ℓℓ) ["Ufio] ‘yam species’

As reported by Roberts (1987: 357–358), primary stress occurs on the leftmost heavy
syllable (the leftmost closed syllable) if such a syllable exists, else on the leftmost
syllable.

As noted by Heinz (2014), these unbounded stress patterns are piecewise testable.
The one-stress constraint applies: �́� ∧ ¬�́�..�́�. Then the first priority is to stress the
leftmost heavy syllable if it exists. This means that no (unstressed) heavy syllable
precedes a stressed syllable: ¬ℎ..�́�. Further, a stressed light syllable cannot precede an
(unstressed) heavy syllable: ¬ℓ́..ℎ. This guarantees placement on the leftmost heavy
syllable if it exists. The next priority is to ensure that in other cases, the initial syllable
is stressed. That is, no syllable precedes a stressed light syllable: ¬Σ..ℓ́, or simply ¬ℓ..ℓ́,
as the unstressed light syllable ℓ is the only type not covered by other constraints.7 In
sum, monomorphemic words in Amele are described by a piecewise testable formula:

�́� ∧ ¬�́�..�́� ∧ ¬ℎ..�́� ∧ ¬ℓ́..ℎ ∧ ¬ℓ..ℓ́

The pattern can also be described with multitier reverse definiteness, which reads
more faithfully to the English description. First, the one-stress constraint applies:
[⋊�́�⋉] �́� . Next, let us introduce implication: the logical expression 𝜑 → 𝜓 asserts that
𝜓 must be true if 𝜑 is true. This is equivalent to 𝜓 ∨¬𝜑, and therefore expressible in our
propositional logic. Now, if a heavy syllable exists (if the heavy tier is nonempty), then
the leftmost heavy syllable receives stress: [¬⋊⋉] {ℎ,ℎ́} → [⋊ℎ́] {ℎ,ℎ́} . And if there is

7We cannot, however, use ⋊ℓ́, as this precludes word-initial heavy syllables. If the positive form is preferred, one might
use (⋊ℓ́ ∨ ¬ℓ́ ): a stressed light syllable appears word-initially or not at all.
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no heavy syllable (if the heavy tier is empty), then the leftmost (light) syllable receives
stress: [⋊⋉] {ℎ,ℎ́} → ⋊ℓ́. All together, the multitier description is as follows.

[⋊�́�⋉] �́� ∧ ([¬⋊⋉] {ℎ,ℎ́} → [⋊ℎ́] {ℎ,ℎ́}) ∧ ([⋊⋉] {ℎ,ℎ́} → ⋊ℓ́)

This expression naturally mirrors the English description of the pattern: there is exactly
one stress, and if there is a heavy syllable then the leftmost such syllable is stressed, else
(if there is no heavy syllable) then the leftmost syllable overall is stressed (and light).
As each factor is a left-anchored substring, demonstrates that the pattern is multitier
reverse definite. The expression can be simplified as follows.

[⋊�́�⋉] �́� ∧ ([⋊ℎ́] {ℎ,ℎ́} ∨ ([⋊⋉] {ℎ,ℎ́} ∧ ⋊ℓ́))

This pattern is not strictly local, as ℓ𝑘 ℎ́ℓ𝑘ℎℓ𝑘 is accepted while ℓ𝑘ℎℓ𝑘 ℎ́ℓ𝑘 is rejected,
despite the two sharing the same set of substrings of length up to 𝑘 . However, when
viewed from a long-distance perspective using order or tiers, it is no more complex
than stress-initial with culminativity. It is piecewise testable (J ) and multitier reverse
definite (BTK).

3.2. Stress rightmost heavy, else rightmost

Golin, another Trans-New Guinea language, has the opposite stress pattern of Amele.
In Golin, a syllable is heavy if it bears high tone, else it is light. Consider the following
words, from Bunn & Bunn (1970: 5).

(5) a. (ℎℎℎ́) [ówá"ré] ‘bat’
b. (ℓℓℎ́) [oni"bá] ‘snake’
c. (ℎℎ́ℓ) [gó"mági] ‘type of sweet potato’
d. ( ℎ́ℓℓ) ["ákola] ‘wild fig tree’
e. (ℓℓ́) [ke"ba] ‘sweet potato’

In this default-to-same pattern, as described by Bunn & Bunn (1970: 4–5), there is
exactly one primary stress in each word, which occurs on the final heavy syllable of
each word, if such a syllable exists, else on the final (light) syllable. The formulae that
express this pattern are the reversals of the formulae that express the stress pattern of
Amele. Using order, it is piecewise testable:

�́� ∧ ¬�́�..�́� ∧ ¬�́�..ℎ ∧ ¬ℎ..ℓ́ ∧ ¬ℓ́..ℓ

Using tiers, it is multitier definite:

[⋊�́�⋉] �́� ∧ ([ℎ́⋉] {ℎ,ℎ́} ∨ ([⋊⋉] {ℎ,ℎ́} ∧ ℓ́⋉))

Again, the multitier expression more directly reflects the English description of the
pattern: there is exactly one stress, and either the rightmost heavy syllable receives
stress or there is no such syllable and stress defaults to the rightmost syllable overall.
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These default-to-same unbounded patterns have the same complexity as culminative
bounded stress patterns. Both are piecewise testable and either multitier definite
or multitier reverse definite, depending on which edge is the relevant boundary.
The upcoming default-to-opposite patterns join the two branches, attending to both
boundaries simultaneously.

3.3. Stress leftmost heavy, else rightmost

Consider the following words of Kwak’wala, a Wakashan language of Canada, per
Grubb (1969: 46).

(6) a. (ℓℓ́) [si"kj’æ] ‘five’
b. (ℓℎ́ℎℎ) [si"kj’æ:gi:ju] ‘fifteen’
c. ( ℎ́ℎℎℓ) ["si:kjæ:gO:la] ‘twenty-five’

Heavy syllables are those containing long vowels, and stress falls on the leftmost
heavy syllable if such a syllable exists, else on the rightmost syllable (Grubb, 1969: 46).

Like the default-to-same unbounded patterns of Amele and Golin, this pattern is
piecewise testable. As before, one-stress applies: �́�∧¬�́�..�́�. If there is a heavy syllable,
then there is no stressed light syllable; a pair of forbidden subsequences expresses this:
¬ℎ..ℓ́ ∧ ¬ℓ́..ℎ. Further, an unstressed heavy syllable cannot precede a stressed heavy:
¬ℎ..ℎ́. This can merge with the first conjunct of the previous expression, yielding:
¬ℎ..�́� ∧ ¬ℓ́..ℎ. Finally, if there is no heavy syllable, then some light syllable receives
stress. To ensure that it is the final such syllable, forbid the occurrence of another (light,
unstressed) syllable following a stressed light syllable: ¬ℓ́..ℓ. This combines with the
second conjunct of the previous expression. All together, the following expression
describes the stress pattern of Kwak’wala and demonstrates its piecewise testability.

�́� ∧ ¬�́�..�́� ∧ ¬ℎ..�́� ∧ ¬ℓ́..𝜎

A tier-based characterisation more closely follows the English description of the
pattern. Again, one-stress applies. Then, either the heavy tier begins with stress – that
is, heavy syllables appear and the first one is stressed – or there are no heavy syllables
and the rightmost syllable is stressed.

[⋊�́�⋉] �́� ∧ ([⋊ℎ́] {ℎ,ℎ́} ∨ ([⋊⋉] {ℎ,ℎ́} ∧ ℓ́⋉))

This logical formula uses both tier-prefixes and -suffixes. The pattern is not multitier
(reverse) definite, but it is multitier generalised definite.

3.4. Stress rightmost heavy, else leftmost

The other default-to-opposite pattern is attested in Chuvash, a Turkic language. Consider
the following words from Krueger (1961: 86–87).

(7) a. (ℎℎ́) [la"Sa] ‘horse’
b. (ℓℎℎ́) [kăma"ka] ‘stove’
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c. (ℓℎ́ℓℓ) [ĕS"lerĕmĕr] ‘we worked’

d. ( ℎ́ℓℓℓ) ["kalăt:ămăr] ‘we would say’

e. (ℓ́ℓℓ) ["ĕSlĕpĕr] ‘we shall work’

Here, syllables containing ‘[ă]’ or ‘[ĕ]’ are light, while all others are heavy. Per Krueger
(1961: 86), primary stress falls on the rightmost heavy syllable, if such a syllable exists,
else on the leftmost syllable. This is the reversal of Kwak’wala stress. The classification
is the same: it is piecewise testable and multitier generalised definite. The formulae
may be adapted by way of reversal. Using subsequences it is as follows.

�́� ∧ ¬�́�..�́� ∧ ¬�́�..ℎ ∧ ¬𝜎..ℓ́

Using tier-affixes it is as follows.

[⋊�́�⋉] �́� ∧ ([ℎ́⋉] {ℎ,ℎ́} ∨ ([⋊⋉] {ℎ,ℎ́} ∧ ⋊ℓ́))

All four unbounded stress patterns of this basic four-way typology are easily captured
using two kinds of long-distance constraints. Using order, all are piecewise testable.
Using tiers, default-to-same patterns are multitier (reverse) definite, while default-to-
opposite patterns require multitier generalised definiteness. The higher complexity
arises from both tier-prefixes and tier-suffixes being relevant in the latter.

3.5. Other stress patterns

For completeness, the 107 distinct patterns accompanied by automata in the StressTyp2
database (Goedemans et al., 2015) were classified using the Language Toolkit (Lambert,
2024). Files executing this analysis are included as supplementary material. Forty-
nine patterns are piecewise testable. Of the remaining fifty-eight, fifty-two are strictly
local. Sixty of the total patterns are multitier generalised definite, including all but
one of the piecewise testable patterns. The excluded one is index 135, an analysis
of Bhojpuri. However, index 134 is another analysis of Bhojpuri, which is piecewise
testable, multitier definite, and strictly local. One might conjecture then that index 134
is a better analysis and that unbounded stress patterns universally lie in the intersection
BTLI ∩ J of multitier generalised definiteness and piecewise-testability.

Only three patterns are not strictly local, piecewise testable, nor multitier generalised
definite: Yidin and two descriptions of lects of Arabic. The first is a cooccurrence of
a default-to-same unbounded pattern with secondary-stress alternation (Goedemans
et al., 2015). As alternation is strictly local, this combination is multitier locally
testable, and still propositional. This class is the Boolean closure of tier-based strictly
local, allowing not only tier-affixes but also internal substrings on tiers. The two Arabic
patterns describe secondary-stress alternation as well, but state that secondary stress
does not surface, lifting the patterns from strictly local to properly regular. If the
secondary stress were shown to be present, then these two patterns would be strictly
local. See Heinz (2009) for additional discussion on these lects.
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4. Harmony patterns

Harmony is another common kind of long-distance pattern. Heinz (2010) describes
both symmetric and asymmetric patterns, although more complicated cases exist. One
such case is the backness harmony in Uyghur, which is cited for being difficult to
analyse with piecewise, local, or tier-local constraints (Mayer & Major, 2018). In the
remainder of this section, we analyse each of these with respect to the classes studied
here. This analysis creates an interesting inversion, with Uyghur backness harmony
lying at a lower complexity level than asymmetric harmony under multitier analysis.

4.1. Symmetric harmony and Navajo

Navajo, an Athabaskan language, exhibits regressive symmetric harmony in sibilants.
That is, at any distance before [−anterior] sibilants like ‘S’, [+anterior] sibilants like ‘s’
become [−anterior], and vice versa. The following words from Sapir & Hoijer (1967:
15) demonstrate this.

(8) a. /s̀i-P´̃a/ → [s̀iP´̃a] ‘a round object lies’
b. /s̀i-G̀iS/ → [ S̀iG̀iS] ‘it is bent, curved’

c. /S̀i-ĺ̃i:P/ → [ S̀iĺ̃i:P] ‘my horse’
d. /S̀i-sáźi/ → [s̀isáźi] ‘my ancestor’

The result is that in surface forms, sibilants will all be [+anterior], represented by ‘s’, or
they will all be [−anterior], represented by ‘S’. In short, words do not contain sibilants
that disagree in anteriority.

Heinz (2010) describes this in a piecewise testable manner using forbidden subse-
quences: words contain neither ‘s..S’ nor ‘S..s’. As a logical expression, this is written
as follows: ¬s..S ∧ ¬S..s.

Alternatively, we could describe the pattern using tiers. Either the [+anterior] tier
is empty, or the [−anterior] tier is empty (or both): [⋊⋉]s ∨ [⋊⋉]S. As this involves
tier-words over different tiers, the pattern is multitier co/finite.

It is not strictly local, as every substring of length up to 𝑘 that appears in the rejected
word ‘a𝑘sa𝑘Sa𝑘’, also appears in either ‘a𝑘sa𝑘’ or ‘a𝑘Sa𝑘’, which should be accepted. If
any of the substrings of the first is forbidden, then one or the other of the latter would
also have to be rejected. However, it is tier-based strictly local: [¬sS ∧ ¬Ss] {s,S} . This
use of internal factors is necessary for single-tier description; while the pattern is both
multitier definite and multitier reverse definite, it is not tier-based (reverse) definite.

4.2. Asymmetric harmony and Tsuut’ina

In the Tsuut’ina language, another Athabaskan language, there is an asymmetric
harmony in the sibilants. Like in Navajo, [+anterior] sibilants become [−anterior] at
any distance preceding [−anterior] sibilants, but, unlike in Navajo, the reverse does not
happen. Consider the following words from Cook (1978: 26).

(9) a. /j́i-s-Gá/ → [ j́isGá] ‘I killed them’
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b. /nā-s-GátS/ → [nāSGátS] ‘I killed them again’
c. /śi-tŚiz+àĳ/ → [ ŚitŚidzàĳ] ‘my duck’

Notice the ‘z’ following ‘S’ in example 9c, demonstrating that the assimilation is
asymmetric, that [+anterior] sibilants do not trigger harmony.

Per Heinz (2010), like symmetric harmony in Navajo, asymmetric harmony is
piecewise testable. One need forbid only one subsequence: ¬s..S. This is tier-based
strictly local as well: ¬[sS] {s,S} .

However, unlike symmetric harmony, this pattern is not multitier generalised definite.
The use of internal substrings or subsequences is necessary. To demonstrate this, we
can find parameterised words that share the same 𝑘-prefix on every tier and the same
𝑘-suffix on every tier, where one satisfies the constraint and the other does not. For
𝑘 = 1, we choose the accepted word ‘SSss’ and the rejected word ‘SsSs’. There are three
tiers to consider: on tiers containing both ‘s’ and ‘S’, the shared 1-prefix is ‘S’ and the
shared 1-suffix is ‘s’. On tiers containing only ‘S’ or only ‘s’, the shared affix is ‘S’ or ‘s’,
respectively. The remaining tier, the empty tier, never contains any material.

For 𝑘 = 2, we choose the accepted word ‘SSSsss’ and the rejected word ‘SSsSss’. On
tiers containing both kinds of sibilants, the shared 2-prefix is ‘SS’ and the shared 2-suffix
is ‘ss’. On tiers containing only one kind, 𝑥, the shared affixes are 𝑥2.

In general, ‘S𝑘Sss𝑘’ is accepted and ‘S𝑘sSs𝑘’ is rejected. On tiers containing both
kinds of sibilants, the shared prefix is S𝑘 and the shared suffix is s𝑘 . On tiers containing
only one kind, 𝑥, the shared affixes are 𝑥𝑘 . The tier-prefix–tier-suffix combinations
are not sufficient information to make the required distinctions. The parameterised
words witnessing this fact were automatically discovered in software using the algebraic
techniques of §6.

While symmetric harmony in Navajo is multitier co/finite, asymmetric harmony
in Tsuut’ina is not even multitier generalised definite because its description requires
subsequences or internal substrings. With tiers, the pattern requires at least tier-based
strict locality.

4.3. Uyghur backness harmony

Mayer & Major (2018) describe a pattern in the Uyghur language, in which morpholog-
ical suffix forms are determined based on harmonizing vowels, if any, in the stem, else
from harmonizing consonants in the stem, if any. They demonstrate that this pattern
does not fall into any of the subregular classes commonly cited by computational lin-
guists, nor even in the highly complex structure-sensitive multiple-tier-based strictly
local class of De Santo & Graf (2019). Some pertinent examples are as follows, all
involving the /-DA/ locative case suffix, taken from Mayer & Major (2018).

(10) a. [aKinædæ] ‘on the friend’
b. [mæSqtæ] ‘on the exercise’
c. [qoichida] ‘on the shepherd’
d. [rakta] ‘on the shrimp’
e. [gezittæ] ‘on the newspaper’
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f. [qirKizda] ‘on the Kyrgyz’
g. [itta] ‘on the dog’
h. [bizdæ] ‘on us’

The following kinds of segments are relevant. Dorsal consonants are either front (‘k’
and ‘g’) or back (‘q’ and ‘K’). Vowels also come in front (‘y’, ‘ø’, and æ) and back (‘u’,
‘o’, and ‘a’) harmonizing varieties, but there are also two transparent vowels: ‘i’ and ‘e’.

Per Mayer & Major (2018), the backness of the morphological suffix is determined
as follows:

1. If the stem contains a harmonizing vowel, then the morphological suffix agrees in
backness with the rightmost such vowel, as demonstrated in examples 10a–10d.

2. If the stem contains no harmonizing vowels but does contain dorsal consonants,
then the morphological suffix agrees in backness with the rightmost such consonant,
as demonstrated in examples 10e and 10f.

3. Otherwise, as shown in examples 10g and 10h, this rule does not determine
backness. Mayer & Major (2018) state that such forms are arbitrarily specified for
backness, with a statistical tendency to be treated as back.

In this analysis, the relevant symbol types are as follows:

𝑉 𝑓 = {y, ø,æ} 𝑉𝑏 = {u, o, A} 𝐶 𝑓 = {k, g} 𝐶𝑏 = {q, K}

As the harmony affects only the morphological suffix, we assume, like Mayer & Major
(2018), that segments in the morphological suffix are marked as such.8 Then 𝑆 𝑓 is
𝑉 𝑓 ∪ 𝐶 𝑓 marked for being in the morphological suffix, and 𝑆𝑏 is analogous.

Mayer & Major (2018) show that this pattern is not (tier-based) strictly local, nor is
it piecewise testable, nor does it lie in a number of more complex subregular classes.
It is not even in the highly complex structure-sensitive multiple-tier-based
strictly local class of De Santo & Graf (2019), which allows symbols to be
conditionally projected based on their local environment, although it still uses only
restricted propositional logic. This left star-free as the only known viable class,
which allows for the full first-order logic with order (McNaughton & Papert, 1971).

However, this pattern is multitier definite. The English description can be translated
into a series of mutually-exclusive implications.

1. If the stem contains a harmonizing vowel, then the morphological suffix agrees in
backness with the rightmost such vowel:

(a) [𝑉 𝑓⋉]𝑉 𝑓 ∪𝑉𝑏
→ [⋊⋉]𝑆𝑏

(b) [𝑉𝑏⋉]𝑉 𝑓 ∪𝑉𝑏
→ [⋊⋉]𝑆 𝑓

2. If the stem contains no harmonizing vowels but does contain dorsal consonants,
then the morphological suffix agrees in backness with the rightmost such consonant:

(a) ( [⋊⋉]𝑉 𝑓 ∪𝑉𝑏
∧ [𝐶 𝑓⋉]𝐶 𝑓 ∪𝐶𝑏

) → [⋊⋉]𝑆𝑏
(b) ( [⋊⋉]𝑉 𝑓 ∪𝑉𝑏

∧ [𝐶𝑏⋉]𝐶 𝑓 ∪𝐶𝑏
) → [⋊⋉]𝑆 𝑓

8An alternative analysis not explored here would leave segments unmarked and instead insert an explicit morpheme
boundary symbol.
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3. Otherwise, this rule does not determine backness.

A multitier definite formula representing this pattern is the conjunction of these
constraints in (1) and (2). All involve only tier-suffixes.

Unlike for asymmetric harmony, internal substrings are not needed. When using
subsequences, Uyghur backness harmony appears significantly more complex than both
symmetric and asymmetric harmony. Under multitier analysis, it is multitier definite,
lying strictly between symmetric and asymmetric harmony in terms of complexity.

This inversion of complexity relationships is not uncommon when changing the
kind of logic available. Recall from §2.3 that accounting for the culminative stress-final
constraint is impossible with full propositional logic over suffixes, but possible with
just restricted propositional logic over substrings. It is also possible with propositional
logic over tier-suffixes. Choice of representation will affect, and possibly even invert,
complexity relationships.

5. Tone patterns

Autosegmental representations as used by Jardine (2017) are likely to provide a better
description of tonal patterns than pure string-languages. Nevertheless, in this section
we provide propositional analyses for the patterns that Jardine (2020) cited to motivate
a class of melody local languages. Some are more amenable to order-based analysis,
while others are more simply analysed in terms of tiers. Throughout this section, the
alphabet has only two symbols: ℓ and ℎ for low and high tone, respectively. We concern
ourselves only with tone strings, not with their associations to segmental content.

5.1. High-tone plateauing in Luganda

First, we examine the high-tone plateauing of Luganda, a Bantu language. Tones can
be underlyingly high or unspecified. Following Jardine (2016), we take what Hyman
& Katamba (2010) call the ‘intermediate’ forms to be the output of the phonology.
Boundary tones and their effects will not be discussed. There are several other interesting
phenomena involved in the full description of Luganda tone, but here we analyse only
the high-tone plateauing, as it presents a challenge for multitier analysis.

Consider the following words and phrases, taken from Hyman & Katamba (2010:
71–72; see also Jardine 2016: 252).

(11) a. (ℓℓℓ) /ki-tabo/ → [k̀itàbò] ‘book’
b. (ℓℎℓ) /ki-kópo/ → [k̀ikópò] ‘cup’
c. (ℎℎℎℓ) /bá-ki-láb-a/ → [báḱilábà] ‘they see it’
d. (ℓℓℎℓ) /ki-siḱi/ → [k̀is̀ik̂i] ‘log’

Following Jardine (2016), we do not distinguish ‘unspecified’ from ‘low’ in output
forms.

The shape of the melody arises from two key constraints. First, high tones are not
obligatory, but when they do appear, there can be at most one high span; this is the
unbounded tone plateauing of primary interest to this section. This generalises
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culminativity from limiting symbol-count to instead limit span-count. Second, the form
never ends on a high tone. Notice the falling tone in example 11d that arises from
repairing violations of this constraint.

The unbounded tone plateauing constraint itself can be described by a single
forbidden subsequence: ¬ℎ..ℓ..ℎ. The requirement that forms not end on a high tone
is definite: ¬ℎ⋉. In isolation, this latter constraint would not be piecewise testable, as
the accepted word (ℓℎ)𝑘ℓ and the rejected word (ℓℎ)𝑘 have the same set of length-𝑘
subsequences. However, just as the bounded stress patterns of §2 are strictly local
despite enforcing a seemingly nonlocal constraint, this finality condition can be enforced
by piecewise testable constraints because there is at most a single high span. If there
is a high tone, then there must be a later low tone; because no further high tones may
follow that low tone, the form necessarily ends low: ℎ → ℎ..ℓ. All together, this aspect
of Luganda tone is defined by the following piecewise testable formula.

¬ℎ..ℓ..ℎ ∧ (ℎ → ℎ..ℓ)

Neither unbounded tone plateauing nor this pattern as a whole is multitier generalised
definite. On every tier, the accepted word ℓ𝑘ℎℎℓ𝑘 and the rejected word ℓ𝑘ℎℓℎℓ𝑘 have
the same tier-𝑘-affixes.

5.2. Prinmi

Per Ding (2006: 13), the pitch-accent system of Prinmi is characterised by lexically
selecting a position for high tone within a domain (a morpheme or a span of adjacent
morphemes) and lexically specifying whether this high tone spreads progressively onto
the next syllable. All possible variations are attested in disyllabic through quadrisyllabic
domains (Ding, 2006: 14):

(12) a. (ℎℓ) [b́1 gè] ‘as for honey’
b. (ℎℎ) [b́1 gé] ‘as for sun’
c. (ℓℎ) [t`̃opú] ‘donkey’
d. (ℎℓℓℓ) [b́1bô`̃obô`̃o gè] ‘as for roasted flour with honey’
e. (ℎℎℓℓ) [b́1ì́ip3̀ts̀1] ‘sunflower’

f. (ℓℎℓℓ) [tS’̀in
˚
´̃idZj`̃e ô@̀] ‘dog-nose groups’

g. (ℓℎℎℓ) [t`̃opúm3́ìè] ‘donkey tail’
h. (ℓℓℎℓ) [dZj`̃odZ̀1m3́ìè] ‘buffalo tail’
i. (ℓℓℎℎ) [ô@̀tS̀1S´̃o gé] ‘as for clean liquor’

j. (ℓℓℓℎ) [d@̀ô
˚
@̀ô
˚
`̃i śi] ‘concentrated’

As noted by Jardine (2020), an order-based description invokes the same constraint
as unbounded tone plateauing in Luganda. A low tone does not appear between two
high tones in a domain: ¬ℎ..ℓ..ℎ. This guarantees that there is at most one high span. It
is obligatory: ℎ. To limit its length to a maximum of two syllables, a third high tone
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in a domain is forbidden: ¬ℎ..ℎ..ℎ. All together, this pitch-accent system is piecewise
testable as demonstrated by the following propositional formula.

ℎ ∧ ¬ℎ..ℓ..ℎ ∧ ¬ℎ..ℎ..ℎ

Like the system in Luganda, this cannot be captured using multitier generalised
definiteness. The same words witness this nonmembership as for high-tone plateauing:
ℓ𝑘ℎℎℓ𝑘 is valid but ℓ𝑘ℎℓℎℓ𝑘 is not, despite the two having the same 𝑘-affixes on every
tier. On the other hand, the analysis by Ding (2006) assumes maximally quadrisyllabic
domains with a great deal of compounding; this restriction would make the system
co/finite.

5.3. Arigibi

That is not to say that no tonal patterns are multitier generalised definite. Like Prinmi,
Arigibi allows only one high-span and incorporates a length-limit on this high-span.
However, in Arigibi, the limit is a single mora Jardine (2020). The following words from
Donohue (1997: 368) demonstrate the allowed configurations from dimoraic through
quadrimoraic forms:

(13) a. (ℓℓ) [tùtù] ‘long’
b. (ℎℓ) [ńimò] ‘louse’
c. (ℓℎ) [ùmú] ‘dog’
d. (ℓℓℓ) [vòvòPò] ‘bird’
e. (ℎℓℓ) [NǵiPÈpù] ‘heart’
f. (ℓℎℓ) [̀iv́iò] ‘sun’
g. (ℓℓℎ) [mùdÈbÉ] ‘claw’
h. (ℓℓℓℓ) [Èlà̀ilà] ‘hot’
i. (ℎℓℓℓ) [núP2̀tàmà] ‘bark’
j. (ℓℎℓℓ) [̀idómà̀i] ‘eye’
k. (ℓℓℎℓ) [tùǹiP2́P2̀] ‘all’
l. (ℓℓℓℎ) [òlàPòlá] ‘red’

There is at most one mora with high tone in the word, but words with no high tone
are allowed. The position of the high tone is lexically specified. The resulting pattern,
¬ℎ..ℎ, is exactly analogous to culminativity in isolation, and as such it is piecewise
testable and tier-based co/finite, as demonstrated in §2.3.

5.4. Kagoshima Japanese

The pitch-accent of Kagoshima Japanese has two lexically specified categories of words
with respect to tone placement. There is one and only one high tone per word, and it
appears either on the final mora or on the penultimate mora. Consider the following
words, from Ding (2006: 28).
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(14) a. (ℓℎ) [sàrẂ] ‘monkey’
b. (ℎℓ) [mízẀ] ‘water’
c. (ℓℓℓℎ) [̀irògàmí] ‘coloured paper’
d. (ℓℓℎℓ) [kàgàŕib̀i] ‘campfire’
e. (ℎ) [é] ‘picture’
f. (ℎℓ) [ê] ‘handle’

Note that when a monosyllable should receive penultimate high tone, as in example
14f, this surfaces as a falling tone.

The resulting tone strings surface in forms that satisfy analogues of either the stress-
penult or stress-final constraints, with culminativity (on high tone) enforced. Because
each of these patterns is both piecewise testable and multitier definite, classes closed
under the Boolean operations, we know that this pattern must also be both piecewise
testable and multitier definite.

Using order, the constraint that exactly one high tone appears is enforced by the
cooccurrence of culminativity and obligatoriness: ℎ ∧ ¬ℎ..ℎ. The constraint on the
placement of this high tone is simply that it is not followed by two (or more) other tones:
¬ℎ..ℓ..ℓ. All together, the piecewise testable formula is as follows.

ℎ ∧ ¬ℎ..ℎ ∧ ¬ℎ..ℓ..ℓ

Using tier suffixes, the constraint that exactly one high tone appears is enforced with
a tier-based co/finite constraint: [⋊ℎ⋉] {ℎ} . Placement is enforced by requiring one of
the two permissible suffixes: ℎℓ⋉ ∨ ℎ⋉. All together, this is multitier definite, just like
the culminative stress-final constraint.

[⋊ℎ⋉] {ℎ} ∧ (ℎℓ⋉ ∨ ℎ⋉)

5.5. Chuave

Chuave, a Trans-New Guinea language, exhibits obligatoriness, requiring the
appearance of at least one mora with high tone. This is exemplified by the following
words of up to three morae from Donohue (1997: 355).

(15) a. (ℎ) [fẃi] ‘salt’
b. (ℎℎ) [gáán] ‘child’
c. (ℎℓ) [gáàm] ‘skin’
d. (ℓℎ) [kùbá] ‘bamboo species’
e. (ℎℎℎ) [ǵingód́i] ‘snore’
f. (ℎℎℓ) [dénkábù] ‘mosquito’
g. (ℎℓℎ) [énùgú] ‘smoke’
h. (ℎℓℓ) [kó̀iòm] ‘wing’
i. (ℓℎℎ) [àmámó] ‘yam species’
j. (ℓℎℓ) [kòmár̀i] ‘before’
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k. (ℓℓℎ) [kò̀ijóm] ‘navel’

Every word contains at least one high span, but, as witnessed by example 15g, there
can be more than one. There is no restriction on where the high tone falls, only that
there must be one.

This is piecewise testable (and locally testable) as witnessed by the formula ℎ. It is
also tier-based co/finite, as witnessed by the formula ¬[⋊⋉] {ℎ} .

5.6. Karanga Shona

Jardine (2020) introduces a class, melody local, which captures all of the patterns
of tone assignment discussed to this point.9 Melody local analysis finds difficulty with
Karanga Shona verb stems. Consider the following words from Odden (1984: 258),
built from either the ℓ-toned root -bik- ‘cook’ or one of the ℎ-toned roots -p- ‘give’ or
-tór- ‘take’. The relevant domain for the present analysis, following Jardine (2020), is
the verb stem, the material which follows the hyphen in the examples.

(16) hàndáka-

a. (ℓℎ) [-b̀iká] ‘I didn’t cook’
b. (ℓℎℓ) [-b̀iḱisà] ‘I didn’t make cook’
c. (ℓℎℎℓ) [-b̀iḱiśirà] ‘I didn’t make cook for’
d. (ℓℎℎℓℓ) [-b̀iḱiśis̀irà] ‘I didn’t make cook for a lot’
e. (ℓℎℎℓℓℓ) [-b̀iḱiśis̀irànà] ‘I didn’t make cook a lot for each other’
f. (ℓℎℎℓℓℓℓ) [-b̀iḱiśir̀is̀isànà] ‘I didn’t make cook a lot for each other’
g. (ℎ) [-pá] ‘I didn’t give’
h. (ℎℓ) [-tórà] ‘I didn’t take’
i. (ℎℓℎ) [-tórèsá] ‘I didn’t make take’
j. (ℎℎℓℎ) [-tórésèrá] ‘I didn’t make take for’
k. (ℎℎℎℓℎ) [-tóréséràná] ‘I didn’t make take for each other’
l. (ℎℎℎℓℓℎ) [-tórésérèsàná] ‘I didn’t make take for each other a lot’

m. (ℎℎℎℓℓℓℎ) [-tórésérèsèsàná] ‘I didn’t make take for each other a lot’

At the tone level, there are seven fully specified words: ℓ, ℓℎ, ℓℎℓ, ℎ, ℎℓ, ℎℓℎ and
ℎℎℓℎ. Longer words fall into one of two patterns: ℓℎℎℓℓ∗ for ℓ-toned roots and ℎℎℎℓℓ∗ℎ
for ℎ-toned roots (Jardine, 2020: 1166). Here we show that this surface pattern can be
described propositionally. The seven fully specified words form a finite language; as
the finite languages are a subclass of every class under consideration in this work, in
the following discussion let 𝜑𝐹 be the formula of the appropriate form to specify the
set 𝐹 = {ℓ, ℓℎ, ℓℎℓ, ℎ, ℎℓ, ℎℓℎ, ℎℎℓℎ} in the chosen logic. We focus on describing the
patterns of longer words.

First, we present a piecewise testable expression. For ℓ-toned roots, the long words
are of the form ℓℎℎℓℓ∗. Such words always contain the ℓ..ℎ..ℎ..ℓ subsequence, and

9Jardine (2020) also covers a locally testable pattern from Bemba that is neither piecewise testable nor multitier generalised
definite. However, it is locally testable, so it can be defined by propositional logic over substrings.
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this might be the entire string. Further, a third high tone may not appear: ¬ℎ..ℎ..ℎ.
With only these constraints, however, undesired low tones might intervene between the
high tones. A word like ℓℎℓℎℓ would be accepted. To rule this out without rejecting
valid forms, notice that after the two required low tones, no ℎ may appear: ¬ℓ..ℓ..ℎ.
This guarantees that the two high tones that appear are adjacent. In sum, the piecewise
testable representation for ℓ-toned roots is as follows.

𝐿𝑝 = ℓ..ℎ..ℎ..ℓ ∧ ¬ℎ..ℎ..ℎ ∧ ¬ℓ..ℓ..ℎ

For ℎ-toned roots, the long words are of the form ℎℎℎℓℓ∗ℎ. Such words always contain
the ℎ..ℎ..ℎ..ℓ..ℎ subsequence, and a fifth high tone is forbidden: ¬ℎ..ℎ..ℎ..ℎ..ℎ. What
remains is to ensure that the low tones are not placed in undesirable positions. If any ℓ

is misplaced, there will be an ℓ..ℎ..ℓ subsequence, so we simply forbid that. In sum, the
piecewise testable representation for ℎ-toned roots is as follows:

𝐻𝑝 = ℎ..ℎ..ℎ..ℓ..ℎ ∧ ¬ℎ..ℎ..ℎ..ℎ..ℎ ∧ ¬ℓ..ℎ..ℓ

Then the entire pattern is 𝜑𝐹 ∨ 𝐿𝑝 ∨ 𝐻𝑝 .
Multitier analysis also takes advantage of the limited number of high tones. For

ℓ-toned roots, which again have the form ℓℎℎℓℓ∗, words begin with ℓℎℎℓ and there are
exactly two high tones.

𝐿𝑚 = ⋊ℓℎℎℓ ∧ [⋊ℎℎ⋉] {ℎ}

For ℎ-toned roots, which again have the form ℎℎℎℓℓ∗ℎ, words begin with ℎℎℎℓ, they
end with ℓℎ, and there are exactly four high tones.

𝐻𝑚 = ⋊ℎℎℎℓ ∧ ℓℎ⋉ ∧ [⋊ℎℎℎℎ⋉] {ℎ}

In sum, the pattern is multitier generalised definite because both tier-prefixes and
tier-suffixes are relevant, and the witnessing formula is 𝜑𝐹 ∨ 𝐿𝑚 ∨ 𝐻𝑚.

Tiers can be eschewed in favour of internal substrings. The pattern is locally testable,
captured by a propositional formula over substrings. Without getting lost in the details,
the pattern is described by 𝜑𝐹 ∨ 𝐿𝑠 ∨ 𝐻𝑠 where 𝐿𝑠 and 𝐻𝑠 are defined as follows.

𝐿𝑠 = ⋊ℓℎℎℓ ∧ ¬ℎℓℎ ∧ ¬ℓℓℎ
𝐻𝑠 = ⋊ℎℎℎℓ ∧ ℓℎ⋉ ∧ ¬ℓℎℓ ∧ ¬ℓℎℎ

Like culminative bounded stress, this pattern is propositional in many ways. The
surface patterns of Karanga Shona verb stems that prove difficult for melody local
description are nonetheless simple to describe using substrings, subsequences, or
tier-affixes.

6. Introduction to algebraic phonotactics

In this section, we briefly introduce algebraic tools and techniques that facilitated
analyses performed in this work. We first describe how to construct an algebraic model
of a language, both conceptually and mechanically. This algebraic model is known as
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the syntactic semigroup. From there, we revisit the classes discussed so far in this
work; other than the strictly local class, all of them are definable algebraically by a
system of equations. Systems of equations are provided for the definite, reverse definite
and generalised definite classes as well as their multitier extensions. The algebraic
model automatically provides a way to decide whether a given pattern belongs to a
class. A language is in the class if and only if its algebraic model satisfies all of the
equations, regardless of how variables are instantiated. If any instantiation fails, the
associated words witness the nonmembership. In this way, given any logical description
of a language, we can determine whether it is definable under a chosen kind of logic,
and if not, why not. In other words, this section lays out the techniques that led to the
analyses in the previous sections.

6.1. The syntactic semigroup

In phonology, we often use minimal pairs to determine whether two phones represent
distinct phonemes. For instance, Finnish has contrastive length on both vowels and
consonants as demonstrated by the words [t”uli] ‘fire’, [t”u:li] ‘wind’ and [t”ul:i] ‘customs’,
differing only in length. The t” li environment distinguishes [u] from [u:], and the
t”u i environment distinguishes [l] from [l:]. In algebra, we do the same thing, except
that rather than looking for differences in meaning, we seek differences in acceptability.
Given arbitrary strings 𝑥 and 𝑦, we seek an environment 𝑢 𝑣 where 𝑢𝑥𝑣 is accepted
and 𝑢𝑦𝑣 is rejected, or vice versa. If such an environment can be found, then 𝑥 and 𝑦

are distinct (Rabin & Scott, 1959). Otherwise, they are Myhill-equivalent with
respect to the language.

Definition 6.1. In a language 𝐿, two words 𝑥 and 𝑦 are Myhill-equivalent with
respect to 𝐿, written 𝑥 ≡ 𝑦, if and only if for all 𝑢 and 𝑣 it holds that 𝑢𝑥𝑣 ∈ 𝐿 whenever
𝑢𝑦𝑣 ∈ 𝐿 and vice versa.

Recall the stress-penult constraint, without culminativity, from §2.1. This is satisfied
by stressed monosyllables or by longer words whose penult is stressed, regardless of
which other syllables bear stress. For analysis of this constraint, we used the two-letter
alphabet Σ = {𝜎, �́�}. Clearly, �́� and 𝜎 are distinct, because in the trivial context,

, the former is accepted while the latter is rejected. We have ["kin] ‘they drink’ but
not [kin]. Then 𝜎 and 𝜎𝜎 are distinguished by the �́� context, as �́�𝜎 satisfies the
constraint while �́�𝜎𝜎 does not. But no context can distinguish �́�𝜎𝜎 from 𝜎𝜎; the only
accepting contexts 𝑢 𝑣 for either string involve 𝑣 itself being two or more syllables
long with a stressed penult, and the other string is necessarily accepted in the same
context. We have �́�𝜎𝜎 ≡ 𝜎𝜎.

The equivalence class of a string is the set of all strings to which it is equivalent,
including that string itself. For example, with respect to the stress-penult constraint,
the equivalence class of 𝜎𝜎, written [𝜎𝜎], is the set of all strings which end with
𝜎𝜎⋉: [𝜎𝜎] = Σ∗𝜎𝜎 = {𝜎𝜎, 𝜎𝜎𝜎, �́�𝜎𝜎, . . . }. Similarly, the equivalence class of
�́�𝜎 is [�́�𝜎] = Σ∗�́�𝜎 = {�́�𝜎, 𝜎�́�𝜎, �́��́�𝜎, . . . }. The syntactic semigroup is the
collection of equivalence classes. The most important property of Myhill-equivalence is
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that concatenation is well-defined not only at the string level but also at the equivalence-
class level (Rabin & Scott, 1959). That is, for any choice of class representatives, their
concatenation will always be in the same class as it would be if other representatives
were chosen: if 𝑎 ≡ 𝑏 and 𝑐 ≡ 𝑑 then 𝑎𝑐 ≡ 𝑏𝑑. For example, we have �́�𝜎 ≡ 𝜎�́�𝜎 and
𝜎𝜎𝜎 ≡ �́�𝜎𝜎, so it must be the case that �́�𝜎 𝜎𝜎𝜎 ≡ 𝜎�́�𝜎 �́�𝜎𝜎, and this is true; each
ends with 𝜎𝜎⋉ so each is in [𝜎𝜎].

Proposition 6.2. If 𝑎 ≡ 𝑏 and 𝑐 ≡ 𝑑 then 𝑎𝑐 ≡ 𝑏𝑑.

Proof. Suppose that 𝑎 ≡ 𝑏 and 𝑐 ≡ 𝑑. Because 𝑎 ≡ 𝑏, it is the case that for any context
𝑢 𝑣, we have that 𝑢𝑎𝑣 is accepted if and only if 𝑢𝑏𝑣 is accepted. Specifically, this
holds for 𝑣 = 𝑐𝑥 for any 𝑥. That is, 𝑢(𝑎𝑐)𝑥 is accepted if and only if 𝑢(𝑏𝑐)𝑥 is accepted.
In other words, 𝑎𝑐 ≡ 𝑏𝑐.

Similarly, because 𝑐 ≡ 𝑑, it is the case that for any context 𝑢 𝑣, we have that 𝑢𝑐𝑣
is accepted if and only if 𝑢𝑑𝑣 is accepted. Specifically, this holds for 𝑢 = 𝑡𝑏 for any 𝑡.
That is, 𝑡 (𝑏𝑐)𝑣 is accepted if and only if 𝑡 (𝑏𝑑)𝑣 is accepted. In other words, 𝑏𝑐 ≡ 𝑏𝑑.

Putting these together, we have 𝑎𝑐 ≡ 𝑏𝑐 ≡ 𝑏𝑑, proving the statement. □

This proves that we can concatenate equivalence classes as a whole in a way that
makes sense. Every regular language partitions Σ∗ into finitely many equivalence classes
(Rabin & Scott, 1959). Algebraic analysis of subregular systems takes full advantage of
this fact. Rather than face the daunting task of generalising properties over infinitely
many strings, one need only investigate finitely many equivalence classes.

That was the conceptual overview of the syntactic semigroup. To construct it
mechanically, begin with a deterministic finite-state automaton representing
the target language. There are many software packages that assist with this step,
including the Language Toolkit of Lambert (2024) and foma from Hulden (2009). We
use the Language Toolkit both because it is designed to work with the propositional
logics discussed in this work and because it implements algebraic decision procedures.
The automaton representation of the stress-penult constraint, without culminativity, is
shown in Figure 1. The five states are represented by circles. Here they are numbered,
for ease of reference. The arrow from nowhere points to the initial state, 𝑞0, from which
all computation begins. For each state, there is exactly one outgoing arrow for each
symbol in the alphabet. These arrows represent the 𝛿 function: given a symbol 𝑥 and
a state 𝑞, 𝛿𝑥 (𝑞) is the state reached by following the arrow labeled by symbol 𝑥 from
state 𝑞. This letter-based 𝛿 function recursively extends to a word-based 𝛿 as follows.
As a base case, 𝛿𝜆 (𝑞) = 𝑞, where 𝜆 represents the empty string. Longer strings are
processed left-to-right: 𝛿𝑥𝑣 (𝑞) = 𝛿𝑣 (𝛿𝑥 (𝑞)). Accepting states are indicated by extra
thick borders; a word 𝑤 is accepted if and only if 𝛿𝑤 (𝑞0) is an accepting state.

Next we use the automaton to construct the syntactic semigroup. The functions
𝛿𝑤 for nonempty words 𝑤 exactly pick out the elements of the syntactic semigroup
(McNaughton & Papert, 1971). That is, 𝑢 ≡ 𝑣 if and only if 𝛿𝑢 and 𝛿𝑣 are the same
function. To find them all, begin with the single-symbol words, and append symbols
one at a time until no new elements are generated. For the stress-penult constraint as
depicted in Figure 1, notice that 𝛿𝜎 maps states 1, 3 and 5 to state 3, and maps states
2 and 4 to state 5. For brevity we write this as 𝛿𝜎 = ⟨3, 5, 3, 5, 3⟩. The first item in
the list is the destination from state 1, the second from state 2, and so on. We also
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Figure 1. The stress-penult constraint.

Table 1. Elements of the syntactic semigroup of stress-penult.

𝑤 𝛿𝑤 𝑤 𝛿𝑤

𝜎 ⟨3, 5, 3, 5, 3⟩ 𝜎𝜎𝜎 ⟨3, 3, 3, 3, 3⟩ = 𝛿𝜎𝜎

�́� ⟨4, 4, 2, 4, 2⟩ 𝜎𝜎�́� ⟨2, 2, 2, 2, 2⟩ = 𝛿𝜎�́�

𝜎𝜎 ⟨3, 3, 3, 3, 3⟩ 𝜎�́�𝜎 ⟨5, 5, 5, 5, 5⟩ = 𝛿 �́�𝜎

𝜎�́� ⟨2, 2, 2, 2, 2⟩ 𝜎�́��́� ⟨4, 4, 4, 4, 4⟩ = 𝛿 �́� �́�

�́�𝜎 ⟨5, 5, 5, 5, 5⟩ �́�𝜎𝜎 ⟨3, 3, 3, 3, 3⟩ = 𝛿𝜎𝜎

�́��́� ⟨4, 4, 4, 4, 4⟩ �́�𝜎�́� ⟨2, 2, 2, 2, 2⟩ = 𝛿𝜎�́�

�́��́�𝜎 ⟨5, 5, 5, 5, 5⟩ = 𝛿 �́�𝜎

�́��́��́� ⟨4, 4, 4, 4, 4⟩ = 𝛿 �́� �́�

Table 2. Concatenation table for stress-penult, brackets omitted.
𝜎 �́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

𝜎 𝜎𝜎 𝜎�́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

�́� �́�𝜎 �́��́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

𝜎𝜎 𝜎𝜎 𝜎�́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

𝜎�́� �́�𝜎 �́��́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

�́�𝜎 𝜎𝜎 𝜎�́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

�́��́� �́�𝜎 �́��́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

have 𝛿 �́� = ⟨4, 4, 2, 4, 2⟩. Table 1 lists all possible words of length up to three and their
associated functions. The three-letter words introduced no new functions. This means
that the syntactic semigroup for the stress-penult constraint has only the six elements
[𝜎], [�́�], [𝜎𝜎], [𝜎�́�], [�́�𝜎] and [�́��́�].

The concatenation of [𝑥] and [𝑦] is [𝑥𝑦]; in terms of these functions, this is
found via the composition 𝛿𝑦 ◦ 𝛿𝑥 . Table 2 depicts the concatenation table where the
element at row [𝑥], column [𝑦], is [𝑥𝑦]. At this point, we have constructed a semigroup
mechanically from a deterministic finite-state automaton and presented its concatenation
table. This algebraic object represents the language’s structure, and the presentation
as a concatenation table will be useful in the next section to demonstrate or refute
membership in various classes.
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6.2. Classification through equations

We can translate logical characterisations of certain classes of formal languages into
algebraic characterisations. This section explains how this works with definite languages,
beginning with 𝑘-definite before abstracting away from 𝑘 to establish definiteness as a
whole. In the 𝑘-definite languages, membership is determined by the final 𝑘 symbols.
For any nonempty strings 𝑥1 . . . 𝑥𝑘 and for any strings 𝑢 and 𝑠, the strings 𝑢𝑥1 . . . 𝑥𝑘
and 𝑢𝑠𝑥1 . . . 𝑥𝑘 share the same final 𝑘 symbols, so they must be treated identically.

Further, adding any suffix 𝑣 preserves the property. That is, 𝑢𝑠𝑥1 . . . 𝑥𝑘𝑣 is accepted
if and only if 𝑢𝑥1 . . . 𝑥𝑘𝑣 is as well. Recall the definition of Myhill-equivalence. What
we have just argued is that in any 𝑘-definite language, for any string 𝑠 and any nonempty
strings 𝑥1 . . . 𝑥𝑘 , we have 𝑠𝑥1 . . . 𝑥𝑘 ≡ 𝑥1 . . . 𝑥𝑘 . In terms of the syntactic semigroup
(which does not include the empty string), that means [𝑠] [𝑥1] . . . [𝑥𝑘] = [𝑠𝑥1 . . . 𝑥𝑘] =
[𝑥1 . . . 𝑥𝑘] for all [𝑠] and [𝑥𝑖]. When the 𝑥𝑖 are individual letters, this shows that each
word is equivalent to its 𝑘-suffix.

This property can determine whether a given regular language is 𝑘-definite, by
exhaustively checking all instantiations of semigroup elements. If any instantiation fails
to satisfy the equation, the language is not 𝑘-definite. Recall the syntactic semigroup
of the stress-penult constraint, shown in Table 2, and consider 𝑘 = 1. Notice that
[𝜎] [𝜎] = [𝜎𝜎] ≠ [𝜎]. This establishes that the stress-penult constraint is not 1-
definite, as for 𝑠 = 𝑥1 = 𝜎, the property that holds for all 1-definite languages does not
hold. But with 𝑘 = 2 we can capture this stress-penult constraint. For every possible
instantiation of 𝑠, 𝑥1 and 𝑥2 as nonempty strings, we find that [𝑠] [𝑥1] [𝑥2] = [𝑥1𝑥2].
Every word is Myhill-equivalent to its own 2-suffix.

We write D𝑘 = ⟦𝑠𝑥1 . . . 𝑥𝑘 = 𝑥1 . . . 𝑥𝑘⟧ to mean that D𝑘 is the class of languages
whose syntactic semigroups satisfy the equation [𝑠] [𝑥1] . . . [𝑥𝑘] = [𝑥1] . . . [𝑥𝑘] for all
possible variable instantiations as nonempty strings. At this point, we have only shown
that this condition is necessary, not that it is sufficient. We still need to show the latter.

Proposition 6.3. A language is 𝑘-definite if and only if it is in ⟦𝑠𝑥1 . . . 𝑥𝑘 = 𝑥1 . . . 𝑥𝑘⟧.

Proof. As argued above, this condition is necessary: all 𝑘-definite languages are in the
class described by the equation. We now show that it is sufficient, that all languages
satisfying the equation are 𝑘-definite. Suppose that 𝐿 satisfies the equation for all
instantiations of its variables. We want to show that if strings 𝑎 and 𝑏 have the same
𝑘-suffix, then either both are in 𝐿 or neither is in 𝐿.

If 𝑎 has length less than 𝑘 , then the 𝑘-suffix of 𝑎 is 𝑎 itself. If this is also the 𝑘-suffix
of 𝑏, then 𝑎 = 𝑏 and they are certainly treated the same.

Otherwise, 𝑎 = 𝑎′𝑥1 . . . 𝑥𝑘 and 𝑏 = 𝑏′𝑥1 . . . 𝑥𝑘 for some strings 𝑎′ and 𝑏′ and for
some symbols 𝑥𝑖 . In particular, when 𝑎′ is nonempty, 𝑠 is instantiated as 𝑎′ and the 𝑥𝑖
are instantiated accordingly, we have that 𝑎′𝑥1 . . . 𝑥𝑘 ≡ 𝑥1 . . . 𝑥𝑘 , which further means
that for all strings 𝑢 and 𝑣, we have that 𝑢𝑎′𝑥1 . . . 𝑥𝑘𝑣 is in 𝐿 if and only if 𝑢𝑥1 . . . 𝑥𝑘𝑣
is in 𝐿. (This holds even if 𝑎′ is the empty string.) In particular, this holds when 𝑢 and
𝑣 are the empty string. That is, 𝑎 = 𝑎′𝑥1 . . . 𝑥𝑘 is accepted if and only if 𝑥1 . . . 𝑥𝑘 is as
well. Similarly, 𝑏 = 𝑏′𝑥1 . . . 𝑥𝑘 is accepted if and only if 𝑥1 . . . 𝑥𝑘 is as well.

Taken together, we have 𝑎 ∈ 𝐿 if and only if 𝑏 ∈ 𝐿 whenever the two share the same
𝑘-suffix. By Definition 2.1 then, 𝐿 is 𝑘-definite. □
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To determine whether a language is 𝑘-definite, construct its syntactic semigroup
and check its concatenation table. If the equation always holds, then it is 𝑘-definite.
Otherwise, there is some instantiation of variables where it does not hold. For example, in
showing that the stress-penult constraint is not 1-definite, we found that [𝜎] [𝜎] ≠ [𝜎],
that 𝜎𝜎 . 𝜎. This is because some context distinguishes the two strings. One finds the
distinguishing context by finding a state for which 𝛿𝜎𝜎 and 𝛿𝜎 differ in their output.
Looking at Table 1, we see that 𝛿𝜎 (4) = 5 while 𝛿𝜎𝜎 (4) = 3. The left side of the
context is then any string leading to state 4; we choose �́� because it is short. The right
side of the context is any string which leads one of the output states to acceptance
and the other to rejection; in this case, our right side can be the empty string, because
state 5 is accepting while state 3 is rejecting. The �́� context distinguishes 𝜎 and 𝜎𝜎

from one another: �́�𝜎 is accepted while �́�𝜎𝜎 is not. This shows algebraically that
stress-penult is 2-definite but not 1-definite, and mechanically derives a pair of words
witnessing this nonmembership.

6.2.1. Definiteness in the limit
For any chosen factor-size 𝑘 , 𝑘-definiteness is queried using the equational charac-
terisation D𝑘 = ⟦𝑠𝑥1 . . . 𝑥𝑘 = 𝑥1 . . . 𝑥𝑘⟧. There are two apparent weaknesses of this
approach. First, as 𝑘 grows, the number of variables to check grows alongside it, and
therefore so too does the number of checks to make. It can take a long time to decide
whether a given pattern is in D1 000 000! Second, we often wish to know whether a
pattern is definite at all, not just whether it is 𝑘-definite for a specific 𝑘 . In that case,
even if we do determine that the pattern is not in D1 000 000, how do we know that it
is not in D1 000 001? This section, following Straubing (1985), presents a two-variable
characterisation of D in general, abstracting away the parameter.

The key to this abstraction comes from idempotent elements. These are the
equivalence classes [𝑥] where [𝑥𝑥] = [𝑥]. For example, in the stress-penult constraint
as depicted in Table 2, the idempotents correspond to strings of length two: [𝜎𝜎],
[𝜎�́�], [�́�𝜎] and [�́��́�].

Definition 6.4. An element 𝑒 of a semigroup is idempotent if and only if 𝑒𝑒 = 𝑒.

Recall that the 𝑘-definite languages D𝑘 are those that satisfy ⟦𝑠𝑥1 . . . 𝑥𝑘 = 𝑥1 . . . 𝑥𝑘⟧.
Specifically, if 𝑠 is instantiated as 𝑥1 . . . 𝑥𝑘 , then [𝑥1 . . . 𝑥𝑘] = [𝑥1 . . . 𝑥𝑘] [𝑥1 . . . 𝑥𝑘].
Because the 𝑥𝑖 were arbitrary, it follows that every string of length at least 𝑘 is idempotent.
Moreover, any suffix-length can be saturated by any idempotent: if [𝑒] = [𝑒] [𝑒], then
a single [𝑒] is duplicable as desired: [𝑒] = [𝑒] [𝑒] = [𝑒] [𝑒] [𝑒] = · · · = [𝑒] . . . [𝑒].
In any 𝑘-definite language then, if we have a string [𝑠] and an idempotent [𝑒], then
[𝑠] [𝑒] = [𝑠] [𝑒] . . . [𝑒] = [𝑒] . . . [𝑒] = [𝑒]. Because definite languages D are those
that are 𝑘-definite for some finite 𝑘 , this characterises definiteness. This essentially
restates a theorem of Straubing (1985).

Unfortunately, the equational system of characterisation does not allow for restrictions
like ‘𝑠 ranges over all elements, but 𝑒 ranges over only idempotents’. All variables must
range over all elements. In arithmetic, there are real numbers, such as

√
2, that cannot

be represented as a fraction of whole numbers, but we are still allowed to talk about
√

2
in a formula. In the same way, there are semigroup elements, such as our idempotents,
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Table 3. Concatenation table for stress-initial, brackets omitted.
𝜎 �́�

𝜎 𝜎 𝜎

�́� �́� �́�

that cannot be represented as a finite concatenation of variables, but we still want to be
able to talk about them. Much like we can add the square root operation to numeric
equations, we can add a new operation to semigroup equations. For every element
[𝑥] of a finite semigroup, the sequence [𝑥], [𝑥𝑥], [𝑥𝑥𝑥], and so on, is guaranteed to
eventually reach a unique idempotent (Almeida, 1995: 72). We denote this idempotent
𝑥𝜔 . In a finite semigroup, this operation maps every element to an idempotent, and in
particular every idempotent maps to itself, so all of them are covered.

Definition 6.5. The unique idempotent power 𝑥𝜔 of 𝑥 is the unique element of
the form 𝑥𝑘 such that 𝑥𝜔𝑥𝜔 = 𝑥𝜔 .

For example, for the stress-penult constraint we might choose 𝑥 = [𝜎]. Then 𝑥 is
not idempotent, because 𝑥 = [𝜎], 𝑥𝑥 = [𝜎𝜎], and 𝜎𝜎 . 𝜎. But 𝑥𝑥 is idempotent,
because 𝜎𝜎𝜎𝜎 ≡ 𝜎𝜎. So [𝜎]𝜔 = [𝜎𝜎]. Similarly, [�́�]𝜔 = [�́��́�]. The other four
elements are idempotent and map to themselves. With this new operation, we restate
the algebraic characterisation of definiteness.

Proposition 6.6. A language is definite if and only if it is in D = ⟦𝑠𝑥𝜔 = 𝑥𝜔⟧.

This equation has a consequence that is easy to verify with a concatenation table.
In the concatenation table of a definite language, idempotents fill their respective
columns. For the stress-penult constraint shown in Table 2, idempotents are the elements
represented by length-two strings such as [𝜎𝜎] and [𝜎�́�]. Each fills its own column;
no other elements are present.

6.2.2. Reverse definiteness and generalised definiteness
The stress-initial constraint is not definite, but it is reverse 1-definite. Its syntactic
semigroup contains two elements: [𝜎] (the class of strings that begin with 𝜎) and [�́�]
(the class of strings that begin with �́�). These elements concatenate as shown in Table 3.

Both elements are idempotent: [𝜎]𝜔 = [𝜎] and [�́�]𝜔 = [�́�]. This is not definite,
as it does not universally satisfy ⟦𝑠𝑥𝜔 = 𝑥𝜔⟧. Say we have 𝑠 = [�́�] and 𝑥 = [𝜎].
Plugging those assignments into the formula yields 𝑠𝑥𝜔 = [�́�] [𝜎]𝜔 = [�́�] [𝜎] = [�́�].
But 𝑥𝜔 = [𝜎]𝜔 = [𝜎], and �́� . 𝜎. These are not the same element, so the equation is
not satisfied.

In the previous section, when we found an instantiation of variables that falsified an
equation, the result was a pair of words that witnessed nonmembership. Recall that when
we showed that the stress-penult constraint was not 1-definite, we found that 𝜎 . 𝜎𝜎.
Then we found that these elements are distinguished in the �́� context. This gave
us the accepted word �́�𝜎 and the rejected word �́�𝜎𝜎 which share the same 1-suffix,
witnessing nonmembership in the 1-definite class. In the same way, in showing that the
stress-initial constraint is not definite at all, we found two elements, [�́�] [𝜎]𝜔 = [�́�]
and [𝜎]𝜔 = [𝜎], which are distinguished by the trivial context. An idempotent like
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[𝜎]𝜔 can be duplicated as many times as desired without changing the value. We can
just as well use [�́�] ( [𝜎]𝜔)𝑘 and ( [𝜎]𝜔)𝑘 for any positive whole number 𝑘 , and this is
what gives us our parameterised words. We have that �́�𝜎𝑘 is accepted but 𝜎𝑘 itself is
rejected, despite sharing the same length-𝑘 suffix 𝜎𝑘 .

Definiteness is based on suffixes. Reverse definiteness is based on prefixes. The
algebraic characterisations for the reverse definite languages are exactly reversed from
those for definite languages.

Proposition 6.7 (Almeida, 1995: 90). A language is reverse 𝑘-definite if and only if it
is in K𝑘 = ⟦𝑥1 . . . 𝑥𝑘𝑠 = 𝑥1 . . . 𝑥𝑘⟧. In the limit, it is reverse definite if and only if it is
in K = ⟦𝑥𝜔𝑠 = 𝑥𝜔⟧.

For a reverse definite language, idempotents fill their respective rows in the con-
catenation table. In a language that is not reverse definite, there will be at least one
idempotent whose row has at least one position that is not that same idempotent. For
example in the stress-penult constraint, depicted in Table 2 on page 27 we have that
[𝜎𝜎] is idempotent but [𝜎𝜎] [�́�] = [𝜎�́�] ≠ [𝜎𝜎], violating the reverse definiteness
condition. The strings 𝜎�́� and 𝜎𝜎 are distinguished in the 𝜎 context, so our mechan-
ically derived parameterised words witnessing nonmembership are the accepted word
(𝜎𝜎)𝑘𝜎�́�𝜎 and the rejected word (𝜎𝜎)𝑘𝜎𝜎𝜎, which share the length-𝑘 prefix 𝜎𝑘 . In
simple examples like this, choosing witnesses by hand is simple enough, but for more
complex classes it is convenient to have this mechanical derivation available.

The generalised definite languages can attend to both prefixes and suffixes at the same
time. It can be shown that these languages are LI = ⟦𝑥𝜔𝑠𝑧𝜔 = 𝑥𝜔𝑧𝜔⟧. When there
is some sufficiently long prefix 𝑥𝜔 and some sufficiently long suffix 𝑧𝜔 , intervening
material 𝑠 is irrelevant.

This equation can be simplified by considering what happens when 𝑧 = 𝑥; this
gives 𝑥𝜔𝑠𝑥𝜔 = 𝑥𝜔𝑥𝜔 = 𝑥𝜔 . That is, any idempotent can be duplicated with arbitrary
material stuffed between the pair. And the reverse holds; when there are two copies
of an idempotent, even when spread apart by intervening content, the entire span can
collapse to a single copy of that idempotent. We show that this two-variable equation
implies that the original three-variable equation holds. Assume that 𝑥𝜔𝑠𝑥𝜔 = 𝑥𝜔 holds
for all instantiations of variables, and consider the element 𝑥𝜔𝑠𝑧𝜔 for a new idempotent
𝑧𝜔 which may not be equal to 𝑥𝜔 . Duplicate the 𝑧𝜔 idempotent and insert 𝑥𝜔 between:
𝑥𝜔𝑠𝑧𝜔 = 𝑥𝜔𝑠𝑧𝜔𝑥𝜔𝑧𝜔 . Then collapse the 𝑥𝜔 pair: 𝑥𝜔𝑠𝑧𝜔𝑥𝜔𝑧𝜔 = 𝑥𝜔𝑧𝜔 . This shows
algebraically that ⟦𝑥𝜔𝑠𝑧𝜔 = 𝑥𝜔𝑧𝜔⟧ and ⟦𝑥𝜔𝑠𝑥𝜔 = 𝑥𝜔⟧ define the same class.

Proposition 6.8 (Straubing, 1985: 60). A language is generalised 𝑘-definite if and only
if it is in LI𝑘 = ⟦𝑥1 . . . 𝑥𝑘𝑠𝑥1 . . . 𝑥𝑘 = 𝑥1 . . . 𝑥𝑘⟧. In the limit, it is generalised definite
if and only if it is in LI = ⟦𝑥𝜔𝑠𝑥𝜔 = 𝑥𝜔⟧.

Finally, the co/finite languages are those that are both definite and reverse definite
simultaneously.

Proposition 6.9. A language is co/finite if and only if it is in N = ⟦𝑠𝑥𝜔 = 𝑥𝜔 = 𝑥𝜔𝑠⟧.

This concludes algebraic characterisation for the basic affix-based classes. The
equational characterisations provide a decision procedure for the classes as well as
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Figure 2. Stress-penult combines with the culminativity constraint. Missing edges in
the result go to a rejecting sink state, not depicted.

Table 4. Concatenation table for culminativity, brackets omitted.
𝜎 �́� �́��́�

𝜎 𝜎 �́� �́��́�

�́� �́� �́��́� �́��́�

�́��́� �́��́� �́��́� �́��́�

counterexample generators in cases of nonmembership. The classes explored in this
section suffice to describe bounded stress patterns without culminativity. In the next
section, we analyse culminativity to explore how tiers interact with our analyses.

6.3. Tiers

This section develops systems of equations for multitier classes. Recall from §2.3 that
culminativity is the constraint that allows stress to appear at most once in a word, and
that this constraint is tier-based co/finite. Its automaton is shown at centre in Figure 2,
from which we derive a syntactic semigroup with three elements: [𝜎], [�́�] and [�́��́�].
These concatenate as shown in Table 4.

This is not generalised definite, and therefore also not (reverse) definite, because
it does not satisfy the equation ⟦𝑥𝜔𝑠𝑥𝜔 = 𝑥𝜔⟧. Specifically, let 𝑥 = 𝑥𝜔 = [𝜎] and
𝑠 = [�́�]. We have 𝑥𝜔𝑠𝑥𝜔 = [�́�] ≠ [𝜎] = 𝑥𝜔 . Notice that 𝜎 never changes state
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Table 5. Concatenation table for culminative stress-penult, brackets omitted and
idempotents shaded.

𝜎 �́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

𝜎 𝜎𝜎 𝜎�́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

�́� �́�𝜎 �́��́� �́��́� �́��́� �́��́� �́��́�

𝜎𝜎 𝜎𝜎 𝜎�́� 𝜎𝜎 𝜎�́� �́�𝜎 �́��́�

𝜎�́� �́�𝜎 �́��́� �́�𝜎 �́��́� �́��́� �́��́�

�́�𝜎 �́��́� �́��́� �́��́� �́��́� �́��́� �́��́�

�́��́� �́��́� �́��́� �́��́� �́��́� �́��́� �́��́�

in culminativity as shown in Figure 2. This is what it means to be neutral, and this
neutrality is what precludes a generalised definite (or, indeed, co/finite) description.
Lambert (2023) characterises tier-based extensions based on this: remove the neutral
element, retain all of the others, and if there are nonneutral 𝑥 and 𝑦 such that 𝑥𝑦 is
neutral, then bring the neutral element back. If the pattern over this potentially reduced
alphabet is in class C, then the original pattern was in TC. For culminativity, the
nonneutral elements are [�́�] and [�́��́�], and no combination of them results in the
neutral [𝜎]. After removing this neutral element, there is just one idempotent, [�́��́�],
which fills both its column and its row; culminativity is in TN and tier-based co/finite.

The culminative stress-penult pattern is the intersection of the stress-penult constraint
with culminativity. An automaton representing this is shown at bottom in Figure 2,
from which we derive the semigroup represented in Table 5. This is not generalised
definite, because [𝜎𝜎] is idempotent, but [𝜎𝜎] [�́�] [𝜎𝜎] = [�́��́�] ≠ [𝜎𝜎]. Further,
no element is neutral, so it is not tier-based generalised definite. But we know from
§2.3.3 that it is multitier definite.

In characterising definite languages, we noticed that idempotent elements expand to
saturate a suffix of any length: no matter what 𝑘 we wish to explore, any idempotent can
expand to have at least 𝑘 symbols, making other content irrelevant. With only a minor
modification, we handle tier-suffixes rather than overall suffixes: the idempotent can still
expand to be as long as needed to fill the suffix, but in doing so it only hides material on
tiers that it occupies. For example in this pattern, no number of copies of [𝜎𝜎] can ever
influence the {�́�}-tier in any way. We want to say that if an idempotent contains a symbol
or string 𝑥, then any preceding instance of 𝑥 is irrelevant. And we can do exactly that.

Proposition 6.10. A language is multitier definite if and only if it is in BTD =

⟦𝑥𝑣(𝑠𝑥𝑡)𝜔 = 𝑣(𝑠𝑥𝑡)𝜔⟧.

Almeida (1995) arrives at the same class from another perspective. Rather than
thinking about phonological tiers and projections, Almeida considers monoids,
semigroups with neutral elements. The insight here is recognising that projecting to
multiple tiers and generalising to monoids are the same thing. With some algebraic
manipulation, we arrive at a simpler characterisation of multitier (reverse) definiteness.
Multitier generalised definiteness brings more complexity, as there are two equations
that must be satisfied rather than just one. Where we use BT to denote the Boolean
closure of tier-based extensions, Almeida uses M to denote generalising to monoids.
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Proposition 6.11 (Almeida, 1995: 212). A language is multitier definite if and only if
it is in BTD = ⟦𝑥𝑦𝑥𝜔 = 𝑦𝑥𝜔⟧.

Proposition 6.12 (Almeida, 1995: 212). A language is multitier reverse definite if and
only if it is in BTK = ⟦𝑥𝜔𝑦𝑥 = 𝑥𝜔𝑦⟧.

Proposition 6.13 (Almeida, 1995: 212). A language is multitier generalised definite
if and only if it is in BTLI = ⟦𝑥𝜔𝑠𝑥𝑡𝑥𝜔 = 𝑥𝜔𝑠𝑡𝑥𝜔; 𝑥𝜔𝑠𝑥𝑧𝑡𝑧𝜔 = 𝑥𝜔𝑠𝑧𝑥𝑡𝑧𝜔⟧. The
semicolon is an ‘and’ operator separating the two equations that must be satisfied.

The culminative stress-penult constraint of Table 5 satisfies the equation for multitier
definite no matter how the variables are instantiated. This proves membership in the
class. However, this is not so for multitier reverse definite. Let 𝑥 = 𝑥𝜔 = [𝜎𝜎] and
𝑦 = [�́�]. Then 𝑥𝜔𝑦𝑥 = [𝜎𝜎] [�́�] [𝜎𝜎] = [�́��́�] while 𝑥𝜔𝑦 = [𝜎𝜎] [�́�] = [𝜎�́�].
These differ, so the pattern is not multitier reverse definite. They are distinguished
by the 𝜎 context, so the mechanically derived parameterised words witnessing
nonmembership are the accepted words (𝜎𝜎)𝑘�́�𝜎 (from 𝑥𝜔𝑦 in this context) and the
rejected words (𝜎𝜎)𝑘�́�𝜎𝜎 (from 𝑥𝜔𝑦𝑥 in this context). Each has the length-𝑘 prefix
𝜎𝑘 on the {𝜎}-tier and on the {𝜎, �́�}-tier, while on the {�́�}-tier the 𝑘-prefix is �́� and
on the empty tier it is the empty string. They have the same 𝑘-prefixes on every tier, so
tier-prefixes cannot make necessary distinctions.

6.4. Summary

The process shown here was used to analyse every pattern in the present work. First, a
description is given in any logical form, perhaps even mixing substrings, subsequences
and tier-substrings all in the same formula. For Uyghur backness harmony in particular,
the pattern was described by Mayer & Major (2018) as a regular expression. In any case,
the logical form is translated directly into a minimal deterministic finite-state automaton.
Using the Language Toolkit of Lambert (2024), we determine class membership by
providing the equations and querying whether they are satisfied. If not, then some
instantiation of the variables provides parameterised words witnessing nonmembership.
Otherwise, the language is in the class and there is some logical expression in the
appropriate form. At the moment, creating this logical expression is not automated, but
we can at least be confident that one can be created, that in trying to create one we are
not wasting time trying to do the impossible.

As a summary, Table 6 presents equational algebraic characterisations for affix-based
classes and their multitier extensions. Per Eilenberg (1976), every set of algebraic
equations defines a class closed under the Boolean operations. Which ones are
linguistically relevant is an open question.

7. Conclusions

This article explored attested phonotactic patterns from a diverse set of languages
across stress, harmony and tone, including two patterns that have proven challenging
in prior computational linguistics literature: Uyghur backness harmony, as studied
by Mayer & Major (2018), and Karanga Shona tone, as studied by Jardine (2020).
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Table 6. Summary of algebraic characterisations.

C Base (C) Multitier (BTC)

Co/finite N ⟦𝑥𝜔𝑦 = 𝑥𝜔 = 𝑦𝑥𝜔⟧ ⟦𝑥𝜔𝑦 = 𝑦𝑥𝜔; 𝑥𝜔𝑥 = 𝑥𝜔⟧
Definite D ⟦𝑦𝑥𝜔 = 𝑥𝜔⟧ ⟦𝑥𝑦𝑥𝜔 = 𝑦𝑥𝜔⟧

Reverse def. K ⟦𝑥𝜔𝑦 = 𝑥𝜔⟧ ⟦𝑥𝜔𝑦𝑥 = 𝑥𝜔𝑦⟧
Generalised def. LI ⟦𝑥𝜔𝑦𝑥𝜔 = 𝑥𝜔⟧ ⟦𝑥𝜔𝑢𝑥𝑣𝑥𝜔 = 𝑥𝜔𝑢𝑣𝑥𝜔;

𝑥𝜔𝑢𝑥𝑧𝑣𝑧𝜔 = 𝑥𝜔𝑢𝑧𝑥𝑣𝑧𝜔⟧

Rather than taking strict locality as a fundamental base class, we began with a simpler
subclass, definiteness, and built up a hierarchy from variations on that form. For each
pattern, we presented one or more propositional formulae representing that pattern to
demonstrate membership in particular subregular classes. Notably, Uyghur backness
harmony is multitier definite, no more complex than a simple bounded stress pattern,
and Karanga Shona tone is multitier generalised definite, no more complex than the
default-to-opposite unbounded stress patterns. Through our analysis, we have provided
evidence for the subregular hypothesis, that there is some principled, learnable subclass
of the regular languages that suffices to capture phonotactics.

Some patterns are most simply described using tiers, others are most simply described
using subsequences, and others are best described in other ways. Those invested in
using a single class for everything might consider the multitier extension of the class of
languages of dot-depth at most one. Dot-depth one generalises subsequences such
that the ordered elements are not individual symbols but entire substrings (Straubing,
1985: 79–80), e.g., ¬𝑎𝑏..𝑐𝑑 forbids words which contain an ‘ab’ substring at any
position that precedes a ‘cd’ substring at any distance. In other words, dot-depth one is
what Rogers & Lambert (2019) call ‘piecewise locally testable’. As this logic naturally
encodes both substrings and subsequences, its multitier extension contains every class
discussed in the present work.

However, no pattern we have encountered requires the full power of multitier dot-
depth one. Further, every Boolean-closed class we have discussed has a corresponding
learning algorithm in the style of Heinz et al. (2012). Create a grammar by collecting
the sets of factors of the appropriate size and type, and accept words whose factor set
is attested. As the grammars produced accept all input words, with sufficient data the
correct algorithm infers the target grammar and others infer a superset. By intersecting
the results, the target language is reached with potentially far less overhead than reaching
up to a common superclass. Moreover, while every class we have discussed has sufficient
power to describe unattested patterns, focusing on simpler classes minimises the extent
of this issue. We focus instead on providing a set of building-blocks from which more
complex classes can be derived as needed.

That said, the algebraic techniques in this work allow us to initially describe a
pattern in any logical form, then mechanically determine whether that pattern lies in any
chosen class, and if not, to mechanically derive a set of parameterised words witnessing
nonmembership. When a new pattern is to be analysed, the analyst need not decide
upon a desired logical form up-front, because these tools inform the researcher where to
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look. When the pattern is known to be in a given class, only then should a description
in the associated form be sought.

Areas of future work are numerous. In order to fully understand the typology
of phonotactic patterns and the psychological pressures that influence it, we should
continue to develop a library of attested patterns, classified in as many ways as possible.
Lifting the analyses to more general graph-based structures may allow us to better
account for tone (Jardine, 2017) and other patterns that arise in morphophonology,
such as stress-attracting morphological suffixes like the ‘-ic’ in English ‘atomic’. We
still seek equational characterisations for two interesting classes with known logical
characterisations: multitier locally testable and multitier dot-depth one. Finally, one
can analyse finite-state functions using the same algebraic techniques as we have used
for analysis of finite-state languages (Lambert, 2022). Understanding the typology of
phonological processes is a key area of ongoing research.

The logical and algebraic techniques described in this work will not account for all
aspects of typology. When two constraints have the same form, such as forbidding voiced
or voiceless obstruents immediately following a nasal (∗ND and ∗NT, respectively),
these techniques will not distinguish them. The broader attestation of the latter then is
likely not due to its form, but due to other factors, including the physical mechanisms
involved in production and perception. Using a different alphabetic representation,
however, may result in the two having different forms. Featural and graph-based
alphabets may be of relevance here.

Supplementary material. The algorithms discussed in this work are implemented in the Language Toolkit
software (Lambert, 2024). Files executing the analyses are available as supplementary material.
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