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To Juris 



Preface 

These are my lecture notes from C8381/481: Automata and Computability 
Theory, a one-semester senior-level course I have taught at Cornell Uni­
versity for many years. I took this course myself in the fall of 1974 as a 
first-year Ph.D. student at Cornell from Juris Hartmanis and have been in 
love with the subject ever since. 

The course is required for computer science majors at Cornell. It exists 
in two forms: C8481, an honors version; and C8381, a somewhat gentler­
paced version. The syllabus is roughly the same, but C8481 goes deeper 
into the subject, covers more material, and is taught at a more abstract 
level. Students are encouraged to start off in one or the other, then switch 
within the first few weeks if they find the other version more suitable to 
their level of mathematical skill. 

The purpose of the course is twofold: to introduce computer science students 
to the rich heritage of models and abstractions that have arisen over the 
years; and to develop the capacity to form abstractions of their own and 
reason in terms of them. 

The course is quite mathematical in flavor, and a certain degree of pre­
vious mathematical experience is essential for survival. 8tudents should 
already be conversant with elementary discrete mathematics, including the 
notions of set, function, relation, product, partial order, equivalence rela­
tion, graph, and tree. They should have a repertoire of basic proof tech­
niques at their disposal, including a thorough understanding of the principle 
of mathematical induction. 



viii Preface 

The material covered in this text is somewhat more than can be covered in a 
one-semester course. It is also a mix of elementary and advanced topics. The 
basic course consists of the lectures numbered 1 through 39. Additionally, 

I have included several supplementary lectures numbered A through K on 

various more advanced topics. These can be included or omitted at the 
instructor's discretion or assigned as extra reading. They appear in roughly 
the order in which they should be covered. 

At first these notes were meant to supplement and not supplant a textbook, 

but over the years they gradually took on a life of their own. In addition 
to the notes, I depended on various texts at one time or another: Cutland 

[30], Harrison [55], Hopcroft and Ullman [60], Lewis and Papadimitriou [79], 

Machtey and Young [81], and Manna [82]. In particular, the Hopcroft and 

Ullman text was the standard textbook for the course for many years, and 

for me it has been an indispensable source of knowledge and insight. All of 
these texts are excellent references, and I recommend them highly. 

In addition to the lectures, I have included 12 homework sets and several 
miscellaneous exercises. Some of the exercises come with hints and/or so­
lutions; these are indicated by the annotations "H" and "S," respectively. 
In addition, I have annotated exercises with zero to three stars to indicate 
relative difficulty. 

I have stuck with the format of my previous textbook [72], in which the 

main text is divided into more or less self-contained lectures, each 4 to 8 

pages. Although this format is rather unusual for a textbook, I have found 
it quite successful. Many readers have commented that they like it because 

it partitions the subject into bite-sized chunks that can be covered more or 
less independently. 

I owe a supreme debt of gratitude to my wife Frances for her constant 
love, support, and superhuman patience, especially during the final throes 
of this project. I am also indebted to the many teachers, colleagues, teach­
ing assistants, and students who over the years have shared the delights 
of this subject with me and from whom I have learned so much. I would 

especially like to thank Rick Aaron, Arash Baratloo, Jim Baumgartner, 
Steve Bloom, Manuel Blum, Amy Briggs, Ashok Chandra, Wilfred Chen, 
Allan Cheng, Francis Chu, Bob Constable, Devdatt Dubhashi, Peter van 

Emde Boas, Allen Emerson, Andras Ferencz, Jeff Foster, Sophia Geor­
giakaki, David Gries, Joe Halpern, David Harel, Basil Hayek, Tom Hen­
zinger, John Hopcroft, Nick Howe, Doug Ierardi, Tibor Janosi, Jim Jen­
nings, Shyam Kapur, Steve Kautz, Nils Klarlund, Peter Kopke, Vladimir 
Kotlyar, Alan Kwan, Georges Lauri, Michael Leventon, Jake Levirne, David 
Liben-Nowell, Yvonne Lo, Steve Mahaney, Nikolay Mateev, Frank Mc­

Sherry, Albert Meyer, Bob Milnikel, Francesmary Modugno, Anil Nerode, 

Damian Niwinski, David de la Nuez, Dan Oberlin, Jens Palsberg, Rohit 



Preface ix 

Parikh, David Pearson, Paul Pedersen, Vaughan Pratt, Zulfikar Ramzan, 
Jon Rosenberger, Jonathan Rynd, Erik Schmidt, Michael Schwartzbach, 
Amitabh Shah, Frederick Smith, Kjartan Stefansson, Colin Stirling, Larry 

Stockmeyer, Aaron Stump, Jurek Tiuryn, Alex Tsow, Moshe Vardi, Igor 

Walukiewicz, Rafael Weinstein, Jim Wen, Dan Wineman, Thomas Yan, 
Paul Zimmons, and many others too numerous to mention. Of course, the 

greatest of these is Juris Hartmanis, whose boundless enthusiasm for the 
subject is the ultimate source of my own. 

I would be most grateful for suggestions and criticism from readers. 

Note added for the third printing. I am indebted to Chris Jeuell for pointing 
out several typographical errors, which have been corrected in this printing. 

Ithaca, New York Dexter C. Kozen 
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Lectures 



Lecture 1 

Course Roadmap and Historical Perspective 

The goal of this course is to understand the foundations of computation. 
We will ask some very basic questions, such as 

• What does it mean for a function to be computable? 

• Are there any noncomputable functions? 

• How does computational power depend on programming constructs? 

These questions may appear simple, but they are not. They have intrigued 
scientists for decades, and the subject is still far from closed. 

In the quest for answers to these questions, we will encounter some fun­
damental and pervasive concepts along the way: state, transition, nonde­
terminism, redu.ction, and u.ndecidability, to name a few. Some of the most 
important achievements in theoretical computer science have been the crys­
tallization of these concepts. They have shown a remarkable persistence, 
even as technology changes from day to day. They are crucial for every 
good computer scientist to know, so that they can be recognized when they 
are encountered, as they surely will be. 

Various models of computation have been proposed over the years, all 
of which capture some fundamental aspect of computation. We will con­

centrate on the following three classes of models, in order of increasing 
power: 
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(i) finite memory: finite automata, regular expressions; 

(ii) finite memory with stack: pushdown automata; 

(iii) unrestricted: 

• Turing machines (Alan Turing [120]), 

• Post systems (Emil Post [99, 100]), 

• It-recursive functions (Kurt GOdel [51), Jacques Herbrand), 

• A-calculus (Alonzo Church [23), Stephen C. Kleene [66]), 

• combinatory logic (Moses Schonfinkel [111), Haskell B. Curry 
[29]). 

These systems were developed long before computers existed. Nowa­

days one could add PASCAL, FORTRAN, BASIC, LISP, SCHEME, 

C++, JAVA, or any sufficiently powerful programming language to 

this list. 

In parallel with and independent of the development of these models of 
computation, the linguist Noam Chomsky attempted to formalize the no­
tion of grammar and language. This effort resulted in the definition of the 
Chomsky hierarchy, a hierarchy of language classes defined by grammars of 
increasing complexity: 

(i) right-linear grammars; 

(ii) context-free grammars; 

(iii) unrestricted grammars. 

Although grammars and machine models appear quite different on a super­
ficiallevel, the process of parsing a sentence in a language bears a strong 

resemblance to computation. Upon closer inspection, it turns out that each 

of the grammar types (i), (il), and (iii) are equivalent in computational 

power to the machine models (i), (il), and (iii) above, respectively. There 
is even a fourth natural class called the context-sensitive grammars and 

languages, which fits in between (ii) and (iii) and which corresponds to a 
certain natural class of machine models called linear bounded automata. 

It is quite surprising that a naturally defined hierarchy in one field should 
correspond so closely to a naturally defined hierarchy in a completely dif­
ferent field. Could this be mere coincidence? 



Course Roadmap and Historical Perspective 5 

Abstraction 

The machine models mentioned above were first identified in the same way 
that theories in physics or any other scientific discipline arise. When study­
ing real-world phenomena, one becomes aware of recurring patterns and 
themes that appear in various guises. These guises may differ substantially 
on a superficial level but may bear enough resemblance to one another to 
suggest that there are common underlying principles at work. When this 
happens, it makes sense to try to construct an abstract model that cap­
tures these underlying principles in the simplest possible way, devoid of the 
unimportant details of each particular manifestation. This is the process 
of abstraction. Abstraction is the essence of scientific progress, because it 
focuses attention on the important principles, unencumbered by irrelevant 

details. 

Perhaps the most striking example of this phenomenon we will see is the 
formalization of the concept of effective compu.tability. This quest started 
around the beginning of the twentieth century with the development of the 
formalist school of mathematics, championed by the philosopher Bertrand 
Russell and the mathematician David Hilbert. They wanted to reduce all 
of mathematics to the formal manipulation of symbols. 

Of course, the formal manipulation of symbols is a form of computation, 
although there were no computers around at the time. However, there cer­
tainly existed an awareness of computation and algorithms. Mathemati­
cians, logicians, and philosophers knew a constructive method when they 
saw it. There followed several attempts to come to grips with the gen­

eral notion of effective compu.tability. Several definitions emerged (Turing 
machines, Post systems, etc.), each with its own peculiarities and differing 
radically in appearance. However, it turned out that as different as all these 
formalisms appeared to be, they could all simulate one another, thus they 
were all computationally equivalent. 

The formalist program was eventually shattered by Kurt GOdel's incom­
pleteness theorem, which states that no matter how strong a deductive 
system for number theory you take, it will always be possible to construct 
simple statements that are true but unprovable. This theorem is widely 
regarded as one of the crowning intellectual achievements of twentieth cen­
tury mathematics. It is essentially a statement about computability, and 
we will be in a position to give a full account of it by the end of the course. 

The process of abstraction is inherently mathematical. It involves build­

ing models that capture observed behavior in the simplest possible way. 
Although we will consider plenty of concrete examples and applications of 
these models, we will work primarily in terms of their mathematical prop­
erties. We will always be as explicit as possible about these properties. 
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We will usually start with definitions, then subsequently reason purely in 
terms of those definitions. For some, this will undoubtedly be a new way of 
thinking, but it is a skill that is worth cultivating. 

Keep in mind that a large intellectual effort often goes into coming up with 

just the right definition or model that captures the essence of the principle 

at hand with the least amount of extraneous baggage. After the fact, the 

reader often sees only the finished product and is not exposed to all the 

misguided false attempts and pitfalls that were encountered along the way. 

Remember that it took many years of intellectual struggle to arrive at the 
theory as it exists today. This is not to say that the book is closed-far 
from it! 



Lecture 2 

Strings and Sets 

Decision Problems Versus Functions 

A decision problem is a function with a one-bit output: "yes" or "no." To 
specify a decision problem, one must specify 

• the set A of possible inputs, and 

• the subset B ~ A of ''yes'' instances. 

For example, to decide if a given graph is connected, the set of possible 
inputs is the set of all (encodings of) graphs, and the "yes" instances are 
the connected graphs. To decide if a given number is a prime, the set of 
possible inputs is the set of all (binary encodings of) integers, and the "yes" 
instances are the primes. 

In this course we will mostly consider decision problems as opposed to 

functions with more general outputs. We do this for mathematical simplicity 
and because the behavior we want to study is already present at this level. 

Strings 

Now to our first abstraction: we will always take the set of possible inputs to 

a decision problem to be the set of finite-length strings over some fixed finite 
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Definition 2.1 

alphabet (formal definitions below). We do this for uniformity and simplic­
ity. Other types of data-graphs, the natural numbers N = {O, 1,2, ... }, 
trees, even programs---can be encoded naturally as strings. By making 
this abstraction, we have to deal with only one data type and a few basic 
operations. 

• An alphabet is any finite set. For example, we might use the alpha­
bet {O, 1, 2, ... ,9} if we are talking about decimal numbers; the set 

of all ASCII characters if talking about text; {O, I} if talking about 

bit strings. The only restriction is that the alphabet be finite. When 

speaking about an arbitrary finite alphabet abstractly, we usually de­

note it by the Greek letter E. We call elements of E letters or symbols 
and denote them by a, b, c, .... We usually do not care at all about 
the nature of the elements of E, only that there are finitely many of 

them. 

• A string over E is any finite-length sequence of elements of E. Example: 
if E = {a, b}, then aabab is a string over E of length five. We use 
x, y, z, ... to refer to strings. 

• The length of a string x is the number of symbols in x. The length of 

x is denoted Ix!- For example, laababl = 5. 

• There is a unique string of length 0 over E called the null string or 

empty string and denoted by e (Greek epsilon, not to be confused with 
the symbol for set containment E). Thus lei = O. 

• We write an for a string of a's of length n. For example, a5 = aaaaa, 
a1 = a, and aD = e. Formally, an is defined inductively: 

D def 
a = e, 

n+l def n 
a = a a. 

• The set of all strings over alphabet E is denoted E*. For example, 

{a,b}* = {e,a,b,aa,ab,ba,bb,aaa,aab, ... }, 

{a}* = {e,a,aa,aaa, aaaa, ... } 

= {an I n ~ O}. 

By convention, we take 

0* ~ {e}, 

o 

where 0 denotes the empty set. This may seem a bit strange, but there is 
good mathematical justification for it, which will become apparent shortly. 
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Strings and Sets 9 

If ~ is nonempty, then ~* is an infinite set of finite-length strings. Be careful 

not to confuse strings and sets. We won't see any infinite strings until much 

later in the course. Here are some differences between strings and sets: 

• {a,b} = {b,a}, but ab i= baj 

• {a,a,b} = {a,b},butaabi=ab. 

Note also that 0, {f}, and f are three different things. The first is a set 
with no elementsj the second is a set with one element, namely fj and the 

last is a string, not a set. 

Operations on Strings 

The operation of concatenation takes two strings x and y and makes a new 

string xy by putting them together end to end. The string xy is called the 

concatenation of x and y. Note that xy and yx are different in general. Here 

are some useful properties of concatenation. 

• concatenation is associative: (xy)z = x(yz)j 

• the null string f is an identity for concatenation: fX = Xf = Xj 

• Ixyl = Ixl + Iyl· 

A special case of the last equation is aman = am +n for all m, n ~ O. 

A monoid is any algebraic structure consisting of a set with an associative 
binary operation and an identity for that operation. By our definitions 
above, the set ~* with string concatenation as the binary operation and f 
as the identity is a monoid. We will see some other examples later in the 
course. 

• We write xn for the string obtained by concatenating n copies of x. 
For example, (aab)5 = aabaabaabaabaab, (aabF = aab, and (aab)O = f. 
Formally, xn is defined inductively: 

° def 
X = f, 

Xn+l ~f XnX. 

• If a e E and x e ~*, we write #a(x) for the number of a's in x. For 
example, #0(001101001000) = 8 and #1(00000) = O. 

• A prefiz of a string x is an initial substring of Xj that is, a string y for 
which there exists a string z such that x = yz. For example, abaab is 
a prefix of abaababa. The null string is a prefix of every string, and 
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every string is a prefix of itself. A prefix y of x is a proper prefix of x 
if y # E and y # x. 0 

Operations on Sets 

We usually denote sets of strings (subsets of I:*) by A, B, C, .... The 
cardinality (number of elements) of set A is denoted IAI. The empty set 0 

is the unique set of cardinality O. 

Let's define some useful operations on sets. Some of these you have probably 

seen before, some probably not. 

• Set union: 

AU B ~f {x I x e A or x e B}. 

In other words, x is in the union of A and B iffl either x is in A or x 
is in B. For example, {a,ab} U {ab,aab} = {a,ab,aab}. 

• Set intersection: 

An B ~ {x I x e A and x e B}. 

In other words, x is in the intersection of A and B iff x is in both A 
and B. For example, {a,ab} n {ab,aab} = {ab}. 

• Complement in I:*: 

..... A ~ {x e I:* I x ¢ A}. 

For example, 

..... {strings in I:* of even length} = {strings in I:* of odd length}. 

Unlike U and n, the definition of ..... depends on I:*. The set ..... A is 
sometimes denoted I:* - A to emphasize this dependence. 

• Set concatenation: 

AB d,g {xy I x e A and y e B}. 

In other words, z is in AB iff z can be written as a concatenation 

of two strings x and y, where x e A and y e B. For example, 

{a, ab}{ b, ba} = {ab, aba, abb, abba}. When forming a set concatena­
tion, you include all strings that can be obtained in this way. Note that 

AB and BA are different sets in general. For example, {b, ba}{ a, ab} = 
{ba, bab, baa, baab}. 

1 iff = if and only if. 



Strings and Sets 11 

• The powers An of a set A are defined inductively as follows: 

AO ~f {€}, 

An+l ~f AAn. 

In other words, An is formed by concatenating n copies of A together. 

Taking AO = {€} makes the property Am+n = AmAn hold, even when 

one of m or n is O. For example, 

{ab,aab}O = {€}, 

{ab,aab}l = {ab,aab}, 

{ab,aab}2 = {abab,abaab,aabab,aabaab}, 

{ab,aab}3 = {ababab,ababaab,abaabab,aababab, 
abaabaab,aababaab,aabaabab,aabaabaab}. 

Also, 

{a,b}n = {X.E {a,b}* Ilxl = n} 

= {strings over {a, b} oflength n}. 

• The asterate A * of a set A is the union of all finite powers of A: 

A*~ U An 
n;::O 

= AO U Al U A2 U A3 U .... 

Another way to say this is 

A * = {Xl X2 ... Xn I n ~ 0 and Xi E A, 1 ::; i ::; n}. 

Note that n can be OJ thus the null string € is in A * for any A. 

We previously defined I;* to be the set of all finite-length strings over 

the alphabet I;. This is exactly the asterate of the set I;, so our notation 

is consistent. 

• We define A + to be the union of all nonzero powers of A: 

A+ ~f AA* = U An. 

n;::l 

Here are some useful properties of these set operations: 

• Set union, set intersection, and set concatenation are associative: 

(A U B) U C = Au (B U C), 

(AnB) nc = An (B nc), 
(AB)C = A(BC). 
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• Set union and set intersection are commutative: 

AUB=BUA, 

AnB=BnA. 

As noted above, set concatenation is not. 

• The null set 0 is an identity for U: 

AU0= 0UA=A. 

• The set {f} is an identity for set concatenation: 

• The null set 0 is an annihilator for set concatenation: 

A0=0A=0. 

• Set union and intersection distribute over each other: 

Au (Bn G) = (AUB) n (AUG), 

An (B U G) = (AnB) U (An G). 

• Set concatenation distributes over union: 

A(B U G) = AB U AG, 

(AUB)G=AGUBG. 

In fact, concatenation distributes over the union of any family of sets. 
If {B. liE I} is any family of sets indexed by another set I, finite or 
infinite, then 

A(U BI ) = U AB., 
lEI 'EI 

(U B.)A = U B.A. 
iEI 'EI 

Here UiEI Bi denotes the union of all the sets Bi for i E I. An element 
x is in this union iff it is in one of the Bi. 

Set concatenation does not distribute over intersection. For example, 
take A = {a,ab}, B = {b}, G = {f}, and see what you get when you 
compute A(B n G) and AB nAG. 

• The De Morgan laws hold: 

",(AUB) = ",An"'B, 

",(AnB) = "'Au"'B. 
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• The asterate operation * satisfies the following properties: 

A*A*=A*, 

A** = A*, 

A * = {f} U AA * = {f} U A * A, 

0* = {fl. 
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Finite Automata and Regular Sets 

States and Transitions 

Intuitively, a state of a system is an instantaneous description of that sys­
tem, a snapshot of reality frozen in time. A state gives all relevant infor­
mation necessary to determine how the system can evolve from that point 
on. Transitions are changes of state; they can happen spontaneously or in 
response to external inputs. 

We assume that state transitions are instantaneous. This is a mathematical 

abstraction. In reality, transitions usually take time. Clock cycles in digi­

tal computers enforce this abstraction and allow us to treat computers as 
digital instead of analog devices. 

There are innumerable examples of state transition systems in the real 
world: electronic circuits, digital watches, elevators, Rubik's cube (54!/9!6 
states and 12 transitions, not counting peeling the little sticky squares off), 
the game of Life (211 states on a screen with k cells, one transition). 

A system that consists of only finitely many states and transitions among 
them is called a finite-state transition system. We model these abstractly 
by a mathematical model called a finite automaton. 
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Finite Automata 

Formally, a deterministic finite automaton (DFA) is a structure 

M= (Q,~, 6, s, F), 

where 

• Q is a finite set; elements of Q are called statesj 

• ~ is a finite set, the input alphabet; 

• 6 : Q x ~ -+ Q is the transition function (recall that Q x ~ is the set 
of ordered pairs {( q, a) I q E Q and a E ~}). Intuitively, 6 is a function 

that tells which state to move to in response to an input: if M is in 

state q and sees input a, it moves to state 6(q, a). 

• SEQ is the start statej 

• F is a subset of Qj elements of F are called accept or final states. 

When you specify a finite automaton, you must give all five parts. Automata 
may be specified in this set-theoretic form or as a transition diagram or table 
as in the following example. 

Example 3.1 Here is an example of a simple four-state finite automaton. We'll take the 

set of states to be {O, 1,2, 3}j the input alphabet to be {a, b}j the start state 

to be OJ the set of accept states to be {3}j and the transition function to be 

6(0, a) = 1, 

6(I,a) = 2, 

o(2,a) = 6(3,a) = 3, 

6(q, b) = q, q E {O, 1,2, 3}. 

All parts of the automaton are completely specified. We can also specify 
the automaton by means of a table 

a b 

~ fITl ~ 
2 3 2 

3F 3 3 

or transition diagram 

The final states are indicated by an F in the table and by a circle in the 
transition diagram. In both, the start state is indicated by -+. The states in 
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the transition diagram from left to right correspond to the states 0, 1,2,3 
in the table. One advantage of transition diagrams is that you don't have 
to name the states. 0 

Another convenient representation of finite automata is transition matrices; 

see Miscellaneous Exercise 7. 

Informally, here is how a finite automaton operates. An input can be any 
string x e E*. Put a pebble down on the start state s. Scan the input string 
x from left to right, one symbol at a time, moving the pebble according to 
6: if the next symbol of x is b and the pebble is on state q, move the pebble 
to 6(q, b). When we come to the end of the input string, the pebble is on 
some state p. The string x is said to be accepted by the machine M if p e F 
and rejected if p rt F. There is no formal mechanism for scanning or moving 

the pebble; these are just intuitive devices. 

For example, the automaton of Example 3.1, beginning in its start state 0, 
will be in state 3 after scanning the input string baabbaab, so that string 
is acceptedj however, it will be in state 2 after scanning the string babbbab, 

so that string is rejected. For this automaton, a moment's thought reveals 
that when scanning any input string, the automaton will be in state 0 if it 
has seen no a's, state 1 if it has seen one a, state 2 if it has seen two a's, 
and state 3 if it has seen three or more a's. 

This is how we do formally what we just described informally above. We 

first define a function 

6: Q x E* -+ Q 

from 6 by induction on the length of x: 

~ def 
O(q,f) = q, 

- def-
o(q,xa) = O(O(q,x),a). 

(3.1) 

(3.2) 

The function 6 maps a state q and a string x to a new state 6(q,x). Intu­

itively, 6 is the multistep version of o. The state 6(q, x) is the state Mends 

up in when started in state q and fed the input x, moving in response to 

each symbol of x according to o. Equation (3.1) is the basis of the inductive 

definition; it says that the machine doesn't move anywhere under the null 
input. Equation (3.2) is the induction stepj it says that the state reachable 
from q under input string xa is the state reachable from p under input 
symbol a, where p is the state reachable from q under input string x. 

Note that the second argument to 6 can be any string in E*, not just a 
string of length one as with OJ but 6 and 0 agree on strings of length one: 

6(q, a) = 6(q, fa) since a = fa 

= 0(6(q, f), a) by (3.2), taking x = f 
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= 8(q,a) by (3.1). 

Formally, a string x is said to be accepted by the automaton M if 

6(s, x) E F 

and rejected by the automaton M if 

6(s, x) ¢ F, 

where s is the start state and F is the set of accept states. This captures 
formally the intuitive notion of acceptance and rejection described above. 

The set or language accepted by M is the set of all strings accepted by M 
and is denoted L(M): 

def * ~ 
L(M) = {xE~ 18(s,X)EF}. 

A subset A ~ ~* is said to be regular if A = L(M) for some finite au­
tomaton M. The set of strings accepted by the automaton of Example 3.1 
is the set 

{x E {a, b} * I x contains at least three a's}, 

so this is a regular set. 

Example 3.2 Here is another example of a regular set and a finite automaton accepting 
it. Consider the set 

{xaaay I x,y E {a,b}*} 

= {x E {a,b}* I x contains a substring ofthree consecutive a's}. 

For example, baabaaaab is in the set and should be accepted, whereas 
babbabab is not in the set and should be rejected (because the three a's 
are not consecutive). Here is an automaton for this set, specified in both 
table and transition diagram form: 

a b 

~ fITl ~ 
2 3 0 

3F 3 3 

o 
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The idea here is that you use the states to count the number of consecutive 
a's you have seen. If you haven't seen three a's in a row and you see a b, you 

must go back to the start. Once you have seen three a's in a row, though, 
you stay in the accept state. 
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More on Regular Sets 

Here is another example of a regular set that is a little harder than the 
example given last time. Consider the set 

{x E {O, 1} * I x represents a multiple of three in binary} (4.1) 

(leading zeros permitted, f represents the number 0). For example, the 
following binary strings represent multiples of three and should be accepted: 

Binary 
o 

11 

Decimal equivalent 
o 

110 

1001 
1100 

1111 

10010 

3 
6 

9 

12 
15 
18 

Strings not representing multiples of three should be rejected. Here is an 
automaton accepting the set (4.1): 

o 1 

-+ OF 1fT1 
1 2 0 
2 1 2 
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The states 0, 1, 2 are written in boldface to distinguish them from the 
input symbols 0, 1. 

° d_1_x __ O_yo 1 
1 ° 

In the diagram, the states are 0, 1, 2 from left to right. We prove that this 
automaton accepts exactly the set (4.1) by induction on the length of the 
input string. First we associate a meaning to each state: 

if the number represented by then the machine 
the string scanned so far is l will be in state 

° mod 3 ° 
1 mod 3 1 
2 mod 3 2 

Let #x denote the number represented by string x in binary. For example, 

#e=O, 

#0=0, 

#11 =3, 

#100 = 4, 

and so on. Formally, we want to show that for any string x in {O, 1 } * , 

6(0, x) = ° iff #x == ° mod 3, 

6(0, x) = 1 iff #x == 1 mod 3, 

6(0, x) = 2 iff #x == 2 mod 3, 

or in short, 

6(0, x) = #x mod 3. 

(4.2) 

(4.3) 

This will be our induction hypothesis. The final result we want, namely 
(4.2), is a weaker consequence of (4.3), but we need the more general 
statement (4.3) for the induction hypothesis. 

We have by elementary number theory that 

#(xO) = 2(#x) + 0, 

1 Here a mod n denotes the remainder when dividing a by n using ordinary integer division. We 
also write a == b mod n (read: a is congruent to b modulo n) to mean that a and b have the same 
remainder when divided by nj in other words, that n divides b - a. Note that a == b mod n should be 
parsed (a == b) mod n, and that in general a == b mod n and a = b mod n mean different things. For 
example, 7 == 2 mod 5 but not 7 = 2 mod 5. 
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#(x1) = 2(#x) + 1, 

or in short, 

#(xc) = 2(#x) + c (4.4) 

for c E {O,1}. From the machine above, we see that for any state q E 
{O, 1, 2} and input symbol c E {O, 1}, 

6(q, c) = (2q+c) mod 3. (4.5) 

This can be verified by checking all six cases corresponding to possible 

choices of q and c. (In fact, (4.5) would have been a great way to define the 
transition function formally-then we wouldn't have had to prove it!) Now 

we use the inductive definition of 8 to show (4.3) by induction on Ixl. 

Basis 

For x = 10, 

8(0,10)=0 

=#10 

by definition of 6 

since #€ = 0 

= #€ mod 3. 

Induction step 

Assuming that (4.3) is true for x E {O, 1} *, we show that it is true for xc, 
where c E {O,1}. 

8(0, xc) = 6(8(0,x),c) 

= 6(#x mod 3,c) 

= (2(#x mod 3) + c) mod 3 

= (2(#x) + c) mod 3 

= #xcmod3 

definition of 8 
induction hypothesis 

by (4.5) 

elementary number theory 

by (4.4). 

Note that each step has its reason. We used the definition of 6, which is 

specific to this automaton; the definition of 8 from 6, which is the same for 
all automata; and elementary properties of numbers and strings. 

Some Closure Properties of Regular Sets 

For A, B ~ r;*, recall the following definitions: 

AU B = {x I x E A or x E B} 

An B = {x I x E A and x E B} 

"'A = {x E r;* I x (j. A} 

union 

intersection 

complement 
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AB = {xy I X E A and y E B} concatenation 

A* = {XIX2'" Xn In;::: 0 and Xi E A, 1 :$ i :$ n} 

= AO U Al U A2 U Aa U··· asterate. 

Do not confuse set concatenation with string concatenation. Sometimes'" A 
is written 1:* - A. 

We show below that if A and B are regular, then so are Au B, An B, and 

'" A. We'll show later that AB and A * are also regular. 

The Product Construction 

Assume that A and B are regular. Then there are automata 

Ml = (Ql> 1:,151,81, Fl)' 

M2 = (Q2, 1:, 152 , 82, F2) 

with L(Ml) = A and L(M2) = B. To show that An B is regular, we will 
build an automaton Ma such that L(Ma) = An B. 

Intuitively, Ma will have the states of Ml and M2 encoded somehow in its 
states. On input x E 1:*, it will simulate Ml and M2 simultaneously on X, 
accepting iff both Ml and M2 would accept. Think about putting a pebble 

down on the start state of Ml and another on the start state of M2 • As the 
input symbols come in, move both pebbles according to the rules of each 
machine. Accept if both pebbles occupy accept states in their respective 

machines when the end of the input string is reached. 

Formally, let 

M3 = (Q3, ~, 153, 83, F3), 

where 

Q3 = Ql X Q2 = {(p,q) I p E Ql and q E Q2}, 

F3 = Fl X F2 = {(p,q) I p E Fl and q E F2}, 

83 = (81) 82), 

and let 

ba : Q3 x 1: -+ Qa 

be the transition function defined by 

b3((p,q),a) = (b1(p,a),b2(q,a)). 

The automaton Ma is called the product of Ml and M2. A state (p,q) of 
Ma encodes a configuration of pebbles on Ml and M2. 



More on Regular Sets 23 

Recall the inductive definition (3.1) and (3.2) of the extended transition 

function 6 from Lecture 2. Applied to 03, this gives 

6s(p,q),e) = (p,q), 

63«(p,q),xa) = oa(6a«p,q),x),a). 

Lemma 4.1 For all x e r:*, 

63«p,q),x) = (61(P,x),62(q,x)). 

Proof. By induction on Ixl. 

Basis 

For x = e, 

63«(P, q), e) = (P, q) = (~(P, e).62(q, e)). 

Induction 8tep 

Assuming the lemma holds for x e r:*, we show that it holds for xa, where 

a e r:. 

63«(p,q),xa) 

= os(6s«(P,q),x),a) 

= Os «61 (p, X).62(q, x)), a) 

= (01 (61(P, x), a), 02 (62(q, x), a)) 

= (61(P,xa).62(q,xa)) 

Theorem 4.2 L(Ms) = L(Ml) n L(M2). 

Proof. For all x e r:*, 

x E L(Ms) 

definition of 6s 

induction hypothesis 

definition of oa 
definition of 61 and 62. 

¢:::} 63 ( 8S, x) E Fs definition of acceptance 

¢:::} 63«81,82),X) e Fl x F2 definition of 83 and F3 

¢:::} (61 (81, X),62(82, x)) E Fl x F2 Lemma 4.1 

¢:::} 61 (81. x) E Fl and 62(82,X) E F2 definition of set product 

¢:::} x e L(Ml) and x e L(M2) definition of acceptance 

o 

¢:::} x E L(Ml) n L(M2 ) definition of intersection. 0 

To show that regular sets are closed under complement, take a determin­
istic automaton accepting A and interchange the set of accept and nonac­

cept states. The resulting automaton accepts exactly when the original 
automaton would reject, so the set accepted is N A. 
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Once we know regular sets are closed under n and "", it follows that they 
are closed under U by one of the De Morgan laws: 

AUB = ""(""An ""B). 

If you use the constructions for nand"" given above, this gives an automa­
ton for AU B that looks exactly like the product automaton for An B, 
except that the accept states are 

F3 = {(p,q) I p e FI or q e F2} = (FI x Q2) U (QI x F2) 

instead of FI x F2• 

Historical Notes 

Finite-state transition systems were introduced by McCulloch and Pitts 

in 1943 [84]. Deterministic finite automata in the form presented here were 
studied by Kleene [70]. Our notation is borrowed from Hopcroft and Ullman 
[60]. 
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Nondeterministic Finite Automata 

Nondeterm i n ism 

Nondetermini8m is an important abstraction in computer science. It refers 
to situations in which the next state of a computation is not uniquely 
determined by the current state. Nondeterminism arises in realUfe when 
there is incomplete information about the state or when there are external 
forces at work that can affect the course of a computation. For example, 
the behavior of a process in a distributed system might depend on messages 
from other processes that arrive at unpredictable times with unpredictable 
contents. 

Nondeterminism is also important in the design of efficient algorithms. 
There are many instances of important combinatorial problems with ef­
ficient nondeterministic solutions but no known efficient deterministic so­

lution. The famous P = NP problem-whether all problems solvable in 
nondeterministic polynomial time can be solved in deterministic polyno­
mial time-is a major open problem in computer science and arguably one 
of the most important open problems in all of mathematics. 

In nondeterministic situations, we may not know how a computation will 
evolve, but we may have some idea of the range of possibilities. This is 
modeled formally by allowing automata to have multiple-valued transition 
functions. 
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In this lecture and the next, we will show how nondeterminism is incor­
porated naturally in the context of finite automata. One might think that 
adding nondeterminism might increase expressive power, but in fact for 
finite automata it does not: in terms of the sets accepted, nondeterminis­
tic finite automata are no more powerful than deterministic ones. In other 
words, for every nondeterministic finite automaton, there is a deterministic 
one accepting the same set. However, nondeterministic machines may be 
exponentially more succinct. 

Nondeterministic Finite Automata 

A nondeterministic finite automaton (NFA) is one for which the next state 
is not necessarily uniquely determined by the current state and input sym­

bol. In a deterministic automaton, there is exactly one start state and 
exactly one transition out of each state for each symbol in ~. In a nonde­
terministic automaton, there may be one, more than one, or zero. The set 
of possible next states that the automaton may move to from a particular 
state q in response to a particular input symbol a is part of the specifica­
tion of the automaton, but there is no mechanism for deciding which one 
will actually be taken. Formally, we won't be able to represent this with 
a function 6 : Q x ~ -+ Q anymore; we will have to use something more 
general. Also, a nondeterministic automaton may have many start states 
and may start in anyone of them. 

Informally, a nondeterministic automaton is said to accept its input x if it 
is possible to start in some start state and scan x, moving according to the 
transition rules and making choices along the way whenever the next state 
is not uniquely determined, such that when the end of x is reached, the 
machine is in an accept state. Because the start state is not determined 
and because of the choices along the way, there may be several possible 
paths through the automaton in response to the input x; some may lead 
to accept states while others may lead to reject states. The automaton is 
said to accept x if at least one computation path on input x starting from 
at least one start state leads to an accept state. The automaton is said to 
reject x if no computation path on input x from any start state leads to 
an accept state. Another way of saying this is that x is accepted iff there 
exists a path with label x from some start state to some accept state. Again, 
there is no mechanism for determining which state to start in or which of 
the possible next moves to take in response to an input symbol. 

It is helpful to think about this process in terms of guessing and verifying. 

On a given input, imagine the automaton guessing a successful computation 
or proof that the input is a "yes" instance of the decision problem, then 
verifying that its guess was indeed correct. 
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For example, consider the set 

A = {x E {0,1}* I the fifth symbol from the right is I}. 

Thus 11010010 E A but 11000010 rt A. 

Here is a six-state nondeterministic automaton accepting A: 

o 1 

(2 1 0, 1 0, 1 0, 1 0, 1 t::\ - ~. .. ... ... .~ 

There is only one start state, namely the leftmost, and only one accept 
state, namely the rightmost. The automaton is not deterministic, because 
there are two transitions from the leftmost state labeled 1 (one back to 
itself and one to the second state) and no transitions from the rightmost 
state. This automaton accepts the set A, because for any string x whose 
fifth symbol from the right is 1, there exists a sequence of legal transitions 
leading from the start state to the accept state (it moves from the first state 
to the second when it scans the fifth symbol from the right); and for any 
string x whose fifth symbol from the right is 0, there is no possible sequence 
of legal transitions leading to the accept state, no matter what choices it 
makes (recall that to accept, the machine must be in an accept state when 
the end of the input string is reached). 

Intuitively, we can think of the machine in the leftmost state as guessing, 
every time it sees a 1, whether that 1 is the fifth letter from the right. It 
might be and it might not be-the machine doesn't know, and there is no 
way for it to tell at that point. If it guesses that it is not, then it goes 
around the loop again. If it guesses that it is, then it commits to that guess 
by moving to the second state, an irrevocable decision. Now it must verify 

that its guess was correct; this is the purpose of the tail of the automaton 
leading to the accept state. If the 1 that it guessed was fifth from the right 
really is fifth from the right, then the machine will be in its accept state 
exactly when it comes to the end of the input string, therefore it will accept 
the string. If not, then maybe the symbol fifth from the right is a 0, and 
no guess would have worked; or maybe the symbol fifth from the right was 
a 1, but the machine just guessed the wrong 1. 

Note, however, that for any string x E A (that is, for any string with a 

1 fifth from the right), there is a lucky guess that leads to acceptance; 
whereas for any string x rt A (that is, for any string with a 0 fifth from the 
right), no guess can possibly lead to acceptance, no matter how lucky the 
automaton is. 

In general, to show that a nondeterministic machine accepts a set B, we 
must argue that for any string x E B, there is a lucky sequence of guesses 
that leads from a start state to an accept state when the end of x is reached; 
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but for any string x ¢ B, no sequence of guesses leads to an accept state 

when the end of x is reached, no matter how lucky the automaton is. 

Keep in mind that this process of guessing and verifying is just an intuitive 

aid. The formal definition of nondeterministic acceptance will be given in 

Lecture 6. 

There does exist a deterministic automaton accepting the set A, but any 

such automaton must have at least 25 = 32 states, since a deterministic 
machine essentially has to remember the last five symbols seen. 

The Subset Construction 

We will prove a rather remarkable fact: in terms of the sets accepted, nonde­

terministic finite automata are no more powerful than deterministic ones. In 

other words, for every nondeterministic finite automaton, there is a deter­

ministic one accepting the same set. The deterministic automaton, however, 

may require more states. 

This theorem can be proved using the subset construction. Here is the intu­
itive idea; we will give a formal treatment in Lecture 6. Given a nondeter­
ministic machine N, think of putting pebbles on the states to keep track of 

all the states N could possibly be in after scanning a prefix of the input. We 

start with pebbles on all the start states of the nondeterministic machine. 
Say after scanning some prefix y of the input string, we have pebbles on 
some set P of states, and say P is the set of all states N could possibly 
be in after scanning y, depending on the nondeterministic choices that N 

could have made so far. If input symbol b comes in, pick the pebbles up 

off the states of P and put a pebble down on each state reachable from a 

state in P under input symbol b. Let pI be the new set of states covered 
by pebbles. Then pI is the set of states that N could possibly be in after 

scanning yb. 

Although for a state q of N, there may be many possible next states after 

scanning b, note that the set pI is uniquely determined by b and the set 

P. We will thus build a deterministic automaton M whose states are these 
sets. That is, a state of M will be a set of states of N. The start state of 

M will be the set of start states of N, indicating that we start with one 

pebble on each of the start states of N. A final state of M will be any set 

P containing a final state of N, since we want to accept x if it is possible 

for N to have made choices while scanning x that lead to an accept state 
of N. 

It takes a stretch of the imagination to regard a set of states of N as a 

single state of M. Let's illustrate the construction with a shortened version 

of the example above. 
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Example 5.1 Consider the set 

A = {x E {O, I} * I the second symbol from the right is I}. 

o 1 

~ 1 0,1 t::\ ~ .... .. ~ 
p q r 

Label the states p, q, r from left to right, as illustrated. The states of M will 

be subsets of the set of states of N. In this example there are eight such 

subsets: 

0, {p}, {q}, {r}, {p,q}, {p,r}, {q,r}, {p,q,r}. 

Here is the deterministic automaton M: 

0 1 
0 0 0 

- {p} {P} {p,q} 
{q} {r} {r} 
{r}F 0 0 

{p,q} {p,r} {p,q,r} 
{p,r}F {P} {p,q} 
{q,r}F {r} {r} 

{p,q,r}F {p,r} {p,q,r} 

For example, if we have pebbles on p and q (the fifth row of the table), and 

if we see input symbol 0 (first column), then in the next step there will be 

pebbles on p and r. This is because in the automaton N, p is reachable 
from p under input 0 and r is reachable from q under input 0, and these 
are the only states reachable from p and q under input o. The accept states 

of M (marked F in the table) are those sets containing an accept state of 
N. The start state of Mis {p}, the set of all start states of N. 

Following 0 and 1 transitions from the start state {P} of M, one can see 
that states {q,r}, {q}, {r}, 0 of M can never be reached. These states of 
M are inaccessible, and we might as well throw them out. This leaves 

o 1 

- {P} p 
{p, q} {p, r} 
{p,r}F {p} 

{p,q,r}F {p,r} 

This four-state automaton is exactly the one you would have come up with 

if you had built a deterministic automaton directly to remember the last 
two bits seen and accept if the next-to-last bit is a 1: 
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1 [01] 1 

°cEl :~: 11'~} 
0 [10] 0 

Here the state labels [be] indicate the last two bits seen (for our purposes 
the null string is as good as having just seen two O's). Note that these 
two automata are isomorphic (Le., they are the same automaton up to the 
renaming of states): 

{P} ~ [00], 

{p,q} ~ [01], 

{p, r} ~ [10], 

{p,q,r} ~ [11]. o 

Example 5.2 Consider the set 

{x E {a}* Ilxl is divisible by 3 or 5}. (5.1) 

Here is an eight-state nondeterministic automaton N with two start states 
accepting this set (labels a on transitions are omitted since there is only 
one input symbol). 

1\ 
2-3 

The only nondeterminism is in the choice of start state. The machine guesses 

at the outset whether to check for divisibility by 3 or 5. After that, the 
computation is deterministic. 

Let Q be the states of N. We will build a deterministic machine M whose 
states are subsets of Q. There are 28 = 256 of these in all, but most will 
be inaccessible (not reachable from the start state of M under any input). 
Think about moving pebbles-for this particular automaton, if you start 
with pebbles on the start states and move pebbles to mark all states the 
machine could possibly be in, you always have exactly two pebbles on N. 

This says that only subsets of Q with two elements will be accessible as 
states of M. 

The subset construction gives the following deterministic automaton M 
with 15 accessible states: 
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{3,8}_{2,7}~{3,5}~{3,7}_{2,6} 

~{2'5}"'{3'6}~{2'8}~ 0 

In the next lecture we will give a formal definition of nondeterministic finite 
automata and a general account of the subset construction. 
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The Subset Construction 

Formal Definition of Nondeterministic Finite Automata 

A nondeterministic finite au.tomaton (NFA) is a five-tuple 

N = (Q, 1:, d, S, F), 

where everything is the same as in a deterministic automaton, except for 
the following two differences. 

• S is a set of states, that is, S ~ Q, instead of a single state. The 

elements of S are called start states. 

• d is a function 

d : Q x 1: -+ 2Q , 

where 2Q denotes the power set of Q or the set of all subsets of Q: 

2Q ~f {A I A !; Q}. 

Intuitively, d(p, a) gives the set of all states that N is allowed to move to 
from p in one step under input symbol a. We often write 

a 
p--+ q 
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if q E ~(p,a). The set ~(p,a) can be the empty set 0. The function ~ is 

called the transition function. 

Now we define acceptance for NFAs. The function ~ extends in a natural 
way by induction to a function 

& : 2Q x E* -+ 2Q 

according to the rules 

~ def 
~(A,€) = A, 

~ def U 
~(A,xa) = ~(q,a). 

(6.1) 

(6.2) 

Intuitively, for A ~ Q and x E E*, &(A, x) is the set of all states reachable 
under input string x from some state in A. Note that ~ takes a single state 
as its first argument and a single symbol as its second argument, whereas 
& takes a set of states as its first argument and a string of symbols as its 
second argument. 

Equation (6.1) says that the set of all states reachable from a state in A 
under the null input is just A. In (6.2), the notation on the right-hand side 

means the union of all the sets ~(q,a) for q E &(A,x); in other words, 

r E &(A,xa) if there exists q E &(A,x) such that r E ~(q,a). 

x a 
p -----------------+ q _ r 

Thus q E &(A,x) if N can move from some state pEA to state q under 

input x. This is the nondeterministic analog of the construction of (; for 
deterministic automata we have already seen. 

Note that for a E E, 

&(A,a) = U ~(p,a) 

PEa(A,<) 

= U ~(p,a). 
pEA 

The automaton N is said to accept x E E* if 

&(8,x)nF:;60. 

In other words, N accepts x if there exists an accept state q (i.e., q E F) such 

that q is reachable from a start state under input string x (i.e., q E &(8, x)). 

We define L(N) to be the set of all strings accepted by N: 

L(N) = {x E E* I N accepts x}. 
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Under this definition, every DFA 

(Q, E, 8, s, F) 

is equivalent to an NFA 

(Q, E, ~, {s}, F), 

where ~(p,a) ~ {8(p, a)}. Below we will show that the converse holds as 
well: every NFA is equivalent to some DFA. 

Here are some basic lemmas that we will find useful when dealing with 

NFAs. The first corresponds to Exercise 3 of Homework 1 for deterministic 
automata. 

Lemma 6.1 For any x,y E E* and A ~ Q, 

&(A,xy) = &(&(A,x),y). 

Proof. The proof is by induction on Iyl. 

Basis 

For y = EO, 

&(A,u) = &(A,x) 

= &(&(A,X),i) by (6.1). 

Induction step 

For any y E E* and a E E, 

&(A,xya) = U ~(q,a) by (6.2) 

qE~(A,,,,y) 

= U ~(q,a) induction hypothesis 

qE~(~(A,,,,),y) 

= &(&(A,x),ya) by (6.2). o 

Lemma 6.2 The function & commutes with set union: for any indexed family Ai of 
subsets of Q and x E E*, 

&(UAi,x) = U &(Ai'X). 
i i 

Proof. By induction on Ixl. 
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Basis 

By (6.1), 

~(U Ai, f) = U Ai = U ~(Ai' f). 
iii 

Indu.ction step 

~(UAi,xa) = U d(p, a) by (6.2) 

PEA(U. A., .. ) 

= U d(p,a) induction hypothesis 

PEU. A(A., .. ) 

=U U d(p, a) basic set theory 

i PEA(A., .. ) 

= U~(Ai,xa) by (6.2). 

In particular, expressing a set as the union of its singleton subsets, 

~(A,x) = U ~({P},x). 
pEA 

The Subset Construction: General Account 

The subset construction works in general. Let 

N = (QN, E, dN, SN, FN) 

35 

0 

(6.3) 

be an arbitrary NFA. We will use the subset construction to produce an 
equivalent DFA. Let M be the DFA 

M = (QM, E, OM, SM, FM), 

where 

Q ~f2QN M- , 
def ~ 

t5M(A,a) = dN(A,a), 

def S 
SM = N. 

FM ~f {A S;; QN I AnFN '" 0}. 

Note that 15M is a function from states of M and input symbols to states 
of M, as it should be, because states of M are sets of states of N. 
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Lemma 6.3 For any A ~ QN and x e E*, 

6M(A,x) = ~N(A,x). 

Proof. Induction on Ixl. 

Basis 

For x = f, we want to show 

6M(A, f) = ~N(A, f). 

But both of these are A, by definition of ~ and ~N' 

Induction step 

Assume that 

6M(A,x) = ~N(A,x). 
We want to show the same is true for xa, a e E. 

6M(A,xa) = oM(6M(A,x),a) 

= OM(~N(A,x),a) 
= ;&N(~N(A,x),a) 
= ;&N(A,xa) 

definition of 6 M 

induction hypothesis 

definition of OM 

Lemma 6.1. o 

Theorem 6.4 The automata M and N accept the same set. 

Proof. For any x e E*, 

x e L(M) 

<==:} 6M(SM'X) e FM 

<==:} ~N(SN'X) n FN i= 0 

<==:} x e L(N) 

f-Transitions 

definition of acceptance for M 

definition of SM and FM, Lemma 6.3 

definition of acceptance for N. 0 

Here is another extension of finite automata that turns out to be quite 

useful but really adds no more power. 

An f-transition is a transition with label E, a letter that stands for the null 
string f: 

E 
p~q. 

The automaton can take such a transition anytime without reading an input 

symbol. 
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-lb/ib/ib 
P q ~ 

If the machine is in state 8 and the next input symbol is b, it can nonde­
terministically decide to do one of three things: 

• read the b and move to state Pi 

• slide to t without reading an input symbol, then read the b and move 
to state qj or 

• slide to t without reading an input symbol, then slide to 1.1 without 
reading an input symbol, then read the b and move to state r. 

The set of strings accepted by this automaton is {b, bb, bbb}. o 

Example 6.6 Here is a nondeterministic automaton with f-transitions accepting the set 
{x E {a}* Ilxl is divisible by 3 or 5}: 

The automaton chooses at the outset which of the two conditions to check 
for (divisibility by 3 or 5) and slides to one of the two loops accordingly 
without reading an input symbol. 0 

The main benefit of f-transitions is convenience. They do not really add 
any power: a modified subset construction involving the notion of f-clostiTe 

can be used to show that every NFA with f-transitions can be simulated 
by a DFA without f-transitions (Miscellaneous Exercise 10)j thus all sets 
accepted by nondeterministic automata with f-transitions are regular. We 
will also give an alternative treatment in Lecture 10 using homomorphisms. 

More Closure Properties 

Recall that the concatenation of sets A and B is the set 

AB = {xy I x E A and y E B}. 



38 Lecture 6 

For example, 

{a,ab}{b,ba} = {ab,aba,abb,abba}. 

If A and B are regular, then so is AB. To see this, let M be an automaton 
for A and N an automaton for B. Make a new automaton P whose states 
are the union of the state sets of M and N, and take all the transitions of 
M and N as transitions of P. Make the start states of M the start states of 
P and the final states of N the final states of P. Finally, put f-transitions 
from all the final states of M to all the start states of N. Then L(P) = AB. 

Example 6.7 Let A = {aa}, B = {bbl. Here are automata for A and B: 

a 
~ . .. 

b 
•• •• 

Here is the automaton you get by the construction above for AB: 

~. a~. a •• E •• b~. b .® 

If A is regular, then so is its asterate: 

A* = {f} U A U A2 U A3 U··· 

= {XIX2· ··Xn I n ~ 0 and Xi E A, 1 ~ i ~ n}. 

o 

To see this, take an automaton M for A. Build an automaton P for A * as 
follows. Start with all the states and transitions of M. Add a new state s. 
Add f-transitions from s to all the start states of M and from all the final 
states of M to s. Make s the only start state of P and also the only final 
state of P (thus the start and final states of M are not start and final states 
of P). Then P accepts exactly the set A*. 

Example 6.8 Let A = {aa}. Consider the three-state automaton for A in Example 6.7. 
Here is the automaton you get for A * by the construction above: 

f 

~iE .. a 
•• o 

In this construction, you must add the new start/final state s. You might 

think that it suffices to put in E-transitions from the old final states back 
to the old start states and make the old start states final states, but this 
doesn't always work. Here's a counterexample: 
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The set accepted is {an bin ~ o}. The asterate of this set is 

{e} U {strings ending with b}, 

but if you put in an e-transition from the final state back to the start state 

and made the start state a final state, then the set accepted would be 
{a,b}*. 

Historical Notes 

Rabin and Scott [102] introduced nondeterministic finite automata and 
showed using the subset construction that they were no more powerful 
than deterministic finite automata. 

Closure properties of regular sets were studied by Ginsburg and Rose [46, 

48], Ginsburg [43], McNaughton and Yamada [851, and Rabin and Scott 

[1021, among others. 



Lecture 7 

Pattern Matching 

What happens when one types rm * in UNIX? (If you don't know, don't 

try it to find out!) What if the current directory contains the files 

a.tex be.tex a.dvi bc.dvi 

and one types rm *. dvi? What would happen if there were a file named 
.dvi? 

What is going on here is pattern matching. The * in UNIX is a pattern that 
. matches any string of symbols, including the null string. 

Pattern matching is an important application of finite automata. The UNIX 
commands grep, fgrep, and egrep are basic pattern-matching utilities that 
use finite automata in their implementation. 

Let ~ be a finite alphabet. A pattern is a string of symbols of a certain form 
representing a (possibly infinite) set of strings in ~*. The set of patterns 
is defined formally by induction below. They are either atomic patterns or 
compound patterns built up inductively from atomic patterns using certain 
operators. We'll denote patterns by Greek letters a, (3, ,,/, .... 

As we define patterns, we will tell which strings a: E ~* match them. The 
set of strings in ~* matching a given pattern a will be denoted L(a). Thus 

L(a) = {a: E ~* I a: matches a}. 
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In the following, forget the UNIX definition of *. We will use the symbol * 
for something else. 

The atomic patterns are 

• a for each a E ~, matched by the symbol a only; in symbols, L(a) = 
{a}; 

• E, matched only by E, the null string; in symbols, L(E) = {E}; 

• f/t, matched by nothing; in symbols, L(f/t) = 0, the empty set; 

• #, matched by any symbol in 'E; in symbols, L( #) = ~; 
• @, matched by any string in ~*; in symbols, L(@) = ~*. 

Compound patterns are formed inductively using binary operators +, n, 
and· (usually not written) and unary operators +, *, and <V. If a and (3 are 
patterns, then so are 01+(3, an /3, 01*, 01+, <va, and 01/3. The last of these 
is short for a . /3. 

We also define inductively which strings match each pattern. We have al­

ready said which strings match the atomic patterns. This is the basis of 
the inductive definition. Now suppose we have already defined the sets of 
strings L(a) and L(/3) matching a and /3, respectively. Then we'll say that 

• x matches a + /3 if x matches either a or (3: 

L(a + /3) = L(a) U L(/3); 

• x matches a n /3 if x matches both a and (3: 

L(o: n f3) = L(o:) n L(f3); 

• x matches 01/3 if x can be broken down as x = yz such that y matches 
a and z matches /3: 

L(a/3) = L(a)L(/3) 

= {yz lyE L(a) and z E L(/3)}; 

• x matches <va if x does not match a: 

L( <va) = <v L(a) 

= 'E* - L(a); 

• x matches 01* if x can be expressed as a concatenation of zero or more 
strings, all of which match 0:: 

L(o:*) = {XIX2··· Xn In;::: 0 and Xi E L(o:), 1 SiS n} 

= L(a)O U L(a)l U L(a)2 U··· 
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Example 7.1 

Example 7.2 

= L(a)*. 

The null string € always matches a*, since € is a concatenation of zero 

strings, all of which (vacuously) match a. 

• x matches a+ if x can be expressed as a concatenation of one or more 
strings, all of which match a: 

L(a+) = {X1X2'" Xn In 2: 1 and Xi e L(a), 1 :::; i :::; n} 

= L(a)l U L(a)2 U L(a)3 u··· 
=L(a)+. 

Note that patterns are just certain strings of symbols over the alphabet 

E U { e, ft, #, @, +, n, "', *, +, (, ) }. 

Note also that the meanings of #, @, and,..., depend on E. For example, if 

E = {a,b,c} then L(#) = {a,b,c}, but if E = {a} then L(#) = {a}. 

• E* = L(@) = L(#*). 

• Singleton sets: if x e E*, then x itself is a pattern and is matched only 

by the string Xj i.e., {x} = L(x). 

• Finite sets: if Xl, ... ,Xm e E*, then 

{Xl,X2, ... ,xm} = L(X1 + X2 + ... + Xm). o 

Note that we can write the last pattern Xl + X2 + ... + Xm without paren­

theses, since the two patterns (a + {3) + 1 and a + ({3 + 1) are matched by 
the same set of stringsj i.e., 

L«a + {3) + 1) = L(a + ({3 + 1))· 

Mathematically speaking, the operator + is associative. The concatenation 

operator' is associative, too. Hence we can also unambiguously write a{31 
without parentheses. 

• strings containing at least three occurrences of a: 

@a@a@a@j 

• strings containing an a followed later by a bj that is, strings of the form 
xaybz for some x, y, z: 

@a@b@j 

• all single letters except a: 

# n "'aj 



• strings with no occurrence of the letter a: 

(# n "'a)*; 
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• strings in which every occurrence of a is followed sometime later by 

an occurrence of b; in other words, strings in which there are either 

no occurrences of a, or there is an occurrence of b followed by no 
occurrence of a; for example, aab matches but boo doesn't: 

(# n "'a)* +@b(#n"'a)*. 

If the alphabet is {a,b}, then this takes a much simpler form: 

E+@b. o 

Before we go too much further, there is a subtlety that needs to be men­
tioned. Note the slight difference in appearance between E and to and be­
tween 11I and 0. The objects E and 11I are symbols in the language of patterns, 
whereas to and 0 are metasymbols that we are using to name the null string 
and the empty set, respectively. These are different sorts of things: E and 
11I are symbols, that is, strings of length one, whereas to is a string of length 
zero and 0 isn't even a string. 

We'll maintain the distinction for a few lectures until we get used to the 
idea, but at some point in the near future we'll drop the boldface and use 
to and 0 exclusively. We'll always be able to infer from context whether we 
mean the symbols or the metasymbols. This is a little more convenient and 

conforms to standard usage, but bear in mind that they are still different 
things. 

While we're on the subject of abuse of notation, we should also mention that 
very often you will see things like x E a*b* in texts and articles. Strictly 
speaking, one should write x E L(a*b*), since a*b* is a pattern, not a set 
of strings. But as long as you know what you really mean and can stand 
the guilt, it is okay to write x e a*b*. 
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Pattern Matching and Regular Expressions 

Here are some interesting and important questions: 

• How hard is it to determine whether a given string x matches a given 
pattern a.? This is an important practical question. There are very 
efficient algorithms, as we will see. 

• Is every set represented by some pattern? Answer: no. For example, 
the set 

is not represented by any pattern. We'll prove this later. 

• Patterns 0. and f3 are equivalent if L(o.) = L(f3). How do you tell 
whether 0. and f3 are equivalent? Sometimes it is obvious and some­
times not. 

• Which operators are redundant? For example, we can get rid of E since 
it is equivalent to "'(#@) and also to fij*. We can get rid of@ since it 
is equivalent to #*. We can get rid of unary + since 0.+ is equivalent 
to 0.0.*. We can get rid of #, since if E = {ab ... ,an} then # is 
equivalent to the pattern 
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The operator n is also redundant, by one of the De Morgan laws: 

0: n 13 is equivalent to "" ("" 0: + "" 13). 

Redundancy is an important question. From a user's point of view, we 
would like to have a lot of operators since this lets us write more succinct 
patterns; but from a programmer's point of view, we would like to have as 

few as possible since there is less code to write. Also, from a theoretical 
point of view, fewer operators mean fewer cases we have to treat in giving 
formal semantics and proofs of correctness. 

An amazing and difficult-to-prove fact is that the operator"" is redundant. 
Thus every pattern is equivalent to one using only atomic patterns a E ~, 
e, fl, and operators +, " and *. Patterns using only these symbols are called 
regular ezpressions. Actually, as we have observed, even e is redundant, but 
we include it in the definition of regular expressions because it occurs so 
often. 

Our goal for this lecture and the next will be to show that the family of 
subsets of ~* represented by patterns is exactly the family of regular sets. 
Thus as a way of describing subsets of ~*, finite automata, patterns, and 
regular expressions are equally expressive. 

Some Notational Conveniences 

Since the binary operators + and· are associative, that is, 

L(o: + (13 + 'Y)) = L((o: + 13) + 'Y), 
L(a({j-y)) = L«a,8h), 

we can write 

without ambiguity. To resolve ambiguity in other situations, we assign 
precedence to operators. For example, 

could be interpreted as either 

0: + (13'Y) or (0: + 13)-Y, 

which are not equivalent. We adopt the convention that the concatenation 
operator' has higher precedence than +, so that we would prefer the former 
interpretation. Similarly, we assign * higher precedence than + or " so that 

0: +,8* 
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is interpreted as 

a + (13*) 

and not as 

(a+f3)*. 

All else failing, use parentheses. 

Equivalence of Patterns, Regular Expressions, and Finite Automata 

Patterns, regular expressions (patterns built from atomic patterns a E I:, 
E, fiS, and operators +, *, and· only), and finite automata are all equivalent 
in expressive power: they all represent the regular sets. 

Theorem 8.1 Let A ~ I:*. The following three statements are equivalent: 

(i) A is regular; that is, A = L(M) for some finite automaton M; 

(ii) A = L(a) for some pattern a; 

(iii) A = L(a) for some regular expression a. 

Proof. The implication (iii) ::} (ii) is trivial, since every regular expression 
is a pattern. We prove (ii) ::} (i) here and (i) ::} (iii) in Lecture 9. 

The heart of the proof (ii) ::} (i) involves showing that certain basic sets 
(corresponding to atomic patterns) are regular, and the regular sets are 
closed under certain closure operations corresponding to the operators used 
to build patterns. Note that 

• the singleton set {a} is regular, a E I:, 

• the singleton set {f} is regular, and 

• the empty set 0 is regular, 

since each of these sets is the set accepted by some automaton. Here are 
nondeterministic automata for these three sets, respectively: 

Also, we have previously shown that the regular sets are closed under the 
set operations U, n, "', ., *, and +j that is, if A and B are regular sets, then 
so are AUB, AnB, "'A = I:* - A, AB, A*, and A+. 

These facts can be used to prove inductively that (ii) ::} (i). Let a be a 
given pattern. We wish to show that L(a) is a regular set. We proceed by 
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induction on the structure of 0:. The pattern 0: is of one of the following 
forms: 

(i) a, where a e ~j (vi) P + 'Yj 

(ii) e· , (vii) P n 'Yj 

(iii) 16j (viii) P'Yj 

(iv) #j (ix) "" pj 

(v) @lj (x) p*j 

(xi) P+. 

There are five base cases (i) through (v) corresponding to the atomic pat­
terns and six induction cases (vi) through (xi) corresponding to compound 
patterns. Each of these cases uses a closure property of the regular sets 
previously observed. 

For (i), (ii), and (iii), we have L(a) = {a} for a e ~, L(e) = {E}, and 
L(16) = 0, and these are regular sets. 

For (iv), (v), and (xi), we observed earlier that the operators #, @I, and 
+ were redundant, so we may disregard these cases since they are already 
covered by the other cases. 

For (vi), recall that L(P+'Y) = L(P)UL('Y) by definition of the + operator. 
By the induction hypothesis, L(P) and L( 'Y) are regular. Since the regular 

sets are closed under union, L(P + 'Y) = L(P) U L( 'Y) is also regular. 

The arguments for the remaining cases (vii) through (x) are similar to the 

argument for (vi). Each of these cases uses a closure property of the regular 
sets that we have observed previously in Lectures 4 and 6. 0 

Example 8.2 Let's convert the regular expression 

(aaa)* + (aaaaa)* 

for the set 

{x e {a}* Ilxl is divisible by either 3 or 5} 

to an equivalent NFA. First we show how to construct an automaton for 
(aaa)*. We take an automaton accepting only the string aaa, say 

• • 
a 

•• 
a ... 

Applying the construction of Lecture 6, we add a new start state and e­
transitions from the new start state to all the old start states and from all 
the old accept states to the new start state. We let the new start state be 
the only accept state of the new automaton. This gives 
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a a 
~. ~ . 

The construction for (aaaaa)* is similar, giving 

a a a a 
•• ... . . ~. 

To get an NFA for (aaa)* + (aaaaa)* , we can simply take the disjoint union 

of these two automata: 

£ 
~(£ a a a,:\ 

~. ~ . ~ . 
£ 

~(£ a a a a a,:\ .. . ~. ~. ~ . ~ . 0 
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Regular Expressions and Finite Automata 

Simplification of Expressions 

For small regular expressions, one can often see how to construct an equiva­

lent automaton directly without going through the mechanical procedure of 

the previous lecture. It is therefore useful to try to simplify the expression 
first. 

For regular expressions 0.,(3, if L(a) = L«(3), we write 0. == (3 and say that 0. 
and (3 are equivalent. The relation == on regular expressions is an equivalence 
relation; that is, it is 

• reflexive: 0. == 0. for all 0.; 

• symmetric: if 0. == (3, then (3 == 0.; and 

• transitive: if 0. == (3 and (3 == " then 0. == ,. 

If 0. == (3, one can substitute 0. for (3 (or vice versa) in any regular expression, 

and the resulting expression will be equivalent to the original. 

Here are a few laws that can be used to simplify regular expressions. 

0. + «(3 +,) == (0. + (3) +, 

0.+(3 == (3+0. 

(9.1) 

(9.2) 
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a+fij== a 

a+a == a 

a{{J'Y) == (a{Jh 

Ea == aE ==a 

a{{J + 'Y) == a{J + a'Y 

{a + {Jh == a'Y + {J'Y 

fija == af6 == f6 

E+aa* == a* 

E+a*a == a* 

{J + a'Y ~ 'Y ~ a* {J ~ 'Y 

{J + 'Ya ~ 'Y ~ {Ja* ~ 'Y 

In (9.12) and (9.13), ~ refers to the subset order: 

a ~ (J ~ L(a) ~ L({J) 

{:::::} L( a + (J) = L({J) 

{:::::} a + {J == {J. 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

Laws (9.12) and (9.13) are not equations but rules from which one can 
derive equations from other equations. Laws (9.1) through (9.13) can be 
justified by replacing each expression by its definition and reasoning set 
theoretically. 

Here are some useful equations that follow from (9.1) through (9.13) that 
you can use to simplify expressions. 

(a{J)*a == a({Ja)* 

(a*{J)*a* == (a+{J)* 

a*({Ja*)* == (a + (J)* 

(E+a)* == a* 

aa* == a*a 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

(9.18) 

An interesting fact that is beyond the scope of this course is that all true 
equations between regular expressions can be proved purely algebraically 
from the axioms and rules (9.1) through (9.13) plus the laws of equational 
logic [73]. 

To illustrate, let's convert some regular expressions to finite automata. 
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Example 9.1 (11 + 0)*(00 + 1)* 

1 o 

This expression is simple enough that the easiest thing to do is eyeball it. 
The mechanical method described in Lecture 8 would give more states and 

€-transitions than shown here. The two states connected by an €-transition 

cannot be collapsed into one state, since then 10 would be accepted, which 
does not match the regular expression. 0 

Example 9.2 (1 + 01 + 001)*(e + 0 + 00) 

Using the algebraic laws above, we can rewrite the expression: 

(1 + 01 + 001)*(e+ 0+00) == ((e+O+ OO)l)*(e + 0+00) 

== ((€ + O)(e + O)l)*(e + O)(e + 0). 

It is now easier to see that the set represented is the set of all strings over 
{O, 1} with no substring of more than two adjacent O's. 

~OJ 
1 o 

Just because all states of an NFA are accept states doesn't mean that all 
strings are accepted! Note that in Example 9.2, 000 is not accepted. 

Converting Automata to Regular Expressions 

To finish the proof of Theorem 8.1, it remains to show how to convert a 
given finite automaton M to an equivalent regular expression. 

Given an NFA 

M = (Q, ~, D., S, F), 

a subset X ~ Q, and states '11., V E Q, we show how to construct a regular 
expression 
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representing the set of all strings x such that there is a path from 'It to v in 

M labeled x (i.e., such that v E 6.( {'It}, x)) and all states along that path, 

with the possible exception of u and v, lie in X. 

The expressions are constructed inductively on the size of X. For the basis 

X = 0, let al, ... ,ale be all the symbols in ~ such that v E 6.(u,a.). For 

u:j:. v, take 

and for u = v, take 

if k ~ 1, 

if k = 0; 

" c!!:.f { al + ... + ale + E 
0:"" - E 

if k ~ 1, 
if k = o. 

For nonempty X, we can choose any element q E X and take 

x c!!f X-{q} + X-{q}( X-{q})* X-{q} 0:,.." - 0:,.." O:,..q O:qq O:q" • (9.19) 

To justify the definition (9.19), note that any path from 'It to v with all 

intermediate states in X either (i) never visits q, hence the expression 

o:x-{q} 

"" 
on the right-hand side of (9.19); or (ii) visits q for the first time, hence the 

expression 

o:x-{q} 
"q , 

followed by a finite number (possibly zero) of loops from q back to itself 
without visiting q in between and staying in X, hence the expression 

(o:x-{q})* 
qq , 

followed by a path from q to v after leaving q for the last time, hence the 
expression 

,..X-{q} 
.... q" • 

The sum of all expressions of the form 

Q 
0:." 

where 8 is a start state and I is a final state, represents the set of strings 
accepted by M. 

As a practical rule of thumb when doing homework exercises, when choos­

ing the q E X to drop out in (9.19), it is best to try to choose one that 
disconnects the automaton as much as possible. 
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Example 9.3 Let's convert the automaton 

o~: 
~ 

r 

to an equivalent regular expression. The set accepted by this automaton 

will be represented by the inductively defined regular expression 

o:{p,q,r} 
pp , 

since p is the only start and the only accept state. Removing the state q 
(we can choose any state we like here), we can take 

o:{p,q,r} - o:{p,r} + o:{p,r} (o:{p,r})*o:{p,r} 
pp - pp pq qq qp' 

Looking at the automaton, the only paths going from p to p and staying in 

the states {p, r} are paths going around the single loop labeled 0 from p to 
p some finite number of times; thus we can take 

",{p,r} - 0* 
"'pp - • 

By similar informal reasoning, we can take 

o:{p,r} = 0*1 pq , 

o:{p,r} = E + 01 + 000*1 qq 

= E + O( E + 00*)1 

= E+OO*l, 

Q~V} = 000*. 

Thus we can take 

o:~~,q,r} = 0* + O*l(E + 00*1)*000*. 

This is matched by the set of all strings accepted by the automaton. We 
can further simplify the expression using the algebraic laws (9.1) through 
(9.18): 

0* + O*l(E + 00*1)*000* 

=0*+0*1(00*1)*000* 

= E + 00* + 0*10(0*10)*00* 

= E + (E + 0*10(0*10)*)00* 

= E + (0*10)*00* 

= E + (0*10)*0*0 

= E + (0 + 10)*0 

by (9.17) 

by (9.10) and (9.14) 

by (9.8) 

by (9.10) 

by (9.18) 

by (9.15). o 
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Historical Notes 

Kleene [70] proved that deterministic finite automata and regular expres­
sions are equivalent. A shorter proof was given by McNaughton and Yamada 
[85]. 

The relationship between right- and left-linear grammars and regular sets 
(Homework 5, Exercise 1) was observed by Chomsky and Miller [21]. 



Supplementary Lecture A 

Kleene Algebra and Regular Expressions 

In Lecture 9, we gave a combinatorial proof that every finite automaton has 
an equivalent regular expression. Here is an algebraic proof that generalizes 
that argument. It is worth looking at because it introduces the notion of 
Kleene algebra and the use of matrices. We will show how to use matrices 
and Kleene algebra to solve systems of linear equations involving sets of 
strings. 

Kleene algebra is named after Stephen C. Kleene, who invented the regular 
sets [70j. 

Kleene Algebra 

We have already observed in Lecture 9 that the set operations U, " and 
* on subsets of I;*, along with the distinguished subsets fZJ and {f}, sat­
isfy certain important algebraic properties. These were listed in Lecture 9, 
axioms (9.1) through (9.13). Let us call any algebraic structure satisfying 
these properties a Kleene algebra. In general, a Kleene algebra 1C consists 
of a nonempty set with two distinguished constants 0 and 1, two binary 
operations + and . (usually omitted in expressions), and a unary operation 
* satisfying the following axioms. 

a + (b + c) = (a + b) + c associativity of + 
a+b=b+a commutativity of + 

(A. 1) 

(A.2) 
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a+a = a 

a+O = a 

a(bc) = (ab)e 

al = Ia = a 

aO=Oa=O 

a(b+e) = ab+ac 

(a + b)e = ac+be 

I +00* = a* 

I+a*a = a* 

b + ae :::; e => a*b :::; e 

b + ea :::; e => ba* :::; e 

idempotence of + 
o is an identity for + 
associativity of . 

I is an identity for . 

o is an annihilator for· 

distributivity 

distributivity 

In (A.12) and (A.13), :::; refers to the naturally defined order 

a:::;b~a+b=b. 

In 2lJ*, :::; is just set inclusion ~. 

(A.3) 

(A A) 

(A.5) 

(A.6) 

(A.7) 

(A.B) 

(A.9) 

(A.IO) 

(A.H) 

(A.12) 

(A.13) 

Axioms (A.I) through (A.9) discuss the properties of addition and multi­

plication in a Kleene algebra. These properties are the same as those of 

ordinary addition and multiplication, with the addition of the idempotence 

axiom (A.3). These axioms can be summed up briefly by saying that 1C is an 

idempotent semiring. The remaining axioms (A.lO) through (A.13) discuss 
the properties of the operator *. They say essentially that * behaves like 
the asterate operator on sets of strings or the reflexive transitive closure 
operator on binary relations. 

It follows quite easily from the axioms that :5 is a partial order; that is, 
it is reflexive (a :5 a), transitive (a :5 b and b :5 e imply a :5 c), and 
antisymmetric (a :::; b and b :5 a imply a = b). Moreover, a + b is the 
least upper bound of a and b with respect to :::;. All the operators are 

monotone with respect to :::;j in other words, if a :::; b, then ae :::; be, ea :::; eb, 
a + e :5 b + e, and a* :5 b*. 

By (A.IO) and distributivity, we have 

b+aa*b:::; a*b, 

which says that a*b satisfies the inequality b + ac :::; c when substituted 
for c. The implication (A.12) says that a*b is the :::;-least element of 1C for 

which this is true. It follows that 

Lemma A.I In any Kleene algebra, a*b is the :::;-least solution of the equation x = ax+b. 

Proof. Miscellaneous Exercise 21. o 
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Instead of (A.12) and (A.13), we might take the equivalent axioms 

ac $ c ~ a*c $ c, (A.14) 

ca $ c ~ ca* $ c (A.15) 

(see Miscellaneous Exercise 22). 

Here are some typical theorems of Kleene algebra. These can be derived by 

purely equational reasoning from the axioms above (Miscellaneous Exercise 

20). 

a*a* = a* 

a** = a* 

(a*b)*a* = (a + b)* denesting rule 

a(ba)* = (ab)*a shifting rule 

a* = (00)* + a(oo)* 

(A.16) 

(A.17) 

Equations (A.16) and (A.17), the denesting rule and the shifting rule, re­

spectively, turn out to be particularly useful in simplifying regular expres­

sions. 

The family 2'E* of all subsets of r:* with constants fi!J and {€} and operations 

U,', and * forms a Kleene algebra, as does the family of all regular subsets 

of r:* with the same operations. As mentioned in Lecture 9, it can be shown 

that an equation a = /3 is a theorem of Kleene algebra,that is, is derivable 

from axioms (A.1) through (A.13), if and only if a and /3 are equivalent as 

regular expressions [73]. 

Another example of a Kleene algebra is the family of all binary relations 

on a set X with the empty relation for 0, the identity relation 

L dg {( u, u) I u E X} 

for 1, U for +, relational composition 

Ro S ~f {(u,w) 13v E X (u,v) E R and (v,w) E S} 

for " and reflexive transitive closure for *: 

R*~ U R", 
,,~o 

where 

Still another example is the family of n x n Boolean matrices with the 

zero matrix for 0, the identity matrix for 1, componentwise Boolean matrix 
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addition and multiplication for + and·, respectively, and reflexive transitive 

closure for *. This is really the same as the previous example, where the 
set X has n elements. 

Matrices 

Given an arbitrary Kleene algebra JC, the set of n x n matrices over JC, 
which we will denote by M(n,JC), also forms a Kleene algebra. In M(2,JC), 
for example, the identity elements for + and· are 

respectively, and the operations +, ., and * are given by 

b+ f ] 
d+h ' 

[: :].[: f ] ~ [ ae + bg af + bh] and 
h - ce + dg cf + dh ' 

[ ac db] * <I,g [ (a + bd*c)* 
(d + ca*b)*ca* 

(a + bd*c)*bd* ] 
(d+ ca*b)* , 

(A.18) 

respectively. In general, + and . in M(n, JC) are ordinary matrix: addition 
and multiplication, respectively, the identity for + is the zero matrix:, and 
the identity for . is the identity matrix:. 

To define E* for a given n x n matrix: E over JC, we proceed by induction 
on n. If n = 1, the structure M( n, JC) is just JC, so we are done. For n > 1, 
break E up into four submatrices 

E=[~I~] 
such that A and D are square, say m x m and (n - m) x (n - m), re­
spectively. By the induction hypothesis, M( m, JC) and M( n - m, JC) are 
Kleene algebras, so it makes sense to form the asterates of any m x m or 
(n - m) x (n - m) matrix over JC, and these matrices will satisfy all the 
axioms for *. This allows us to define 

[ 
(A+BD*C)* 

E*~ 
(D + CA*B)*CA* 

Compare this definition to (A.18). 

(A + BD*C)* BD* ] . 

(D+CA*B)* 
(A.19) 
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The expressions on the right-hand sides of (A.18) and (A.19) may look like 

they were pulled out of thin air. Where did we get them from? The answer 

will come to you if you stare really hard at the following mandala: 

b 

c 

It can be shown that M(n,.q is a Kleene algebra under these definitions: 

Lemma A.2 If /C is a Kleene algebra, then so is M(n,/C). 

Proof. Miscellaneous Exercise 24. We must verify that M(n,/C) satisfies 

the axioms (A.I) through (A.13) of Kleene algebra assuming only that /C 
~_ 0 

If E is a matrix of indeterminates, and if the inductive construction of E* 
given in (A.19) is carried out symbolically, then the entries of the resulting 
matrix E* will be regular expressions in those indeterminates. This con­
struction generalizes the construction of Lecture 9, which corresponds to 

the case m = 1. 

Systems of Linear Equations 

It is possible to solve systems of linear equations over a Kleene algebra /C. 

Suppose we are given a set of n variables Xl, ••• ,Xn ranging over /C and a 
system of n equations of the form 

Xi = ailXl + ... + ainXn + bi, 1 ~ i ~ n, 

where the aij and bi are elements of /C. Arranging the aij in an n x n matrix 
A, the bi in a vector b of length n, and the Xi in a vector X of length n, we 
obtain the matrix-vector equation 

X = Ax+b. (A.20) 

It is now not hard to show 

Theorem A.3 The vector A*b is a solution to (A.20)i moreover, it is the ~-least solution 
in /Cn • 

Proof. Miscellaneous Exercise 25. o 

Now we use this to give a regular expression equivalent to an arbitrarily 
given deterministic finite automaton 

M = (Q, I}, 6, s, F). 
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Assume without loss of generality that Q = {I, 2, ... , n}. For each q e Q, 
let Xq denote the set of strings in ~* that would be accepted by M if q 
were the start state; that is, 

Xq ~f {x e ~* I 6(q, x) e F}. 

The Xq satisfy the following system of equations: 

X - { L:aEIl aX6(q,a) if q ¢ F, 
q - L:aEE aX6(q,a) + 1 if q e F. 

Moreover, the Xq give the least solution with respect to ~. As above, these 

equations can be arranged in a single matrix-vector equation of the form 

X=AX+b, (A.21) 

where A is an n x n matrix containing sums of elements of ~, b is a 0-1 

vector of length n, and X is a vector consisting of Xl, ... ,Xn • The vector 

X is the least solution of (A.21). By Theorem A.3, 

X=A*b. 

Compute the matrix A* symbolically according to (A.19), so that its entries 
are regular expressions, then multiply by b. A regular expression for L(M) 
can then be read off from the 8th entry of A*b, where 8 is the start state 

ofM. 

Historical Notes 

Salomaa [108] gave the first complete axiomatization of the algebra of regu­
lar sets. The algebraic theory was developed extensively in the monograph 
of Conway [27]. Many others have contributed to the theory, including 
Redko [103], Backhouse [6], Bloom and Esik [10], Boffa [11, 12], Gecseg 
and Peak [41], Krob [74], Kuich and Salomaa [76], and Salomaa and Soit­
tola [109]. The definition of Kleene algebra and the complete axiomatization 

given here is from Kozen [731. 
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Homomorph isms 

A homomorphism is a map h : ~* -+ r* such that for all x, y E ~*, 

h(xy) = h(x)h(y), 

h(f) = f. 

Actually, (10.2) is a consequence of (10.1): 

Ih(f)1 = Ih(ff)1 

= Ih(f)h(f)1 

= Ih(f)1 + Ih(f)l; 

(10.1) 

(10.2) 

subtracting Ih(f)1 from both sides, we have Ih(f)1 = 0, therefore h(f) = f. 

It follows from these properties that any homomorphism defined on ~* is 

uniquely determined by its values on ~. For example, if h( a) = ccc and 

h(b) = dd, then 

h(abaab) = h(a)h(b)h(a)h(a)h(b) = cccddccccccdd. 

Moreover, any map h : ~ -+ r* extends uniquely by induction to a ho­
momorphism defined on all of ~*. Therefore, in order to specify a homo­
morphism completely, we need only say what values it takes on elements of 
~. 
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If A ~ ~*, define 

h{A) ~ {h{x) I x E A} ~ r*, 

and if B ~ r*, define 

h-1(B) d,g {x I h(x) E B} ~ ~*. 

The set h(A) is called the image of A under h, and the set h-1(B) is called 
the preimage of B under h. 

We will show two useful closure properties of the regular sets: any homo­
morphic image or homomorphic preimage of a regular set is regular. 

Theorem 10.1 Let h : ~* - r* be a homomorphism. If B ~ r* is regular, then 80 is its 
preimage h-l(B) under h. 

Proof. Let M = (Q, r, 6, 8, F) be a DFA such that L{M) = B. Create a 

new DFA M' = (Q, ~, 6', 8, F) for h-1{B) as follows. The set of states, 

start state, and final states of M' are the same as in M. The input alphabet 

is ~ instead of r. The transition function 6' is defined by 

6'(q,a) ~f 6(q,h(a)). 

Note that we have to use 6 on the right-hand side, since h(a) need not be 
a single letter. 

Now it follows by induction on Ixl that for all x E ~*, 
..,., ~ 

6 (q, x) = 6(q, h(x)). (10.3) 

For the basis x = e, using (10.1), 
..,., ~ ~ 

6 (q,e) = q = 6(q, e) = 6(q,h(e)). 

For the induction step, assume that 6'(q,x) = 6(q,h(x)). Then 

6'(q,xa) = 6'(6'(q,x),a) definition of 6' 
= 6'(6(q,h(x)),a) induction hypothesis 

= 6(6(q, h(x)), h(a)) definition of 6' 

= 6(q,h(x)h(a)) Homework 1, Exercise 3 

= 6(q, h(xa)) property (10.2) of homomorphisms. 

Now we can use (10.3) to prove that L(M') = h-1(L(M)). For any z E ~*, 

x E L(M') ¢:::::> 6'(8,Z) E F definition of acceptance 

¢:::::> 6(8,h(x)) E F by (10.3) 

¢:::::> h(x) E L(M) definition of acceptance 

¢:::::> x E h-1(L(M)) definition of h-1(L(M)). 0 
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Theorem 10.2 Let h : I:* ..... r* be a homomorphism. II A ~ I:* is regular, then so is its 
image h(A) under h. 

Prool. For this proof, we will use regular expressions. Let a be a regular 

expression over I: such that L(a) = A. Let a' be the regular expression 

obtained by replacing each letter a e I: appearing in a with the string 

h(a) e r*. For example, if h(a) = ccc and h(b) = dd, then 

«a + b)*ab)' = (ccc + dd)*cccdd. 

Formally, a' is defined by induction: 

a' = h(a), a e I:, 
f'J'=f'J, 

(13 + ,)' = 13' + 1, 
(13,)' = 13',', 

13*' = 13'*. 

We claim that for any regular expression 13 over I:, 

L(13') = h(L(13»; (10.4) 

in particular, L(a') = h(A). This can be proved by induction on the struc­
ture of 13. To do this, we will need two facts about homomorphisms: for any 

pair of subsets C, D ~ I:* and any family of subsets Ci ~ I:*, i e I, 

h(CD) = h(C)h(D), 

h(U Ci) = U h(Ci). 
iEl iel 

To prove (10.5), 

h(CD) = {h(w) I we CD} 

= {h(yz) lye C, ZED} 

= {h(y)h(z) lye C, zeD} 

= {uv I U E h(C), v E h(D)} 

= h(C)h(D). 

To prove (10.6), 

h(UCi) = {h(w) I we UCi} 
i i 

= {h(w) 13i w E Ci} 

= U{h(w) I w E Ci} 
i 

(10.5) 

(10.6) 
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Now we prove (lOA) by induction. There are two base cases: 

L(a') = L(h(a)) = {h(a)} = h({a}) = h(L(a)) 

and 

L(f/J') = L(f/J) = 10 = h(fO) = h(L(f/J)). 

The case of E is covered by the other cases, since € = 10*. 

There are three induction cases, one for each of the operators +, ., and *. 
For +, 

L«f3 + 1)') = L(f3' + 1') 

= L(f3') U L( 1') 

= h(L(f3)) U h(L(-y)) 

= h(L(f3) U L(-y)) 

= h(L(f3 + 1)) 

definition of ' 

definition of + 
induction hypothesis 

property (10.6) 

definition of +. 

The proof for· is similar, using property (10.5) instead of (10.6). Finally, 

for *, 

L(f3*') 

= L((3'*) 

= L(f3')* 

= h(L(f3))* 

= U h(L(f3))n 
n2:0 

= U h(L(f3)") 
n2:0 

= h(U L(f3)") 
n2:0 

= h(L(f3)*) 

= h(L(f3*)) 

definition of ' 

definition of regular expression operator * 
induction hypothesis 

definition of set operator * 

property (10.5) 

property (10.6) 

definition of set operator * 
definition of regular expression operator *. o 

Warning: It is not true that A is regular whenever h(A) is. This is not what 

Theorem 10.1 says. We will show later that the set {anbn I n 2: O} is not 

regular, but the image of this set under the homomorphism h(a) = h(b) = a 
is the regular set {an I n is even}. The preimage h-l({an I n is even}) is 

not {anbn I n 2: O}, but {x E {a,b}* Ilxl is even}, which is regular. 
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Automata with f-transitions 

Here is an example of how to use homomorphisms to give a clean treatment 
of f-transitions. Define an NFA with f-transitions to be a structure 

M = (Q, I:, e, t:., S, F) 

such that e is a special symbol not in I: and 

Me = (Q, I: u {e}, t:., S, F) 

is an ordinary NFA over the alphabet I: U {e}. We define acceptance for 
automata with f-transitions as follows: for any x e I:*, M accepts x if there 

exists y e (I: U {e})* such that 

• Me accepts y under the ordinary definition of acceptance for NFAs, 
and 

• x is obtained from y by erasing all occurrences of the symbol ej that 

is, x = h(y), where 

h: (I: U {e})* -+ I:* 

is the homomorphism defined by 

( ) def 
h a = a, a e I:, 

( ) def 
he = f. 

In other words, 

L(M) dg h(L(Me)). 

This definition and the definition involving f-closure described in Lecture 
6 are equivalent (Miscellaneous Exercise 10). It is immediate from this 
definition and Theorem 10.2 that the set accepted by any finite automaton 
with f-transitions is regular. 

Hamming Distance 

Here is another example of the use of homomorphisms. We can use .them to 

give slick solutions to Exercise 3 of Homework 2 and Miscellaneous Exercise 

8, the problems involving Hamming distance. Let I: = {0,1} and consider 
the alphabet 

The elements of I: x I: are ordered pairs, but we write the components one 
on top of the other. Let top: I: x I: -+ I: and bottom: I: x I: -+ I: be the 
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two projections 

top (~) =a, 

bottom (~) = b. 

These maps extend uniquely to homomorphisms (E x E)* - E*, which we 
also denote by top and bottom. For example, 

top (CililiIQJ) = 0010, 
CiliIiliJ 

bottom (CililiIQJ) = 0111. 
CiliIiliJ 

Thus we can think of strings in (E x E)* as consisting of two tracks, and the 

homomorphisms top and bottom give the contents of the top and bottom 

track, respectively. 

For fixed k, let Die be the set of all strings in (E x E)* containing no more 

than k occurrences of 

This is certainly a regular set. Note also that 

Die = {x E (E x E)* I H(top(x), bottom(x» S k}, 

where H is the Hamming distance function. Now take any regular set A ~ 
E*, and consider the set 

top(bottom-1 (A) n Die)' (10.7) 

Believe it or not, this set is exactly NIe(A), the set of strings in E* of 

Hamming distance at most k from some string in A. The set bottom-1(A) 
is the set of strings whose bottom track is in Aj the set bottom-1 (A) nDIe 
is the set of strings whose bottom track is in A and whose top track is of 

Hamming distance at most k from the bottom trackj and the set (10.7) is 

the set of top tracks of all such strings. 

Moreover, the set (10.7) is a regular set, because the regular sets are closed 

under intersection, homomorphic image, and homomorphic preimage. 
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Limitations of Finite Automata 

We have studied what finite automata can do; let's see what they cannot 
do. The canonical example of a nonregular set (one accepted by no finite 
automaton) is 

B = {a" b" In;::: O} = {€, ab, aabb, aaabbb, aaaabbbb, ... }, 

the set of all strings of the form a*b* with equally many a's and b's. 

Intuitively, in order to accept the set B, an automaton scanning a string 
of the form a*b* would have to remember when passing the center point 
between the a's and b's how many a's it has seen, since it would have to 
compare that with the number of b's and accept iff the two numbers are 
the same. 

aaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbb 

i 
q 

Moreover, it would have to do this for arbitrarily long strings of a's and 
b's, much longer than the number of states. This is an unbounded amount 
of information, and there is no way it can remember this with only finite 
memory. All it "knows" at that point is represented in the state q it is 
in, which is only a finite amount of information. You might at first think 
there may be some clever strategy, such as counting mod 3, 5, and 7, or 
something similar. But any such attempt is doomed to failure: you cannot 
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distinguish between infinitely many different cases with only finitely many 
states. 

This is just an informal argument. But we can easily give a formal proof by 

contradiction that B is not regular. Assuming that B were regular, there 

would be a DFA M such that L(M) = B. Let k be the number of states of 
this alleged M. Consider the action of M on input anbn, where n :> k. It 
starts in its start state s. Since the string anbn is in B, M must accept it, 

thus M must be in some final state r after scanning anbn. 

paaaaaaaaaaaaaaaaaaaaaaaaaaaaPbbbbbbbbbbbbbbbbbbbbbbbbbbb~ 
y y 

n n 
i i 
s r 

Since n :> k, by the pigeonhole principle there must be some state p that 

the automaton enters more than once while scanning the initial sequence of 

a's. Break up the string anbn into three pieces 1.1., v, w, where v is the string 

of a's scanned between two occurrences of the state p, as illustrated in the 

following picture: 

paaaaaaaeaaaaaaa~aaaaabbbbbbbbbbbb!bbbbbbbbbbbbbbb~ 

i 
s 

1.1. v W 

i 
p 

i 
p 

Let j = Ivl > O. In this example, j = 7. Then 

6(8,1.1.) =p, 

6(p,v) = p, 

6(P,w) = reF. 

i 
r 

The string v could be deleted and the resulting string would be erroneously 
accepted: 

6(s,uw) = 6(6(s,u),w) 

= 6(p,w) 

=r eF. 

paaaaaaaaaaaaaaaa~aaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbb~ 

i 
s 

:y ..,. 

1.1. W 

i 
p 

i 
r 

It's erroneous because after deleting v, the number of a's is strictly less than 
the number of b's: uw = an-ibn e L(M), but uw ¢ B. This contradicts our 
assumption that L(M) = B. 
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We could also insert extra copies of v and the resulting string would be er­

roneously accepted. For example, uv3w = an+2j bn is erroneously accepted: 

8(s,uvvvw) = 8(8(8(8(8(s,u),v),v),v),w) 

= 8(8(8(8(p,v),v),v),w) 

= 8(8(8(p,v),v),w) 

= 8(8(p,v),w) 

= 8(p,w) 

=r E F. 

For another example of a nonregular set, consider 

C={a2n In2::0} 

= {x E {a}* Ilxl is a power of 2} 

= {a, a2 , a4 , as, a16 , ••• }. 

This set is also nonregular. Suppose (again for a contradiction) that L(M) = 
C for some DFA M. Let k be the number of states of M. Let n ~ k and 

consider the action of M on input a2" E C. Since n ~ k, by the pigeonhole 

principle the automaton must repeat a state p while scanning the first n 
symbols of a2n . Thus 2n = i + j + m for some i,j, m with 0 < j ~ nand 

8(s,ai ) = p, 

8(p,aj ) = p, 

8(p, am) = rEF. 

~aaaaaaa~aaaaaaaa~aaaaaaaaaaaaaaaaa~aaaaaaaaaaaaaaa~ 

i 
s 

i j m 

i 
p 

i 
p 

i 
r 

As above, we could insert an extra aj to get a2n+i , and this string would 
be erroneously accepted: 

8(s,a2"+i) = 8(s,ai ai ai am) 

= 8(8(8(8(s,atai ),ai ),am) 

= 8(8(8(p,aj ),ai ), am) 

= 8(8(p,ai ),am) 

= 8(p,am) 

=r E F. 

This is erroneous because 2n + j is not a power of 2: 

2n + j::; 2n +n 
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< 2n + 2n 

= 2n +1 

and 2n+1 is the next power of 2 greater than 2n. 

The Pumping Lemma 

We can encapsulate the arguments above in a general theorem called the 

pumping lemma. This lemma is very useful in proving sets nonregular. The 

idea is that whenever an automaton scans a long string (longer than the 

number of states) and accepts, there must be a repeated state, and extra 

copies of the segment of the input between the two occurrences of that state 

can be inserted and the resulting string is still accepted. 

Theorem 11.1 (Pumping lemma) Let A be a regular set. Then the following property 

holds of A: 

(P) There exists k ~ 0 such that for any strings x, y, z with xyz E A and 

Ivi ~ k, there exist strings u,v,w such that V = uvw, v i= f, and for 
all i ~ 0, the string xuv'wz E A. 

Informally, if A is regular, then for any string in A and any sufficiently long 
substring V of that string, V has a nonnull substring v of which you can 

pump in as many copies as you like and the resulting string is still in A. 

We have essentially already proved this theorem. Think of k as the number 

of states of a DFA accepting A. Since V is at least as long as the number 

of states, there must be a repeated state while scanning v. The string v is 
the substring between the two occurrences of that state. We can pump in 
as many copies of vas we want (or delete v-this would be the case i = 0), 
and the resulting string is still accepted. 

Games with the Demon 

The pumping lemma is often used to show that certain sets are nonregular. 
For this purpose we usually use it in its contrapositive form: 

Theorem 11.2 (Pumping lemma, contrapositive form) Let A be a set of strings. 

Suppose that the following property holds of A. 

(..,P) For all k ~ 0 there exist strings x, y, z such that xyz E A, Iyl ~ k, and 

for all u, v, w with y = uvw and v i= E, there exists an i ~ 0 such that 

xuv'wz if. A. 

Then A is not regular. 
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To use the pumping lemma to prove that a given set A is nonregular, we 
need to establish that (.,P) holds of A. Because of the alternating "for 
all/there exists" form of (.,P), we can think of this as a game between you 
and a demon. You want to show that A is nonregular, and the demon wants 
to show that A is regular. The game proceeds as follows: 

1. The demon picks k. (If A really is regular, the demon's best strategy 
here is to pick k to be the number of states of a DFA for A.) 

2. You pick x, y, z such that xyz E A and Iyl ~ k. 

3. The demon picks 11., v, w such that y = uvw and v ::I E. 

4. You pick i ~ O. 

You win if xuviwz ¢ A, and the demon wins if xuviwz E A. 

The property (.,P) for A is equivalent to saying that you have a winning 
strategy in this game. This means that by playing optimally, you can always 

win no matter what the demon does in steps 1 and 3. 

If you can show that you have a winning strategy, you have essentially 

shown that the condition (.,P) holds for A, therefore by Theorem 11.2, A 
is not regular. 

We have thus reduced the problem of showing that a given Bet is non­
regular to the puzzle of finding a winning strategy in the corresponding 
demon game. Each nonregular set gives a different game. We'll give several 
examples in Lecture 12. 

Warning: Although there do exist stronger versions that give necessary 
and sufficient conditions for regularity (Miscellaneous Exercise 44), the ver­
sion of the pumping lemma given here gives only a necessary condition; 
there exist sets satisfying (P) that are nonregular (Miscellaneous Exercise 
43). You cannot show that a set is regular by showing that it satisfies (P). 
To show a given set is regular, you should construct a finite automaton or 
regular expression for it. 

Historical Notes 

The pumping lemma for regular sets is due to Bar-Hillel, Perles, and Shamir 
[8]. This version gives only a necessary condition for regularity. Necessary 
and sufficient conditions are given by Stanat and Weiss [117], Jaffe [62], 
and Ehrenfeucht, Parikh, and Rozenberg [33]. 
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Using the Pumping Lemma 

Example 12.1 Let's use the pumping lemma in the form of the demon game to show that 
the set 

A = {anbm In?: m} 

is not regular. The set A is the set of strings in a*b* with no more b's 
than a's. The demon, who is betting that A is regular, picks some number 
k. A good response for you is to pick z = ak , y = bk , and z = f. Then 
xyz = akbk E A and Iyl = k; so far you have followed the rules. The demon 
must now pick u, v, w such that y = uvw and v ::/; f. Say the demon picks 
U,V,w of length j,m,n, respectively, with k = j + m + nand m > O. No 
matter what the demon picks, you can take i = 2 and you win: 

xuv2wz = akbibmbmbn 

= akbi+2m+n 

= akbk+m, 

which is not in A, because the number of b's is strictly larger than the 
number of a's. 

This strategy always leads to victory for you in the demon game associated 
with the set A. As we argued in Lecture 11, this is tantamount to showing 
that A is nonregular. 0 
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Example 12.2 For another example, take the set 

C = {an! I n ~ a}. 

We would like to show that this set is not regular. This one is a little 

harder. It is an example of a nonregular set over a single-letter alphabet. 
Intuitively, it is not regular because the differences in the lengths of the 

successive elements of the set grow too fast. 

Suppose the demon chooses k. A good choice for you is x = z = E and 

y = ak !. Then xyz = ak! E C and Iyl = k! ~ k, so you have not cheated. 
The demon must now choose u, v, w such that y = uvw and v f= E. Say the 
demon chooses u, v, w of length j, m, n, respectively, with k! = j + m + n 
and m > O. You now need to find i such that xuviwz ¢ Cj in other words, 
Ixuviwzl f= p! for any p. Note that for any i, 

Ixuviwzl = j + im + n = k! + (i - 1)m, 

so you will win if you can choose i such that k! + (i - 1)m f= p! for any p. 

Take i = (k + 1)! + 1. Then 

k! + (i -l)m = k! + (k+ l)!m = k!(l +m(k+ 1)), 

and we want to show that this cannot be p! for any p. But if 

p! = k!(l + m(k + 1)), 

then we could divide both sides by k! to get 

p(p - l)(p - 2) ... (k + 2)(k + 1) = 1 + m(k + 1), 

which is impossible, because the left-hand side is divisible by k + 1 and the 
right-hand side is not. 0 

A Trick 

When trying to show that a set is nonregular, one can often simplify the 
problem by using one of the closure properties of regular sets. This often 
allows us to reduce a complicated set to a simpler set that is already known 

to be nonregular, thereby avoiding the use of the pumping lemma. 

To illustrate, consider the set 

D = {x E {a,b}* I #a(x) = #b(x)}. 

To show that this set is nonregular, suppose for a contradiction that it were 
regular. Then the set 

D na*b* 
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would also be regular, since the intersection of two regular sets is always 
regular (the product construction, remember?). But 

D n L(a*b*) = {anbn I n ~ D}, 

which we have already shown to be nonregular. This is a contradiction. 

For another illustration of this trick, consider the set A of Example 12.1 
above: 

A={anbm In~m}, 

the set of strings x E L(a*b*) with no more b's than a's. By Exercise 2 of 
Homework 2, if A were regular, then so would be the set 

rev A = {bman I n ~ m}, 

and by interchanging a and b, we would get that the set 

A' = {ambn I n ~ m} 

is also regular. Formally, "interchanging a and b" means applying the ho­
momorphism a ...... b, b ...... a. But then the intersection 

AnA' = {anbn I n ~ D} 

would be regular. But we have already shown using the pumping lemma 
that this set is nonregular. This is a contradiction. 

Ultimate Periodicity 

Let U be a subset of N = {D, 1, 2, 3, ... }, the natural numbers. 

The set U is said to be ultimately periodic if there exist numbers n ~ D and 
p > D such that for all m ~ n, m E U if and only if m + p E U. The number 
p is called a period of U. 

In other words, except for a finite initial part (the numbers less than n), 

numbers are in or out of the set U according to a repeating pattern. For 
example, consider the set 

{D,3,7,11,19,20,23,26,29,32,35,38,41,44,47,50, ... }. 

Starting at 20, every third element is in the set, therefore this set is ulti­
mately periodic with n = 20 and p = 3. Note that neither n nor p is unique; 
for example, for this set we could also have taken n = 21 and p = 6, or 
n = 100 and p = 33. 

Regular sets over a single-letter alphabet {a} and ultimately periodic sub­
sets of N are strongly related: 
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Theorem 12.3 Let A S;;; {a}*. Then A is regular i/ and only i/ the set {m I am E A}, the 
set o/lengths 0/ strings in A, is ultimately periodic. 

Proof. If A is regular, then any DFA for it consists of a finite tail of some 

length, say n ;:: 0, followed by a loop of length p > ° (plus possibly some 
inaccessible states, which can be thrown out). 

To see this, consider any DFA for A. Since the alphabet is {a} and the 
machine is deterministic, there is exactly one edge out of each state, and it 

has label a. Thus there is a unique path through the automaton starting at 

the start state. Follow this path until the first time you see a state that you 

have seen before. Since the collection of states is finite, eventually this must 

happen. The first time this happens, we have discovered a loop. Let p be the 

length of the loop, and let n be the length of the initial tail preceding the 

first time we enter the loop. For all strings am with m ;:: n, the automaton 
is in the loop part after scanning am. Then am is accepted iff am+p is, since 
the automaton moves around the loop once under the last p a's of am+p• 

Thus it is in the same state after scanning both strings. Therefore, the set 
of lengths of accepted strings is ultimately periodic. 

Conversely, given any ultimately periodic set U, let p be the period and 
let n be the starting point of the periodic behavior. Then one can build an 
automaton with a tail of length n and loop of length p accepting exactly 
the set of strings in {a}* whose lengths are in U. For example, for the 
ultimately periodic set 

{0,3,7,11,19,20,23,26,29,32,35,38,41,44,47,50, ... } 

mentioned above, the automaton would be 

.@.. .• @.. .. .. @.. •• .. @.. .. .. .. •• .. •• .:lo 
Corollary 12.4 Let A be any regular set over any finite alphabet~, not necessarily consisting 

0/ a single letter. Then the set 
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lengths A = {Ixll x E A} 

of lengths of strings in A is ultimately periodic. 

Proof. Define the homomorphism h : ~ -+ {a} by h(b) = a for all b E ~. 

Then h(x) = al"l. Since h preserves length, we have that lengths A = 
lengths h(A). But h(A) is a regular subset of {a}*, since the regular 
sets are closed under homomorphic image; therefore, by Theorem 12.3, 

lengths h(A) is ultimately periodic. 0 

Historical Notes 

A general treatment of ultimate periodicity and regularity-preserving func­

tions is given in Seiferas and McNaughton [113]; see Miscellaneous Exercise 
34. 
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DFA State Minimization 

By now you have probably come across several situations in which you have 

observed that some automaton could be simplified either by deleting states 
inaccessible from the start state or by collapsing states that were equivalent 

in some sense. For example, if you were to apply the subset construction to 

the NFA 

Xa 
~ .. b ·0 • • 

s t u v 

accepting the set of all strings containing the substring aba, you would 
obtain a DFA with 24 = 16 states. However, all except six of these states 
are inaccessible. Deleting them, you would obtain the DFA 

b a 

From left to right, the states of this DFA correspond to the subsets {s}, 
{s,t}, {s,u}, {s,t,v}, {s,u,v}, {s,v}. 
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Example 13.1 

Now, note that the rightmost three states of this DFA might as well be 

collapsed into a single state, since they are all accept states, and once the 

machine enters one of them it cannot escape. Thus this DFA is equivalent 

to 

7 
.Q b 

b 
This is a simple example in which the equivalence of states is obvious, but 

sometimes it is not so obvious. In this and the next lecture we will develop 

a mechanical method to find all equivalent states of any given DFA and 

collapse them. This will give a DFA for any given regular set A that has 

as few states as possible. An amazing fact is that every regular set has 

a minimal DFA that is unique up to isomorphism, and there is a purely 

mechanical method for constructing it from any given DFA for A. 

Say we are given a DFA M = (Q, ~, 6, 8, F) for A. The minimization 

process consists of two stages: 

1. Get rid of inaccessible states; that is, states q for which there exists no 

string x E ~* such that 6(s,x) = q. 

2. Collapse "equivalent" states. 

Removing inaccessible states surely does not change the set accepted. It 

is quite straightforward to see how to do this mechanically using depth­
first search on the transition graph. Let us then assume that this has been 

done. For stage 2, we need to say what we mean by "equivalent" and how 

we do the collapsing. Let's look at some examples before giving a formal 

definition. 

a,b 

u a,b ~@ a,b ~ Oa,b 

These automata both accept the set {a, b}. The automaton with four states 
goes to different states depending on the first input symbol, but there's 

really no reason for the states to be separate. They are equivalent and can 

be collapsed into one state, giving the automaton with three states. 0 



Example 13.2 

Example 13.3 

Example 13.4 
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1 3 

a,b 

2 

•• a,b.@ a,b... a,b .£"'"\ a,b 
6 7 8 ;)LJ 

This example is a little more complicated. The automata both accept the set 

{a, b} U {strings of length 3 or greater}. In the first automaton, states 3 and 

4 are equivalent, since they both go to state 5 under both input symbols, 

so there's no reason to keep them separate. Once we collapse them, we can 
collapse 1 and 2 for the same reason, giving the second automaton. State 0 
becomes state 6; states 1 and 2 collapse to become state 7; states 3 and 4 
collapse to become state 8; and state 5 becomes state 9. 0 

1 3 

a,b 

2 4 

a,b a,b iO b •• •• ~ a, 
6 7 8 

Here we have modified the first automaton by making states 3, 4 accept 
states instead of 1,2. Now states 3,4,5 are equivalent and can be collapsed. 
These become state 8 of the second automaton. The set accepted is the set 
of all strings of length at least two. 0 

These automata both accept the set {am 1m == 1 mod 3} (edge labels are 
omitted). In the left automaton, diametrically opposed states are equivalent 
and can be collapsed, giving the automaton on the right. 0 
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The Quotient Construction 

How do we know in general when two states can be collapsed safely without 

changing the set accepted? How do we do the collapsing formally? Is there 

a fast algorithm for doing it? How can we determine whether any further 

collapsing is possible? 

Surely we never want to collapse an accept state p and a reject state q, 

because if p = 6(s, x) E F and q = 6(s,y) (j F, then x must be accepted 
and y must be rejected even after collapsing, so there is no way to declare 
the collapsed state to be an accept or reject state without error. Also, if 
we collapse p and q, then we had better also collapse 6 (p, a) and 6 (q, a) to 
maintain determinism. These two observations together imply inductively 

that we cannot collapse p and q if 6(p, x) E F and 6(q,x) (j F for some 
string x. 

It turns out that this criterion is necessary and sufficient for deciding 

whether a pair of states call be collapsed. That is, if there exists a string x 
such that 6(p, x) E F and 6(q, x) (j F or vice versa, thenp and q cannot be 
safely collapsedj and if no such x exists, then they can. 

Here's how we show this formally. We first define an equivalence relation ~ 

on Q by 

p ~ q ~ 'Vx E E* (6(P, x) E F {:::::} 6(q, x) E F). 

This definition is just a formal restatement of the collapsing criterion. It is 
not hard to argue that the relation ~ is indeed an equivalence relation: it 
is 

• reflexive: p ~ p for all pj 

• symmetric: if p ~ q, then q ~ pj and 

• transitive: if p ~ q and q ~ r, then p ~ r. 

As with all equivalence relations, ~ partitions the set on which it is defined 

into disjoint equivalence classes: 

[Pl ~f {q I q ~ pl. 

Every element p E Q is contained in exactly one equivalence class [Pl, and 

p ~ q {:::::} IP] = [q]. 

We now define a DFA M/~ called the quotient automaton, whose states 
correspond to the equivalence classes of ~. This construction is called a 

quotient construction and is quite common in algebra. We will see a more 

general account of it in Supplementary Lectures C and D. 
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There is one state of M/';:!, for each ';:!,-equivalence class. In fact, formally, 

the states of M/';:!, are the equivalence classes; this is the mathematical way 
of "collapsing" equivalent states. 

Define 

M/';:!, ~ (Q', E, 6', s', F'), 

where 

Q' d~ {IP)I P E Q}, 

6'(IP],a) ~ [6(p,a)], 

, deC [ ] 
S = s, 

F' ~ {IP]I p E F}. 

(13.1) 

There is a subtle but important point involving the definition of 6' in (13.1): 

we need to show that it is well-defined. Note that the action of 6' on the 

equivalence class IP] is defined in terms of p. It is conceivable that a different 
choice of representative of the class IP] (i.e., some q such that q ';:!, p) might 

lead to a different right-hand side in (13.1). Lemma 13.5 says exactly that 
this does not happen. 

Lemma 13.5 If p ';:!, q, then 6(p,a) ';:!, 6(q,a). Equivalently, if IP] = [q], then [6(p,a)) = 
[6(q, a)]. 

Proof. Suppose p ';:!, q. Let a E E and y E E*. 

6(6(p,a),y) E F <==} 6(p,ay) E F 

<==} 6(q, ay) E F since p ';:!, q 

<==} 6(6(q,a),y) E F. 

Since y was arbitrary, 6(p, a) ';:!, 6(q, a) by definition of >:::. 

Lemma 13.6 P E F <==} IP] E F'. 

o 

Proof. The direction =? is immediate from the definition of F'. For the 

direction ¢::, we need to show that if p ';:!, q and p E F, then q E F. In other 

words, every ';:!,-equivalence class is either a subset of F or disjoint from F. 
This follows immediately by taking x = € in the definition of p ';:!, q. 0 

Lemma 13.7 For all x E E*, 6' (IP], x) = [8(p,x)]. 

Proof. By induction on Ixl. 
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Basis 

For x = f, 

8' ([P], f) = [P] definition of 8' 

= [8(p,f)] definition of 8. 

Induction step 

Assume 8'([P] , x) = [8(p,x)], and let a E~. 

8'([P] , xa) = 6'(8'([P], x), a) definition of 8' 

= 6' ([8 (p, x)], a) induction hypothesis 

= [6(8(p, x), a)] definition of 6' 

= [8(p,xa)] 

Theorem 13.8 L(M/f!::!) = L(M). 

definition of 8. o 

Proof. For x E ~*, 

x E L(M/ f!::!) {:=:} 8'(s',x) E F' 

{:=:} 8' ([s], x) E F' 

{:=:} [8(s,x)] E F' 

{:=:} 6(s, x) E F 

{:=:} x E L(M) 

M/f!::! Cannot Be Collapsed Further 

definition of acceptance 

definition of s' 

Lemma 13.7 

Lemma 13.6 

definition of acceptance. o 

It is conceivable that after doing the quotient construction once, we might 

be able to collapse even further by doing it again. It turns out that once is 

enough. To see this, let's do the quotient construction a second time. Define 

[P] '" [q] ~ "Ix E ~* (8'([P],x) E F' {:=:} 8'([q],x) E F'). 

This is exactly the same definition as f!::! above, only applied to the quotient 

automaton M/f!::!. We use the notation'" for the equivalence relation on Q' 
to distinguish it from the relation f!::! on Q. Now 

[P] '" [q] 

=> "Ix (8' ([P], x) E F' {:=:} 8' ([q], x) E F') definition of '" 

=> "Ix ([8(p,x)] E F' {:=:} [8(q,x)] E F') Lemma 13.7 



::::} 'l:/x (8(p,x) E F ¢:::::} 8(q, x) E F) 

::::}pr:::!q 

::::} lP] = [q]. 
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Lemma 13.6 

definition of r:::! 

Thus any two equivalent states of M /r:::! are in fact equal, and the collapsing 
relation'" on Q' is just the identity relation =. 
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A Minimization Algorithm 

Here is an algorithm for computing the collapsing relation ~ for a given 
DFA M with no inaccessible states. Our algorithm will mark (unordered) 
pairs of states {p,q}. A pair {p,q} will be marked as soon as a reason is 
discovered why p and q are not equivalent. 

1. Write down a table of all pairs {p,q}, initially unmarked. 

2. Mark {p,q} if p E F and q ¢ F or vice versa. 

3. Repeat the following until no more changes occur: if there exists an 
unmarked pair {p,q} such that {6(p,a),6(q,a)} is marked for some 
a E~, then mark {p,q}. 

4. When done, p ~ q iff {p,q} is not marked. 

Here are some things to note about this algorithm: 

• If {p,q} is marked in step 2, then p and q are surely not equivalent: 
take x = e in the definition of ~. 

• We may have to look at the same pair {p, q} many times in step 3, 
since any change in the table may suddenly allow {p,q} to be marked. 
We stop only after we make an entire pass through the table with no 
new marks. 
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• The algorithm runs for only a finite number of steps, since there are 

only (~) possible marks that can be made,l and we have to make at 

least one new mark in each pass to keep going. 

• Step 4 is really a statement of the theorem that the algorithm correctly 
computes R:i. This requires proof, which we defer until later. 

Example 14.1 Let's minimize the automaton of Example 13.2 of Lecture 13. 

a b 

-+ ° 1 2 
IF 3 4 

2F 4 3 

3 5 5 
4 5 5 

5F 5 5 

Here is the table built in step 1. Initially all pairs are unmarked. 

° 1 
2 

3 
4 

5 

After step 2, all pairs consisting of one accept state and one nonaccept state 
have been marked. 

° ,f 1 
,f 2 

,f 

,f ,f 

,f ,f 

3 
4 

,f ,f 5 

Now look at an unmarked pair, say {O, 3}. Underinput a, ° and 3 go to 1 and 
5, respectively (write: {O,3} -+ {l,5}). The pair {l,5} is not marked, so we 
don't mark {O, 3}, at least not yet. Under input b, {O,3} ..... {2, 5}, which is 

not marked, so we still don't mark {O,3}. We then look at unmarked pairs 

{O, 4} and {I, 2} and find out we cannot mark them yet for the same reasons. 
But for {1,5}, under input a, {1,5} -+ {3,5}, and {3,5} is marked, so we 
mark {1,5}. Similarly, under input a, {2,5} -+ {4,5} which is marked, so 
we mark {2,5}. Under both inputs a and b, {3,4} -+ {5,5}, which is never 
marked (it's not even in the table), so we do not mark {3, 4}. After the first 

1(;:) cI£! .!(:~.)!, the number of subsets ofsize k in a set of size n. 
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pass of step 3, the table looks like 

D 
,f 1 
,f 2 

,f ,f 3 
,f,f 4 

,f,f,f,f,fS 

Now we make another pass through the table. As before, {O,3} -+ {1,5} 

under input a, but this time {1, S} is marked, so we mark {O,3}. Similarly, 
{D,4} -+ {2, S} under input b, and {2, 5} is marked, so we mark {D, 4}. This 

gives 

D 
,f 1 
,f 2 
,f ,f ,f 3 
,f ,f ,f 4 
,f ,f ,f ,f ,f 5 

Now we check the remaining unmarked pairs and find out that {1,2} -+ 

{3,4} and {3,4} -+ {5,5} under both a and b, and neither {3,4} nor {S,S} 

is marked, so there are no new marks. We are left with unmarked pairs 

{1,2} and {3, 4}, indicating that 1 ~ 2 and 3 ~ 4. 0 

Example 14.2 Now let's do Example 13.4 of Lecture 13. 

a 

-+ 0 1 
1F 2 

2 3 
3 4 
4F 5 
5 0 

Here is the table after step 2. 

o 
,f 1 

,f 2 
,f 3 

,f ,f ,f 4 
,f ,f 5 

Then: 

• {O,2} -+ {1,3}, which is marked, so mark {O,2}. 
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• {O,3} ..... {I, 4}, which is not marked, so do not mark {O,3}. 

• {O,5} ..... {O, I}, which is marked, so mark {O,5}. 

• {1,4} ..... {2,5}, which is not marked, so do not mark {1,4}. 

• {2,3} ..... {3, 4}, which is marked, so mark {2,3}. 

• {2, 5} ..... {O, 3}, which is not marked, so do not mark {2, 5}. 

• {3,5} ..... {O,4}, which is marked, so mark {3,5}. 

After the first pass, the table looks like this: 

° .f 1 

.f .f 2 
.f .f 3 

.f .f .f 4 

.f .f .f .f 5 

Now do another pass. We discover that {O,3} ..... {1,4} ..... {2,5} ..... {O,3} 

and none of these are marked, so we are done. Thus ° ~ 3, 1 ~ 4, and 
2 ~ 5. 0 

Correctness of the Collapsing Algorithm 

Theorem 14.3 The pair {p, q} is marked by the above algorithm if and only if there exists 

x E ~* such that 6(p, x) E F and 6( q, x) f/. F or vice versa; i. e., if and only 
ifp ~ q. 

Proof. This is easily proved by induction. We leave the proof as an exercise 
(Miscellaneous Exercise 49). 0 

A nice way to look at the algorithm is as a finite automaton itself. Let 

Q = {{p,q} I p,q E Q, p;i: q}. 

There are (~) elements of Q, where n is the size of Q. Define a nondeter­
ministic "transition function" 

t:. : Q ..... 2Q 

on Q as follows: 

t:.({p,q},a) = {{p',q'} I p = 8(p',a), q = 8(q',a)}. 

Define a set of "start states" S ~ Q as follows: 

S = {{p,q} I p E F, q f/. F}. 
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(We don't need to write " ... or vice versa" because {p,q} is an unordered 
pair.) Step 2 of the algorithm marks the elements of S, and step 3 marks 
pairs in 8({p,q},a) when {p,q} is marked for any a e ~. In these terms, 
Theorem 14.3 says that p ¢ q iff {p,q} is accessible in this automaton. 
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Myhill-Nerode Relations 

Two deterministic finite automata 

M = (QM, I:, OM, SM, FM), 

N = (QN, I:, ON, SN, FN) 

are said to be isomorphic (Greek for "same form") if there is a one-to-one 

and onto mapping I : Q M ---> Q N such that 

• I(SM) = SN, 

• l(oM(p,a)) = oN(f(p),a) for all p E QM, a E I:, and 

• p E FM iff I(p) E FN. 

That is, they are essentially the same automaton up to renaming of states. 
It is easily argued that isomorphic automata accept the same set. 

In this lecture and the next we will show that if M and N are any two au­
tomata with no inaccessible states accepting the same set, then the quotient 
automata M/'/'>!, and N/'/'>!, obtained by the collapsing algorithm of Lecture 
14 are isomorphic. Thus the DFA obtained by the collapsing algorithm is 
the minimal DFA for the set it accepts, and this automaton is unique up 
to isomorphism. 

We will do this by exploiting a profound and beautiful correspondence 
between finite automata with input alphabet I: and certain equivalence 
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relations on E*. We will show that the unique minimal DFA for a regular 
set R can be defined in a natural way directly from R, and that any minimal 
automaton for R is isomorphic to this automaton. 

Myhill-Nerode Relations 

Let R ~ E* be a regular set, and let M = (Q, E, 0, s, F) be a DFA for 
R with no inaccessible states. The automaton M induces an equivalence 

relation =M on E* defined by 

x =M Y ~ 6(s,x) = 6(s,y). 

(Don't confuse this relation with the collapsing relation ~ of Lecture 13-
that relation was defined on Q, whereas =M is defined on E*.) 

One can easily show that the relation =M is an equivalence relation; that 

is, that it is reflexive, symmetric, and transitive. In addition, =M satisfies 
a few other useful properties: 

(i) It is a right congruence: for any x, y E E* and a E E, 

x ==M Y =? xa ==M ya. 

To see this, assume that x =M y. Then 

6(s,xa) = 0(6(s,x),a) 

= 0(6(s,y),a) by assumption 

= 6(s,ya). 

(il) It refines R: for any x, y E E*, 

X ==M Y =? (x E R ¢::::::} Y E R). 

This is because 6(s, x) = 6(s, y), and this is either an accept or a reject 
state, so either both x and y are accepted or both are rejected. Another 
way to say this is that every ==M-class has either all its elements in R 
or none of its elements in R; in other words, R is a union of =M-classes. 

(iii) It is of finite index; that is, it has only finitely many equivalence classes. 
This is because there is exactly one equivalence class 

{x E E* I 6(s,x) = q} 

corresponding to each state q of M. 

Let us call an equivalence relation == on E* a Myhill-Nerode relation lor R 
if it satisfies properties (i), (ii), and (iii); that is, if it is a right congruence 

of finite index refining R. 
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The interesting thing about this definition is that it characterizes exactly 

the relations on ~* that are ==M for some automaton M. In other words, we 
can reconstruct M from ==M using only the fact that ==M is Myhill-Nerode. 

To see this, we will show how to construct an automaton M=. for R from 
any given Myhill-Nerode relation == for R. We will show later that the two 
constructions 

are inverses up to isomorphism of automata. 

Let R S;; ~*, and let == be an arbitrary Myhill-Nerode relation for R. Right 

now we're not assuming that R is regular, only that the relation == satisfies 
(i), (ii), and (iii). The ==-class of the string x is 

[x]~f{yly==x}. 

Although there are infinitely many strings, there are only finitely many 

==-classes, by property (iii). 

Now define the DFA M=. = (Q, ~, 8, s, F), where 

Q ~f {[xli x E ~*}, 

def [ j 
S = €, 

F d,g {[x] I x E R}, 

8([x],a) ~f [xa]. 

It follows from property (i) of Myhill-Nero de relations that 8 is well defined. 
In other words, we have defined the action of 8 on an equivalence class [x] 
in terms of an element x chosen from that class, and it is conceivable that 
we could have gotten something different had we chosen another y E [x] 
such that [xa] "1= [ya]. The property of right congruence says exactly that 
this cannot happen. 

Finally, observe that 

x E R {:::} [x] E F. (15.1) 

The implication (:::}) is from the definition of F, and ({::) follows from the 
definition of F and property (ii) of Myhill-Nerode relations. 

Now we are ready to prove that L(M=) = R. 

Lemma 15.1 6([x],y) = [xyj. 

Proof. Induction on Iyl. 
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Basis 

6([x] , E) = [x] = [XE]. 

Induction step 

6([x],ya) = o(6([x],y),a) definition of6 

= o ([xy] , a) induction hypothesis 

= [xya] definition of o. o 

Theorem 15.2 L(M=) = R. 

Proof. 

x E L(M=) {:::::} 6([E] , x) E F 

{:::::} [x] E F 

{:::::} x E R 

definition of acceptance 

Lemma 15.1 

property (15.1). 

M 1-+ ==M and == 1-+ M= Are Inverses 

o 

We have described two natural constructions, one taking a given automa­
ton M for R with no inaccessible states to a corresponding Myhill-Nerode 
relation ==M for R, and one taking a given Myhill-Nerode relation == for R 

to a DFA M= for R. We now wish to show that these two operations are 
inverses up to isomorphism. 

Lemma 15.3 (i) If == is a Myhill-Nerode relation for R, and if we apply the construction 
== 1-+ M= and then apply the construction M 1-+ ==M to the result, the 
resulting relation ==Me is identical to ==. 

(ii) If M is a DFA for R with no inaccessible states, and if we apply the 
construction M 1-+. ==M and then apply the construction == 1-+ M= to 
the result, the resulting DFA M=M is isomorphic to M. 

Proof. (i) Let M= = (Q, ~, 0, 8, F) be the automaton constructed from == 
as described above. Then for any x, y E ~*, 

X ==Me Y {:::::} 6(8, x) = 6(s, y) 

{:::::} 6([E],X) = 6([E],Y) 

{:::::} [x] = [y] 

{:::::} x == y. 

definition of ==Me 

definition of s 

Lemma 15.1 
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(ii) Let M = (Q, ~,o, s, F) and let M=M = (Q', ~, 0', s', F'). Recall from 
the construction that 

[x] = {y I Y =M x} = {y 18(s,y) = 8(s,x)}, 

Q' = {[x] I x E ~*}, 

s' = If], 
F' = {[x] I x E R}, 

o'([x],a) = [xa]. 

We will show that M=M and M are isomorphic under the map 

/: Q' -4 Q, 

/([x]) = 8( s, x). 

By the definition of =M, [x] = [y] iff 8(s,x) = 8(s,y), so the map / is 
well defined on =M-classes and is one-to-one. Since M has no inaccessible 

states, / is onto. 

To show that / is an isomorphism of automata, we need to show that / pre­
serves all automata-theoretic structure: the start state, transition function, 

and final states. That is, we need to show 

• /(s') = s, 

• /(o'([x],a)) = o(f([x]),a), 

• [x] E F' <==> /([x]) E F. 

These are argued as follows: 

I(s') = 1([1:]) definition of s' 

= 8( s, €) definition of / 

= s definition of 8j 

f(o'([x], a)) = f([xa]) definition of 0' 

= 8( s, xa) definition of / 

= 0(8(s,x),a) definition of8 

= o(f([x]) , a) definition of /j 

[x] E F' <==> x E R 

<==> 8(s, x) E F 

<==> f([x]) E F 

definition of F and property (ii) 

since L(M) = R 

definition of f. o 
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We have shown: 

Theorem 15.4 Let:E be a finite alphabet. Up to isomorphism of automata, there is a one­
to-one correspondence between deterministic finite automata over :E with no 
inaccessible states accepting Rand Myhill-Nerode relations for J!, on :E*. 
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The Myhill-Nerode Theorem 

Let R ~ E* be a regular set. Recall from Lecture 15 that a Myhill-NerQde 
relation for R is an equivalence relation == on E* satisfying the following 
three properties: 

(i) == is a right congruence: for any x, y E E* and a E E, 

x == y => xa == yaj 

(ii) == refines R: for any x, y E E*, 

x == Y => (x E R ¢:::} 11 E R)j 

(iii) == is of finite index; that is, == has only finitely many equivalence classes. 

We showed that there was a natural one-to-one correspondence (up to 
isomorphism of automata) between 

• deterministic finite automata for R with input alphabet E and with 

no inaccessible states, and 

• Myhill-Nerode relations for R on E*. 

This is interesting, because it says we can deal with regular sets and finite 
automata in terms of a few simple, purely algebraic properties. 
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In this lecture we will show that there exists a coarsest Myhill-Nerode 

relation =R for any given regular set Ri that is, one that every other Myhill­

N erode relation for R refines. The notions of coarsest and refinement will 

be defined below. The relation =R corresponds to the unique minimal DFA 

for R. 

Recall from Lecture 15 the two constructions 

• M H =M, which takes an arbitrary DFA M = (Q, E, 6, s, F) with no 

inaccessible states accepting R and produces a Myhill-Nerode relation 

=M for R: 

x =M y ~ 6(s, x) = 6(s,y); 

• = H M=, which takes an arbitrary Myhill-Nerode relation = on E* 

for R and produces a DFA M= = (Q, E, 6, s, F) accepting R: 

[x] d~f {y I y = x}, 

Q dg {[x] I x E E*}, 

de! [ ] 
S = €, 

6 ([x] , a) ~ [xa], 

F ~ {[x] I x E R}. 

We showed that these two constructions are inverses up to isomorphism. 

Definition 16.1 A relation =1 is said to refine another relation =2 if =1 ~ =2, considered 
as sets of ordered pairs. In other words, =1 refines =2 if for all x and y, 
x =1 y implies x =2 y. For equivalence relations =1 and =2, this is the same 
as saying that for every x, the =l-class of x is included in the =2-class of 
~ 0 

For example, the equivalence relation x = y mod 6 on the integers refines 

the equivalence relation x = y mod 3. For another example, clause (ii) of the 

definition of Myhill-Nerode relations says that a Myhill-Nerode relation = 

for R refines the equivalence relation with equivalence classes Rand E* - R. 

The relation of refinement between equivalence relations is a partial order: 

it is reflexive (every relation refines itself), transitive (if =1 refines =2 and 

=2 refines =3, then =1 refines =3), and antisymmetric (if =1 refines =2 

and =2 refines =1, then =1 and =2 are the same relation). 

If =1 refines =2, then =1 is the finer and =2 is the coarser of the two 
relations. There is always a finest and a coarsest equivalence relation on 

any set U, namely the identity relation {(x,x) I x E U} and the universal 
relation {(x,y) I X,y E U}, respectively. 
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Now let R !; I:*, regular or not. We define an equivalence relation =R on 

I:* in terms of R as follows: 

x =R Y ~ Vz e I:* (xz e R <=> yz e R). (16.1) 

In other words, two strings are equivalent under =R if, whenever you append 
the same string to both of them, the resulting two strings are either both 
in R or both not in R. It is not hard to show that this is an equivalence 
relation for any R. 

We show that for any set R, regular or not, the relation =R satisfies the first 

two properties (i) and (ti) of Myhill-Nerode relations and is the coarsest 

such relation on I:*. In case R is regular, this relation is also of finite index, 

therefore a Myhill-Nerode relation for R. In fact, it is the coarsest possible 

Myhill-Nerode relation for R and corresponds to the unique minimal finite 

automaton for R. 

Lemma 16.2 Let R !; I:*, regular or not. The relation =R defined by (16.1) is a right 
congruence refining R and is the coarsest such relation on I:*. 

Proof. To show that ==R is a right congruence, take z = aw in the definition 

of=R: 

x =R y:::} Va e I: Vw e I:*(xaw e R <=> yaw e R) 

:::} Va e I: (xa =R '00,). 

To show that ==R refines R, take z = e in the definition of =R: 

x =R y :::} (x e R <=> y e R). 

Moreover, =R is the coarsest such relation, because any other equivalence 

relation = satisfying (i) and (ti) refines =R: 

x=y 

:::} Vz (xz == yz) 

:::} Vz (xz e R <=> yz e R) 

by induction on \z\, using property (i) 

property (ii) 

definition of =R. o 

At this point all the hard work is done. We can now state and prove the 
Myhill-Nerode theorem: 

Theorem 16.3 (Myhill-Nero de theorem) Let R !; I:*. The following statements are 
equivalent: 

(a) R is regular; 

(b) there exists a Myhill-Nerode relation for R; 

(c) the relation =R is of finite index. 
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Proof. (a) => (b) Given a DFA M for R, the construction M H =M 
produces a Myhill-Nerode relation for R. 

(b) => (c) By Lemma 16.2, any Myhill-Nerode relation for R is of finite 

index and refines =Rj therefore =R is of finite index. 

(c) => (a) If =R is of finite index, then it is a Myhill-Nerode relation for 

R, and the construction = H M= produces a DFA for R. 0 

Since =R is the unique coarsest Myhill-Nerode relation for a regular set R, 
it corresponds to the DFA for R with the fewest states among all DFAs for 

R. 

The collapsing algorithm of Lecture 14 actually gives this automaton. Sup­
pose M = (Q, E, 6, s, F) is a DFA for R that is already collapsedj that is, 
there are no inaccessible states, and the collapsing relation 

p ~ q ~ 't/z E E* (6(p,x) E F {:::::} 6(q,x) E F) 

is the identity relation on Q. Then the Myhill-Nerode relation =M corre­
sponding to M is exactly =R: 

X=RY 

{:::::} 't/z E E* (zz E R {:::::} yz E R) definition of =R 

{:::::} 't/z E E* (6(s,xz) E F {:::::} 6(s,yz) E F) definition of acceptance 

{:::::} 't/z E E* (6(6(s,x),z) E F {:::::} 6(6(s,y),z) E F) 

{:::::} 6(s,z) ~ 6(s,y) 

{:::::} 6(s,z) = 6(s,y) 

An Application 

Homework 1, Exercise 3 

definition of ~ 

since M is collapsed 

definition of =M. 

The Myhill-Nerode theorem can be used to determine whether a set R 
is regular or nonregular by determining the number of =R-classes. For 

example, consider the set 

A = {anbn I n ~ O}. 

If k =F m, then alt ~A am, since aloble E A but amble ¢ A. Therefore, there 

are infinitely many =A-classes, at least one for each a\ k ~ O. By the 
Myhill-Nerode theorem, A is not regular. 

In fact, one can show that the =A-classes are exactly 

GIt = {a lt }, k ~ 0, 
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Hie = {anHbn 11 :5 n}, k ~ 0, 

E = 1:* - U Gle U Hie = 1:* - {ambn 10:5 n:5 m}. 
Ie?;O 

For strings in GIe, all and only strings in {anbnH I n ~ O} can be appended 
to obtain a string in Aj for strings in Hie, only the string ble can be appended 
to obtain a string in Aj and no string can be appended to a string in E to 
obtain a string in A. 

We will see another application of the Myhill-Nerode theorem involving 
two-way finite automata in Lectures 17 and 18. 

Historical Notes 

Minimization of DFAs was studied by Huffman [61], Moore [90], Nerode 

[94], and Hopcroft [59], among others. The Myhill-Nerode theorem is due 
independently to Myhill [91] and Nerode [94] in slightly different forms. 
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Collapsing Nondeterministic Automata 

With respect to minimization, the situation for nondeterministic automata 

is not as satisfactory as that for deterministic automata. For example, mini­

mal NFAs are not necessarily unique up to isomorphism (Miscellaneous Ex­

ercise 60). However, part of the Myhill-Nerode theory developed in Lectures 

13 through 16 does generalize to NFAs. The generalization is based on the 

notion of bisimulation, an important concept in the theory of concurrency 
[87]. In this lecture we briefly investigate this connection. 

The version of bisimulation we consider here is called strong bisimulation in 

the concurrency literature. There are weaker forms that apply too. We show 

that bisimulation relations between nondeterministic automata and collaps­

ing relations on deterministic automata are strongly related. The former 

generalize the latter in two significant ways: they work for nondeterministic 

automata, and they can relate two different automata. 

Bisimulation 

Let 

M = (QM, ~, ~M, SU, Fu), 

N = (QN, ~, ~N' SN, FN) 

be two NFAs. Recall that for NFAs, ~(p, a) is a set of states. 
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Let ~ be a binary relation relating states of M with states of Nj that is, ~ 

is a subset of QM x QN. For B ~ QN, define 

C~(B) ~ {p E QM 13q E B p ~ q}, 

the set of all states of M that are related via ~ to some state in B. Similarly, 

for A ~ QM, define 

C~(A) ~f {q E QN I 3p E A p ~ q}. 

The relation ~ can be extended in a natural way to subsets of QM and QN: 
for A ~ Q M and B ~ Q N, 

A ~ B ~ A ~ C~(B) and B ~ C~(A) (B.1) 

{=:} "Ip E A 3q E B p ~ q and "Iq E B 3p E A p ~ q. 

Note that {p} ~ {q} iff p ~ q and that B ~ B' implies C~(B) ~ C~(B'). 

Definition B.1 The relation ~ is called a bisimulation if the following three conditions are 

met: 

Lemma B.2 

(ii) if P ~ q, then for all a E E, AM(p,a) ~ AN(q,a)j and 

(iii) if p ~ q, then p E FM iff q E FN. o 

Note the similarity of these conditions to the defining conditions of collaps­

ing relations on DFAs from Lecture 13. 

We say that M and N are bisimilar if there exists a bisimulation between 

them. The bisimilarity class of M is the family of all NFAs that are bisimilar 

to M. We will show that bisimilar automata accept the same set and that 

every bisimilarity class contains a unique minimal NFA that can be obtained 

by a collapsing construction. 

First let's establish some basic consequences of Definition B.I. 

(i) Bisimulation is symmetric: if ~ is a bisimulation between M and N, 
then its reverse 

{(q,p) I p ~ q} 

is a bisimulation between Nand M. 

(ii) Bisimulation is transitive: if ~l is a bisimulation between M and N 
and ~2 is a bisimulation between Nand P, then their composition 
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~1 0 ~2 ~ {(P, r) 13q p ~1 q and q ~2 r} 

is a bisimulation between M and P. 

(iii) The union of any nonempty family of bisimulations between M and N 

is a bisimulation between M and N. 

Proof. All three properties follow quite easily from the definition of bisim­

ulation. We argue (iii) explicitly. 

Let {~il i E I} be a nonempty indexed set of bisimulations between M and 

N. Define 

~ ~ U~i' 
iEI 

Thus 

p ~ q <=> 3i E I P ~i q. 

Since I is nonempty, 8M ~i 8N for some i E I, therefore 8M ~ 8N • If 
P ~ q, then for some i E I, P ~i q. Therefore, ~(p,a) ~i ~(q,a) and 

~(p,a) ~ ~(q,a). Finally, if p ~ q, then p ~i q for some i E I, whence 

p E FM iff q E FN. 0 

Lern rna B.3 Let ~ be a bisimulation between M and N. If A ~ B, then for all x E I:*, 
LiM (A, x) ~ LiN(B, x). 

Proof. Suppose A ~ B. For x = f, 

LiM (A, f) = A ~ B = .6.M(B, f). 

For x = a E I:, since A ~ CRj(B), if pEA then there exists q E B such 

that p ~ q. By Definition B.1(ii), 

~M(p,a) ~ CRj(~N(q,a)) ~ CRj(LiN(B,a)). 

Therefore, 

LiM(A,a) = U ~M(p,a) ~ CRj(LiN(B, a)). 
pEA 

By a symmetric argument, LiN(B,a) ~ CRj(LiM(A,a)). Therefore, 

LiM(A,a) ~ LiN(B, a). (B.2) 

Proceeding by induction, suppose that LiM(A,x) ~ .6.N(B,x). By (B.2) 

and Lemma 6.1, 

LiM(A,xa) = LiM(LiM(A,x),a) 

~ LiN(LiN(B, x), a) 

= LiN(B,xa). o 
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Theorem B.4 Bisimilar automata accept the same set. 

Proof. Suppose ~ is a bisimulation between M and N. By Definition B.I(i) 
* ~ ~ and Lemma B.3, for any:z: E ~ , dM(SM,:Z:) ~ dN(SN,:Z:). By Definition 

B.I(iii), LiM(SM,:Z:) n FM t= 0 iff LiN(SN,:Z:) n FN t= 0. By definition of 
acceptance for nondeterministic automata, :z: E L(M) iff :z: E L(N). Since 

:z: is arbitrary, L(M) = L(N). 0 

In fact, one can show that if M and N are bisimilar, then (B.I) is a bisimu­
lation between the deterministic automata obtained from M and N by the 
subset construction (Miscellaneous Exercise 64). 

As with the deterministic theory, minimization involves elimination of in­
accessible states and collapsing. Here's how we deal with accessibility. Let 
~ be a bisimulation between M and N. The support of ~ in M is the set 
CRj ( Q N ), the set of states of M that are related by ~ to some state of N. 

Lemma B.5 A state of M is in the support of all bisimulations involving M if and only 
if it is accessible. 

Proof. Let ~ be an arbitrary bisimulation between M and another automa­
ton. By Definition B.l(i), every start state of M is in the support of ~j 
and by Definition B.l(ii), if p is in the support of~, then every element of 
d(p,a) is in the support of ~ for every a E ~. It follows inductively that 
every accessible state of M is in the support of ~. 

Conversely, it is not difficult to check that the relation 

{ (p, p) I p is accessible} (B.3) 

is a bisimulation between M and itself. If a state is in the support of all 
bisimulations, then it must be in the support of (B.3), therefore accessi­
~ 0 

Autobisimulation 

Definition B.6 An autobisimulation is a bisimulation between an automaton and itself. 0 

Theorem B.7 Any nondeterministic automaton M has a coarsest autobisimulation =M . 

. The relation =M is an equivalence relation. 

Proof. Let B be the set of all autobisimulations on M. The set B is 
non empty, since it contains the identity relation at least. Let =M be the 
union of all the relations in B. By Lemma B.2(iii), =M is itself in Band 
is refined by every element of B. The relation =M is reflexive, since the 
identity relation is in B, and is symmetric and transitive by Lemma B.2(i) 
and (ii). 0 
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We can now remove inaccessible states and collapse by the maximal auto­

bisimulation to get a minimal NFA bisimilar to the original NFA. Let 

M = (Q, E, A, 8, F). 

We have already observed that the accessible subautomaton of M is bisim­

ilar to M under the bisimulation (B.3), so we can assume without loss of 

generality that M has no inaccessible states. Let == be ==M, the maximal 

autobisimulation on M. For p E Q, let [PI denote the ==-equivalence class 

of p, and let ~ be the relation relating p to its ==-equivalence class: 

[PI ~f {q I p == q}, 

~ ~f {(p, [P]) I p E Q}. 

For any A ~ Q, define 

A' ~f {[P]I PEA}. 

Lemma B.8 For all A,B ~ Q, 

(i) A ~ C=(B) <=> A' ~ B', 

(ii) A == B <=> A' = B', and 

( ''') A> A' U~ '" . 

(BA) 

These properties are straightforward consequences of the definitions and 
are left as exercises (Miscellaneous Exercise 62). 

Now define the quotient automaton 

M' ~ (Q', E, A', 8', F'), 

where Q', 8', and F' refer to (BA) and 

A'([p],a) ~f A(p, a)'. 

The function A' is well defined, because 

[PI = [q] ~ p == q 

~ A(p,a) == A(q,a) 

~ A(p,a)' = A(q, a)' 

Definition B.l(ii) 

Lemma B.8(ii). 

Lemma B.9 The relation ~ is a bisimulation between M and M'. 

Proof. By Lemma B.8(iii), we have 8 ~ 8', and if p ~ [q], then p == q. 
Therefore, 

A(p, a) ~ A(p, a)' = A'([p],a) = A/([q],a). 
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This takes care of start states and transitions. For the final states, if p E F, 
then [PI E F'. Conversely, if [PI E F', there exists q E [PI such that q E Fj 

then p == q, therefore p E F. 0 

By Theorem BA, M and M' accept the same set. 

Lemma B.lO The only autobisimulation on M' is the identity relation =. 

Proof. Let'" be an autobisimulation on M'. If '" related two distinct states, 
then the composition 

(B.5) 

where ;S is the reverse of ~, would relate two non-==u-equivalent states of 
M, contradicting the maximality of ==u. Thus", is a subset of the identity 
relation. 

On the other hand, if there is a state [PI of M' that is not related to 
itself by"', then the state p of M is not related to any state of M under 
(B.5), contradicting Lemma B.5 and the assumption that all states of M 

are accessible. 0 

Theorem B.11 Let M be an NFA with no inaccessible states and let ==u be the maxi­
mal autobisimulation on M. The quotient automaton M' is the minimal 
automaton bisimilar to M and is unique up to isomorphism. 

Proof. To show this, it will suffice to show that for any automaton N bisim­
ilar to M, if we remove inaccessible states and then collapse the resulting 
NFA by its maximal autobisimulation, we obtain an automaton isomorphic 
toM'. 

Using (B.3), we can assume without loss of generality that N has no inac­
cessible states. Let ==N be the maximal autobisimulation on N, and let N' 
be the quotient automaton. 

By Lemmas B.2 and B.9, M' and N' are bisimilar. We will show that 
any bisimulation between M' and N' gives a one-to-one correspondence 
between the states of M' and N'. This establishes the result, since a bisim­
ulation that is a one-to-one correspondence constitutes an isomorphism 
(Miscellaneous Exercise 63). 

Let ~ be a bisimulation between M' and N'. Under~, every state of M' 
is related to at least one state of N', and every state of N' is related to 
at most one state of M'j otherwise the composition of ~ with its reverse 
would not be the identity on M', contradicting Lemma B.lO. Therefore, ~ 
embeds M' into N' injectively (i.e., in a one-to-one fashion). By a symmetric 
argument, the reverse of ~ embeds N' into M' injectively. Therefore, ~ 
gives a one-to-one correspondence between the states of M' and N'. 0 
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An Algorithm 

Here is an algorithm for computing the maximal bisimulation between any 

given pair of NFAs M and N. There may exist no bisimulation between 
M and N, in which case the algorithm halts and reports failure. For the 
case M = N, the algorithm computes the maximal autobisimulation. The 
algorithm is a direct generalization of the algorithm of Lecture 14. 

As in Lecture 14, the algorithm will mark pairs of states (p, q), where p E 
QM and q E QN. A pair (p,q) will be marked when a proof is discovered 

that p and q cannot be related by any bisimulation. 

1. Write down a table of all pairs (p,q), initially unmarked. 

2. Mark (p,q) if p E FM and q ¢ FN or vice vttrsa. 

3. Repeat the following until no more changes occur: if (p, q) is unmarked, 

and if for some a E I:, either 

• there exists p' E ~M(p,a) such that for all q' E ~N(q,a), (p',q') 
is marked, or 

• there exists q' E ~N(q,a) such that for allp' E ~M(p,a), (p',q') 
is marked, 

then mark (p, q). 

4. Define p == q iff (p, q) is never marked. Check whether 8M == 8 N. If so, 
then == is the maximal bisimulation between M and N. If not, then 

no bisimulation between M and N exists. 

One can easily prove by induction on the stages of this algorithm that if 
the pair (p, q) is ever marked, then p rF q for any bisimulation ~ between 

M and N, because we only mark pairs that violate some condition in the 

definition of bisimulation. Therefore, any bisimulation ~ is a refinement of 
==. In particular, the maximal bisimulation between M and N, if it exists, 

is a refinement of ==. If 8M ~ 8N , then the same is true for any refinement 
of ==j in this case, no bisimulation exists. 

On the other hand, suppose 8M == 8N • To show that the algorithm is 
correct, we need only show that == is a bisimulationj then it must be the 
maximal one. We have 8M == 8N by assumption. Also, == respects the 
transition functions of M and N because of step 3 of the algorithm and 
respects final states of M and N because of step 2 of the algorithm. 

We have shown: 
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Theorem B.12 The algorithm above correctly computes the maximal bisimulation between 
two NFAs if a bisimulation exists. If no bisimulation exists, the algorithm 
halts and reports failure. If both automata are the same, the algorithm 
computes the maximal autobisimulation. 
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Automata on Terms 

The theory of finite automata has many interesting and useful generaliza­

tions that allow more general types of inputs, such as infinite strings and 
finite and infinite trees. In this lecture and the next we will study one such 
generalization: finite automata on terms, also known as finite labeled trees. 
This generalization is quite natural and has a decidedly algebraic flavor. In 
particular, we will show that the entire Myhill-Nerode theory developed in 
Lectures 13 through 16 is really a consequence of basic results in univer­
sal algebra, a branch of algebra that deals with general algebraic concepts 
such as direct product, homomorphism, homomorphic image, and quotient 

algebra. 

Signatures and Terms 

A signature is an alphabet ~ consisting of various /unction and relation 
symbols in which each symbol is assigned a natural number, called its arity. 
An element of ~ is called constant, unary, binary, ternary, or n-ary if its 
arity is 0, 1,2,3, or n, respectively. We regard an n-ary function or relation 
symbol as denoting some (as yet unspecified) function or relation of n inputs 
on some (as yet unspecified) domain. 

For example, the signature of monoids consists of two function symbols, 

a binary multiplication symbol . and a constant 1 for the multiplicative 
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identity. The signature of groups consists of the symbols for monoids plus 
a unary function symbol -1 for multiplicative inverse. The signature of 

Kleene algebra consists of two binary function symbols + and ., one unary 
function symbol *, and two constants 0 and 1. 

Informally, a ground term over E is an expression built from the function 

symbols of E that respects the arities of all the symbols. The set of ground 
terms over E is denoted TE • Formally, 

(i) any constant function symbol C E E is in TEi and 

(ii) if tl, ... ,t .. E TE and I is an n-ary function symbol of E, then It1 ... t .. E 

TIl. We can picture the term Itl ... t .. as a labeled tree 

I 

//"'" 
t1 t2 ... t .. 

Actually, (i) is a special case of (ii): the precondition "if t1, . .. ,t .. E TE" is 
vacuously true when n = O. 

For example, if I is binary, 9 is unary, and a, b are constants, then the 
following are examples of terms: 

a lab Igblaa 

or pictorially, 

a I I 

/\ /'" a b 9 I 

/\ 
b a a 

The term It1 ... t .. is an expression representing the result of applying an 
n-ary function denoted by I to n inputs denoted by t1, ... ,tn, although 
we have not yet said what the function denoted by I is. So far, I is just 
an uninterpreted symbol, and a. term is just a. syntactic expression with no 
further meaning. 

Even though we don't use parentheses, the terms tl, ... ,tn are uniquely de­

termined by the term Itl ... t .. and the fact that I is n-ary. In other words, 

there is one and only one way to parse the string It1 ... t .. as a ground term. 

A formal proof of this fact is given as an exercise (Miscellaneous Exercise 
94), but is better left until after the study of context-free languages. 
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Note that ifthere are no constants in E, then TI: is empty. If there are only 

finitely many constants and no other function symbols, then TI: is finite. In 

all other cases, TI: is infinite. 

E-algebras 

A E-algebra is a structure A consisting of a set A, called the carrier of 

A, along with a map that assigns a function IA or relation RA of the 

appropriate arity to each function symbol leE or relation symbol R e E. 

If I is an n-ary function symbol, then the function associated with I must 

be an n-ary function IA : An -+ A. If R is an n-ary relation symbol, then 

the relation RA must be an n-ary relation RA ~ An. Constant function 

symbols c are interpreted as O-ary functions (functions with no inputs), 

which are just elements cA of A. A unary relation is just a subset of A. 

This interpretation of symbols of E extends in a natural way by induction 

to all ground terms. Each ground term t is naturally associated with an 

element tA e A, defined inductively as follows: 

I A def IA( A A) tl ... tn = tl , ... ,tn . 

This includes the base case: the interpretation of a constant c as an element 

cA e A is part of the specification of A. 

Example C.1 Let r be a finite alphabet. The monoid r* is an algebra of signature .,1. 
The carrier of this algebra is the set r*, the binary function symbol . is 
interpreted as string concatenation, and the constant 1 is interpreted as the 

~~qL 0 

Example C2 The family of regular sets over an alphabet r is a Kleene algebra in which 
+ is interpreted as set union, . as set concatenation, * as asterate, 0 as the 

null set, and 1 as the set {f}. 0 

Example C.3 The family of binary relations on a set X is also a Kleene algebra in which 

+ is interpreted as set union, . as relational composition, * as reflexive 

transitive closure, 0 as the null relation, and 1 as the identity relation. 0 

Term Algebras 

Example C4 Let E be an arbitrary signature. The set TI: of ground terms over E gives 

a family of E-algebras under the following natural interpretation: for n-ary 

I, 
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cTr. ~c. 
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The particular algebra depends on the interpretation of the relation symbols 

of ~ as relations on TE • In such algebras, each ground term t denotes itself: 

t7I: = t. These algebras are called syntactic or term algebras. 0 

Automata on Terms 

Now here's something interesting. 

Definition C.S Let ~ be a signature consisting of finitely many function symbols and a 

single unary relation symbol R. A (deterministic) term automaton over ~ 

is a finite ~-algebra. 0 

Let A be a term automaton over ~ with carrier A. We'll call elements of 

A states. The states satisfying the unary relation RA will be called final 
or accept states. Since a unary relation on A is just a subset of A, we can 
write RA(q) or q e RA interchangeably. Inputs to A are ground terms over 

~j that is, elements of TE. 

Definition C.6 A ground term t is said to be accepted by A if tA eRA. The set of terms 

accepted by A is denoted L(A). A set of terms is called regular if it is L(A) 
~~A 0 

To understand what is going on here, think of a ground term t as a labeled 

tree. The automaton A, given t as input, starts at the leaves of t and works 

upward, associating a state with each subterm inductively. If there is a con­

stant c e ~ labeling a particular leaf of t, the state that is associated with 
that leaf is cA. If the immediate subterms tl, ... , tn of the term Itl ... tn 

are labeled with states qb'" , qn, respectively, then the term Itl ... tn is 
labeled with the state IA(ql, ... , qn). A term is accepted if the state la­

beling the root is in RAj that is, if it is an accept state. There is no need 
for a start statej this role is played by the elements cA associated with the 
constants c e ~. 

Now let's describe the relationship of this new definition of automata to 

our previous definition and explain how the old one is a special case of the 
new one. Given an ordinary DFA over strings 

M = (Q, ~/, 6, s, F), 

where ~' is a finite alphabet, let 

~ ~f ~/u {D,R}, 

where D,R f/. ~/. We make ~ into a signature by declaring all elements 

of ~' to be unary function symbols, 0 a constant, and R a unary relation 
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symbol. There is a one-to-one correspondence between ground terms over 

E and strings in E/*: the string aIa2 ... an-Ian E E/* corresponds to the 

ground term anan-I ... a2aI 0 E TE. In particular, the empty string f E E/* 
corresponds to the ground term 0 E TE. 

Now we make a E-algebra out of M, which we will denote by M. The 
carrier of M is Q. The symbols of E are interpreted as follows: 

O M def = s, 
aM(q) ~f 8(q,a), 

RM~F. 

In other words, the constant 0 is interpreted as the start state of Mj the 
symbol a E E' is interpreted as the unary function q 1-+ 8(q,a)j and the 

relation symbol R is interpreted as the set of final states F. It is not difficult 

to show by induction that 
~ M 
8(s,ala2··· an-Ian) = anan-I··· a2aIO . 

Therefore, 

aIa2··· an-Ian E L(M) {:::=} 6(s,aIa2··· an-Ian) E F 

{:::=} anan-l ... a2aI OM E RM 

{:::=} anan-l ... a2aI 0 E L(M). 

It should be pretty apparent by now that much of automata theory is just 
algebra. What is the value of this alternative point of view? Let's develop 
the connection a little further to find out. 

Homomorphisms 

A central concept of universal algebra is the notion of homomorphism. In­
tuitively, a E-algebra homomorphism is a map between two E-algebras that 

preserves all algebraic structure as specified by E. Formally, 

Definition C.7 Let A and B be two E-algebras with carriers A and B, respectively. A 

E-algebra homomorphism from A to B is a map (J : A --> B such that 

(i) for all n-ary function symbols fEE and all aI, ... ,an E A, 

(J(fA(al' ... ,an)) = f 8 (J(al), ... ,(J(an))j 

(ii) for all n-ary relation symbols R E E and all al, ... ,an E A, 

RA(al' ... ,an) {:::=} R8 (J(al), ... ,(J(an)). 0 

Condition (i) of Definition C.7 says that for any function symbol fEE, we 

can apply fA to al, ... ,an in A and then apply the homomorphism (J to 
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the result to get an element of B, or we can apply u to each of at, ... ,an, 
then apply fS to the resulting elements of B, and we get to the same place. 
Condition (ii) says that the distinguished relation R holds before applying 

the homomorphism if and only if it holds after. 

Example e.8 The homomorphisms described in Lecture 10 are monoid homomorphisms. 
Conditions (10.1) and (10.2) are exactly Definition C.7(i) for the signature 
,,1 of monoids. 0 

Example e.g Let A be any 1::-algebra. The function t 1-+ tA mapping a ground term 

t e TI: to its interpretation tA in A satisfies Definition C.7(i), because for 

all n-ary f e 1:: and tl,"" tn e TI:, 

fTr: (tt, ... ,tn),A = ftl ... tn,A 

= f,A(tf, ... ,t-:). 

Moreover, it is the only function TI: -+ A that does so. o 

For a term automaton M, whether or not the map t H tM satisfies Defini­
tion C.7(ii) depends on the interpretation of the unary relation symbol R 
in the term algebra TI:. There is only one interpretation that works: L(M). 
Thus we might have defined L(M) to be the unique interpretation of R in 
TI: making the map t H tM a homomorphism. 

Definition e.l0 A homomorphism u : A -+ B that is onto (for all b e B, there exists a e A 

such that u(a) = b) is called an epimorphism. A homomorphism u : A -+ B 
that is one-to-one (for all a, b e A, if u(a) = u(b), then a = b) is called 
a monomorphism. A homomorphism that is both an epimorphism and a 

monomorphism is called an isomorphism. If u : A -+ B is an epimorphism, 

then the algebra B is called a homomorphic image of A. 0 

Let 1:: be a signature consisting of finitely many function symbols and a 

single unary relation symbol R. Let A ~ TI: be an arbitrary set of ground 
terms, and let TI:(A) denote the term algebra obtained by interpreting R 
as the set Aj that is, RTr:(A) = A. 

Lemma C.ll The set A is regular if and only if the algebra TI:(A) has a finite homomor­
phic image. 

Proof. Once we have stated this, it's easy to prove. A finite homomorphic 
image A of TI:(A) is just a term automaton for A. The homomorphism 
is the interpretation map t H tAo The inductive definition of this map 
corresponds to a run of the automaton. We leave the details as an exercise 
(Miscellaneous Exercise 66). 0 

In the next lecture, Supplementary Lecture D, we will give an account of 
the Myhill-Nerode theorem in this more general setting. 



Supplementary Lecture D 

The Myhill-Nerode Theorem for Term Automata 

In the last lecture we generalized DFAs on strings to term automata over 

a signature ~ and demonstrated that automata-theoretic concepts such 
as "final states" and "run" were really more general algebraic concepts in 
disguise. In this lecture we continue to develop this correspondence, leading 
finally to a fuller understanding of the Myhill-Nerode theorem. 

Congruence 

First we need to introduce the important algebraic concept of congru­
ence. Congruences and homomorphisms go hand-in-hand. Recall from Sup­
plementary Lecture C that a homomorphism between two 1:-algebras is 
a map that preserves all algebraic structure (Definition C.7). Every ho­

momorphism cr : A ~ B induces a certain natural binary relation on 

A: 

U =<T V ~ cr(u) = cr(v). 

The relation =<T is called the kernel! of cr. 

1If you have taken algebra, you may have seen the word kernel used differently: normal subgroups 
of groups, ideals of rings, null spaces of linear transformations. These concepts are closely allied and 
serve the same purpose. The definition of kernel as a binary relation is more broadly applicable. 
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The kernel of any homomorphism defined on A is an equivalence relation on 

A (reflexive, symmetric, transitive). It also respects all algebraic structure 

in the following sense: 

(i) for all n-ary function symbols 1 E ~, if 'Ui =17 Vi, 1 :5 i :5 n, then 

/"A('Ul' •.• ,'Un) =17/.A(Vl' .•• ,Vn)j 

(ii) for all n-ary relation symbols R E ~, if 'Ui =17 Vi, 1 :5 i :5 n, then 

R.A('Ul' .•• ,'Un) <=> R.A(Vl' ... ,Vn ). 

These properties follow immediately from the properties of homomorphisms 

and the definition of =17. 

In general, a congruence on A is any equivalence relation on A satisfying 

properties (i) and (ii): 

Definition D.1 Let A be a ~-algebra with carrier A. A congruence on A is an equivalence 

relation = on A such that 

Lemma D.2 

(i) for all n-ary function symbols 1 E ~, if 'U; = Vi, 1 :5 i :5 n, then 

/",1.( 'U1, ••. ,'Un) = I.A( V1, • •• ,Vn)j 

(ii) for all n-ary relation symbols R E ~, if 'Ui = Vi, 1 :5 i :5 n, then 

R.A('Ul' .•• ,'Un) <=> R.A(v1, ..• ,Vn ). 0 

Thus the kernel of every homomorphism is a congruence. Now, the inter­

esting thing about this definition is that it goes the other way as well: every 

congruence is the kernel of some homomorphism. In other words, given an 
arbitrary congruence =, we can construct a homomorphism u such that 

=17 is =. In fact, we can make the homomorphism u an epimorphism. We 

will prove this using a general algebraic construction called the quotient 
construction. 

We saw an example of the quotient construction in Lecture 13, where we 

used it to collapse a DFA. We saw it again in Lecture 15, where we con­

structed an automaton for a set A from a given Myhill-Nerode relation for 

A. By now you have probably figured out where we are going with this: 

the collapsing relations s::z of Lecture 13, the Myhill-Nerode relations = of 

Lecture 15, and the maximal Myhill-Nerode relation =n of Lecture 16 are 

all congruences on ~-algebras! We warned you not to confuse these differ­

ent kinds of relations, because some were defined on automata and others 

on stringsj but now we can roll them all into a single concept. This is the 

power and beauty of abstraction. 

(i) The kernel 01 any homomorphism is a congruence. 
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(ii) Any congruence is the kernel of an epimorphism. 

Proof. For (ii), build a quotient algebra whose elements are the congruence 

classes [uJ. There is a unique interpretation of the function and relation 
symbols in the quotient making the map u H [uJ an epimorphism. We'll 

leave the details as an exercise (Miscellaneous Exercise 67). 0 

In fact, if the map t H tA is onto (i.e., if each element of A is named by 
a term), then the congruences on A and homomorphic images of A are in 

one-to-one correspondence up to isomorphism. This is true of term algebras, 
since the map t H tTr. is the identity. This is completely analogous to 

Lemma 15.3, which for the case of automata over strings gives a one-to-one 

correspondence up to isomorphism between the Myhill-Nerode relations for 
A (i.e., the right congruences of finite index refining A) and the DFAs with 

no inaccessible states accepting A. Here "no inaccessible states" just means 

that the map t H tA is onto. 

The Myhill-Nerode Theorem 

Recall from Lecture 16 the statement of the Myhill-Nerode theorem: for a 
set A of strings over a finite alphabet E, the following three conditions are 

equivalent: 

(i) A is regular; 

(ii) there exists a Myhill-Nerode relation for A; 

(iii) the relation =A is of finite index, where 

x =A y ~ Vz E E* (xz E A {:::::} yz E A). 

Recall that finite index means finitely many equivalence classes, and a rela­

tion is Myhill-Nerode for A if it is a right congruence of finite index refining 
A. 

This theorem generalizes in a natural way to automata over terms. Define 

a context to be a term in TEU{",}, where x is a new symbol of arity O. For a 
context u and ground term t E TIl, denote by sf (u) the term in TIl obtained 

by substituting t for all occurrences of x in u. Formally, 

"'( ) def t 
St x = , 

sHftl ... tn ) ~ fs:(tl)'" s:(tn ). 

As usual, the last line includes the case of constants: 

"'( ) def StC=C. 
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Let ~ be a signature consisting of finitely many function symbols and a 

single unary relation symbol R. For a given A ~ TE and ground terms 

s, tETE, define 

s ==A t ~ for all contexts u, s:(u) E A {=:} st(u) E A. 

It is not difficult to argue that ==A is a congruence on TE(A) (Miscellaneous 
Exercise 68). 

Theorem D.3 (Myhill-Nero de theorem for term automata) Let A ~ TE • Let 
TE(A) denote the term algebra over ~ in which R is interpreted as the 
unary relation A. The following statements are equivalent: 

(i) A is regular; 

(i') TE(A) has a finite homomorphic image; 

(ii) there exists a congruence of finite index on TE(A); 

(iii) the relation =A is of finite index. 

Proof. We have already observed (Lemma C.11) that to say A is regular 
(i.e., accepted by a term automaton) is just another way of saying that 
TE(A) has a finite homomorphic image. Thus (i) and (i/) are equivalent. 

(i /) => (ii) If TE(A) has a finite homomorphic image under epimorphism 
(T, then the kernel of (T is of finite index, since its congruence classes are in 

one-to-one correspondence with the elements of the homomorphic image. 

(il) => (iii) Let == be any congruence on TE(A). We show that == refines 
==Aj therefore, =A is of finite index if == is. Suppose s == t. It follows by 
a straightforward inductive argument using Definition D.l(i) that for any 

context u, s=(u) == s:(u)j then by Definition D.l(ii), s=(u) E A iff s:(u) E A. 
Since the context u was arbitrary,s ==A t. 

(iii) => (i/) Since ==A is a congruence, it is the kernel of an epimorphism ob­
tained by the quotient construction. Since ==A is of finite index, the quotient 
algebra is finite and therefore a finite homomorphic image of TE(A). 0 

As in Lecture 16, the quotient of TE(A) by ==A gives the minimal homo­
morphic image of TE(A)j and for any other homomorphic image B, there is 

a unique homomorphism B --+ TE(A)/==A. 

Historical Notes 

Thatcher and Wright [119] generalized finite automata on strings to finite 

automata on terms and developed the algebraic connection. The more gen­
eral version of the Myhill-Nerode theorem (Theorem D.3) is in some sense 
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an inevitable consequence of Myhill and Nerode's work [91, 94] since ac­
cording to Thatcher and Wright, "conventional finite automata theory goes 
through for the generalization-and it goes through quite neatly" [119]. 

The first explicit mention of the equivalence of the term analogs of (i) and 

(ii) in the statement of the Myhill-Nerode theorem seems to be by Brainerd 
[13, 14] and Eilenberg and Wright [34], although the latter claim that their 
paper "contains nothing that is essentially new, except perhaps for a point 
of view" [34]. A relation on terms analogous to =A was defined and clause 
(iii) added explicitly by Arbib and Give'on [5, Definition 2.13], although it 

is also essentially implicit in work of Brainerd [13, 14]. 

Good general references are Gccseg and Steinby [42] and Englefriet [35]. 



Lecture 17 

Two-Way Finite Automata 

Two-way finite automata are similar to the machines we have been studying, 
except that they can read the input string in either direction. We think of 
them as having a read head, which can move left or right over the input 
string. Like ordinary finite automata, they have a finite set Q of states and 
can be either deterministic (2DFA) or nondeterministic (2NFA). 

Although these automata appear much more powerful than one-way finite 
automata, in reality they are equivalent in the sense that they only accept 
regular sets. We will prove this result using the Myhill-Nerode theorem. 

We think of the symbols of the input string as occupying cells of a finite 
tape, one symbol per cell. The input string is enclosed in left and right 
endmarkers I- and -1, which are not elements of the input alphabet E. The 
read head may not move outside of the endmarkers. 

Informally, the machine starts in its start state 8 with its read head pointing 
to the left endmarker. At any point in time, the machine is in some state q 
with its read head scanning some tape cell containing an input symbol ao or 
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one of the endmarkers. Based on its current state and the symbol occupying 
the tape cell it is currently scanning, it moves its read head either left or 
right one cell and enters a new state. It accepts by entering a special accept 
state t and rejects by entering a special reject state r. The machine's action 

on a particular state and symbol is determined by a transition function 6 
that is part of the specification of the machine. 

Example 17.1 Here is an informal description of a 2DFA accepting the set 

A = {x E {a,b}* I #a(x) is a multiple of 3 and #b(x) is even}. 

The machine starts in its start state scanning the left endmarker. It scans 
left to right over the input, counting the number of a's mod 3 and ignoring 
the b's. When it reaches the right endmarker -I, if the number of a's it 

has seen is not a multiple of 3, it enters its reject state, thereby rejecting 
the input-the input string x is not in the set A, since the first condition 

is not satisfied. Otherwise it scans right to left over the input, counting 
the number of b's mod 2 and ignoring the a's. When it reaches the left 
endmarker f- again, if the number of b's it has seen is odd, it enters its 
reject state; otherwise, it enters its accept state. 0 

Unlike ordinary finite automata, a 2DFA needs only a single accept state 
and a single reject state. We can think of it as halting immediately when 
it enters one of these two states, although formally it keeps running but 
remains in the accept or reject state. The machine need not read the entire 
input before accepting or rejecting. Indeed, it need not ever accept or reject 
at all, but may loop infinitely without ever entering its accept or reject state. 

Formal Definition of 2DFA 

Formally, a 2DFA is an octuple 

M = (Q, ~, f-, -I, 6, s, t, r), 

where 

• Q is a finite set (the states), 

• ~ is a finite set (the input alphabet), 

• f- is the left endmarker, f- ¢ ~, 

• -I is the right endmarker, -I ¢ ~, 

• 6 : Q x (~ U {f-, -I}) ~ (Q x {L, R}) is the transition function (L, R 
stand for left and right, respectively), 

• SEQ is the start state, 
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• t E Q is the accept state, and 

• r E Q is the reject state, r "I- t, 

such that for all states q, 

b(q,r) 
b(q, -I) 

= 
= 

(u,R) 
(v, L) 

for some u E Q, 
for some v E Q, 

and for all symbols b E 1: u {r}, 

8(t, b) = (t,R), 
b(t, --I) = (t,L), 

8(r, b) = (r,R), 
b(r, --I) = (r, L). 

(17.1) 

(17.2) 

Intuitively, the function 15 takes a state and a symbol as arguments and 
returns a new state and a direction to move the head. If b(P,b) = (q,d), 
then whenever the machine is in state p and scanning a tape cell containing 
symbol b, it moves its head one cell in the direction d and enters state q. The 
restrictions (17.1) prevent the machine from ever moving outside the input 
area. The restrictions (17.2) say that once the machine enters its accept or 
reject state, it stays in that state and moves its head all the way to the 
right of the tape. The octuple is not a legal 2DFA if its transition function 
15 does not satisfy these conditions. 

Example 17.2 Here is a formal description of the 2DFA described informally in Example 
17.1 above. 

Q = {qO,ql,q2,PO,Pl,t,r}, 

1: = {a, b}. 

The start, accept, and reject states are qo, t, and r, respectively. The 
transition function 15 is given by the following table: 

r 
qo 
ql 

q2 
Po (t,R) 

Pl (r,R) 
t (t,R) 
r (r,R) 

a 
ql,R 

(q2, R) 
(qo, R) 
(Po, L) 
(pl,L) 
(t,R) 
(r,R) 

b 

qo,R 
(ql! R) 
(q2,R) 
(pl,L) 
(Po, L) 
(t, R) 
(r,R) 

(t, L) 
(r, L) 

The entries marked - will never occur in any computation, so it doesn't 
matter what we put here. The machine is in states qo, ql, or q2 on the first 
pass over the input from left to right; it is in state qi if the number of a's 

it has seen so far is i mod 3. The machine is in state Po or Pl on the second 
pass over the input from right to left, the index indicating the parity of the 
number of b's it has seen so far. 0 
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Configurations and Acceptance 

Fix an input x E E*, say x = ala2 ... an. Let ao = I- and an+1 = -I. Then 

aOala2'" anan+l = I- x -l . 

A configuration of the machine on input x is a pair (q, i) such that q E Q 

and 0 :::; i :::; n + 1. Informally, the pair (q, i) gives a current state and 
current position ofthe read head. The start configuration is (s,O), meaning 
that the machine is in its start state s and scanning the left endmarker. 

A binary relation +, the next configuration relation, is defined on con­
figurations aB follows: 

o(p,ai) = (q,L):::} (P,i) + (q,i -1), 

o(p, ail = (q, R) :::} (p, i) + (q, i + 1). 

The relation ~ describes one step of the machine on input x. We define .. 
the relations + inductively, n ~ 0: 

• (p, i) + (p, i)j and 

• if (p,i) + (q,j) and (q,j) + (u,k), then (p,i) ~ (u,k). 

The relation ~ is J'ust the n-fold composition of ~. The relations .. .. + are functionsj that is, for any configuration (p, i), there is exactly one 

configuration (q,j) such that (P,i) + (q,j). Now define 

(p,i) 7 (q,j) ~ 3n ~ 0 (P,i) + (q,j). 

Note that the definitions of these relations depend on the input x. The 
machine is said to accept the input x if 

(s,O) 7 (t,i) for some i. 

In other words, the machine enters its accept state at some point. The 
machine is said to reject the input x if 

(s,O) 7 (r,i) for some i. 

In other words, the machine enters its reject state at some point. It cannot 
both accept and reject input x by our aBsumption that t:f. r and by prop­
erties (17.2). The machine is said to halt on input x if it either accepts x or 
rejects x. Note that this is a purely mathematical definition-the machine 
doesn't really grind to a halt! It is possible that the machine neither accepts 
nor rejects x, in which CaBe it is said to loop on x. The set L(M) is defined 
to be the set of strings accepted by M. 
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Example 17.3 The 2DFA described in Example 17.2 goes through the following sequence 
of configurations on input aababbb, leading to acceptance: 

(qQ,O), (qQ,1), (qlo 2), (q2,3), (q2,4), (qQ,5), (qQ,6), (qQ,7), (qQ,8), 

(PQ,7), (Plo6), (Po, 5), (Plo4), (plo3), (Po, 2), (Po,l), (Po, 0), (t,l). 

It goes through the following sequence of configurations on input aababa, 
leading to rejection: 

(qo,O), (qQ,l), (qlo 2), (q2,3), (q2,4), (qo,5), (qo,6), (qlo 7), (r,6). 

It goes through the following sequence of configurations on input aababb, 
leading to rejection: 

(qo,O), (qo,l), (ql,2), (q2,3), (q2,4), (qo,5), (qo,6), (qo,7), 

(Po, 6), (Pl,5), (Po, 4), (Po, 3), (Plo 2), (plo1), (PloO), (r,l). 0 
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2DFAs and Regular Sets 

In this lecture we show that 2DFAs are no more powerful than ordinary 
DFAs. Here is the idea. Consider a long input string broken up in an ar­
bitrary place into two substrings xz. How much information about x can 
the machine carry across the boundary from x into z? Since the machine 
is two-way, it can cross the boundary between x and z several times. Each 
time it crosses the boundary moving from right to left, that is, from z into 
:1:, it does so in some state q. When it crosses the boundary again moving 
from left to right (if ever), it comes out of x in some state, say p. Now if 
it ever goes into x in the future in state q again, it will emerge again in 

state p, because its future action is completely determined by its current 
configuration (state and head position). Moreover, the state p depends only 

on q and :1:. We will write Too(q) = p to denote this relationship. We can 

keep track of all such information by means of a finite table 

Too: (QU{.}) --+ (QU{1.}), 

where Q is the set of states of the 2DFA M, and • and 1. are two other 

objects not in Q whose purpose is described below. 

On input xz, the machine M starts in its start state scanning the left 
endmarker. As it computes, it moves its read head. The head may eventually 
cross the boundary moving left to right from :I: into z. The first time it does 
so (if ever), it is in some state, which we will call T,,(.) (this is the purpose of 

.). The machine may never emerge from Xj in this case we write T,,(.) = 1. 
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(this is the purpose of .L). The state T,,( e) gives some information about x, 
but only a finite amount of information, since there are only finitely many 
possibilities for T,,(e). Note also that T,,(e) depends only on x and not on 

z: if the input were xw instead of xz, the first time the machine passed the 

boundary from x into w, it would also be in state T,,(e), because its action 

up to that point is determined only by xi it hasn't seen anything to the 

right of the boundary yet. 

If T., (e) = .L, M must be in an infinite loop inside x and will never accept or 

reject, by our assumption about moving all the way to the right endmarker 

whenever it accepts or rejects. 

Suppose that the machine does emerge from x into z. It may wander around 
in z for a while, then later may move back into x from right to left in state 
q. If this happens, then it will either 

e eventually emerge from x again in some state p, in which case we define 

T.,(q) = Pi or 

e never emerge, in which case we define T.,(q) = .L. 

Again, note that T", (q) depends only on x and q and not on z. If the machine 
entered x from the right on input xw in state q, then it would emerge again 
in state T.,(q) (or never emerge, if T",(q) = .L), because M is deterministic, 

and its behavior while inside x is completely determined by x and the state 
it entered x in. 

If we write down T., (q) for every state q along with T", ( e ), this gives all 

the information about x one could ever hope to carry across the boundary 

from x to z. One can imagine an agent sitting to the right of the boundary 
between x and z, trying to obtain information about x. All it is allowed 
to do is observe the state T., ( e) the first time the machine emerges from x 
(if ever) and later send probes into x in various states q to see what state 
T.,(q) the machine comes out in (if at all). If y is another string such that 
Til = T"" then x and y will be indistinguishable from the agent's point of 
view. 

Now note that there are only finitely many possible tables 

T: (Q U {e}) -+ (Q U {.L}), 

namely (k + 1)10+1, where k is the size of Q. Thus there is only a finite 

amount of information about x that can be passed across the boundary to 

the right of x, and it is all encoded in the table T.,. 

Note also that if T., = Til and M accepts xz, then M accepts yz. This is 
because the sequence of states the machine is in as it passes the boundary 
between x and z (or between y and z) in either direction is completely 
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determined by the table T .. = T!I and z. To accept :z;z, the machine must 
at some point be scanning the right endmarker in its accept state t. Since 
the sequence of states along the boundary is the same and the action when 

the machine is scanning z is the same, this also must happen on input yz. 

Now we can use the Myhill-Nerode theorem to show that L(M) is regular. 
We have just argued that 

T", = T!I => Vz (M accepts :z;z <==> M accepts yz) 

<==> Vz (:z;z E L(M) <==> yz E L(M)) 

<==> :z; ==L(M) y, 

where ==L(M) is the relation first defined in Eq. (16.1) of Lecture 16. Thus 
if two strings have the same table, then they are equivalent under ==L(M)' 

Since there are only finitely many tables, the relation ==L(M) has only 
finitely many equivalence classes, at most one for each tablej therefore, 
==L(M) is of finite index. By the Myhill-Nerode theorem, L(M) is a regular 
set. 

Constructing a DFA 

The argument above may be a bit unsatisfying, since it does not explicitly 
construct a DFA equivalent to a given 2DFA M. We can easily do so, 
however. Intuitively, we can build a DFA whose states correspond to the 
tables. 

Formally,- define 

:z;==y~T .. =T!I' 

That is, call two strings in ~* equivalent if they have the same table. There 
are only finitely many equivalence classes, at most one for each tablej thus 
== is of finite index. We can also show the following: 

(i) The table T .. a is uniquely determined by T .. and aj that is, if T .. = T!I' 

then T .. a = T!la' This says that == is a right congruence. 

(ii) Whether or not :z; is accepted by M is completely determined by T .. j 
that is, if T", = T!I' then either both :z; and y are accepted by M or 
neither is. This says that == refines L(M). 

These observations together say that == is a Myhill-Nerode relation for 
L(M). Using the construction == H M= described in Lecture 15, we can 
obtain a DFA for L(M) explicitly. 

To show (i), we show how to construct T .. a from T .. and a. 
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e If PO,Plo ... ,Pk,qo,qlo ... ,qk e Q such that 6(p"a) = (q"L) and 

T .. (q,) = PH1, 0 :::; i :::; k -1, and 6(p", a) = (q", R), then T .... (po) = q". 

e IfPo,Plo ... ,P",qo,ql, ... ,q"-l e Q such that 6(p"a) = (q"L) and 
T .. (qi) = PH1! 0:::; i :::; k - 1, and Pic = Pi, i < k, then T .... (Po) = .L. 

e If PO,Pl, ... ,p",qO,ql, ... ,q" e Q such that 6(p, , a) = (qi, L), 0 :::; i :::; 
k, T .. (q,) = PH1! 0 :::; i :::; k - 1, and T .. (q,,) = ol, then T .... (po) = .L. 

e If T .. (e) =ol, then T .... (e) =ol. 

e If T .. (e) = p, then T .... (e) = T .... (p). 

For (li), suppose T .. = TTl and consider the sequence of states M is in as it 
crosses the boundary in either direction between the input string and the 
right endmarker -I. This sequence is the same on input x as it is on input 

y, since it is completely determined by the table. Both strings x and yare 

accepted iff this sequence contains the accept state t. 

We have shown that the relation:::: is a Myhill-Nerode relation for L(M), 
where M is an arbitrary 2DFA. The construction:::: H ME of Lecture 15 
gives a DFA equivalent to M. Recall that in that construction, the states of 
the DFA correspond in a one-to-one fashion with the ::::-classesi and here, 

each ::::-class [x] corresponds to a table T .. : (Q U {e}) --+ (Q U {ol}). 

If we wanted to, we could build a DFA M' directly from the tables: 

Q' ~ {T : (Q U {e }) --+ (Q U {ol} )}, 

I def T. 
8 = ., 

6'(T .. , a) ~ T .... , 

F' d,g {T .. I x e L(M)}. 

The transition function 6' is well defined because of property (i), and T., e 
F' iff x e L(M) by property (li). As usual, one can prove by induction on 
Iyl that 

then 

6'(T."y) = T"Tli 

x e L(M') {:::::> 6'(8/,X) e F' 

¢::::} 6'(T.,x) e F' 

{:::::> T., e F' 

{:::::> x e L(M). 

Thus L(M') = L(M). 

Another proof, due to Vardi [122], is given in Miscellaneous Exercise 61. 
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Historical Notes 

Two-way finite automata were first studied by Rabin and Scott [1021 and 
Shepherdson [1141. Vardi [1221 gave a shorter proof of equivalence to DFAs 
(Miscellaneous Exercise 61). 
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Context-Free Grammars and Languages 

You may have seen something like the following used to give a formal defini­

tion of a language. This notation is sometimes called BNF for Backus-Naur 

form. 

<stmt> ::= <if-stmt> I <while-stmt> I <begin-stmt> I <assg-stmt> 

<if-stmt> ::= if <bool-expr> then <stmt> else <stmt> 

<while-stmt> ::= while <bool-expr> do <stmt> 

<begin-stmt> ::= begin <stmt-list> end 

<stmt-list> ::= <stmt> I <stmt> ; <stmt-list> 

<assg-stmt> ::= <var> := <arith-expr> 

<bool-expr> ::= <arith-expr><compare-op><arith-expr> 

<compare-op> ::= < I> I ~ I ~ I = I i-
<arith-expr> ::= <var> I <const> I «arith-expr><arith-op><arith-expr» 

<arith-op> ::= + I - I * I / 
<const> ::= 0 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 

<var> ::= a I b I c I ... I x I y I z 

This is an example of a context-free grammar. It consists of a finite set 

of rules defining the set of well-formed expressions in some language; in 

this example, the syntactically correct programs of a simple PASCAL-like 

programming language. 
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For example, the first rule above says that a statement is either an i/state­
ment, a while statement, a begin statement, or an assignment statement. If 
statements, while statements, begin statements, and assignment statements 
are described formally by other rules further down. The third rule says 
that a while statement consists of the word while, followed by a Boolean 

expression, followed by the word do, followed by a statement. 

The objects <xxx> are called nonterminal symbols. Each nonterminal sym­

bol generates a set of strings over a finite alphabet :E in a systematic way 
described formally below. For example, the nonterminal <arith-expr> above 
generates the set of syntactically correct arithmetic expressions in this lan­

guage. The strings corresponding to the nonterminal <xxx> are generated 

using rules with <xxx> on the left-hand side. The alternatives on the right­
hand side, separated by vertical bars I, describe different ways strings corre­
sponding to <xxx> can be generated. These alternatives may involve other 

nonterminals <yyy>, which must be further eliminated by applying rules 
with <yyy> on the left-hand side. The rules can be recursivej for example, 
the rule above for <stmt-list> says that a statement list is either a statement 

or a statement followed by a semicolon (j) followed by a statement list. 

The string 

while x $ y do begin x := (x + 1) j Y := (y -1) end (19.1) 

is generated by the nonterminal <stmt> in the grammar above. To show 

this, we can give a sequence of expressions called sentential/orms starting 
from <stmt> and ending with the string (19.1) such that each sentential 
form is derived from the previous by an application of one of the rules. 
Each application consists of replacing some nonterminal symbol <xxx> in 
the sentential form with one of the alternatives on the right-hand side of 
a rule for <xxx>. Here are the first few sentential forms in a derivation of 
(19.1): 

<stmt> 

<while-stmt> 

while <bool-expr> do <stmt> 

while <arith-expr><compare-op><arith-expr> do <stmt> 

while <var><compare-op><arith-expr> do <stmt> 

while <var> $ <arith-expr> do <stmt> 

while <var> $ <var> do <stmt> 

while x $ <var> do <stmt> 

.while x $ y do <stmt> 

while x $ y do <begin-stmt> 
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Applying different rules will yield different results. For example, the string 

begin if z = (x + 3) then y := z else y := x end 

can also be generated. The set of all strings not containing any nonterminals 
generated by the grammar is called the language generated by the grammar. 
In general, this set of strings may be infinite, even if the set of rules is finite. 

There may also be several different derivations of the same string. A gram­
mar is said to be unambiguous if this cannot happen. The grammar given 

above is unambiguous. 

We will give a general definition of context-free grammars (CFGs) and 
the languages they generate. The language (subset of 'E*) generated by 

the context-free grammar G is denoted L( G). A subset of 'E* is called a 

context-free language (CFL) if it is L(G) for some CFG G. 

CFLs are good for describing infinite sets of strings in a finite way. They are 

particularly useful in computer science for describing the syntax of program­
ming languages, well-formed arithmetic expressions, well-nested begin-end 
blocks, strings of balanced parentheses, and so on. 

All regular sets are CFLs (Homework 5, Exercise 1), but not necessarily 
vice versa. The following are examples of CFLs that are not regular: 

• {anbn I n ~ O}j 

• {palindromes over {a,b}} = {x E {a,b}* I x = rev x}; and 

• {balanced strings of parentheses}. 

Not all sets are CFLsj for example, the set {anbnan I n ~ O} is not. We 
can prove this formally using a pumping lemma for CFLs analogous to the 
pumping lemma for regular sets. We will discuss the pumping lemma for 
CFLs in Lecture 22. 

Pushdown Automata (PDAs): A Preview 

A pushdown automaton (PDA) is like a finite automaton, except that in 

addition to its finite control, it has a stack or pushdown store, which it can 
use to record a potentially unbounded amount of information. 
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finite 

control 
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.l 

stack 

The input head is read-only and may only move right. The machine can 
store information on the stack in a last-in-first-out (LIFO) fashion. It can 
push symbols onto the top of the stack or pop them off the top of the stack. 
It may not read down into the stack without popping the top symbols off, 
in which case they are lost. 

We will define these machines formally in Lecture 23 and prove that the 
class of languages accepted by nondeterministic PDAs is exactly the class 
of CFLs. 

Formal Definition of CFGs and CFLs 

Formally, a contezt-free grammar (CFG) is a quadruple 

G= (N,~, P, S), 

where 

• N is a finite set (the nonterminal symbols), 

• ~ is a finite set (the terminal symbols) disjoint from- N, 

• P is a finite subset of N x (N U ~)* (the productions), and 

• SEN (the start symbon. 

We use capital letters A, B, C, ... for nonterminals and a, b, c, ... for termi­
nal symbols. Strings in (NU ~)* are denoted a,{3, 1, .... Instead of writing 
productions as (A, a), we write A --> a. We often use the vertical bar I 
as in the example above to abbreviate a set of productions with the same 
left-hand side. For example, instead of writing 
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we might write 

A -+ 0:1 10:2 10:3. 

If 0:, /3 E (N U ~)*, we say that /3 is derivable from 0: in one step and write 

1 
0: --+ /3 

G 

if /3 can be obtained from 0: by replacing some occurrence of a nonterminal 

A in 0: with 1, where A -+ 1 is in P; that is, if there exist 0:1. 0:2 E (NU~)* 
and production A -+ 1 such that 

0: = 0:1 A0:2 and /3 = 0:110:2. 

Let ~ be the reflexive transitive closure of the relation .2..; that is, 
G G 

define 

o 
• 0: --+ 0: for any 0:, 

G 

• 0: ~ /3 if there exists 1 such that 0: ~ 1 and 1.2.. /3, and 
G G G 

• 0: ~ /3 if 0: ~ /3 for some n > O. 
G G -

A string in (NU~)* derivable from the start symbol S is called a sentential 
form. A sentential form is called a sentence if it consists only of terminal 

symbols; that is, if it is in ~*. The language generated by G, denoted L( G), 
is the set of all sentences: 

L(G) = {x E ~* IS + x}. 

A subset B ~ ~* is a context-free language (CFL) if B = L(G) for some 
context-free grammar G. 

Example 19.1 The nonregular set {anbn I n ~ O} is a CFL. It is generated by the grammar 

S -+ aSb I f, 

where f is the null string. More precisely, G = (N, ~, P, S), where 

N = is}, 
~ = {a,b}, 

P = {S -+ aSb, S -+ fl. 

Here is a derivation of a3b3 in G: 
1 1 1 1 

S G aSb G aaSbb G aaaSbbb G aaabbb. 

The first three steps apply the production S -+ aSb and the last applies 

the production S -+ f. Thus 

S~aaabbb. 
G 
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One can show by induction on n that 

S n+l nbn --a a , 

so all strings of the form anbn are in L(G); conversely, the only strings in 
L( G) are of the form anbn, as can be shown by induction on the length of 
the derivation. 0 

Example 19.2 The nonregular set 

{palindromes over {a, b}*} = {:c E {a, b} * I :c = rev:c} 

is a CFL generated by the grammar 

S --+ aSa I bSb I a I b I e. 

The first two productions generate any number of balanced a's or b's at 
the outer ends of the string, working from the outside in. The last three 
productions are used to finish the derivation. The productions S --+ a and 
S --+ b are used to generate an odd-length palindrome with an a or b, 

respectively, as the middle symbol; and the production S --+ e is used to 
generate an even-length palindrome. 0 

Historical Notes 

Context-free grammars and languages were introduced by Chomsky [17, 
18, 201, although they were foreshadowed by the systems of Post [1001 
and Markov [83]. Backus-Naur form was used to specify the syntax of 
programming languages by Backus [7] and Naur [93]. 
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Balanced Parentheses 

Intuitively, a string of parentheses is balanced if each left parenthesis has a 
matching right parenthesis and the matched pairs are well nested. The set 
PAREN of balanced strings of parentheses [ ] is the prototypical context­
free language and plays a pivotal role in the theory of CFLs. 

The set PAREN is generated by the grammar 

S -+ [S] I SS I f. 

This is not obvious, so let's give a proof. First we need a formal character­
ization of balanced. To avoid confusing notation, we'll use 

L(x) ~f #[(x) = the number of left parentheses in x, 

R(x) ~f #] (x) = the number of right parentheses in x. 

We will define a string x of parentheses to be balanced if and only if 

(i) L(x) = R(x), and 

(li) for all prefixes y of x, L(y) ~ R(y). 

(Recall that a prefix of x is a string y such that x = yz for some z.) To 
see that this definition correctly captures the intuitive notion of balanced, 
note that property (i) says that there must be the same number of left 



136 Lecture 20 

parentheses as right parentheses, which must certainly be true if x is bal­

anced; and property (ii) says that for any way of partitioning x into yz, 

there cannot be more right parentheses in y than left parentheses, because 

right parentheses can only match left parentheses to the left of them. Thus 

(i) and (ii) are certainly necessary conditions for a string to be balanced. 
To see that they are sufficient, draw the graph of the function L(y) - R(y) 
as y ranges over prefixes of x: 

4----------~~--~----------------------------------

3--------~----~--~~--_,~--------~--------------

2 ----~r_----------------~----~----_r----~----~~----

1 ---r----------------------------~~----------~----~-­

OL-------------------------------------------------~ 
[[ [[] []] []] [[]] ]] 

[ [ 

Property (i) says that the graph ends with value 0 (Le., L(x) - R(x) = 0), 
and (ii) says that it never dips below 0 on the way across. H the graph 
satisfies these two properties, then given any parenthesis in the string, one 
can find the matching parenthesis by shooting upward and ricocheting off 
the graph twice. 

[] []] []] [[] [ ] ] 

Thus we will take (i) and (ii) as our formal definition of balanced strings of 

parentheses and prove that the given grammar generates exactly the set of 

such strings, no more and no less. 

Theorem 20.1 Let G be the CPG 

s -+ [S] I SS I f. 

Then 

L( G) = {x E {[,]} * I x satisfies (i) and (ii)}. 

Proof. We show the inclusion in both directions. Both arguments will be by 

induction, but induction on different things. 
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First we show the forward inclusion: if 8 ~ x, then x satisfies (i) and (ii). 
G 

Thus any string generated by G is balanced. 

We would like to use induction on the length of the derivation of x from 
8, but since the intermediate sentential forms in this derivation will con­
tain nonterminals, we need to strengthen our induction hypothesis to allow 
nonterminals. Thus we will actually show that for any Ct E (N U I:)*, if 

8 ~ Ct, then Ct satisfies (i) and (ii). This will be proved by induction on 
G 

the length of the derivation 8 ~ o. 
G 

Basis 

If 8 ~ Ct, then Ct = 8 by definition of the relation ~. But the sentential 
G G 

form 8 satisfies (i) and (ii) trivially. 

Induction step 

Suppose 8 ~ Ct. Let {3 be the sentential form immediately preceding Ct in 
G 

the derivation. Then 

8~{3~0. 
G G 

By the induction hypothesis, {3 satisfies (i) and (ii). There are now three 
cases, corresponding to the three productions in the grammar that could 
have been applied in the last step to derive 0 from {3. We will show in each 
case that properties (i) and (ii) are preserved. 

The first two cases, corresponding to productions 8 .... f and 8 .... 88, are 
easy because neither production changes the number or order of parenthe­
ses. In either case there exist {3l, {32 E (N U E)* such that 

{ 
{3l{32 if 8 .... f was applied, 

{3 = {3l8{32 and 0 = {3l88{32 if 8 .... 88 was applied; 

and in either case 0 satisfies (i) and (ii) iff {3 does. 

If the last production applied was 8 .... [8], then there exist {31, {32 E 

(N U E)* such that 

{3 = {31 8 {32 and 0 = {31 [8]{32, 

and by the induction hypothesis (i) and (ii) hold of {3. Then 

L(o) = L({3) + 1 

= R({3) + 1 since {3 satisfies (i) 

= R(o), 

thus (i) holds of o. To show that (ii) holds of Ct, let, be an arbitrary prefix 
of o. We want to show that L(,) ~ R('Y). Either 



138 Lectu re 20 

• 'Y is a prefix of f3I, in which case 'Y is a prefix of f3, so (ii) holds for the 
prefix 'Y by the induction hypothesis; or 

• 'Y is a prefix of f3I [8 but not of f3I, in which case 

L( 'Y) = L(f3I) + 1 

~ R(f3I) + 1 induction hypothesis, since f3I is a prefix of f3 

> R(f3I) 

=R('Y); or 

• 'Y = f3I [8]6, where 6 is a prefix of f32, in which case 

L('Y) = L(f3I86) + 1 

~ R(f3I86) + 1 induction hypothesis 

= Rb)· 

Thus in all cases L('Y) ~ Rb). Since 'Y was arbitrary, (ii) holds of 0:. This 

concludes the inductive proof that if 8 ~ x, then x is balanced. 
G 

Now we wish to show the other direction: if x is balanced, then 8 ~ x. 
G 

This is done by induction on Ixl. Assume that x satisfies (i) and (ii). 

Basis 

If Ixl = 0, we have x = f and 8 ~ x in one step using the production 
G 

8 -+ f. 

Induction step 

If Ixl > 0, we break the argument into two cases: either 

(a) there exists a proper prefix y of x (one such that 0 < Iyl < Ixl) 
satisfying (i) and (ii), or 

(b) no such prefix exists. 

In case (a), we have x = yz for some z, 0 < Izl < lxi, and z satisfies (i) and 
(ii) as well: 

L(z) = L(x) - L(y) = R(x) - R(y) = R(z), 

and for any prefix w of z, 

L(w) = L(yw) - L(y) 

~ R(yw) - R(y) since yw is a prefix of x and L(y) = R(y) 

= R(w). 
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By the induction hypothesis, 8 ~ V and 8 ~ z. Then we can derive x 
G G 

by starting with the production 8 -+ 88, then deriving V from the first 8, 
then deriving z from the second 8: 

1 • • 
8 --+ 88 --+ V8 --+ vz = x. 

G G G 

In case (b), no such V exists. Then x = [z] for some z, and z satisfies (i) 
and (ti). It satisfies (i) since 

L(z) = L(x) - 1 = R(x) - 1 = R(z), 

and it satisfies (ii) since for all nonnull prefixes '1.£ of z, 

L(u) - R(u) = L([u) -1- R([u) ~ 0 

since L( ['1.£) - R( ['1.£) ~ 1 because we are in case (b). By the induction 

hypothesis, 8 ~ z. Combining this derivation with the production 8 -+ 
G 

[8], we get a derivation of x: 

8~ [8] ~ [z] =x. 
G G 

Thus every string satisfying (i) and (ii) can be derived. 0 
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Normal Forms 

For many applications, it is often helpful to assume that CFGs are in one 
or another special restricted form. Two of the most useful such forms are 
Chomsky normal form (CNF) and Greibach normal form (GNF). 

Definition 21.1 A CFG is in Chomsky normal form (CNF) if all productions are of the form 

A -+ BO or A -+ a, 

where A, B, 0 E N and a E ~. A CFG is in Greibach normal form (GNF) 
if all productions are of the form 

A -+ aB1B2 ••• B/c 

for some k 2:: 0, where A, Bll ... ,B/c E N and a E ~. Note that k = 0 is 
allowed, giving productions of the form A -+ a. 0 

For example, the two grammars 

S -+ AB I AO ISS, 0 -+ SB, 

S -+ [B I [SB I [BS I [SBS, 

A-+ [, 

B --+ J 

B -+ J, (21.1) 

(21.2) 

are grammars in Chomsky and Greibach normal form, respectively, for the 
set of all nonnull strings of balanced parentheses [ J . 

No grammar in Chomsky or Greibach form can generate the null string € 

(Why not?). Apart from this one exception, they are completely general: 
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Theorem 21.2 Por any CPG G, there is a CPG G' in Chomsky normal form and a CPG 
G" in Greibach normal form such that 

L(G") = L(G') = L(G) - {fl. 

Getting Rid of f- and Unit Productions 

To prove Theorem 21.2, we must first show how to get rid of all f-productions 
A --. f and unit productions A --. B. These productions are bothersome 
because they make it hard to determine whether applying a production 
makes any progress toward deriving a string of terminals. For instance, 
with unit productions, there can be loops in the derivation, and with f­

productions, one can generate very long strings of nonterminals and then 
erase them all. Without f- or unit productions, every step in the derivation 
makes demonstrable progress toward the terminal string in the sense that 
either the sentential form gets strictly longer or a new terminal symbol 
appears. 

We cannot simply throw out the f- and unit productions, because they may 
be needed to generate some strings in L(G)j so before we throw them out, 
we had better throw in some other productions we can use instead. 

Lemma 21.3 Por any CPG G = (N, ~, P, S), there is a CPG G' with no f- or unit 
productions such that L( G') = L( G) - {f}. 

Proof. Let P be the smallest set of productions containing P and closed 
under the two rules 

(a) if A --. a.B/3 and B --. e are in P, then A --. a./3 is in Pj and 

(b) if A --. B and B --. 'Yare in P, then A --. 'Y is in P. 

We can construct P inductively from P by adding productions as required 
to satisfy (a) and (b). Note that only finitely many productions ever get 
added, sinc~ each new right-hand side is a substring of an old right-hand 
side. Thus P is still finite. 

Now let G be the grammar 

G = (N, ~, P, S). 

Since P ~ P, every derivation of G is a derivation of Gj thus L( G) ~ L( G). 
But L(G) = L(G), since each new production that was thrown in because 
of rule (a) or (b) can be simulated in two steps by the two productions that 
caused it to be thrown in. 
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N ow we show that for nonnull x E ~*, any derivation S ...;.. x of mini-
G 

mum length does not use any f- or unit productions. Thus the f- and unit 

productions are superfluous and can be deleted from G with impunity. 

Let x =f. f and consider a minimum-length derivation S ...;.. x. Suppose for 
G 

a contradiction that an f-production B -+ f is used at some point in the 

derivation, say 

• f: 1 f:. S~'YBu ~'Yu ~x. 
G G G 

One of 'Y, 0 is nonnuil, otherwise x would be null, contradicting the assump­
tion that it isn't. Thus that occurrence of B must first have appeared earlier 

in the derivation when a production of the form A -+ OI.B/3 was applied: 

S~~A9~~OI.B/39~'YBo~~~x 
G G G G G 

for some m, n, k ~ O. But by rule (a), A -+ 01./3 is also in P, and this 
production could have been applied at that point instead, giving a strictly 

shorter derivation of x: 

S ~ ~A9 ~ 1J0I./39 ~ 'Yo ~ x. 
G G G G 

This contradicts our assumption that the derivation was of minimum length. 

A similar argument shows that unit productions do not appear in minimum­
length derivations in G. Let x =f: f and consider a derivation S ...;.. x of 

G 
minimum length. Suppose a unit production A -+ B is used at some point, 

say 

• A 1 /3. S~OI. /3~OI.B ~x. 
G G G 

We must eventually dispose of that occurrence of B, say by applying a 

production B -+ 'Y later on. 

mAl n 1 ilk 
S~OI. /3~OI.B/3~~B9~~'YIl~x. 

G G G G G 

But by rule (b), A -+ 'Y is also in P, and this could have been applied 
instead, giving a strictly shorter derivation of x: 

S ~ OI.A/3 ~ 0I.'Y/3 ~ ~'Y9 ~ x. 
G G G G 

Again, this contradicts the minimality of the length of the derivation. 

Thus we do not need f-productions or unit productions to generate nonnull 
strings. If we discard them from G, we obtain a grammar G' generating 

L(G) - {fl. 0 
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Chomsky Normal Form 

Once we are rid of E- and unit productions, it is a simple matter to put the 

resulting grammar into Chomsky normal form. For each terminal a E E, 
introduce a new nonterminal Aa and production Aa -+ a, and replace all 
occurrences of a on the right-hand sides of old productions (except pro­

ductions of the form B -+ a) with Aa. Then all productions are of the 

form 

A -+ a or A -+ B1B2 ... Bk, k 2::: 2, 

where the Bo are nonterminals. The set of terminal strings generated is not 

changed; it just takes one more step than before to generate a terminal 

symbol. For any production 

A -+ B1B2··· Bk 

with k 2::: 3, introduce a new nonterminal C and replace this production 

with the two productions 

A -+ B1C and C -+ B2B3··· Bk. 

Keep doing this until all right-hand sides are of length at most 2. 

Example 21.4 Let's derive a CNF grammar for the set 

{aRb" In 2::: O} - {E} = {anbn In 2::: I}. 

Starting with the grammar 

S -+ aSb I E 

for {anbn I n 2::: O}, we remove the E-production as described in Lemma 21.3 
to get 

S -+ aSb lab, 

which generates {anbn I n 2::: I}. Then we add nonterminals A, Band 
replace these productions with 

S-+ ASB lAB, A-+a, B -+ b. 

Finally, we add a nonterminal C and replace S -+ ASB with 

S -+ AC and C -+ SB. 

The final grammar in Chomsky form is 

S-+AB lAC, C -+ SB, A-+ a, B -+ b. o 

Example 21.5 We derive a CNF grammar for the set of nonnull strings of balanced paren­

theses [ ]. Start with the grammar 

S -+ [S] I SS I E 
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for all balanced strings of parentheses. Applying the construction of Lemma 
21.3 to get rid of the e- and unit productions, we get 

S ~ [S] I SS I []. 

Next we add new nonterminals A, B and replace these productions with 

S ~ ASB I SS lAB, A~ [, B~]. 

Finally, we add a new nonterminal G and replace S ~ ASB with 

S~AG and G~SB. 

The resulting grammar in Chomsky form is exactly (21.1). o 

Greibach Normal Form 

Now we show how to convert an arbitrary grammar to an equivalent one 

(except possibly for e) in Greibach normal form. 

We start with a grammar G = (N, ~, P, S) in Chomsky normal form. 
This assumption is mainly for ease of presentation; we could easily modify 
the construction to apply more generally. The construction as given here 

produces a Greibach grammar with at most two nonterminals on the right­
hand side (cf. [60, Exercise 4.16, p. 104)). 

For 0:, f3 E (N U ~)*, write 

L 
0: --+ f3 

G 

if f3 can be derived from 0: by a sequence of steps in which productions 
are applied only to the leftmost symbol in the sentential form (which must 
therefore be a nonterminal). For A E N and a E ~, define 

RA,1l = {f3 E N* I A 1: af3}. 

For example, in the CNF grammar (21.1), we would have 

G ~ SB ~ SSB 
G G 

so GSSB E Ro,[. 

~ SSSB 
G 

~ AGSSB 
G 

L 
--+ 
G 

[CSSB, 

The set RA,Il is a regular set over the alphabet N, because the grammar with 
nonterminals {A'l A E N}, terminals N, start symbol S', and productions 

{A' ~ B'G I A ~ BG E P} U {A' ~ e I A ~ a E P} 
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is a strongly left-linear grammar for it.1 This may seem slightly bizarre, 

since the terminals of this grammar are the nonterminals N of G, but a 

moment's thought will convince you that it makes perfect sense. 

Since RA,a is regular, by Homework 5, Exercise 1 it also has a strongly 

right-linear grammar G A,a; that is, one in which all productions are of the 

form X - BY or X - f, where X, Y are nonterminals of G A,a and BEN. 
Let T A,a be the start symbol of G A,a. 

Assume without loss of generality that the sets of nonterminals of the gram­

mars G A,a and G are pairwise disjoint. This assumption can be enforced 
by renaming if necessary. Form the grammar G1 by adding all the nonter­

minals and productions of all the G A,a to G. Take the start symbol of Gl 
to be S. Productions of G1 are of the following three forms: 

X-b, X-f, X-BY, 

where b E ~ and BEN. Note that G1 is trivially equivalent to G, since 

none of the new nonterminals can be derived from S. 

Now let G2 be the grammar obtained from G1 by removing any production 

of the form 

X-BY 

and replacing it with the productions 

X -bTB,bY 

for all b E ~. Productions of G2 are of the form 

X-b, 

where b E~. 

X-f, 

Finally, get rid of the f-productions in G2 using the construction of Lemma 
21.3. This construction does not introduce any unit productions, since every 
non-f-production has a terminal symbol on the right-hand side. Thus the 

resulting grammar Ga is in Greibach form with at most two nonterminals 
on the right-hand side of any production. 

Before we prove that L(Ga) = L(G), let's pause and illustrate the construc­
tion with an example. 

Example 21.6 Consider the balanced parentheses of Example 21.5. Starting with the 
Chomsky grammar 

S - AB I AC ISS, C-SB, A- [, B-1, 

1 See Homework 5, Exercise 1. 
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first compute the regular sets RD,d: 

Rs,[ = (B + O)S*, 

Ro,[ = (B + O)S*B, 

RA ,[ = RB ,] = {f}, 
and all others are 0. Here are strongly right-linear grammars for these sets: 

Ts,[ - BX lOX, 

To,[ - BY I OY, 

TA ,[ - f, 

TB ,] - f. 

X-SXIE, 

Y_SYIBZ, Z-E, 

Combining these grammars with G and making the substitutions as de­
scribed above, we obtain the grammar G2: 

S - [TA,[B I [TA,[O I [Ts,[S, 

Ts,[ - ]TB,]X I [To, [X, 

To,[ - ]TB,]Y I [To,[Y, 

TA ,[ - f, 

0- [Ts,[B, 

X - [Ts,[X I E, 

Y - [Ts,[Y I ] TB,]Z, 

TB,] - E. 

Removing E-transitions, we get the Greibach grammar G3 : 

S - [B I [C I [Ts,[S, 

Ts,[ -]X I [To,[X I b I [To,[, 

To,[ - lY I [To,[Y, 

0-+ [Ts,[B, 

X -+ [Ts,[X I [TS ,[, 

Y - [Ts,[Y I 1. 

A- [, 

B-], 

Z-E, 

A- [, 

B-J, 

The Greibach grammar produced by this construction is by no means the 
simplest possible, as can be seen by comparing it to the somewhat simpler 
(21.2). 0 

Now we prove that L(G) = L(Ga). Surely L(G) = L(Gl)' since none of the 
new nonterminals added in the construction of Gl can be derived from any 

nonterminal of G, including the start symbol S of GI • Also, L(G2) = L(G3) 

by Lemma 21.3. Thus the heart of the proofis showing that L(Gt} = L(G2}. 

Lemma 21.7 For any nonterminal X and x E E*, 

X ~ x {:::} X ~ X. 
Gl G3 

Proof. The proof is by induction on the length of derivations. If x can 
be derived in one step from X in either grammar, then it must be by a 

production of the form X - b or X - E, and these productions are the 
same in both grammars. 

For the induction step, we show that 



x ...!.... x starting with the production X -+ BY 
G, 

if and only if 
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X * x starting with the production X -+ bTB,bY, 

where b is the first symbol of x. Note that x must have a first symbol, since 

derivations in G1 starting with X -+ BY cannot generate f, because B is a 
nonterminal of the original CNF grammar G, therefore can generate only 
nonnull strings. 

Any leftmost derivation 

X~BY...!....bz 
G, G, 

is of the form 

1 k+l m 
X ---+ BY ---+ bBIB2 ... BkY ---+ bz, 

Gl Gl Gl 

where bB1B2 ... BkY is the first sentential form in the sequence in which the 
terminal b appears, and BIB2 ... Bk E RB,b' By definition of the grammar 
G B,b, this occurs if and only if 

1 k+l m 
X ---+ bTB bY ---+ bB1B2 ... B"Y ---+ bz, 

G2 ' G, G, 

where the subderivation 

TBb ~BIB2···B" , G, 

is a leftmost derivation in GB,b' By the induction hypothesis, this occurs 
iff 

o 

It follows from Lemma 21.7 by taking X = S that L(G1) = L(G2), therefore 
L(G) = L(Ga). 

Historical Notes 

Bar-Hillel, Perles, and Shamir [8] showed how to get rid of f- and unit 

productions. Chomsky and Greibach normal forms are due to Chomsky 
[18] and Greibach [53], respectively. 
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The Pumping Lemma for CFLs 

There is a pumping lemma for CFLs similar to the one for regular sets. It 

can be used in the same way to show that certain sets are not context-free. 
Here is the official version; there will also be a corresponding game with 
the demon that will be useful in practice. 

Theorem 22.1 (Pwnping lemma for CFLs) For every CFL A, there exists k ;:: 0 
such that every z e A of length at least k can be broken up into five 
substrings z = uvwxy such that vx :1= e, Ivwxl :5 k, and for all i ;:: 0, 
uv'wxiye A. 

Informally, for every CFL A, every sufficiently long string in A can be 
subdivided into five segments such that the middle three segments are not 
too long, the second and fourth are not both null, and no matter how many 
extra copies of the second and fourth you pump in simultaneously, the string 
stays in A. 

Note that this differs from the pumping lemma for regular sets in that we 

pump simultaneously on two substrings v and x separated by a substring 
w. 

The key insight that gives this theorem is that for a grammar in Chomsky 
nor~al form, any parse tree for a very long string must have a very long 
path, and any very long path must have at least two occurrences of some 
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nonterminal. A parse tree or derivation tree of a string z is a tree represent­
ing the productions applied in a derivation of z from the start symbol S 
independent of the order of application. For example, consider the Chomsky 

grammar 

S~AGIAB, A~a, B~b, G~SB 

for {anbn I n ~ 1}. Here is a parse tree for the string a4b4 in this grammar: 

S 

/\ 
A G 

/ /\ 
a S B 

/\ \ 
A G b 

/ /\ 
a S B 

/\ \ 
A G b 

/ /\ 
a S B 

/\ \ 
A B b 

/ \ 
a b 

The productions can be applied in any order. For example, a leftmost 

derivation of a4b4 (always applying a production to the leftmost remaining 
nonterminal) would give 

S ~ AG ~ aG ~ aSB ~ aAGB ~ aaGB ~ aaSBB ~ aaAGBB 

~ aaaGBB ~ aaaSBBB ~ aaaABBBB ~ aaaaBBBB 

~ aaaabBBB ~ aaaabbBB ~ aaaabbbB ~ aaaabbbb, 

and a rightmost derivation would give 

S ~ AG ~ ASB ~ ASb ~ AAGb --> AASBb ~ AASbb ~ AAAGbb 

~ AAASBbb ~ AAASbbb ~ AAAABbbb ~ AAAAbbbb 

~ AAAabbbb ~ AAaabbbb ~ Aaaabbbb ~ aaaabbbb, 

but these two derivations have the same parse tree, namely the one pictured 
above. 

Parse trees of Chomsky grammars for long strings must have long paths, 
because the number of symbols can at most double when you go down a 
level. This is because the right-hand sides of productions contain at most 
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two symbols. For example, take the tree above and duplicate the terminals 
generated at each level on all lower levels, just to keep track of the symbols 
that have been generated so far: 

s 
/\ 

A c 
/ /\ 

a S B 

/ /\ \ 
a A C b 

/ / /\ \ 
a a S B b 

/ / /\ \ \ 
a a A C b b 

/ / / /\ \ \ 
a a a S B b b 

/ / / /\ \ \ \ 
a a a A B b b b 

/ / / / \ \ \ \ 
a a a a b b b b 

The' number of symbols at each level is at most twice the number on the 
level immediately above. Thus at the very most, we can have one symbol 
at the top level (level 0), 2 at levell, 4 at level 2, ... , 2' at level i. In order 
to have at least 2" symbols at the bottom level, the tree must be of depth 1 

at least nj that is, it must have at least n + 1 levels. 

Proof of the pumping lemma. Let G be a grammar for A in Chomsky normal 
form. Take k = 2"+1, where n is the number of nonterminals of G. Suppose 

z E A and Izl ;::: k. By the argument above, any parse tree in G for z 
must be of depth at least n + 1. Consider the longest path in the tree. (In 
the example above, the path from S at the root down to the leftmost b in 
the terminal string is such a path.) That path is of length at least n + 1, 
therefore must contain at least n + 1 occurrences of nonterminals. By the 
pigeonhole principle, some nonterminal occurs more than once along the 

path. Take the first pair of occurrences of the same nonterminal along the 
path, reading from bottom to top. In the example above, we would take 
the two circled occurrences of S: 

IThe depth is the number of edges on the longest path from the root to a leaf. 
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s 
/\ 

A C 

/ /\ 
a S B 

/ /\ \ 
a A C b 

/ / /\ \ 

/ / ~ B\ \ 
a a A ebb 

/ / / /\ \ \ 

/ / / ~ B\ \ \ 
a a a A B b b b 

/ / / / \\\\ 
a a a a b b b b 

Say X is the nonterminal with two occurrences. Break z up into substrings 

1I.vw:cy such that w is the string of terminals generated by the lower occur­
rence of X and vwx is the string generated by the upper occurrence of X. 
In our running example, w = ab is the string generated by the lower occur­
rence of Sand vwx = aabb is the string generated by the upper occurrence 
of S: 

S 

/\ 
A C 

/ /\ 
a S B 

/ /\ \ 
a A C b 

/ / /\ \ 

/ / ~ B\ \ 
a a A ebb 

/ / / /\ \ \ 

/ / / ~ B\ \ \ 
a a a A B b b b 

/ / / / \\\\ 
a a a a b b b b 
--..,....... --.,., ---.......-- --.,., --..,....... 

1£ V W X Y 
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Thus in this example we have u = aa, v = a, W = ab, x = b, and y = bb. 
Let T be the subtree rooted at the upper occurrence of X and let t be the 
subtree rooted at the lower occurrence of X. In our example, 

T =1\ 
A 0 t =1\ / /\ 

/ 1\ B\ 
A B 

/ \ 
a A B b a b 

/ / \ \ '-----v----"' 

a a b b 
W 

---.,..,. '-----v----"' ---.,..,. 
v W x 

By removing t from the original tree and replacing it with a copy of T, we 
get a valid parse tree of uv2wx2y: 

s 
/\ 

A 0 

/ /\ 
a S B 

/ /\ \ 
a A 0 b 

/ / /\ \ 
a a ~ B b 

/ / /\ \ \ 
a a A 0 b b 

/ / / /\ \ \ 

/ / / 1\ B\ \ \ 
a a a A 0 b b b 

/ / / / /\ \ \ \ 
a a a a~B b b b 
--.,- ---.,..,. / /\ \ ---.,..,. --.,-

u v a A B b x y 

/ / \ \ 
a a b b 

---.,..,. '-----v----"' ---.,..,. 
v w x 

We can repeat this cutting out of t and replacing it with a copy of T as 
many times as we like to get a valid parse tree for UViW:ciy for any i ;::: 1. 

We can even cut T out of the original tree and replace it with t to get a 
parse tree for uvOwxOy = uwy: 
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s 
/\ 

A c 
/ /\ 

a S B 

/ /\ \ 
a A C b 

/ / /\ \ 
a a 1\ B b 

/ / \ \ 
a a A B b b 

/ / / \ \ \ 
a a a b b b 

/ / ~ \ \ w 
a a b b 

/ / \ \ 
a a b b 
~ ~ 

u y 

Note that vx =f. €; that is, v and x are not both null. 

We also have Ivwxl :5 k, since we chose the first repeated occurrence of a 
nonterminal reading from the bottom, and we must see such a repetition 
by the time we get up to height n + 1. Since we took the longest path in the 
tree, the depth of the subtree under the upper occurrence of the repeated 
nonterminal X is at most n + 1, therefore can have no more than 2n+1 = k 

terminals. 0 

Games with the Demon 

Like its regular cousin, the pumping lemma for CFLs is most useful in its 
contrapositive form. In this form, it states that in order to conclude that A 
is not context-free, it suffices to establish the following property: 

Property 22.2 For all k ~ 0, there exists z E A of length at least k such that for all ways 

of breaking z up into substrings z = uvwxy with vx # f and Ivwxl :5 k, 
there exists an i ~ 0 such that uviwxiy ~ A. 

Property 22.2 is equivalent to saying that you have a winning strategy in 
the following game with the demon: 

1. The demon picks k ~ O. 

2. You pick z E A of length at least k. 
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3. The demon picks strings U,v,w,x,y such that z = uvwxy, Ivxl > 0, 

and Ivwxl :5 k. 

4. You pick i ~ O. If uv'wx'y ¢ A, then you win. 

If you want to show that a given set A is not context-free, it suffices to show 
that you have a winning strategy in this gamej that is, no matter what the 
demon does in steps 1 and 3, you have moves in steps 2 and 4 that can beat 
him. 

Example 22.3 Let's use the pumping lemma to show that the set 

A = {a"b"a" I n ~ O} 

is not context-free. We'll do this by showing that we can always win the 

game with the demon. 

Say the demon picks k in step 1. You have to argue that you can win no 
matter what k is. A good choice for you in step 2 is to pick z = alcbloalo . Then 
z E A and Izl = 3k ~ k. Then in step 3, say the demon picks u, v, w, x, Y 

such that z = uvwxy, vx '" to, and Ivwxl :5 k. You pick i = 2. In every case, 
you win: if the demon picked either v or x to contain at least one a and at 
least one b, then uv2wx2y is not of the form a*b*a*, hence certainly not 

in Aj if the demon picked v and x to contain only a's, then uv2wx2y has 
more than twice as many a's as b's, hence is not in Aj if the demon picked 

v and x to contain only b's, then uv2wx2y has fewer than twice as many a's 
as b's, hence is not in Aj and finally, if one of v or x contains only a's and 
the other contains only b's, then uv2wx2y cannot be of the form ambmam, 
hence is not in A. In all cases you can ensure uv2wx2y ¢ A, so you have a 
winning strategy. By the pumping lemma, A is not context-free. 0 

Example 22.4 Let's use the pumping lemma to show that the set 

A = {ww I we {a,b}*} 

is not context-free. Since the family of CFLs is closed under intersection 

with regular sets (Homework 7, Exercise 2), it suffices to show that the set 

A' = An L(a*b*a*b*) 

= {a"bma"bm I m,n ~ O} 

is not context-free. 

Say the demon picks k. You pick z = alobkaloblo • Call each of the four 

substrings of the form ak or bk a block. Then zEA' and Izl ~ k. Say the 

demon picks u,v,w,x,y such that z = uvwxy, vx '" f, and Ivwxl < k. No 
matter what the demon does, you can win by picking i = 2: 
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• If one of v or x contains both a's and b's (i.e., if one of v or x straddles 
a block boundary), then 'UV2wx2y is not of the form a*b*a*b*, thus is 
not in A'. 

• If v and x are both from the same block, then 'Uv2wx2y has one block 
longer than the other three, therefore is not in A'. 

• If v and x are in different blocks, then the blocks must be adjacentj 

otherwise Ivwxl would be greater than k. Thus one of the blocks con­

taining v or x must be a block of a's and the other a block of b's. Then 

'UV2wx2y has either two blocks of a's of different size (if vx contains 
an a) or two blocks of b's of different size (if vx contains a b) or both. 
In any case, 'Uv2wx2y is not of the form an bmanbm . 

Since you can always ensure a win by playing this strategy, A' (and therefore 
A) is not a CFL by the pumping lemma. 

Surprisingly, the complement of A, namely 

{a,b}* - {ww I wE {a,b}*}, 

is a CFL. Here is a CFG for it: 

S -+ AB I BA I A I B, 

A-+ CACI a, 

B -+ CBC I b, 

C -+ a lb. 
This grammar generates 

(i) all strings of odd length (starting with productions S -+ A and S -+ 

B)j or 

(ii) strings of the form xay'Ubv or 'Ubvxay, where X,y,'U,V E {a,b}*, Ixl = 
IYI, and 1'1£1 = Ivl· 

The nonterminal A generates all strings of the form xay, Ixl = Iyl. The 
nonterminal B generates all strings of the form 'Ubv, 1'1£1 = Ivl. No string of 
the form (i) can be of the form ww, since ww is always of even length. No 

string of the form (ii) can be of the form ww, since there are occurrences of 
a and b separated by a distance of n/2, where n is the length of the string. 

This example shows that the family of CFLs is not closed under comple­
ment. 0 

Note that in both these examples, your choice of i = 2 in step 4 was 
independent of the demon's move in step 3. This may not always be possible! 

However, keep in mind that you have the freedom to pick i in step 4 after 
you have seen what the demon did in step 3. 
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Historical Notes 

The pumping lemma for CFLs is due to Bar-Hillel, Perles, and Shamir [8). 
A somewhat stronger version was given by Ogden [96). 



Lecture 23 

Pushdown Automata 

A nondeterministic pushdown automaton (NPDA) is like a nondeterministic 

finite automaton, except it has a stack or pushdown store that it can use to 
record a potentially unbounded amount of information. 

finite 
control 

B 

C 

B 

1. 

stack 

The input head is read-only and may only move from left to right. The 
machine can store information on the stack in a last-in-first-out (LIFO) 
fashion. In each step, the machine pops the top symbol off the stack; based 
on this symbol, the input symbol it is currently reading, and its current 
state, it can push a sequence of symbols onto the stack, move its read head 
one cell to the right, and enter a new state, according to the transition rules 
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of the machine. We also allow E-transitions in which it can pop and push 
without reading the next input symbol or moving its read head. 

Although it can store an unbounded amount of information on the stack, 
it may not read down into the stack without popping the top elements off, 
in which case they are lost. Thus its access to the information on the stack 
is limited. 

Formally, a nondeterministic PDA is a 7-tuple 

M = (Q, E, r, 0, s, .L, F), 

where 

• Q is a finite set (the states), 

• E is a finite set (the input alphabet), 

• r is a finite set (the stack alphabet), 

• 6 l:;; (Q x (E U {E}) x r) x (Q x r*), 6 finite (the transition relation), 

• seQ (the start state), 

• .L e r (the initial stack symbo~, and 

• F l:;; Q (the final or accept states). 

If 

«p,a,A), (q,B1B2···B,,)) e 0, 
this means intuitively that whenever the machine is in state p reading input 
symbol a on the input tape and A on the top of the stack, it can pop A off 
the stack, push BIB2 ... B" onto the stack (B" first and Bl last), move its 
read head right one cell past the a, and enter state q. If 

(P,E,A), (q,B1B2'" B,,)) e 6, 

this means intuitively that whenever the machine is in state p with A on 
the top of the stack, it can pop A off the stack, push B1B2'" B" onto the 
stack (B" first and Bl last), leave its read head where it is, and enter state 
q. 

The machine is nondeterministic, so there may be several transitions that 
are possible. 

Configu rations 

A configuration of the machine M is an element of Q x E* x r* describing 
the current state, the portion of the input yet unread (Le., under and to the 
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right of the read head), and the current stack contents. A configuration gives 
complete information about the global state of M at some point during a 
computation. For example, the configuration 

(p, baaabba, ABAC.1) 

might describe the situation 

C 

.1 

The portion of the input to the left of the input head need not be represented 
in the configuration, because it cannot affect the computation from that 
point on. In general, the set of configurations is infinite. 

The start configuration on input x is (s,x, .1). That is, the machine always 

starts in its start state s with its read head pointing to the leftmost input 

symbol and the stack containing only the symbol .L. 

The next configuration relation ..2... describes how the machine can move 
M 

from one configuration to another in one step. It is defined formally as 
follows: if 

((p,a,A), (q,'Y)) e 6, 

then for any y e 1:* and f3 e r* , 
1 

(p,ay,Af3) 7 (q,y,'Yf3); 

and if 

((P,E,A), (q,'Y)) e 6, 

then for any y e 1:* and f3 e r*, 

(p,y,Af3) -if (q,y,'Yf3). 

(23.1) 

(23.2) 

In (23.1), the ay changed to y, indicating that the input symbol a was 
eaten; the Af3 changed to 'Yf3, indicating that the A was popped and 'Y was 
pushed; and the p changed to q, indicating the change of state. In (23.2), 
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everything is the same except that the y does not change, indicating that no 

input symbol was eaten. No two configurations are related by 2.... unless 
M 

required by (23.1) or (23.2). 

Define the relations ~ and 
M 

C~D~C=D, 
M 

• ---+ 
M 

as follows: 

C ~ D ~ :IE C ~ E and E 2.... D, 
M M M 

C~D~:ln>OC~D. 
M - M 

Then ~ is the reflexive transitive closure of 2..... In other words, C ~ D 
M M M 

if the configuration D follows from the configuration C in zero or more steps 

of the next configuration relation 2..... 
M 

Acceptance 

There are two alternative definitions of acceptance in common use: by empty 
stack and by final state. It turns out that it doesn't matter which definition 
we use, since each kind of machine can simulate the other. 

Let's consider acceptance by final state first. Informally, the machine M is 

said to accept its input x by final state if it ever enters a state in F after 
scanning its entire input, starting in the start configuration on input x. 
Formally, M accepts x by final state if 

(s,x,..L) ~ (q,€,'Y) 
M 

for some q E F and 'Y E r*. In the right-hand configuration, € is the null 
string, signifying that the entire input has been read, and 'Y is junk left on 
the stack. 

Informally, M is said to accept its input x by empty stack if it ever pops the 

last element off the stack without pushing anything back on after reading 

the entire input, starting in the start configuration on input x. Formally, 

M accepts x by empty stack if 

(s,x,..L) 7 (q,f,f) 

for some q E Q. In this definition, the q in the right-hand configuration can 
be any state whatsoever, and the € in the second and third positions indicate 
that the entire input has been read and the stack is empty, respectively. 
Note that F is irrelevant in the definition of acceptance by empty stack. 

The two different forms of automata can simulate each other (see Lecture 

E)j thus it doesn't matter which one we work with. 
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In either definition of acceptance, the entire input string has to be read. 

Because of E-transitions, it is possible that a PDA can get into an infinite 
loop without reading the entire input. 

Example 23.1 Here is a nondeterministic pushdown automaton that accepts the set of 
balanced strings of parentheses [ ] by empty stack. It has just one state q. 
Informally, the machine will scan its input from left to right; whenever it 
sees a [, it will push the [ onto the stack, and whenever it sees a] and the 
top stack symbol is [, it will pop the [ off the stack. (If you matched up 

the parentheses, you would see that the ] it is currently reading is the one 

matching the [ on top of the stack that was pushed earlier.) Formally, let 

Q = {q}, 

~={[,]}, 

r = {.1, [}, 

start state = q, 

initial stack symbol = .1, 

and let 6 consist of the following transitions: 

(i) ((q, [, .i), (q, [.i)); 

(li) «q, [, E), (q, [[)); 

(iii) «q,], E), (q,En; 

(iv) «q, 10, .i), (q, En. 

Informally, transitions (i) and (ii) say that whenever the next input symbol 
is [, the [ is pushed onto the stack on top of the symbol currently there (ac­
tually, the symbol currently there is popped but then immediately pushed 
back on). Transition (iii) says that whenever the next input symbol is ] 
and there is a [ on top of the stack, the [ is popped and nothing else is 

pushed. Transition (iv) is taken when the end of the input string is reached 
in order to dump the .1 off the stack and accept. 
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Here is a sequence of configurations leading to the acceptance of the bal-
anced string [ [ []] [] ] []. 

Configuration Transition applied 

(q, [[ []] []] [J, .L) start configuration 

-+ (q, [[]][]][], [ .L) transition (i) 

-+ (q, []] [] J [J, [ [.L) transition (ii) 
-+ (q, ]] [] ] [], [ [ [ 1.) transition (ii) 
-+ (q, J []J [J, [ [.L) transition (iii) 
-+ (q, []] [], [ .L) transition (iii) 
-+ (q, ] ] [], [ [1.) transition (ii) 
-+ (q, ] [], [ .L) transition (iii) 
-+ (q, [], .L) transition (iii) 
-+ (q, J, [ .L) transition (i) 
-+ (q, f, .L) transition (iii) 
-+ (q, f, f) transition (iv) 

The machine could well have taken transition (iv) prematurely at a couple 
of placesj for example, in its very first step. This would have led to the 
configuration 

(q, [[ []] [] J [],f), 

and the machine would have been stuck, since no transition is possible 
from a configuration with an empty stack. Moreover, this is not an accept 
configuration, since there is a nonnull portion of the input yet unread. 
However, this is not a problem, since the machine is nondeterministic and 
the usual rules for nondeterminism apply: the machine is said to accept the 
input if some sequence of transitions leads to an accept configuration. If it 
does take transition (iv) prematurely, then this was just a bad guess where 
the end of the input string was. 

To prove that this machine is correct, one must argue that for every bal­
anced string x, there is a sequence of transitions leading to an accept con­
figuration from the start configuration on input Xj and for every unbalanced 

string x, no sequence of transitions leads to an accept configuration from 
the start configuration on input x. 0 

Example 23.2 We showed in Lecture 22 using the pumping lemma that the set 

{ww I we {a,b}*} 

is not a eFL (and therefore, as we will show in Lecture 25, not accepted 
by any NPDA) but that its complement 

{a,b}* - {ww I we {a,b}*} (23.3) 

is. The set (23.3) can be accepted by a nondeterministic pushdown automa­
ton as follows. Initially guess whether to check for an odd number of input 
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symbols or for an even number of the form xayubv or ubvxay with Ixl = Iyl 
and lui = 1'111. To check for the former condition, we do not need the stack 
at all-we can just count mod 2 with a finite automaton encoded in the 
finite control of the PDA. To check for the latter, we scan the input for 
a nondeterministically chosen length of time, pushing the input symbols 
onto the stack. We use the stack as an integer counter. At some nonde­
terministically chosen time, we remember the current input symbol in the 
finite control-this is the a or b that is guessed to be the symbol in the 
first half not matching the corresponding symbol in the second half-then 
continue to scan, popping one symbol off the stack for each input symbol 
read. When the initial stack symbol .l is on top of the stack, we start push­
ing symbols again. At some point we nondeterministically guess where the 

corresponding symbol in the second half is. If it is the same symbol as the 

one remembered from the first half, reject. Otherwise we scan the rest of 
the input, popping the stack as we go. If the stack contains only .l when 
the end of the input is reached, we accept by popping the .l, leaving an 
empty stack. 0 

We close with a few technical remarks about NPDAs: 

1. In deterministic PDAs (Supplementary Lecture F), we will need an 
endmarker on the input so that the machine knows when it is at the 
end of the input string. In NPDAs, the endmarker is unnecessary, since 
the machine can guess nondeterministically where the end of the string 
is. If it guesses wrong and empties its stack before scanning the entire 
input, then that was just a bad guess. 

2. We distinguish the initial stack symbol .l only because we need it to 

define the start configuration. Other than that, it is treated like any 
other stack symbol and can be pushed and popped at any time. In 
particular, it need not stay on the bottom of the stack after the start 
configuration; it can be popped in the first move and something else 
pushed in its place if desired. 

3. A transition ((p,a,A), (q,P)) or ((P,f,A), (q,P)) does not apply unless 
A is on top of the stack. In particular, no transition applies if the stack 
is empty. In that case the machine is stuck. 

4. In acceptance by empty stack, the stack must be empty in a configu­
mtion, that is, after applying a transition. In our intuitive description 
above, when a transition such as ((p,f,A), (q,BC)) is taken with only 
A on the stack, the stack is momentarily empty between the time A 
is popped and BC is pushed. This does not count in the definition 
of acceptance by empty stack. To accept by empty stack, everything 
must be popped and nothing pushed back on. 
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Final State Versus Empty Stack 

It doesn't matter whether we take NPDAs to accept by empty stack or by 
final state; the two methods of acceptance are equivalent in the sense that 
each type of machine can simulate the other. Given an arbitrary NPDA M 
that accepts by final state or empty stack, we will show how to construct 
an equivalent NPDA M' with a single accept state for which acceptance by 
empty stack and by final state coincide. 

The construction of M' differs slightly, depending on whether M accepts 
by final state or by empty stack, but there is enough in common between 
the two constructions that we will do them together, pointing out where 
they differ. 

We have not discussed deterministic PDAs yet-we will do so in Supple­

mentary Lecture F-but for future reference, the construction we are about 

to give can be made to preserve determinism. 

Let 

M = (Q, E, r, 0,8,1., F) 

be an NPDA that accepts by empty stack or by final state. Let 1£, t be two 
new states not in Q, and let JL be a new stack symbol not in r. Define 

if M accepts by empty stack, 
if M accepts by final state; 
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~ ~ { {JL} 
- rU{JL} 

Consider the NPDA 

if M accepts by empty stack, 

if M accepts by final state. 

M' = (QU{u,t},~, rU{JL}, 6', '11., JL, {t}), 

where 6' contains all the transitions of 6, as well as the transitions 

«U,f,JL), (s,.1JL)), 

«q,e,A), (t,A)), qeG, Ae~, 

«t,f,A), (t,f)), A e ru {JL}. 

(E.1) 

(E.2) 

(E.3) 

Thus the new automaton M' has a new start state'll., a new initial stack 

symbol JL, and a new single final state t. In the first step, by transition 

(E.1), it pushes the old initial stack symbol .1 on top of JL, then enters 

the old start state s. It can then run as M would, since it contains all the 

transitions of M. At some point it might enter state t according to (E.2). 

Once it enters state t, it can dump everything off its stack using transitions 
(E.3). Moreover, this is the only way it can empty its stack, since it cannot 
pop JL except in state t. Thus acceptance by empty stack and by final state 
coincide for M'. 

Now we show that L(M') = L(M). Suppose first that M accepts by empty 
stack. If M accepts x, then 

(s,x,.1) ~ (q,f,f) 
M 

for some n. But then 

('II., x, JL) -!,. (s,x,.1JL)..!!.r (q,e,JL) -!,. (t,f,JL) -!,. (t,f,f). 
M M M M 

Now suppose M accepts by final state. If M accepts x, then 

(s,x,.1) 7 (q,f,-y), q e F. 

Then 

(u,x,JL) it (s,x,.1JL) it (q,f,-yJL) it (t,f,-yJL) -/it (t,e,E). 

Thus in either case, M' accepts x. Since x was arbitrary, L(M) S; L(M'). 

Conversely, suppose M' accepts x. Then 

(u,x,JL) -!,. (s,x,.1JL)..!!.r (q,y,-yJL) -!,. (t,y,'YJL) ~ (t,E,E) 
M M M M 

for some q E G. But Y = E, since M' cannot read any input symbols once 
it enters state tj therefore, 

(s,x,.1) ~ (q,€,-y). 
M 

(EA) 
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Now let's consider the definitions of G and t::. and transitions (E.2) govern­
ing the first move into state t, and ask how the transition 

(q, f, 'YlL) J7 (t, f, 'YlL) 

could come about. If M accepts by empty stack, then we must have 'Y = f. 
On the other hand, if M accepts by final state, then we must have q E F. 

In either case, (E.4) says that M accepts x. Since x was arbitrary, L(M') ~ 
L(M). 
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PDAs and CFGs 

In this lecture and the next we will show that nondeterministic pushdown 
automata and context-free grammars are equivalent in expressive power: 
the languages accepted by NPDAs are exactly the context-free languages. 
In this lecture we will show how to convert a given CFG to an equivalent 
NPDA. We will do the other direction in Lecture 25. 

Suppose we are given a CFG G = (N, E, P, S). We wish to construct an 
NPDA M such that L(M) = L(G). By a simple construction from Lecture 
21, we can assume without loss of generality that all productions of G are 
of the form 

A -- cB1B2 ... Bk, 

where c E E U {f} and k ;::: o. 

We construct from G an equivalent NPDA M with only one state that 
accepts by empty stack. Let 

M = ({q}, E, N, 0, q, S, 13), 

where 

• q is the only state, 

• E, the set of terminals of G, is the input alphabet of M, 
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• N, the set of nonterminals of G, is the stack alphabet of M, 

• 6 is the transition relation defined below, 

• q is the start state, 

• S, the start symbol of G, is the initial stack symbol of M, 

• 0, the null set, is the set of final states (actually, this is irrelevant, 
since M accepts by empty stack). 

The transition relation 6 is defined as follows. For each production 

A --+ CBlB2 ... Bk 

in P, let 6 contain the transition 

((q,c,A), (q,BlB2,,·Bk))' 

Thus 6 has one transition for each production of G. Recall that for c E :E, 
this says, "When in state q scanning input symbol c with A on top of the 
stack, scan past the c, pop A off the stack, push Bl B2 ••• Bk onto the stack 
(Bk first), and enter state q," and for c = E, "When in state q with A on 
top of the stack, without scanning an input symbol, pop A off the stack, 
push BlB2'" Bk onto the stack (Bk first), and enter state q." 

That completes the description of M. Before we prove L(M) = L(G), let's 

look at an example. 

Consider the set of nonnull balanced strings of parentheses [ ]. Below we 

give a list of productions of a grammar in Greibach normal form for this 
set. Beside each production, we give the corresponding transition of the 
NPDA as specified by the construction above. 

(i) S --+ [BS ((q, [,S), (q,BS)) 

(ii) S --+ [B ((q, [,S), (q,B)) 

(iii) S --+ [SB ((q, [,S), (q,SB)) 

(iv) S --+ [SBS ((q, [,S), (q,SBS)) 

(v) B --+] ((q,], B), (q, E)) 

Recall that a leftmost derivation is one in which productions are always 
applied to the leftmost nonterminal in the sentential form. We will show 
that a leftmost derivation in G of a terminal string x corresponds exactly to 
an accepting computation of M on input x. The sequence of sentential forms 
in the leftmost derivation corresponds to the sequence of configurations of 
M in the computation. 
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For example, consider the input x = [ [ [] ] [] ]. In the middle column 

below is a sequence of sentential forms in a leftmost derivation of x in G. 
In the right column is the corresponding sequence of configurations of M. 
In the left column is the number of the production or transition applied. 

Sentential forms in a Configurations of M in an 
Rule leftmost derivation of accepting computation of 

applied x in G M on input x 

S (q, [[[]] [] ], S) 
(iii) [SB (q, [[]] []], SB) 
(iv) [[SBSB (q, []] []], SBSB) 
(ii) [[ [BBSB (q, ]] []], BBSB) 
(v) [[ [lBSB (q, ] [] ], BSB) 
(v) [[[]]SB (q, [ll, SB) 
(li) [ [[ll [BB (q, ] ], BB) 
(v) [[[]][]B (q, ] , B) 
(v) [[[]][]] (q, 40, f) 

In the middle column, the first sentential form is the start symbol of G and 

the last sentential form is the terminal string x. In the right column the 

first configuration is the start configuration of M on input x and the last 
configuration is an accept configuration (the two 40'S denote that the entire 
input has been read and the stack is empty). 

One can see from this example the correspondence between the sentential 

forms and the configurations. In the sentential forms, the terminal string 

x is generated from left to right, one terminal in each step, just like the 

input string x in the automaton is scanned off from left to right, one sym­
bol in each step. Thus the two strings of terminals appearing in each row 
always concatenate to give x. Moreover, the string of nonterminals in each 
sentential form is exactly the contents of the stack in the corresponding 
configuration of the PDA. 

We can formalize this observation in a general lemma that relates the sen­
tential forms in leftmost derivations of x E G and the configurations of M 
in accepting computations of M on input x. This lemma holds not just for 
the example above but in general. 

Lemma 24.1 For any z, y E E*, r E N*, and A E N, A ~ zr via a leftmost derivation 
if and only if (q, zy, A) ~ (q, y, r). G 

M 

For example, in the fourth row of the table above, we would have z = [ [ [, 
y = ] ] [] ], r = BBSB, A = S, and n = 3. 

Proof. The proof is by induction on n. 
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Basis 

For n = 0, we have 

A ~ Z'Y ¢=} A = Z'Y 
G 

¢=}z=fand'Y=A 

¢=} (q,zy,A) = (q,y,'Y) 

¢=} (q, zy, A) -l:; (q, y, '1). 

Induction step 

We do the two implications ~ and <= separately for clarity. 

First suppose A ~ Z'Y via a leftmost derivation. Suppose that B -+ c{3 was 
G 

the last production applied, where c E ~ U {f} and {3 E N*. Then 

A ~ uBa. 2.. uc{3a. = Z'Y, 
G G 

where z = uc and '1 = {3a.. By the induction hypothesis, 

(q,ucy,A) ~ (q,cy,Ba.). 
M 

By the definition of M, 

((q,c,B), (q,{3)) EO, 

thus 

(q, cy, BOo) 2.. (q, y,{3a.). 
M 

Combining (24.1) and (24.2), we have 

(q,zy,A) = (q,ucy,A) '7 (q,y,{3a.) = (q,y,'Y). 

Conversely, suppose 

(q, zy, A) '7 (q, y, '1), 

and let 

((q,c,B), (q,{3)) E fJ 

(24.1) 

(24.2) 

be the last transition taken. Then z = uc for some u E ~*, '1 = {3a. for 

some a. E r*, and 

(q, ucy, A) 7 (q, cy, BOo) -i: (q, y,{3a.). 

By the induction hypothesis, 

A~uBa. 
G 
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via a leftmost derivation in G, and by construction of M, 

B -t c{3 

is a production of G. Applying this production to the sentential form 'UBa, 

we get 

A ~ 'UBa ~ 'Uc{3a = Z'Y 
G G 

via a leftmost derivation. 

Theorem 24.2 L(M) = L(G). 

Proof. 

x e L(G) 

<==? S ~ x by a leftmost derivation definition of L( G) 
G 

<==? (q,x,S) -if (q,€,€) Lemma 24.1 

o 

<==? x e L(M) definition of L(M). 0 
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Simulating NPDAs by CFGs 

We have shown that every CFL is accepted by some NPDA. Now we show 
conversely that NPDAs accept only CFLs. Thus NPDAs and CFGs are 
equivalent in expressive power. We will do this in two steps by showing 
that 

(i) every NPDA can be simulated by an NPDA with one state; and 

(ii) every NPDA with one state has an equivalent CFG. 

Actually, step (ii) is the easier of the two, since we have already done 
all the work in Lecture 24. In that lecture, given a grammar in which all 
productions were of the form 

A -+ CB1B2 ... B,. 

for some k ~ 0 and c E ~ U {f}, we constructed an equivalent NPDA with 
one state. That construction is invertible. Suppose we have an NPDA with 
one state 

M = ({q}, ~, r, 6, q, .L, 0) 

that accepts by empty stack. Define the grammar 

G = (r, ~, P, .L), 



where P contains a production 

A -+ cB1B2 ... Bk 

for every transition 

((q, c, A), (q, B1B2· .. Bk)) E 6, 
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where C E }j U {fl. Then Lemma 24.1 and Theorem 24.2 apply verbatim, 

thus L(G) = L(M). 

It remains to show how to simulate an arbitrary NPDA by an NPDA with 
one state. Essentially, we will maintain all state information on the stack. 

By the construction of Supplementary Lecture E, we can assume without 
loss of generality that M is of the form 

M = (Q, }j, r, 6, s, ..l, {t}); 

that is, M has a single final state t, and M can empty its stack after it 
enters state t. 

Let 

f'~ Q xfx Q. 

Elements of f' are written (p A q), where p, q E Q and A E f. We will 

construct a new NPDA 

M' = ({*},}j, f', 6', *, (s..lt), 0) 

with one state * that accepts by empty stack. The new machine M' will be 
able to scan a string x starting with only (p A q) on its stack and end up 
with an empty stack iff M can scan x starting in state p with only A on its 
stack and end up in state q with an empty stack. 

The transition relation 6' of M' is defined as follows: for each transition 

((p, c, A), (qO, B1B2· .. Bk)) E 6, 

where C E }j U {f}, include in 6' the transitions 

(( *, c, (p A qk)), (*, (qo Bl ql)(ql B2 q2) ... (qk-l Bk qk})) 

for all possible choices of ql, q2,'" ,qk. For k = 0, this reduces to: if 

((p,c,A), (qo,f)) E 6, 

include in 6' the transition 

((*,c,(pAqo)), (*,f)). 

Intuitively, M' simulates M, guessing nondeterministically what states M 
will be in at certain future points in the computation, saving those guesses 
on the stack, and then verifying later that those guesses were correct. 
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The following lemma formalizes the intuitive relationship between compu­

tations of M and M'. 

Lemma 25.1 Let M' be the NPDA constructed from M as above. Then 

(p, x, B1B2··· B,,) ~ (q, e, e) 
M 

if and only if there exist qo, q1 , ... , q" such that p = qo, q = q", and 

(*, x, (qo B1 q1)(q1 B2 q2) ... (q"-1 B" q,,») ~ (*, f, e). 
M 

In particular, 

(P,x,B) -i7 (q,e,e) {:::} (*,x, (PB q)) ~ (*,e,e). 

Proof. By induction on n (What else?). For n = 0, both sides are equivalent 

to the assertion that p = q, x = e, and k = o. 

Now suppose that (P,X,B1B2···B,,) ~ (q,f,e). Let 
M 

((p,c,B1), (r,0102··· Om)) 

be the first transition applied, where c e ~ U {e} and m ;::: o. Then x = cy 

and 

(p, x, B1B2··· B,,) -1:: (r, v, 0 10 2 ... OmB2··· B,,) 

-i7 (q, e, e). 

By the induction hypothesis, there exist ro, r1, ... , rm-I. ql, ... , qk-1, qk 
such that r = ro, q = qk, and 

(*, V, (ro 01 r1)(r1 O2 r2)··· (rm-1 Om q1)(q1 B2 q2)··· (q"-1 B,. q,,») 

~ (*,e,e). 

Also, by construction of M', 

(( *, C, (p B1 q1»), (*, (rO 01 r1)(r1 02 r2)··· (rm-l Om q1))) 

is a transition of M'. Combining these, we get 

(*,x, (PB1 ql)(q1 B2 q2) ... (q"-l B" q,,») 

2,+ (*,V, (ro 0 1 r1)(r1 O2 r2)··· (rm-1 Om ql)(q1 B2 q2}··· (q"-1 B" q,,») 
M 

~ (*,e,e). 

Conversely, suppose 

(*,x, (qo B1 q1)(q1 B2 q2) ... (q"-1 B" q,,») ~ (*,f,e). 
M 

Let 
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be the first transition applied, where C E :E U {€} and m ~ O. Then x = cy 

and 

(*, x, (qO B1 q1}(q1 B2 q2)'" (qk-1 Bk qk)) 

~ (*, y, (ro C1 r1}(r1 C2 r2)'" (rm-1 Cm q1)(q1 B2 q2)'" (qk-1 Bk qk)) 
M 

it (*,10,10). 

By the induction hypothesis, 

(ro, y, C1 C2··· CmB2'" Bk) ~ (qk, f, f). 
M 

Also, by construction of M', 

((qo, C, B1)' (ro, C1 C2 ••• Cm)) 

is a transition of M. Combining these, we get 

(qo, x, B1B2··· Bk) 7 (ro, y, C1 c2··· CmB2 ... Bk) 

~ (qk,f,f). 
M 

Theorem 25.2 L(M') = L(M). 

Proof. For all x E :E*, 

x E L(M') -¢::::} (*,x, (8 1. t)) ~ (*,f,f) 
M 

-¢::::} (8,X,J..) ~ (t,f,f) 
M 

-¢::::} x E L(M). 

Historical Notes 

Lemma 25.1 

D 

D 

Pushdown automata were introduced by Oettinger [95]. The equivalence of 
PDAs and CFGs was established by Chomsky [19], Schiitzenberger [112], 
and Evey [36]. 
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Deterministic Pushdown Automata 

A deterministic pushdown automaton (DPDA) is an octuple 

M = (Q, ~, r, 0, ..1., -I, s, F), 

where everything is the same as with NPDAs, except: 

(i) -I is a special symbol not in ~, called the right endmarker, and 

o ~ (Qx(~U{-I}u{€})xr)x(Qxr*). 

(ii) 0 is deterministic in the sense that exactly one transition applies in 
any given situation. This means that for any p E Q, a E ~ U {-I}, and 
A E r, 0 contains exactly one transition of the form ((p, a, A), (q, (3)) 
or ((P,€,A), (q,{3)). 

(iii) 0 is restricted so that ..1. is always on the bottom of the stack. The 
machine may pop ..1. off momentarily, but must push it directly back 
on. In other words, all transitions involving ..1. must be of the form 
((p,a,..1.), (q,{3..1.)). 

The right endmarker -I delimits the input string and is a necessary addition. 
With NPDAs, we could guess where the end of the input string was, but 
with DPDAs we have no such luxury. 

The restriction in (iii) is so that the machine never deadlocks by emptying 
its stack. This assumption is without loss of generality; even if the machine 
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did not obey it, we could make it do so by a construction involving a new 
stack symbol JL, as in Supplementary Lecture E. In that construction, we 
must modify the transitions (E.2) to read the symbol -I. 

We consider only acceptance by final state. One can define acceptance by 
empty stack and prove that such machines are equivalent. The assumption 
(iii) would have to be modified accordingly. 

The definitions of configurations and acceptance by final state are the same 
as with NPDAs. The start configuration on input x e E* is (s, x -I, .1), and 

x is accepted iff 

(s,x -1,.1) -i:; (q,f,{3) 

for some q e F and {3 e r*. 

A language accepted by a DPDA is called a deterministic context-free lan­
guage (DCFL). Surely every DCFL is a CFL, since every DPDA can be 
simulated by an NPDA. In this lecture we will show that the family of 
DCFLs is closed under complement. We know that there exist CFLs whose 
complements are not CFLsj for example, 

{a,b}* - {ww I w e {a,b}*}. 

These CFLs cannot be DCFLs. Thus, unlike finite automata, nondetermin­
ism in PDAs gives strictly more power. 

To show that the DCFLs are closed under complement, we will construct, 
given any DPDA M with input alphabet E, a new DPDA M' such that 
L(M') = E* - L(M). 

We would like to build M' to simulate M and accept iff M does not accept. 
Unfortunately, we cannot just switch accept and nonaccept states like we 
did with DFAs. The main difficulty here is that unlike finite automata, 
DPDAs need not scan all of their inputj they may loop infinitely on inputs 
they do not accept without reading the entire input string. The machine 
M' will have to detect any such pathological behavior in M, since M' will 
have to scan the entire input and enter an accept state on all those inputs 
that are not accepted by M, including those inputs on which M loops 
prematurely. 

We solve this problem by showing how to modify M to detect such spurious 
looping and deal with it gracefully. After each modification step, we will 
argue that the resulting machine still accepts the same set as M and is still 
deterministic. 
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Checking for End of Input 

It will be useful to include one bit of information in the finite control of M 

to remember whether or not M has seen the endmarker -i yet. Formally, we 
duplicate the finite control Q to get a new copy Q' = {q' I q E Q} disjoint 

from Q and add a new transition 

((p',a,A), (q',,B)) 

for each transition ((p,a,A), (q,,B)) E 6. We remove any transition of the 
form ((P,-i,A), (q,,B)) and replace it with ((P,-i,A), (q',,B)). The primed 
states thus behave exactly like the unprimed original states, except that 
we jump from an unprimed state to a primed state when we scan the 
endmarker. The start state will still be s, but we will take as final states 
all primed states corresponding to final states in the old machine Mj that 
is, the new set of final states will be 

F' = {q' I q E F}. 

The new machine is still deterministic, since there is still exactly one tran­
sition that applies in any configuration. It accepts the same set, since 
if 

(s,x -i,l.) -i7 (q,f,'Y), q E F 

in the old machine, then there must be some intermediate transition that 
reads the -i: 

(s, x -i, 1.) -it (p, -i, A,B) -if (r, E, a,B) -it (q, E, 1). 

Then in the new machine, 

(s, x -i, 1.) -it: (p, -i, A,B) -b (r', E, a,B) -it: (q', E, 1)· 

Conversely, if 

(s,x -i,l.) ~ (q',E,'Y), q' E F' 
M 

in the new machine, then removing the primes gives a valid accepting 
computation sequence 

(s,x -i,1.) ~ (q,E,'Y), q E F 
M 

in the old machine. 

Now we can tell from information in the sta.te whether we have seen -i or 
not. With this informa.tion, we can make the machine remain in an accept 
state if it has already scanned the -i and accepted. This is done by deleting 
every primed transition ((p',f,A), (q',,B)) with p' E F' and replacing it 
with ((P',E,A), (P',A)). 
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Getting Rid of Spurious Loops 

We include two new nonaccept states r and r' and transitions 

«r,a,A), (r,A)), 
«r, -I, A), (r/, A)), 
«r/,€,A), (r/,A)), 

a e E, A e r, 
Aer, 
Aer. 

We can think of r' as a reject state. If the machine is in state r, it will 
always scan to the end of the input and enter state r' , leaving the stack 
intact. Once the machine is in state r ' , it stays there. (So far there is no 
way for the machine to reach state r or r ' , but just wait ... ) 

We will now show how to modify the machine so that for all inputs, the 
machine scans the entire input and enters either an accept state or the state 

r'. Let x be any input. Because of determinism, there is a unique infinite 

sequence of configurations the machine goes through on input X. Let 'Yi 
denote the stack contents at time i e {O, 1, 2, ... }. There exists an infinite 
sequence of times io < i1 < i2 < ... such that for all i", 

(F.1) 

We can take io = 0, since 'Yo = 1. and hoi = 1, and the machine never 
empties its stack. Proceeding inductively, we can take ilc+l to be the earliest 

time after i" such that l'YiHll is minimum among alll'Yil, i > i". 

Now we pick an infinite subsequence jo < iI < h < ... of io < il < i2 < ... 
such that the same transition, say «p,€,A), (q,P)), is applied at times 
jo,iI,h, ... . Such a subsequence exists by the pigeonhole principle: there 
are only finitely many transitions in 0, so at least one must be applied 
infinitely often. The states p, q can be primed or unprimed. The transition 
must be an €-transition, since it is applied infinitely often, and there are 
only finitely many input symbols to scan. 

By (F.1), the machine never sees any stack symbol below the top symbol 
of 'Yj. after time j", and the top symbol is A. Thus the only stack symbols 
it sees after time j" are those it pushes after time j". Since the machine is 
deterministic, once it applies transition «(p, 10, A), (q, P)), it is in a loop and 
will go through the same periodic sequence of €-transitions repeated forever, 
since it sees nothing that can force it to do anything different. Moreover, 
this behavior is independent of the input. Thus if p is not an accept state, 
then the input is not accepted. We might as well remove the transition 
«p,€,A), (q,P)) from 0 and replace it with the transition «p,€,A), (r,A)) 
if p is an unprimed state or «p, 10, A), (r',A)) if p is a primed state. The 
language accepted by the automaton is not changed. 

If this is done for all transitions «p,€,A), (q,P)) causing such spurious 
loops, we obtain a machine equivalent to M that on any input scans the 
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entire input string and the endmarker -j and enters either an accept state 
or the state r'. To get a machine M' accepting the complement of L(M), 
make r' the unique accept state of M'. 

Historical Notes 

Deterministic PDAs were first studied by Fischer [37], Schiitzenberger [112], 

Haines [54], and Ginsburg and Greibach [44]. 
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Parsing 

One of the most important applications of context-free languages and push­
down automata is in compilers. The input to a PASCAL compiler is a 
PASCAL program, but it is presented to the compiler as a string of ASCII 
characters. Before it can do anything else, the compiler has to scan this 
string and determine the syntactic structure of the program. This process 
is called parsing. 

The syntax of the programming language (or at least big parts of it) is 
often specified in terms of a context-free grammar. The process of parsing 
is essentially determining a parse tree or derivation tree of the program in 
that grammar. This tree provides the structure the compiler needs to know 
in order to generate code. 

The subroutine of the compiler that parses the input is called the parser. 
Many parsers use a single stack and resemble deterministic PDAs. By 

now the theory of deterministic PDAs and parsing is so well developed 
that in many instances a parser for a given grammar can be generated 
automatically. This technology is used in what we call compiler compilers. 

Example 26.1 Consider well-parenthesized expressions of propositional logic. There are 
propositional variables P, Q, R, ... , constants 1.., T (for false and true, 
respectively), binary operators 1\ (and), V (or), -+ (implication or if-then), 
and +-+ (if and only if or biconditional), and unary operator., (not), as well 
as parentheses. The following grammar generates the well-parenthesized 
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propositional expressions (we've used '* instead of the usual -> for produc­
tions to avoid confusion with the propositional implication operator): 

E,* (EBE) 1 (UE) 1 C 1 v, 
B '* V 1 A 1 -> 1 -, 

U'* -', 
c'* .11 T, 

V'*PIQIRI· .. 

(26.1) 

The words "well-parenthesized" mean that there must be parentheses around 
any compound expression. (We'll show how to get rid of them later using op­
erator precedence.) The presence of the parentheses ensures that the gram­
mar is unambiguous-that is, each expression in the language has a unique 
parse tree, so that there is one and only one way to parse the expression. 
A typical expression in this language is 

(((P V Q) A R) V (Q A (-'P))). (26.2) 

Each expression represents an expression tree that gives the order of eval­
uation. The expression tree corresponding to the propositional expression 
(26.2) is 

/V"", 
A A 

/\ /\ 
V R Q -, 
/\ I 

P Q P 

In order to generate code to evaluate the expression, the compiler needs to 
know this expression tree. The expression tree and the unique parse tree for 
the expression in the grammar (26.1) above contain the same information; 
in fact, the expression tree can be read off immediately from the parse 

tree. Thus parsing is essentially equivalent to producing the expression tree, 

which can then be used to generate code to evaluate the expression. 

Here's an example of a parser for propositional expressions that produces 
the expression tree directly. This is a typical parser you might see in a real 

compiler. 

Start with only the initial stack symbol .1 on the stack. Scan the expression 
from left to right, performing one of the following actions depending on each 
symbol: 

(i) If the symbol is a (, push it onto the stack. 
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(ii) If the symbol is an operator, either unary or binary, push it onto the 
stack. 

(iii) If the symbol is a constant, push a pointer to it onto the stack. 

(iv) If the symbol is a variable, look it up in the symbol table and push a 
pointer to the symbol table entry onto the stack. The symbol table is a 
dictionary containing the name of every variable used in the program 
and a pointer to a memory location where its value will be stored. If 
the variable has never been seen before, a new symbol table entry is 
created. 

(v) If the symbol is a ), do a reduce. This is where all the action takes 
place. A reduce step consists of the following sequence of actions: 

(a) Allocate a block of storage for a new node in the expression tree. 

The block has space for the name of an operator and pointers to 
left and right operands. 

(b) Pop the top object off the stack. It had better be a pointer to an 
operand (either a constant, variable, or node in the expression 
tree created previously). If not, give a syntax error. If so, save 
the pointer in the newly allocated node as the right operand. 

(c) Pop the top object off the stack. It had better be an operator. 
If not, give a syntax error. If so, save the operator name in the 
newly allocated node. If the operator is unary, skip the next step 
(d) and go directly to (e). 

(d) Pop the top object off the stacIe. It had better be a pointer to an 
operand. If not, give a syntax error. If so, save the pointer in the 
newly allocated node as the left operand. 

(e) Pop the top object off the stack. It had better be a (. This is the 
left parenthesis matching the right parenthesis we just scanned. 
If not, give a syntax error. 

(f) Push a pointer to the newly allocated node onto the stack. 

Let's illustrate this algorithm on the input string 

(((PV Q)" R) V (Q" (..,P))). 

We start with the stack containing only an initial stack symbol .1. We scan 
the first three ('s and push them according to (i). We scan P and push a 
pointer to its symbol table entry according to (iv). We push the operator V 
according to (ii), then push a pointer to Q according to (iv). At this point 
the stack looks like 
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-+-----Q 

v 

-+-----P 

..L 

We now scan the) and do a reduce step (v). We allocate a block of storage 

for a new node in the expression tree, pop the operands and operator on 
top of the stack and save them in the node, pop the matching {, and push 

a pointer to the new node. Now we have 

-+----... V 

/\ 
P Q 

..L 

on the stack, and we are scanning 

({{PV Q) A R) V (Q A (..,P))) 

T 

We push the A and a pointer to R. At that point we have 

-+----..... R 

--+-----V 

/\ 
P Q 

and we scan the next ), so we reduce, giving 

§tI1\ 
V R 

..L /\ 
P Q 



and we are left scanning 

(((P V Q) /\ R) V (Q /\ (..,P))) 

i 
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Now we scan and push everything up to the next ). This gives 

--I-----P 

.., 

/\ 

........,I----_Q 

V 

--1-----/\ 

/\ 
V R 

.l /\ 
P Q 

We scan the first of the final three )'s and reduce. This gives 

--1-----... .., 

/\ I 
_-I---_Q 

P 

V 

--1----- /\ 

/\ 
V R 

.l /\ 
P Q 

We scan the next) and reduce, giving 
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~+--------------'A 

v 

-+-------_ A 

/\ 

/\ 
Q I 

P 
V R 

/\ 
P Q 

Finally, we scan the last) and reduce, giving 

When we come to the end of the expression, we are left with nothing on 
the stack but a pointer to the entire expression tree and the initial stack 
symbol. 0 

Operator Precedence 

The grammar of the preceding example is unambiguous in the sense that 
there is one and only one parse tree (and hence only one possible expression 
tree) for every expression in the language. If we don't want to write all those 
parentheses, we can change the language to allow us to omit them if we like: 

E:::} EBE I U E I C I V I (E), 

B :::} V I A I -+ I -, 
U :::} ..." 

C :::} 0 11, 

V:::}PIQIRI .. · 

But the problem with this is that the grammar is now ambiguous. For 
example, there are two possible trees corresponding to the expression 

PVQAR, 

namely 
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A V 

/\ /\ 
V R P A 

/\ /\ 
p Q Q R 

with very different semantics. We need a way of resolving the ambiguity. 

This is often done by giving a precedence relation on operators that specifies 

which operators are to be evaluated first in case of ambiguity. The prece­
dence relation is just a partial order on the operators. To resolve ambiguity 
among operators of equal precedence, we will perform the operations from 
left to right. (The left-to-right convention corresponds to common informal 

usage, but some programming languages, such as APL, use the opposite 

convention.) Under these conventions, we only need parentheses when we 

want to depart from the default parse tree. 

For example, consider the following grammar for well-formed arithmetic 

expressions over constants 0,1, variables a, b, c, and operator symbols + 

(addition), binary - (subtraction), unary - (negation), . (multiplication), 

and / (division): 

E ...... 
C ...... 
V ...... 

E + E I E - E IE· E I E / E I - E I C I V I (E), 
011, 

a I b I c. 

(26.3) 

This grammar is ambiguous. For example, there are five different parse trees 
for the expression 

a+b·c+d (26.4) 

corresponding to the five expression trees 

+ + 

+/""+ 

+ + 

/\ /\ /\ /\ 
d + d a + a 

/\ /\ /\ /\ /\ /\ 
+ c a a b c d d b + 

/\ /\ /\ /\ 
a b b c b c c d 

The usual precedence relation on the arithmetic operators gives unary mi­

nus highest precedence, followed by . and /, which have equal precedence, 

followed by + and binary -, which have equal and lowest precedence. Thus 
for the arithmetic expression (26.4), the preferred expression tree is the 

second from the left. This is because the· wants to be performed before 

either of the +'s, and between the +'s the leftmost wants to be performed 

first. If we want the expression evaluated differently, say according to the 
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middle expression tree, then we need to use parentheses: 

(a+b)· (c+d). 

The operators + and binary - have equal precedence, since common usage 

would evaluate both a - b + c and a + b - c from left to right. 

One can modify the grammar (26.3) so as to obtain an equivalent unam­

biguous grammar. The same set of strings is generated, but the precedence 

of the operators is accounted for. In the modified grammar, each generated 
string again has a unique parse tree, and this parse tree correctly reflects 

the precedence of the operators. Such a grammar equivalent to (26.3) would 

be 

E ~ E + FIE - F I F, 

F ~ F·G I FIG I G, 

G~ -GIH, 

H~CI V I (E), 

C~Oll, 

V ~ a I b I c. 

Given a precedence relation on the operators, the parsing algorithm above 

can be modified to handle expressions that are not fully parenthesized as 

follows. Whenever we are about to scan a binary operator B, we check to 
make sure there is an operand on top of the stack, then we look at the stack 

symbol A immediately below it. If A is a symbol of lower precedence than 

B (and for this purpose the left parenthesis and the initial stack symbol 

have lower precedence than any operator), we push B. If A is a symbol of 

higher or equal precedence, then we reduce and repeat the process. 

Let's illustrate with the expression 

a +b· c+d. 

We start with the stack containing only .L We scan the variable a and push 

a pointer to it. 

At this point we are about to scan the + (we don't actually scan past it 
yet, we just look at it). We check under the operand on top of the stack 

and see the initial stack symbol .1, which has lower precedence than +, so 

we scan and push the +. We then scan and push the b, giving 
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-t-----b 

+ 
e-+----_a 

J. 

At this point we are about to scan the .. We check under the operand on 

top of the stack and see the +, which has lower precedence than ., so we 
scan and push the .. We then scan and push the c, giving 

e-+----_ c 

-+----+-b 

e--I----_ a 

Now we are about to scan the second + (we don't actually scan past it yet). 
We check under the operand on top of the stack and see the ., which has 

higher precedence than +, so we reduce. This gives 

+ /\ 
b c 

1. 

In this reduce step, we don't try to pop the (. Good thing, since it's not 
there. Left parentheses are popped only when they are there and when 
the symbol about to be scanned is a right parenthesis. Now we repeat the 
process. We still haven't scanned the second +, so we ask again whether 
the symbol immediately below the operand on top of the stack is of higher 
or equal precedence. In this case it is the +, which is of equal precedence, 

so we reduce. 

Bj---:/+\ 
/\ 

b c 
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We are still looking at the + in the input string. Now we check again below 

the operand on top of the stack and find .1, which is of lower precedence, 

so we scan and push the +, then scan and push the d. 

-+----+d 

+ 
-+----++ 

.1 /\ 
a 

/\ 
b c 

At this point we come to the end of the expression. We now reduce until 

no further reduce steps are possible. We are left with nothing on the stack 

but a pointer to the desired expression tree and the initial stack symbol. 

/\ 
b c 

Historical Notes 

An early paper on parsing is Knuth [71]. The theory is by now quite well 

developed, and we have only scratched the surface here. Good introductory 
texts are Aho and Ullman [2, 3, 4] and Lewis, Rosenkrantz, and Stearns 

[80]. 
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The Cocke-Kasami-Younger Algorithm 

Given a CFL A and a string x E E*, how do we tell whether x is in A? If 
A is a deterministic CFL and we are given a deterministic PDA for it, we 

can easily write a program to simulate the PDA. In fact, this is a good way 

to do it in practice and is done frequently in compilers; we saw an example 

of this in Lecture 26. 

What if A is not a deterministic CFL, or even if it is but we are not given a 

deterministic PDA for it? If A is given by a CFG G, we can first convert G to 
Chomsky normal form (A -> Be or A -> a) so that each production either 

produces a terminal or increases the length of the sentential form, then try 

all derivations of length 21xl- 1 to see if any of them produce x. Unfortu­

nately, there might be exponentially many such derivations, so this is rather 

inefficient. Alternatively, we might produce an equivalent NPDA and try 

all computation sequences, but again because of the nondeterminism there 

may be exponentially many to try. 

Here is a cubic-time algorithm due to Cocke, Kasami, and Younger [65, 

1251. It is an example of the technique of dynamic programming, a very 
useful technique in the design of efficient algorithms. It determines for each 

substring y of x the set of all nonterminals that generate y. This is done 

inductively on the length of y. 
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For simplicity, we will assume that the given grammar G is in Chomsky 

normal form. One can give a more general version of the algorithm that 

works for grammars not in this form. 

We illustrate the algorithm with an example. Consider the following gram­

mar for the set of all nonnull strings with equally many a's and b's: 

8 ~ AB I BA I 88 I AC I BD, 

A~a, B~b, 

C~8B, D~8A. 

We'll run the algorithm on the input string x = aabbab. Let n be the length 
of the string (here n = 6). Draw n + 1 vertical lines separating the letters 
of x and number them 0 to n: 

lalalblblalbl 
0123456 

For 0::; i < j ::; n, let Xij denote the substring of x between lines i and j. In 

this example, X1,4 = abb and X2,6 = bbab. The whole string x is XO,n. Build 
a table T with (~) entries, one for each pair i,j such that 0 ::; i < j ::; n. 

o 
1 

2 

3 
4 

5 

6 

The i,jth entry of T, denoted Tij, refers to the substring Xij. 

We will fill in each entry Tij of T with the set of nonterminals of G that gen­

erate the substring Xij of x. This information will be produced inductively, 
shorter substrings first. 

We start with the substrings of length one. These are the substrings of x of 

the form Xi,H1 for 0 ::; i ::; n - 1 and correspond to the table entries along 
the top diagonal. For each such substring c = Xi,H1, if there is a production 
X ~ c E G, we write the nonterminal X in the table at location i, i + 1. 

o 
A 1 

A 2 
B 3 

B 4 
A 5 

B 6 
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In this example, B is written in T 3,4 because X3,4 = b and B -+ b is 
a production of G. In general, T;,i+1 may contain several nonterminals, 
because there may be several different productions with c = Xi,i+1 on the 

right-hand side. We write them all in the table at position Ti,i+l' 

Now we proceed to the substrings of length two. These correspond to the 

diagonal in T immediately below the top diagonal we just filled in. 

For each such substring Xi,i+2, we break the substring up into two non­

null substrings Xi,i+1 and Xi+I,i+2 of length one and check the table entries 

Ti,i+l, Ti+l,i+2 corresponding to those substrings. These entries occur im­

mediately above and to the right of Ti,i+2. We select a nonterminal from 

each of these locations (say X from Ti,i+1 and Y from Ti+I,i+2) and look 
to see if there are any productions Z -+ XY in G. For each such produc­

tion we find, we label Ti,i+2 with Z. We do this for all possible choices of 

X E Ti,i+l and Y E Ti+l,i+2. 

In our example, for XO,2 = aa, we find only A E TO,l and A in T l ,2, so we 
look for a production with AA on the right-hand side. There aren't any, so 
TO,2 is the empty set. Let's write 0 in the table to indicate this. 

For TI,a, we find A immediately above and B to the right, so we look for a 
production with AB on the right-hand side and find S -+ AB, so we label 

Tl,a with S. We continue in this fashion until all the T i ,i+2 are filled in. 

0 

A 1 

0 A 2 

S B 3 
0 B 4 

S A 5 
S B 6 

Now we proceed to strings of length three. For each such string, there are 
two ways to break it up into two nonnull substrings. For example, 

We need to check both possibilities. For the first, we find A E TO,l and 

S E TI,a, so we look for a production with right-hand side AS. There aren't 

any. Now we check TO,2 and T 2,a. We find 0 in T O,2, so there is nothing 

more to check. We didn't find a nonterminal generating XO,3, so we label 

TO,a with 0. 

For Xl,4 = Xl,2X2,4 = Xl,aXa,4, we find A E T l ,2 and 0 in T2,4, so there is 
nothing here to checkj and we find S E Tl,a and B E Ta,4, so we look for a 
production with right-hand side SB and find C -+ SBj thus we label Tl,4 
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with C. 

0 

A 1 
0 A 2 
0 S B 3 

C 0 B 4 
S A 5 

S B 6 

We continue in this fashion, filling in the rest of the entries corresponding 

to strings of length three, then strings of length four, and so forth. For 

strings of length four, there are three ways to break them up, and all must 

be checked. The following is the final result: 

0 

A 1 
0 A 2 
0 S B 3 
S C 0 B 4 
D S 0 S A 5 

S C 0 C S B 6 

We see that TO•6 contains S, the start symbol, indicating that 

S~X06 =x, G • 

so we conclude that x is generated by G. 

In this example, there is at most one nonterminal in each location. This 

is because for this particular grammar, the nonterminals generate disjoint 

sets. In general, there may be more than one nonterminal in each location. 

A formal description of the algorithm is given below. One can ascertain from 

the nested loop structure that the complexity of the algorithm is O(pn3), 
where n = Ixl and p is the number of productions of G. 
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for i := 0 to n - 1 do 
begin 

1* strings of length 1 first * / 

Ti,Hl := 0; /* initialize to 0 * / 
for A --+ a a production of G do 

if a = Xi,i+! then Ti,i+! := n,i+! U {A} 
end; 

for m:= 2 to n do 1* for each length m ~ 2 */ 
for i := 0 to n - m do 1* for each substring * / 

begin 1* of length m * / 
Ti,Hm := 0; /* initialize to 0 * / 
for j := i + 1 to i + m - 1 do /* for all ways to break * / 

for A --+ BC a production of G do 1* up the string * / 
if B E Ti,; ACE T;,Hm 

then Ti,Hm := Ti,Hm U {A} 
end; 

Closure Properties of CFLs 

eFLs are closed under union: if A and B are eFLs, say generated by gram­

mars G1 and G2 with start symbols 81 and 82, respectively, one can form 
a grammar generating A U B by combining all productions of G1 and G2 

along with a new start symbol 8 and new productions 8 --+ 81 and 8 --+ 82. 
Before combining the grammars, we must first make sure G1 and G2 have 
disjoint sets of nonterminals. If not, just rename the nonterminals in one of 

them. 

Similarly, eFLs are closed under set concatenation: if A and Bare eFLs 
generated by grammars Gl and Ga as above, one can form a grammar 
generating AB = {xy I x E A, y E B} by combining G1 and Ga with a 
new start symbol 8 and new production 8 --+ 8182. 

eFLs are closed under asterate: if A is a eFL generated by a grammar with 
start symbol 81. then A* is generated by the same grammar but with new 
start symbol 8 and new productions 8 --+ 818 I E. 

eFLs are closed under intersection with regular sets: if A is a eFL and R is 
regular, then An R is a eFL (Homework 7, Exercise 2). This can be shown 

by a product construction involving a PDA for A and a DFA for R similar 

to the construction we used to show that the intersection of two regular sets 
is regular. This property is useful in simplifying proofs that certain sets are 

not context-free. For example, to show that the set 

A = {x E {a,b,c}* I #a(x) = #b(x) = #c(x)} 
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is not context-free, intersect it with a*b*c* to get 

An a*b*c* = {anbncn I n ~ O}, 

which we have already shown is not context-free. 

Techniques similar to those used in Lecture 10 to show that the regular sets 

are closed under homomorphic images and preimages can be used to show 

the same results for CFLs (Miscellaneous Exercise 79). 

CFLs are not closed under intersection: 

{ambmcn I m,n ~ O} n {ambncn I m,n ~ O} = {anbncn I n ~ O}. 

The product construction does not work for two CFLs; intuitively, there is 
no way to simulate two independent stacks with a single stack. 

We have also shown in Lecture 22 that the family of CFLs is not closed 

under complement: the set {ww I w E {a, b} *} is not a CFL, but its 
complement is. 

Closure Properties of DCFLs 

A deterministic context-free language (DCFL) is a language accepted by a 

deterministic PDA (DPDA). These automata were introduced in Supple­
mentary Lecture F. A DPDA is like an NPDA, except that its transition 
relation is single-valued (i.e., is a function). We also need to include a spe­
cial right endmarker -1 so that the machine can tell when it reaches the end 
of the input string. The endmarker is not necessary for an NPDA, because 
an NPDA can guess nondeterministically where the end of the input string 
is. 

Most of the important examples of CFLs we have seen have been DCFLs. 
For example, 

{anbn I n ~ O} 

is a DCFL. The shift-reduce parser of Lecture 26 was also a DPDA. 

Every DCFL is a CFL, but not vice versa. The set 

{a,b}* - {ww I wE {a,b}*} 

is an example of a CFL that is not a DCFL. We showed in Lecture 22 
that this set is a CFL, but its complement is not. This implies that neither 
set is accepted by any DPDA, since as we showed in Supplementary Lec­
ture F, the family of DCFLs is closed under complement. Thus, unlike the 

case of finite automata, deterministic PDAs are strictly less powerful than 
nondeterministic ones. 
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DCFLs are not closed under union. For example, consider the union 

{ambnck 1m i= n} U {ambnck In f:; k}. 

Each set is a DCFL. The union is a CFL-an NPDA could guess nondeter­
ministically which condition to check for-but it is not a DCFL. If it were, 
then its complement 

""{ambnck Imi=n}n""{ambnck Inf:;k} 

would be. But then intersecting with the regular set a*b*c* would give 

{anbncn I n ~ O}, 

which is not even context-free. 

Similarly, DCFLs are not closed under reversal, although proving this is a 

little harder. The set 

{bambnck I m i= n} U {cambnck In f:; k} 

over the alphabet {a, b, c} is an example of a DCFL whose reversal is not a 
DCFL (Miscellaneous Exercise 93). 

Historical Notes 

The CKY algorithm first appeared in print in Kasami [65] and Younger 
[125], although Hopcroft and Ullman [60] credit the original idea to John 
Cocke. 

Closure properties of CFLs were studied by Scheinberg [110], Ginsburg and 
Rose [46, 48], Bar-Hillel, Perles, and Shamir [8], and Ginsburg and Spanier 
[49]. 

See p. 180 for the history of DPDAs and DCFLs. 
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The Chomsky-Schiitzenberger Theorem 

Let PARENn denote the language consisting of all balanced strings of 

parentheses of n distinct types. This language is generated by'the grammar 

S-+ [S]\ [S]\"·\ [S]\SS\f. 
1122 nn 

The languages PARENn are sometimes called Dyck languages in the liter­

ature. 

The following theorem shows that the parenthesis languages PARENn play 

a special role in the theory of context-free languages: every CFL is essen­

tially a parenthesis language modified in some relatively simple way. In a 

sense, balanced parentheses capture the essential structure of CFLs that 

differentiates them from the regular sets. 

Theorem G.1 (Chomsky-Schiitzenberger) E'lJery context-free language is a homo­
morphic image of the intersection of a parenthesis language and a regular 
set. In other words, for every CFL A, there is an n ~ 0, a regular set R, 
and a homomorphism h such that 

A = h(PARENn n R). 

Recall from Lecture 10 that a homomorphism is a map h : r* -+ ~* such 

that h(x1/) = h(x)h(1/) for all x,1/ E r*. It follows from this property that 

h(f) = 10 and that h is completely determined by its values on r. The 
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homomorphic image of a set B !; r* under h is the set {h(x) I x E B} !; 

E*, denoted h(B). 

Proof. Let G = (N, E, P, S) be an arbitrary CFG in Chomsky normal form. 
Denote productions in P by 'If, p, (1', •••• 

For 'If E P, define 
1 12 2 

{
A --. [B ][C] 

I W ww ~ 

'If = 1122 
A--. [][] 

1r 'JI"1I' W' 

if 'If = A --. BC, 

and define the grammar G' = (N, r, P', S) with 
1 1 2 2 

r = {[, ], [, ] I 'If E P}, 
'Ir 1r 71" 11" 

P' = {'If' I 'If E Pl. 

The idea here is that a balanced string of parentheses generated by G' 
encodes a corresponding string generated by G along with its parse tree. 

Let PARENr be the parenthesis language over parentheses r. Surely L( G') !; 

PARENr, since the productions of G' generate parentheses in well-nested 
matched pairs. However, not all strings in PARENr are generated by G'. 
Here are some properties satisfied by strings in L( G') that are not satisfied 

by strings in PARENr in general: 

1 2 
(i) Every ] is immediately followed by a [. 

w w 

2 
(ii) No ] is immediately followed by a left parenthesis. 

w 

1 1 
(iii) If 'If = A --. BC, then every [ is immediately followed by [ for Bome 

w 2 P 

pEP with left-hand side B, and every [ is immediately followed by 
1 w 
[ for some q E P with left-hand side C. 
u 

1 1 2 
(iv) If 'If = A --. a, then every [ is immediately followed by ] and every [ 

w 2 W W 

is immediately followed by ]. 
w 

In addition, all strings x such that A -;. x satisfy the property 
G 

1 
(VA) The string x begins with [ for some 'If E P with left-hand side A. 

W 

Each of the properties (i) though (VA) can be described by a regular 
expression; thus the sets 

RA = {x E r* I x satisfies (i) through (VA)} 
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Lemma G.2 

are regular. We claim 

A~ x {::::::> x E PARENr nRA. 
G/ 

Proof. The direction (::}) is a straightforward proof by induction on the 

length of the derivation. For the direction ({:::), suppose x E PARENr nRA. 

We proceed by induction on the length of x. It follows from properties (i) 

through (v A) and the fact that x is a string of balanced parentheses that x 
is of the form 

1 12 2 
x= [y][z] 

1(" 1r1r 1(" 

for some y, Z E r* and 11' with left-hand side A. If 11' = A -+ BC, then 
from property (iii), y satisfies (VB) and z satisfies (ve). Also, y and z 
satisfy (i) through (iv) and are balanced. Thus y E PARENr n RB and 

z E PARENr n Re. By the induction hypothesis, B ~ y and C ~ Zi 
G/ G/ 

therefore, 

1 1 12 2 • 1 12 2 
A,.. [B][C],.. [y][z] =X. 

G 7r 7r7r 1(" G 7r 7r1r 11' 

If 11' = A -+ a, then from property (iv), y = z = €, and 

1 1 12 2 
A --+ [] [] = X. 

G' 7r 7r1l" 1[' 

o 

It follows from Lemma G.2 that L(G') = PARENr n Rs. Now define the 
homomorphism h: r* -+ E* as follows. For 11' of the form A -+ BC, take 

1 1 2 2 
h([) = h(J) = h([) = h(]) = f. 

?r 7r 7r 11" 

For 11' of the form A -+ a, take 
1 2 2 

h( ]) = h( n = h(]) = €, 
". ". ". 

1 

h( [) = a. 
". 

Applying h to the production 11" of P' gives the production 11' of Pi thus 

L(G) = h(L(G')) = h(PARENr n Rs). This completes the proof of the 
Chomsky-Schiitzenberger theorem. 0 

Historical Notes 

The pivotal importance of balanced parentheses in the theory of context­
free languages was recognized quite early on. The Chomsky-Schiitzenberger 
theorem is due to Chomsky and Schiitzenberger [19, 22]. 
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Parikh's Theorem 

Here is a theorem that says a little more about the structure of CFLs. It says 

that for any CFL A, if we look only at the relative number of occurrences 

of terminal symbols in strings in A without regard to their order, then A 

is indistinguishable from a regular set. 

Formally, let ~ = {al, ... ,ak}. The Parikh map is the function 

'I/J: ~* --- Nk 

defined by 

'I/J(x) ~f (#al (x), #a2(x), . .. , #ak(x)). 

That is, 'I/J(x) records the number of occurrences of each symbol in x. The 

structure ~* with binary operation· (concatenation) and constant 15 forms a 

monoid,l as does the structure Nk with binary operation + (componentwise 

addition) and identity 0 = (0, ... ,0), and 'I/J is a monoid homomorphism: 

'I/J(xy) = 'I/J(x) + 'I/J(y) , 

'I/J(I5) = o. 

1 Recall from Lecture 2 that a monoid is an algebraic structure consisting of a set with an associative 
binary operation and an identity for that operation. 
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The main difference between the monoids E* and Nlo is that the latter 

is commutative,2 whereas the former is not, except in the case k = 1. 
In fact, if :: is the smallest monoid congruence3 on E* such that a,aj :: 
aja, , 1 :5 i,j :5 k, then Nlo is isomorphic to the quotient4 E* /::. The 

monoid E* is sometimes called the free monoid on k generators, and Nlo is 

sometimes called the free commutative monoid on k generators. The word 

"free" refers to the fact that the structures do not satisfy any equations 

besides the logical consequences of the monoid or commutative monoid 
axioms, respectively. 

The commutative image of a set A ~ E* is its image under 1/J: 

1/J(A) ~ {1/J(x) I x E A}. 

If '1.£1, ••• ,Urn E Nk, the su bmonoid of Nk generated by '1.£1, ••• ,Urn is denoted 
<'1.£1, ••• ,Urn>· This is the smallest subset of Nlo containing '1.£1, ••• ,Urn and 
the monoid identity 0 and closed under +. Equivalently, 

<'1.£1, ••• ,urn> = {alul + ... +amurn I al,.·· ,arn E N} ~ Nlo. 

A subset of Nlo is called linear if it is a coset of such a finitely generated 
submonoidj that is, if it is of the form 

'1.£0 + <'1.£1, ... ,urn> = {uo + alUl + ... + amUrn I al, ... ,arn EN}. 

A subset of Nlo is called semilinear if it is a union of finitely many linear 
sets. For example, 

1/J({anbn I n ~ O}) = 1/J({x E {a,b}* I #a(x) = #b(x)}) 

= {(n,n) I n ~ O} 

= «1,1» 

is a semilinear (in fact, linear) subset of N2, but {(n, n2 ) I n ~ O} is not. 

Theorem H.1 (Parikh) For any context-free language A, 1/J(A) is semilinear. 

The converse does not hold: the set {anbncn I n ~ O} is not context-free 

but has a semilinear image under 1/J. This is also the image of the CFL 

{(ab)ncn I n ~ O} and the regular set (abc)*. 

2 A monoid is commutative if zy = y:Il for all z and y. 

3 A monoid congruence is an equivalence relation == on the monoid that respects the monoid 
structure in the sense that if z == z' and y == y', then zy == z'y'. 

'The quotient of a monoid M by a congruence == is a monoid whose elements are the congruence 

classes [:Il) ~ {y I y == z}, binary operation [z)· [y) ~ [zy), and constant [1), where 1 is the identity of 
M. See Supplementary Lectures C and D for more information on these concepts. 
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For every semilinear set S ~ Nk , it is not hard to construct a regular set 

R ~ 1:* such that 'I/J(R) = S. For example, {(n,n) I n ~ O} = 'I/J((ab)*). 
For this reason, Parikh's theorem is sometimes stated as follows: 

Every context-free language is letter-equivalent to a regular 8et, 

where letter-equivalence means the sets have the same commutative image. 

In order to prove Parikh's theorem, we need some definitions. Let G = 
(N, 1:, P, S) be an arbitrary CFG in Chomsky normal form. Let s, t, ... 
denote parse trees of G with a nonterminal at the root, nonterminals label­

ing the internal nodes, and terminals or nonterminals labeling the leaves. 

Define 

root(s) ~f the nonterminal at the root of s; 

yield( s) ~f the string of terminals and nonterminals at the leaves of s, 
reading left to right; 

depth(s) ~ the length of the longest path in 8 from a leaf up to the 
root (the length of a path is the number of edges, or the 

number of nodes less one); 

N(s) ~f the set of nonterminals appearing in s. 

Define a pump to be a parse tree 8 such that 

(i) s contains at least two nodes; and 

(li) yield(s) = x· root(8)' y for some x,y E 1:*; that is, all leaves are la­

beled with terminal symbols except one, and the nonterminallabeling 
that leaf is the same as the one labeling the root. 

These objects arose in the proof of the pumping lemma for CFLs in Lecture 

22: wherever a nonterminal A appears in a parse tree 8, the tree can be split 

apart at that point and a pump'll. with root( '11.) = A inserted to get a larger 
parse tree t. 

For parse trees s, t, define 8 <I t if t can be obtained from 8 by splitting 

s at a node labeled with some nonterminal A and inserting a pump with 

root labeled A. The relation <I is not a partial order (it is not reflexive or 

transitive), but it is welliounded in the sense that there exists no infinite 

descending chain So I> 81 I> 82 I> ••. , because if 8 <I t, then s has strictly 
fewer nodes than t. 

Define a pump t to be a ba8ic pump if it is <I-minimal among all pumps; 

that is, if it does not properly contain another pump that could be cut out. 

In other words, a pump t is a ba8ic pump if the only s such that 8 <I t is 
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the trivial one-node parse tree labeled with the nonterminal root(t). Basic 
pumps cannot be too big: 

Lemma H.2 If s is a basic pump, then depth(s) ::; 2n, where n is the number of 
nonterminals in N. 

Proof. Let 7r denote the path in s from the unique leaf with label root( s) 
up to the root. The path 7r can be no longer than n, because if it were, 

it would have a repeated nonterminal and would therefore contain a pump 
that could be removed, contradicting the <l-minimality of s. For any other 

leaf, the path from that leaf up to the first node on the path 7r can be no 
longer than n + 1 for the same reason. Thus the total length of any path 
from a leaf to the root can be no longer than 2n. 0 

It follows from Lemma H.2 and the fact that there are only finitely many 

productions in G that the number of basic pumps is finite, say p. 

Lemma H.3 Every parse tree t with yield(t) E E* is either <l-minimal or contains a 
basic pump. 

Proof. If t is not <l-minimal, then by definition it contains a pump s. Let 

s be <l-minimal among all pumps contained in t. Then s is a basic pump, 
because if it were not, then it would contain a smaller pump u, and u would 

be a smaller pump contained in t, contradicting the minimality of s. 0 

Define s ::; t if t can be obtained from s by some finite sequence of insertions 
of basic pumps u such that N(u) ~ N(s). In other words, starting from s, 
we are allowed to choose any occurrence of a nonterminal A in s and insert 
a basic pump u with root(u) = A at that point, provided u contains no 
new nonterminals that are not already contained in s. If t can be obtained 
from s by a finite number of repetitions of this process, then s ::; t. 

If 0: E (N U E)*, define 'IjJ(o:) = 'IjJ(x), where x is the string obtained from 
0: by deleting all nonterminals. Let 'IjJ(t) abbreviate 'IjJ(yield(t)). 

Lemma H.4 The set {'IjJ(t) Is::; t} is linear. 

Proof. 

{'IjJ(t) Is::; t} = 'IjJ(s) + <{'IjJ(u) I u is a basic pump with N(u) ~ N(s)}>. 

o 

Lemma H.5 If s is ::;-minimal, then depth(s) ::; (p + 1)(n + 1), where p is the number 
of distinct basic pumps and n is the size of N. 

Proof. If s had a path longer than depth(s) ::; (p + 1)(n + 1), then that 
path could be broken up into p + 1 segments, each of length at least n + 1, 
and each segment would have a repeated nonterminal. Then there would be 
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p + 1 disjoint pumps. (Two pumps are considered disjoint if they have no 

nodes in common, or if the root of one is a leaf of the other.) Each of these 

p + 1 pumps either is basic or contains a basic pump by Lemma H.3j thus 

there would be p + 1 disjoint basic pumps. But there are only p distinct 
basic pumps in all, so by the pigeonhole principle there must be two disjoint 
occurrences of the same basic pump. But this contradicts the $-minimality 
of s, since one of these basic pumps could be deleted without changing the 
set of nonterminals contained in the tree. 0 

Proof of Theorem H.l. Let 

M = {s I s is $-minimal, root(s) = S, yield(s) E E*}. 

We show that 

'I/J(L(G)) = U {'I/J(t) Is $ t} . 
• EM 

This set is semilinear by Lemma H.5, which implies that M is finite, and 

by Lemma H.4. Any t such that s $ t for some s E M has root( t) = Sand 

yield(t) E E*j thus yield(t) E L(G) and 'I/J(t) E 'I/J(L(G)). Conversely, any 
string x E L(G) has a parse tree t with root(t) = Sand yield(t) = x, and 
there must exist a $-minimal s $ t. Then s E M and 

'I/J(x) E {'I/J(t) I s $ t}. o 

Historical Notes 

Parikh's theorem was first proved by Rohit Parikh [98]. Alternative proofs 
have been given by Goldstine [52), Harrison [55), and Kuich [75]. 



Lecture 28 

Turing Machines and Effective Computability 

In this lecture we introduce the most powerful of the automata we will 
study: Turing machines (TMs) , named after Alan Turing, who invented 
them in 1936. Turing machines can compute any function normally con­

sidered computable; in fact, it is quite reasonable to define computable to 

mean computable by aTM. 

TMs were invented in the 1930s, long before real computers appeared. They 
came at a time when mathematicians were trying to come to grips with the 
notion of effective computation. They knew various algorithms for com­
puting things effectively, but they weren't quite sure how to define "effec­

tively computable" in a general way that would allow them to distinguish 
between the computable and the noncomputable. Several alternative for­

malisms evolved, each with its own peculiarities, in the attempt to nail 

down this notion: 

• Turing machines (Alan Turing [120]); 

• Post systems (Emil Post [99, 100]); 

• ",-recursive functions (Kurt Godel [511, Jacques Herbrand); 

• ~-calculus (Alonzo Church [231, Stephen C. Kleene [66]); and 

• combinatory logic (Moses Schonfinkel [111], Haskell B. Curry [29]). 
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All of these systems embody the idea of effective computation in one form or 
another. They work on various types of data; for example, Turing machines 
manipulate strings over a finite alphabet, It-recursive functions manipulate 

the natural numbers, the A-calculus manipulates A-terms, and combinatory 

logic manipulates terms built from combinator symbols. 

However, there are natural translations between all these different types 
of data. For example, there is a simple one-to-one correspondence between 
strings in {O,l}* and natural numbers N = {O, 1,2, ... } defined by 

x 1-+ #(lx) - 1, (28.1) 

where #y is the natural number represented by the binary string y. Con­
versely, it is easy to encode just about anything (natural numbers, A-terms, 
strings in {O, 1, 2, ... , 9} *, trees, graphs, ... ) as strings in {O, 1} *. Under 

these natural encodings of the data, it turns out that all the formalisms 

above can simulate one another, so despite their superficial differences they 

are all computationally equivalent. 

Nowadays we can take unabashed advantage of our more modern perspec­

tive and add programming languages such as PASCAL or C (or idealized 

versions of them) to this list-a true luxury compared to what Church and 
GOdel had to struggle with. 

Of the classical systems listed above, the one that most closely resembles a 
modern computer is the Turing machine. Besides the off-the-shelf model we 
will define below, there are also many custom variations (nondeterministic, 
multitape, multidimensional tape, two-way infinite tapes, and so on) that 

all turn out to be computationally equivalent in the sense that they can all 
simulate one another. 

Church's Thesis 

Because these vastly dissimilar formalisms are all computationally equiva­
lent, the common notion of computability that they embody is extremely 
robust, which is to say that it is invariant under fairly radical perturbations 

in the model. All these mathematicians with their pet systems turned out 
to be looking at the same thing from different angles. This was too striking 

to be mere coincidence. They soon came to the realization that the com­

monality among all these systems must be the elusive notion of effective 
computability that they had sought for so long. Computability is not just 
Turing machines, nor the A-calculus, nor the j.£-recursive functions, nor the 

PASCAL programming language, but the common spirit embodied by them 
all. 

Alonzo Church [25] gave voice to this thought, and it has since become 
known as Church's thesis (or the Church-Turing thesis). It is not a the-
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orem, but rather a declaration that all these formalisms capture precisely 
our intuition about what it means to be effectively computable in principle, 
no more and no less. Church's thesis may not seem like such a big deal in 
retrospect, since by now we are thoroughly familiar with the capabilities 
of modern computers; but keep in mind that at the time it was first for­
mulated, computers and programming languages had yet to be invented. 
Coming to this realization was an enormous intellectual leap. 

Probably the most compelling development leading to the acceptance of 
Church's thesis was the Turing machine. It was the first model that could 
be considered readily programmable. If someone laid one of the other sys­
tems out in front of you and declared, "This system captures exactly what 
we mean by effectively computable," you might harbor some skepticism. 
But it is hard to argue with Turing machines. One can rightly challenge 
Church's thesis on the grounds that there are aspects of computation that 
are not addressed by Turing machines (for example, randomized or inter­
active computation), but no one could dispute that the notion of effective 
computability as captured by Turing machines is robust and important. 

Universality and Self-Reference 

One of the most intriguing aspects of these systems, and a pervasive theme 
in our study of them, is the idea of programs as data. Each of these pro­
gramming systems is powerful enough that programs can be written that 
understand and manipulate other programs that are encoded as data in 
some reasonable way. For example, in the A-calculus, A-terms act as both 
programs and data; combinator symbols in combinatory logic manipulate 
other combinator symbols; there is a so-called Godel numbering of the /1,­

recursive functions in which each function has a number that can be used 
as input to other p.-recursive functions; and Turing machines can interpret 
their input strings as descriptions of other Turing machines. It is not a far 
step from this idea to the notion of universal simulation, in which a uni­
versal program or machine U is constructed to take an encoded description 
of another program or machine M and a string x as input and perform a 
step-by-step simulation of M on input x. A modern-day example of this 
phenomenon would be a SCHEME interpreter written in SCHEME. 

One far-reaching corollary of universality is the notion of self-reference. 
It is exactly this capability that led to the discovery of natural uncom­
putable problems. If you know some set theory, you can convince yourself 
that uncomputable problems must exist by a cardinality argument: there 
are uncountably many decision problems but only countably many Turing 
machines. However, self-reference allows us to construct very simple and 
natural examples of uncomputable problems. For example, there do not 
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exist general procedures that can determine whether a given block of code 
in a given PASCAL program is ever going to be executed, or whether a 
given PASCAL program will ever halt. These are important problems that 

compiler builders would like to solve; unfortunately, one can give a formal 
proof that they are unsolvable. 

Perhaps the most striking example of the power of self-reference is the 
incompleteness theorem of Kurt Godel. Starting near the beginning of the 
twentieth century with Whitehead and Russell's Principia Mathematica 
[123], there was a movement to reduce all of mathematics to pure symbol 
manipulation, independent of semantics. This was in part to understand 
and avoid the set-theoretic paradoxes discovered by Russell and others. 
This movement was advocated by the mathematician David Hilbert and 
became known as the formalist program. It attracted a lot of followers and 
fed the development of formal logic as we know it today. Its proponents 
believed that all mathematical truths could be derived in some fixed formal 

system, just by starting with a few axioms and applying rules of inference 
in a purely mechanical way. This view of mathematical proof is highly 
computational. The formal deductive system most popular at the time for 
reasoning about the natural numbers, called Peano arithmetic (PA), was 
believed to be adequate for expressing and deriving mechanically all true 
statements of number theory. The incompleteness theorem showed that 
this was wrong: there exist even fairly simple statements of number theory 
that are true but not provable in PA. This holds not only for PA but for 
any reasonable extension of it. This revelation was a significant setback for 
the formalist program and sent shock waves throughout the mathematical 
world. 

Godel proved the incompleteness theorem using self-reference. The basic 
observation needed here is that the language of number theory is expres­
sive enough to talk about itself and about proofs in PA. For example, one 
can write down a number-theoretic statement that says that a certain other 
number-theoretic statement has a proof in PA, and one can reason about 
such statements using PA itself. Now, by a tricky argument involving substi­
tutions, one can actually construct statements that talk about whether they 
themselves are provable. Godel actually constructed a sentence that said, "I 
am not provable.» This construction is presented in detail in Supplementary 
Lecture K. 

The consequences of universality are not only philosophical but also prac­
tical. Universality was in a sense the germ of the idea that led to the devel­
opment of computers as we know them today: the notion of a stored pro­
gram, a piece of software that can be read and executed by hardware. This 
programmability is what makes computers so versatile. Although it was 
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only realized in physical form several years later, the notion was definitely 
present in Turing's theoretical work in the 1930s. 

Informal Description of Turing Machines 

We describe here a deterministic, one-tape Turing machine. This is the 
standard off-the-shelf model. There are many variations, apparently more 
powerful or less powerful but in reality not. We will consider some of these 
in Lecture 30. 

A TM has a finite set of states Q, a semi-infinite tape that is delimited on 
the left end by an endmarker r and is infinite to the right, and a head that 

can move left and right over the tape, reading and writing symbols. 

The input string is of finite length and is initially written on the tape in 
contiguous tape cells snug up against the left endmarker. The infinitely 
many cells to the right of the input all contain a special blank symbol w. 

The machine starts in its start state s with its head scanning the left end­
marker. In each step it reads the symbol on the tape under its head. De­
pending on that symbol and the current state, it writes a new symbol on 
that tape cell, moves its head either left or right one cell, and enters a new 
state. The action it takes in each situation is determined by a transition 
function o. It accepts its input by entering a special accept state t and rejects 
by entering a special reject state r. On some inputs it may run infinitely 
without ever accepting or rejecting, in which case it is said to loop on that 
input. 

Formal Definition of Turing Machines 

Formally, a deterministic one-tape Turing machine is a 9-tuple 

M = (Q, ~, r, r, w, 0, s, t, r), 

where 

• Q is a finite set (the states); 

• ~ is a finite set (the input alphabet); 
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• r is a finite set (the tape alphabet) containing ~ as a subset; 

• wE r - ~, the blank symbol; 

• r E r - ~, the left endmarker; 

• 8: Q x r -+ Q x r x {L, R}, the transition function; 

• SEQ, the start state; 

• t E Q, the accept state; and 

• r E Q, the reject state, r i- t. 

Intuitively, 8(p,a) = (q,b,d) means, "When in state p scanning symbol a, 
write b on that tape cell, move the head in direction d, and enter state q." 
The symbols Land R stand for left and right, respectively. 

We restrict TMs so that the left endmarker is never overwritten with an­
other symbol and the machine never moves off the tape to the left of the 
endmarker; that is, we require that for all p E Q there exists q E Q such 

that 

8(p,r) = (q,r,R). (28.2) 

We also require that once the machine enters its accept state, it never leaves 
it, and similarly for its reject state; that is, for all b E r there exist c, c' E r 
and d, d' E {L, R} such that 

8(t, b) 
8(r,b) 

= (t,c,d), 
(r, c', d'). 

(28.3) 

We sometimes refer to the state set and transition function collectively as 
the finite control. 

Example 28.1 Here is a TM that accepts the non-context-free set {anbncn In;::: O}. 
Informally, the machine starts in its start state s, then scans to the right 
over the input string, checking that it is of the form a*b*c*. It doesn't 
write anything on the way across (formally, it writes the same symbol it 
reads). When it sees the first blank symbol w, it overwrites it with a right 
endmarker ... 1. Now it scans left, erasing the first c it sees, then the first b 

it sees, then the first a it sees, until it comes to the f-. It then scans right, 
erasing one a, one b, and one c. It continues to sweep left and right over the 
input, erasing one occurrence of each letter in each pass. If on some pass 
it sees at least one occurrence of one of the letters and no occurrences of 

another, it rejects. Otherwise, it eventually erases all the letters and makes 
one pass between f- and -i seeing only blanks, at which point it accepts. 

Formally, this machine has 

Q = {s, ql, ... , ql0, t, r}, 
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8 

ql 
q2 

q3 
q4 
qs 
q6 

q7 
qs 
q9 

~ = {a,b,c}, 

r = ~ U {f-,u, -I}. 

There is nothing special about -Ij it is just an extra useful symbol in the 
tape alphabet. The transition function 0 is specified by the following table: 

f- a b -I 

(t,-,-) (r,-,-) (r,-,-) (q4,u,L) (q3, u, L) 
(r,-,-) (r, -,-) (qs,u,L) (q4,c,L) (q4,u,L) 
(r, -, -) (q6,u,L) (qS, b, L) (q5,u,L) 
(q7,f-,R) (q6,a,L) (q6,u,L) 

(qs,u,R) (r,-,-) (r, -, -) (q7,u,R) (t,-,-) 
(qs,a,R) (q9, u, R) (r, -,-) (q8,u,R) (r, -,-) 

(q9,b,R) (qlO,u,R) (q9, u, R) (r,-,-) 
qlO (qlO,c,R) (qlo,u,R) (q3, -I, L) 

The symbol - in the table above means "don't care." The transitions for 
t and r are not included in the table-just define them to be anything 

satisfying the restrictions (28.2) and (28.3). 0 

Configurations and Acceptance 

At any point in time, the read/write tape of the Turing machine M contains 
a semi-infinite string of the form yu", where y E r* (y is a finite-length 
string) and u" denotes the semi-infinite string 

uuuuuuuu· ... 

(Here w denotes the smallest infinite ordinal.) Although the string is infi­
nite, it always has a finite representation, since all but finitely many of the 
symbols are the blank symbol u. 

We define a configuration to be an element of Q x {yu" lyE r*} x N, where 
N = {O, 1,2, ... }. A configuration is a global state giving a snapshot of all 

relevant information about a TM computation at some instant in time. 
The configuration (p, z, n) specifies a current state p of the finite control, 
current tape contents z, and current position of the read/write head n ~ O. 
We usually denote configurations by 0., /3, 'Y. 

The start configuration on input x E ~* is the configuration 

(8, f-xu", 0). 
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The last component 0 means that the machine is initially scanning the left 

endmarker 1-. 

One can define a next configuration relation .2..... as with PDAs. For a string 
M 

z E rw, let z .. be the nth symbol of z (the leftmost symbol is Zo), and let 

si,'(z) denote the string obtained from z by substituting b for Zn at position 

n. For example, 

st (I- b a a a cab ca· .. ) = I- b a abc abc a .... 

The relation .2..... is defined by 
M 

(P ) 1 {(q,sb'(z),n -1) 
,z,n M (q,sb'(z),n+ 1) 

if 6(P,zn) = (q,b,L), 
if 6(P,z .. ) = (q,b,R). 

Intuitively, if the tape contains z and if M is in state p scanning the nth 

tape cell, and 6 says to print b, go left, and enter state q, then after that 

step the tape will contain si,'(z), the head will be scanning the n -1st tape 

cell, and the new state will be q. 

We define the reflexive transitive closure ~ of .2..... inductively, as usual: 
M M 

o 
• aMa, 

n+l. .. 1 
• a --+ {3 If a --+ 1 --+ {3 for some 1, and 

M M M 

• a ~ {3 if a ~ {3 for some n > 0. 
M M -

The machine M is said to accept input x E ~* if 

(s,1- XUW,O) -i7 (t,y,n) 

for some y and n, and reject x if 

(s,1- XUw , 0) ~ (r,y,n) 
M 

for some y and n. It is said to halt on input x if it either accepts x or rejects 

x. As with PDAs, this is just a mathematical definition; the machine doesn't 

really grind to a halt in the literal sense. It is possible that it neither accepts 
nor rejects, in which case it is said to loop on input x. A Turing machine 

is said to be total if it halts on all inputs; that is, if for all inputs it either 

accepts or rejects. The set L(M) denotes the set of strings accepted by M. 

We call a set of strings 

• recursively enumerable (r.e.) if it is L(M) for some Turing machine M, 

• co-r.e. if its complement is r.e., and 
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• recursive if it is L(M) for some total Turing machine M. 

In common parlance, the term "recursive" usually refers to an algorithm 

that calls itself. The definition above has nothing to do with this usage. As 

used here, it is just a name for a set accepted by a Turing machine that 

always halts. 

We will see lots of examples next time. 

Historical Notes 

Church's thesis is often referred to as the Church-Turing thesis, although 
Alonzo Church was the first to formulate it explicitly [25]. The thesis was 

based on Church and Kleene's observation that the >.-calculus and the p.­

recursive functions of Godel and Herbrand were computationally equivalent 
[25]. Church was apparently unaware of Turing's work at the time of the 

writing of [25], or if he was, he failed to mention it. Turing, on the other 

hand, cited Church's paper [25] explicitly in [120], and apparently consid­
ered his machines to be a much more compelling definition of computabil­

ity. In an appendix to [120], Turing outlined a proof of the computational 
equivalence of Turing machines and the >.-calculus. 
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More on Turing Machines 

Last time we defined deterministic one-tape 'lUring machines: 

M = (Q, E, r, 1-, u, 8, 

t 1 1 
states 

input alphabet 

tape alphabet 

s, t, r) 

1 
1 treject state 

accept state 

start state 

left endmarker transition function 

blank symbol 

In each step, based on the current tape symbol it is reading and its current 

state, it prints a new symbol on the tape, moves its head either left or right, 
and enters a new state. This action is specified formally by the transition 
function 

8: Q x r -> Q x r x {L,R}. 
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Intuitively, 6(p,a) = (q,b,d) means, "When in state p scanning symbol a, 
write b on that tape cell, move the head in direction d, and enter state q." 

We defined a configuration to be a triple (p, z, n) where p is a state, z is a 

semi-infinite string of the form yu", y E E*, describing the contents of the 
tape, and n is a natural number denoting a tape head position. 

The transition function 6 was used to define the nezt configuration relation 

.2... on configurations and its reflexive transitive closure ~ . The machine 
M M 

M accepts input x E E* if 

(s,1- xu", 0) -it (t,y,n) 

for some y and n, and rejects input x if 

(s, I- xu", 0) -it (r,y,n) 

for some y and n. The left configuration above is the start configuration on 

input x. Recall that we restricted TMs so that once a TM enters its accept 

state, it may never leave it, and similarly for its reject state. If M never 

enters its accept or reject state on input x, it is said to loop on input x. It 

is said to halt on input x if it either accepts or rejects. A TM that halts on 

all inputs is called total. 

Define the set 

L(M) = {x E E* I M accepts x}. 

This is called the set accepted by M. A subset of E* is cal.led recursively 
enumerable (r.e.) if it is L(M) for some M. A set is called recursive if it is 
L(M) for some total M. 

For now, the terms r.e. and recursive are just technical terms describing 
the sets accepted by TMs and total TMs, respectively; they have no other 
significance. We will discuss the origin of this terminology in Lecture 30. 

Example 29.1 Consider the non-CFL {ww I w E {a, b} *}. It is a recursive set, because we 

can give a total TM M for it. The machine M works as follows. On input 

x, it scans out to the first blank symbol u, counting the number of symbols 

mod 2 to make sure x is of even length and rejecting immediately if not. It 
lays down a right endmarker -l, then repeatedly scans back a.nd forth over 
the input. In each pass from right to left, it marks the first unmarked a or 
b it sees with '. In each pass from left to right, it p1arks the first unmarked 
a or b it sees with '. It continues this until all symbols are marked. For 
example, on input 

aabbaaabba 

the initial tape contents are 

I-aabbaaabbauuu··· 
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and the following are the tape contents after the first few passes. 

I-aabbaaabba-iuuu .. · 

Hub b aaab b a-iuuu'" 

I-aabbaaabba-iuuu .. · 

I-aabbaaabba-iuuu .. · 

I-aabbaaabba-iuuu .. · 

Marking a with ' formally means writing the symbol a E r; thus 

r = {a, b, 1-, u, -i, a, b, a, b}. 

When all symbols are marked, we have the first half of the input string 
marked with' and the second half marked with '. 

I-aabb aaabb a-iuuu'" 

The reason we did this was to find the center of the input string. 

The machine then repeatedly scans left to right over the input. In each pass 
it erases the first symbol it sees marked with ' but remembers that symbol 
in its finite control (to "erase" really means to write the blank symbol u). 
It then scans forward until it sees the first symbol marked with " checks 
that that symbol is the same, and erases it. If the two symbols are not the 
same, it rejects. Otherwise, when it has erased all the symbols, it accepts. 
In our example, the following would be the tape contents after each pass. 

aabbaaabba-iuuu'" 

uabbauabba-iuuu"· 

uubbauubba-iuuu'" 

uuub a uuub a -iuuu'" 

uuuua uuuua -iuuu'" 

uuuuuuuuuu-iuuu" . o 

Example 29.2 We want to construct a total TM that accepts its input string if the length 
of the string is prime. This language is not regular or context-free. We 
will give a TM implementation of the sieve 0/ Eratosthenes, which can be 
described informally as follows. Say we want to check whether n is prime. 
We write down all the numbers from 2 to n in order, then repeat the 
following: find the smallest number in the list, declare it prime, then cross 
off all multiples of that number. Repeat until each number in the list has 
been either declared prime or crossed off as a multiple of a smaller prime. 

For example, to check whether 23 is prime, we would start with all the 
numbers from 2 to 23: 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
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In the first pass, we cross off multiples of 2: 

)( 3 X 5 )( 7 )( 9 )Q 11 ~ 13 X 15 X 17 )«{ 19 }K( 21 ~ 23 

The smallest number remaining is 3, and this is prime. In the second pass 

we cross off multiples of 3: 

)( )( X 5 )( 7 )()()Q 11 ~ 13 X X X 17 )«{ 19 }K( )( ~ 23 

Then 5 is the next prime, so we cross off multiples of 5; and so forth. Since 

23 is prime, it will never be crossed off as a multiple of anything smaller, 

and eventually we will discover that fact when everything smaller has been 

crossed off. 

Now we show how to implement this on a TM. Suppose we have oJ' written 

on the tape. We illustrate the algorithm with p = 23. 

I-a a a a a a a a a aa a a aa aa a a a aa a uuu'" 

If p = 0 or p = 1, reject. We can determine this by looking at the first three 

cells of the tape. Otherwise, there are at least two a's. Erase the first a, 
scan right to the end of the input, and replace the last a in the input string 

with the symbol $. We now have an a in positions 2,3,4, ... ,p - 1 and $ at 

position p. 

I-ua aaaaaaaaaaaaaaaaaaaa $ uuu'" 

Now we repeat the following loop. Starting from the left endmarker 1-, scan 

right and find the first nonblank symbol, say occurring at position m. Then 

m is prime (this is an invariant ofthe loop). If this symbol is the $, we are 

done: p = m is prime, so we halt and accept. Otherwise, the symbol is an 
a. Mark it with a ~ and everything between there and the left endmarker 

with '. 

I-uaaa aa aaaaa aaaaaaaaaaa $ uuu'" 

We will now enter an inner loop to erase all the symbols occurring at posi­

tions that are multiples of m. First, erase the a under the"'. (Formally, just 

write the symbol u.) 

I-uuaaaa aaa aa aaaaaaaaaaa $ uuu'" 

Shift the marks to the right one at a time a distance equal to the number 

of marks. This can be done by shuttling back and forth, erasing marks on 

the left and writing them on the right. We know when we are done because 
the ~ is the last mark moved. 

I-uuaaaaaaaaa aaaaaaa aaaa $ uuu'" 

When this is done, erase the symbol under the~. This is the symbol 

occurring at position 2m. 

I-uua uaaaaa aaaaaaaaaaaaa $ uuu'" 
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Keep shifting the marks and erasing the symbol under the ~ in this fashion 

until we reach the end. 

I-uua ua ua ua ua ua ua ua ua ua u$ uuu··· 

If we find ourselves at the end of the string wanting to erase the $, reject-p 
is a multiple of m but not equal to m. Otherwise, go back to the left and 
repeat. Find the first nonblank symbol and mark it and everything to its 
left. 

I-uuaua ua ua ua ua ua ua ua ua u$ uuu··· 

Alternately erase the symbol under the ~ and shift the marks until we reach 

the end of the string. 

I-uuuua ua uuua ua uuua ua uuu$ uuu··· 

Go back to the left and repeat. 

I- uuuuaua uuua ua uuua ua uuu$ uuu··· 

If we ever try to erase the $, reject-p is not prime. If we manage to erase 
all the a's, accept. 0 

Recursive and R.E. Sets 

Recall that a set A is recursively enumerable (r.e.) if it is accepted by a TM 
and recursive if it is accepted by a total TM (one that halts on all inputs). 

The recursive sets are closed under complement. (The r.e. sets are not, as 
we will see later.) That is, if A is recursive, then so is '" A = E* - A. To 
see this, suppose A is recursive. Then there exists a total TM M such that 
L(M) = A. By switching the accept and reject states of M, we get a total 
machine M' such that L(M') = "'A. 

This construction does not give the complement if M is not total. This is 
because "rejecting" and "not accepting" are not synonymous for nontotal 
machines. To reject, a machine must enter its reject state. If M' is obtained 
from M by just switching the accept and reject states, then M' will accept 
the strings that M rejects and reject the strings that M accepts; but M' 
will still loop on the same strings that M loops on, so these strings are not 
accepted or rejected by either machine. 

Every recursive set is r.e. but not necessarily vice versa. In other words, 
not every TM is equivalent to a total TM. We will prove this in Lecture 31. 
However, if both A and'" A are r.e., then A is recursive. To see this, suppose 

both A and'" A are r.e. Let M and M' be TMs such that L(M) = A and 
L(M') = '" A. Build a new machine N that on input x runs both M and 
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M' simultaneously on two different tracks of its tape. Formally, the tape 
alphabet of N contains symbols 

where a is a tape symbol of M and c is a tape symbol of M'. Thus N's 
tape may contain a string of the form 

for example. The extra marks ~ are placed on the tape to indicate the cur­

rent positions of the simulated read/write heads of M and M'. The machine 
N alternately performs a step of M and a step of M', shuttling back and 
forth between the two simulated tape head positions of M and M' and up­
dating the tape. The current states and transition information of M and M' 
can be stored in N's finite control. If the machine M ever accepts, then N 
immediately accepts. If M' ever accepts, then N immediately rejects. Ex­
actly one of those two events must eventually occur, depending on whether 
a; E A or a; E '" A, since L(M) = A and L(M') = '" A. Then N halts on all 
inputs and L(N) = A. 

Decidability and Semidecidability 

A property P of strings is said to be decidable if the set of all strings having 
property P is a recursive set; that is, if there is a total Turing machine that 
accepts input strings that have property P and rejects those that do not. A 
property P is said to be semidecidable if the set of strings having property 
P is an r.e. set; that is, if there is a Turing machine that on input a; accepts 
if a; has property P and rejects or loops if not. For example, it is decidable 
whether a given string a; is of the form ww, because we can construct a 
Turing machine that halts on all inputs and accepts exactly the strings of 
this form. 

Although you often hear them switched, the adjectives recursive and r.e. 
are best applied to sets and decidable and semidecidable to properties. The 
two notions are equivalent, since 

P is decidable {::::} {a; I p(a;)} is recursive. 

A is recursive {::::} "a; E A" is decidable, 

Pis semidecidable {::::} {a; I p(a;)} is r.e., 

A is r.e. {::::} "a; E A" is semidecidable. 
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Equivalent Models 

As mentioned, the concept of computability is remarkably robust. As ev­
idence of this, we will present several different flavors of Turing machines 
that at first glance appear to be significantly more or less powerful than 
the basic model defined in Lecture 29 but in fact are computationally 
equivalent. 

Multiple Tapes 

First, we show how to simulate mUltitape Turing machines with single­

tape Turing machines. Thus extra tapes don't add any power. A three-tape 
machine is similar to a one-tape TM except that it has three semi-infinite 
tapes and three independent read/write heads. Initially, the input occupies 
the first tape and the other two are blank. In each step, the machine reads 
the three symbols under its heads, and based on this information and the 

current state, it prints a symbol on each tape, moves the heads (they don't 
all have to move in the same direction), and enters a new state. 
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Its transition function is of type 

fJ: Q x r 3 ~ Q x r 3 x {L,R}3. 

Say we have such a machine M. We build a single-tape machine N simu­
lating M as follows. The machine N will have an expanded tape alphabet 
allowing us to think of its tape as divided into three tracks. Each track will 
contain the contents of one of M's tapes. We also mark exactly one symbol 
on each track to indicate that this is the symbol currently being scanned 
on the corresponding tape of M. The configuration of M illustrated above 

might be simulated by the following configuration of N. 

I- a a b b b a u u u u 

l- I- b b a b b a a u u u 

I- a b b a b a a u u u 

A tape symbol of N is either 1-, an element of :E, or a triple 

where c, d, e are tape symbols of M, each either marked or unmarked. 
Formally, we might take the tape alphabet of N to be 

:E U {I-} U (r U r')3, 

where 

r' ~ {c ICE r}. 

The three elements of rur' stand for the symbols in corresponding positions 
on the three tapes of M, either marked or unmarked, and 
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is the blank symbol of N. 

On input x = ala2'" an, N starts with tape contents 

It first copies the input to its top track and fills in the bottom two tracks 

with blanks. It also shifts everything right one cell so that it can fill in the 

leftmost cells on the three tracks with the simulated left endmarker of M, 
which it marks with ~ to indicate the position of the heads in the starting 

configuration of M. 

~ al a2 a3 a4 an u u 

I- ~ u u u u ... u u u 

~ u u u u u u u 

Each step of M is simulated by several steps of N. To simulate one step of 
M, N starts at the left of the tape, then scans out until it sees all three 

marks, remembering the marked symbols in its finite control. When it has 

seen all three, it determines what to do according to M's transition function 

6, which it has encoded in its finite control. Based on this information, it 

goes back to all three marks, rewriting the symbols on each track and 
moving the marks appropriately. It then returns to the left end of the tape 
to simulate the next step of M. 

Two-Way Infinite Tapes 

Two-way infinite tapes do not add any power. Just fold the tape someplace 

and simulate it on two tracks of a one-way infinite tape: 

I a I. I b I a I a I bib I at b I. I. I bib I bib I b I 

fold here 
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The bottom track is used to simulate the original machine when its head is 

to the right of the fold, and the top track is used to simulate the machine 
when its head is to the left of the fold, moving in the opposite direction. 

Two Stacks 

A machine with a two-way, read-only input head and two stacks is as pow­

erful as a Turing machine. Intuitively, the computation of a one-tape TM 

can be simulated with two stacks by storing the tape contents to the left 

of the head on one stack and the tape contents to the right of the head on 

the other stack. The motion of the head is simulated by popping a symbol 

off one stack and pushing it onto the other. For example, 

Irlalblalalblalblblblblblblblalalalbl 
t 

is simulated by 

I r I a I b I a I a I b I a I bib I b I 

t 
stack 1 

Cou nter Automata 

A k-counter automaton is a machine equipped with a two-way read-only 
input head and k integer counters. Each counter can store an arbitrary non­
negative integer. In each step, the automaton can independently increment 
or decrement its counters and test them for 0 and can move its input head 

one cell in either direction. It cannot write on the tape. 

A stack can be simulated with two counters as follows. We can assume 

without loss of generality that the stack alphabet of the stack to be simu­

lated contains only two symbols, say 0 and 1. This is because we can encode 

finitely many stack symbols as binary numbers of fixed length, say mj then 

pushing or popping one stack symbol is simulated by pushing or popping 

m binary digits. Then the contents of the stack can be regarded as a binary 

number whose least significant bit is on top of the stack. The simulation 
maintains this number in the first of the two counters and uses the second 

to effect the stack operations. To simulate pushing a 0 onto the stack, we 

need to double the value in the first counter. This is done by entering a loop 

that repeatedly subtracts one from the first counter and adds two to the 
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second until the first counter is O. The value in the second counter is then 
twice the original value in the first counter. We can then transfer that value 
back to the first counter, or just switch the roles of the two counters. To 

push 1, the operation is the same, except the value of the second counter 

is incremented once at the end. To simulate popping, we need to divide 

the counter value by two; this is done by decrementing one counter while 

incrementing the other counter every second step. Testing the parity of the 
original counter contents tells whether a simulated 1 or 0 was popped. 

Since a two-stack machine can simulate an arbitrary TM, and since two 
counters can simulate a stack, it follows that a four-counter automaton can 
simulate an arbitrary TM. 

However, we can do even better: a two-counter automaton can simulate 
a four-counter automaton. When the four-counter automaton has the val­

ues i,j, k, l in its counters, the two-counter automaton will have the value 
2i 3i 5k7i in its first counter. It uses its second counter to effect the counter 

operations of the four-counter automaton. For example, if the four-counter 

automaton wanted to add one to k (the value of the third counter), then the 
two-counter automaton would have to multiply the value in its first counter 
by 5. This is done in the same way as above, adding 5 to the second counter 
for every 1 we subtract from the first counter. To simulate a test for zero, 
the two-counter automaton has to determine whether the value in its first 

counter is divisible by 2, 3, 5, or 7, respectively, depending on which counter 
of the four-counter automaton is being tested. 

Combining these simulations, we see that two-counter automata are as pow­

erful as arbitrary Turing machines. However, as you can imagine, it takes 

an enormous number of steps of the two-counter automaton to simulate one 
step of the Turing machine. 

One-counter automata are not as powerful as arbitrary TMs, although 
they can accept non-CFLs. For example, the set {a"b"c" I n ~ O} can 
be accepted by a one-counter automaton. 

Enumeration Machines 

We defined the recursively enumerable (r.e.) sets to be those sets accepted 
by Turing machines. The term recursively enumerable comes from a different 

but equivalent formalism embodying the idea that the elements of an r.e. 
set can be enumerated one at a time in a mechanical fashion. 

Define an enumeration machine as follows. It has a finite control and two 
tapes, a read/write work tape and a write-only output tape. The work tape 

head can move in either direction and can read and write any element of 
r. The output tape head moves right one cell when it writes a symbol, and 
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it can only write symbols in E. There is no input and no accept or reject 
state. The machine starts in its start state with both tapes blank. It moves 
according to its transition function like a TM, occasionally writing symbols 
on the output tape as determined by the transition function. At some point 
it may enter a special enumeration state, which is just a distinguished state 
of its finite control. When that happens, the string currently written on the 
output tape is said to be enumerated. The output tape is then automatically 
erased and the output head moved back to the beginning of the tape (the 
work tape is left intact), and the machine continues from that point. The 
machine runs forever. The set L(E) is defined to be the set of all strings in 
E* that are ever enumerated by the enumeration machine E. The machine 
might never enter its enumeration state, in which case L(E) = 0, or it might 
enumerate infinitely many strings. The same string may be enumerated 
more than once. 

Enumeration machines and 'lUring machines are equivalent in computa­
tional power: 

Theorem 30.1 The family of sets enumerated by enumeration machines is exactly the fam­

ily of r.e. sets. In other words, a set is L(E) for some enumeration machine 

E if and only if it is L(M) for some Turing machine M. 

Proof. We show first that given an enumeration machine E, we can construct 
a 'lUring machine M such that L(M) = L(E). Let M on input x copy x to 
one of three tracks on its tape, then simulate E, using the other two tracks 
to record the contents of E's work tape and output tape. For every string 
enumerated by E, M compares this string to x and accepts if they match. 
Then M accepts its input x iff x is ever enumerated by E, so the set of 
strings accepted by M is exactly the set of strings enumerated by E. 

Conversely, given a TM M, we can construct an enumeration machine E 

such that L(E) = L(M). We would like E somehow to simulate M on all 
possible strings in E* and enumerate those that are accepted. 

Here is an approach that doesn't quite work. The enumeration machine E 

writes down the strings in E* one by one on the bottom track of its work 
tape in some order. For every input string x, it simulates M on input x, 
using the top track of its work tape to do the simulation. If M accepts x, 
E copies x to its output tape and enters its enumeration state. It then goes 
on to the next string. 

The problem with this procedure is that M might not halt on some input 
x, and then E would be stuck simulating M on x forever and would never 
move on to strings later in the list (and it is impossible to determine in 
general whether M will ever halt on x, as we will see in Lecture 31). Thus 
E should not just list the strings in E* in some order and simulate M on 
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those inputs one at a time, waiting for each simulation to halt before going 
on to the next, because the simulation might never halt. 

The solution to this problem is timesharing. Instead of simulating M on 
the input strings one at a time, the enumeration machine E should run 

several simulations at once, working a few steps on each simulation and then 
moving on to the next. The work tape of E can be divided into segments 

separated by a special marker # E r, with a simulation of M on a different 
input string running in each segment. Between passes, E can move way out 
to the right, create a new segment, and start up a new simulation in that 
segment on the next input string. For example, we might have E simulate 
M on the first input for one step, then the first and second inputs for one 
step each, then the first, second, and third inputs for one step each, and 
so on. If any simulation needs more space than initially allocated in its 

segment, the entire contents of the tape to its right can be shifted to the 
right one cell. In this way M is eventually simulated on all input strings, 
even if some of the simulations never halt. 0 

Historical Notes 

Turing machines were invented by Alan Turing [120]. Originally they were 
presented in the form of enumeration machines, since Turing was inter­
ested in enumerating the decimal expansions of computable real numbers 
and values of real-valued functions. Turing also introduced the concept of 
nondeterminism in his original paper, although he did not develop the idea. 

The basic properties of the r.e. sets were developed by Kleene [68] and Post 
[100,101]. 

Counter automata were studied by Fischer [38], Fischer et al. [39], and 
Minsky [88]. 
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Universal Machines and Diagonalization 

A Universal Turing Machine 

Now we come to a crucial observation about the power of Turing machines: 
there exist Turing machines that can simulate other Turing machines whose 
descriptions are presented as part of the input. There is nothing mysterious 
about this; it is the same as writing a LISP interpreter in LISP. 

First we need to fix a reasonable encoding scheme for Turing machines over 
the alphabet {D, I}. This encoding scheme should be simple enough that 
all the data associated with a machine M -the set of states, the transition 
function, the input and tape alphabets, the endmarker, the blank symbol, 
and the start, accept, and reject states-can be determined easily by an­
other machine reading the encoded description of M. For example, if the 
string begins with the prefix 

DnlOmlOklOslOtlOrlOuID"I, 

this might indicate that the machine has n states represented by the num­
bers D to n - 1; it has m tape symbols represented by the numbers D to 
m - 1, of which the first k represent input symbols; the start, accept, and 
reject states are 8, t, and T, respectively; and the endmarker and blank 
symbol are u and v, respectively. The remainder of the string can consist 
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of a sequence of substrings specifying the transitions in O. For example, the 

substring 

OPlOalOqlOblO 

might indicate that 0 contains the transition 

((p,a), (q,b,L)), 

the direction to move the head encoded by the final digit. The exact details 

of the encoding scheme are not important. The only requirements are that 

it should be easy to interpret and able to encode all Turing machines up to 
isomorphism. 

Once we have a suitable encoding of Turing machines, we can construct a 

universal Turing machine U such that 

L(U) ~ {M#x I x E L(M)}. 

In other words, presented with (an encoding over {O, I} of) a Turing ma­
chine M and (an encoding over {O, I} of) a string x over M's input alpha­
bet, the machine U accepts M #x iff M accepts x.1 The symbol # is just a 
symbol in U's input alphabet other than 0 or 1 used to delimit M and x. 

The machine U first checks its input M #x to make sure that M is a valid 

encoding of a Turing machine and x is a valid encoding of a string over M's 

input alphabet. If not, it immediately rejects. 

If the encodings of M and x are valid, the machine U does a step-by-step 
simulation of M. This might work as follows. The tape of U is partitioned 

into three tracks. The description of M is copied to the top track and 
the string x to the middle track. The middle track will be used to hold the 
simulated contents of M's tape. The bottom track will be used to remember 
the current state of M and the current position of M's read/write head. The 
machine U then simulates M on input x one step at a time, shuttling back 
and forth between the description of M on its top track and the simulated 
contents of M's tape on the middle track. In each step, it updates M's state 
and simulated tape contents as dictated by M's transition function, which 
U can read from the description of M. If ever M halts and accepts or halts 

and rejects, then U does the same. 

As we have observed, the string x over the input alphabet of M and its 

encoding over the input alphabet of U are two different things, since the 
two machines may have different input alphabets. If the input alphabet of 

1 Note that we are using the metasymbol M for both a Turing machine and its encoding over {O, I} 
and the metasymbol x for both a string over M's input alphabet and its encoding over {O, I}. This is 
for notational convenience. 
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M is bigger than that of U, then each symbol of x must be encoded as 

a string of symbols over U's input alphabet. Also, the tape alphabet of 

M may be bigger than that of U, in which CaBe each symbol of M's tape 

alphabet must be encoded aB a string of symbols over U's tape alphabet. 

In general, each step of M may require many steps of U to simulate. 

Diagonalization 

We now show how to use a universal Turing machine in conjunction with a 

technique called diagonalization to prove that the halting and membership 

problems for Turing machines are undecidable. In other words, the sets 

HP ~ {M#x I M halts on x}, 

MP ~f {M#x I x E L(M)} 

are not recursive. 

The technique of diagonalization was first used by Cantor at the end of 

the nineteenth century to show that there does not exist a one-to-one 

correspondence between the natural numbers N and its power set 

2M = {A I A S;; N}, 

the set of all subsets of N. In fact, there does not even exist a function 

I:N-+2N 

that is onto. Here is how Cantor's argument went. 

Suppose (for a contradiction) that such an onto function 1 did exist. Con­
sider an infinite two-dimensional matrix indexed along the top by the nat­

ural numbers 0,1,2, ... and down the left by the sets 1(0),/(1),/(2), .... 
Fill in the matrix by placing a 1 in position i,j if j is in the set I(i) and 0 
if j ¢ I(i). 

0 1 2 3 4 5 6 7 8 9 

1(0) 1 0 0 1 1 0 1 0 1 1 

1(1) 0 0 1 1 0 1 1 0 0 1 

1(2) 0 1 1 0 0 0 1 1 0 1 

1(3) 0 1 0 1 1 0 1 1 0 0 

1(4) 1 0 1 0 0 1 0 0 1 1 

1(5) 1 0 1 1 0 1 1 1 0 1 

1(6) 0 0 1 0 1 1 0 0 1 1 

1(7) 1 1 1 0 1 1 1 0 1 0 

1(8) 0 0 1 0 0 0 0 1 1 0 

1(9) 1 1 0 0 1 0 0 1 0 0 
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The ith row of the matrix is a bit string describing the set I( i). For example, 

in the above picture, 1(0) = {O, 3, 4, 6, 8, 9, ... } and 1(1) = {2, 3, 5, 6, 9, ... }. 
By our (soon to be proved fallacious) assumption that 1 is onto, every subset 

of N appears as a row of this matrix. 

But we can construct a new set that does not appear in the list by com­

plementing the main diagonal of the matrix (hence the term diagonaliza­
tion). Look at the infinite bit string down the main diagonal (in this ex­

ample, 1011010010···) and take its Boolean complement (in this example, 
0100101101 .. -). This new bit string represents a set B (in this example, 

B = {1, 4, 6, 7,9, ... } ). But the set B does not appear anywhere in the list 
down the left side of the matrix, since it differs from every I(i) on at least 
one element, namely i. This is a contradiction, since every subset of N was 

supposed to occur as a row of the matrix, by our assumption that 1 was 
onto. 

This argument works not only for the natural numbers N, but for any set 

A whatsoever. Suppose (for a contradiction) there existed an onto function 
from A to its power set: 

1 :A~ 2A. 

Let 

B = {x E A I x ¢ I(x)} 

(this is the formal way of complementing the diagonal). Then B ~ A. Since 

1 is onto, there must exist yEA such that I(y) = B. Now we ask whether 

y E I(Y) and discover a contradiction: 

1/ E 1(1/) {::::} Y E B since B = I(Y) 

{::::} Y ¢ I(Y) definition of B. 

Thus no such 1 can exist. 

Undecidability of the Halting Problem 

We have discussed how to encode descriptions of Turing machines as strings 

in {O, 1} * so that these descriptions can be read and simulated by a uni­

versal Turing machine U. The machine U takes as input an encoding of a 

Turing machine M and a string x and simulates M on input x, and 

• halts and accepts if M halts and accepts x, 

• halts and rejects if M halts and rejects x, and 

• loops if M loops on x. 
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The machine U doesn't do any fancy analysis on the machine M to try to 
determine whether or not it will halt. It just blindly simulates M step by 
step. If M doesn't halt on x, then U will just go on happily simulating M 
forever. 

It is natural to ask whether we can do better than just a blind simulation. 

Might there be some way to analyze M to determine in advance, before 
doing the simulation, whether M would eventually halt on x? If U could 
say for sure in advance that M would not halt on x, then it could skip 
the simulation and save itself a lot of useless work. On the other hand, 
if U could ascertain that M would eventually halt on x, then it could go 
ahead with the simulation to determine whether M accepts or rejects. We 
could then build a machine U' that takes as input an encoding of a Turing 
machine M and a string x, and 

• halts and accepts if M halts and accepts x, 

• halts and rejects if M halts and rejects x, and 

• halts and rejects if M loops on x. 

This would say that L(U') = L(U) = MP is a recursive set. 

Unfortunately, this is not possible in general. There are certainly machines 
for which it is possible to determine halting by some heuristic or other: 
machines for which the start state is the accept state, for example. However, 
there is no general method that gives the right answer for all machines. 

We can prove this using Cantor's diagonalization technique. For x E {O, I} *, 
let Mz be the Turing machine with input alphabet {O, I} whose encoding 
over {O, I} * is x. (If x is not a legal description of a TM with input alphabet 

{O, I} * according to our encoding scheme, we take M., to be some arbitrary 

but fixed TM with input alphabet {O, I}, say a trivial TM with one state 

that immediately halts.) In this way we get a list 

(31.1) 

containing all possible Turing machines with input alphabet {O, I} indexed 
by strings in {O,I}*. We make sure that the encoding scheme is simple 
enough that a universal machine can determine M., from x for the purpose 
of simulation. 

Now consider an infinite two-dimensional matrix indexed along the top by 
strings in {0,1}* and down the left by TMs in the list (31.1). The matrix 
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contains an H in position x, y if M", halts on input y and an L if M", loops 
on input y. 

f a 1 00 01 10 11 000 001 010 

M. H L L H H L H L H H 

Mo L L H H L H H L L H 

Ml L H H L L L H H L H 

Moo L H L H H L H H L L 

MOl H L H L L H L L H H 

M10 H L H H L H H H L H 

Mn L L H L H H L L H H 

Mooo H H H L H H H L H L 

MOOl L L H L L L L H H L 

M010 H H L L H L L H L L 

The xth row of the matrix describes for each input string y whether or 

not M", halts on y. For example, in the above picture, M. halts on inputs 
f, 00, 01,11, 001, 010, ... and does not halt on inputs 0, 1, 10, 000, .... 

Suppose (for a contradiction) that there existed a total machine K accepting 
the set HPj that is, a machine that for any given x and y could determine 

the x, yth entry of the above table in finite time. Thus on input M #x, 

• K halts and accepts if M halts on x, and 

• K halts and rejects if M loops on x. 

Consider a machine N that on input x E {0,1}* 

(i) constructs M", from x and writes M.,#x on its tapej 

(ii) runs K on input M.,#x, accepting if K rejects and going into a trivial 
loop if K accepts. 

Note that N is essentially complementing the diagonal of the above matrix. 
Then for any x E {0,1}*, 

N halts on x {::=} K rejects M.,#x definition of N 

{::=} M., loops on x assumption about K. 

This says that N's behavior is different from every M., on at least one string, 

namely x. But the list (31.1) was supposed to contain all Turing machines 

over the input alphabet {a, I}, including N. This is a contradiction. 0 

The fallacious assumption that led to the contradiction was that it was 
possible to determine the entries of the matrix effectivelYj in other words, 
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that there existed a Turing machine K that given M and x could determine 
in a finite time whether or not M halts on x. 

One can always simulate a given machine on a given input. If the machine 

ever halts, then we will know this eventually, and we can stop the simulation 
and say that it halted; but if not, there is no way in general to stop after a 

finite time and say for certain that it will never halt. 

Undecidability of the Membership Problem 

The membership problem is also undecidable. We can show this by reducing 

the halting problem to it. In other words, we show that if there were a way 

to decide membership in general, we could use this as a subroutine to decide 

halting in general. But we just showed above that halting is undecidable, 
so membership must be undecidable too. 

Here is how we would use a total TM that decides membership as a sub­
routine to decide halting. Given a machine M and input x, suppose we 
wanted to find out whether M halts on x. Build a new machine N that is 

exactly like M, except that it accepts whenever M would either accept or 
reject. The machine N can be constructed from M simply by adding a new 

accept state and making the old accept and reject states transfer to this 
new accept state. Then for all x, N accepts x iff M halts on x. The mem­

bership problem for N and x (asking whether x E L(N)) is therefore the 
same as the halting problem for M and x (asking whether M halts on x). 
If the membership problem were decidable, then we could decide whether 
M halts on x by constructing N and asking whether x E L(N). But we 
have shown above that the halting problem is undecidable, therefore the 
membership problem must also be undecidable. 
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Decidable and Undecidable Problems 

Here are some examples of decision problems involving Turing machines. Is 
it decidable whether a given Turing machine 

(a) has at least 481 states? 

(b) takes more than 481 steps on input f? 

(c) takes more than 481 steps on some input? 

(d) takes more than 481 steps on all inputs? 

(e) ever moves its head more than 481 tape cells away from the left 
endmarker on input f? 

(f) accepts the null string E? 

(g) accepts any string at all? 

(h) accepts every string? 

(i) accepts a finite set? 

(j) accepts a regular set? 

(k) accepts a CFL? 

(1) accepts a recursive set? 
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(m) is equivalent to a Turing machine with a shorter description? 

Problems (a) through (e) are decidable and problems (f) through (m) are 
undecidable (proofs below). We will show that problems (f) through (1) are 
undecidable by showing that a decision procedure for one of these problems 
could be used to construct a decision procedure for the halting problem, 
which we know is impossible. Problem (m) is a little more difficult, and 
we will leave that as an exercise (Miscellaneous Exercise 131). Translated 
into modern terms, problem (m) is the same as determining whether there 
exists a shorter PASCAL program equivalent to a given one. 

The best way to show that a problem is decidable is to give a total Turing 
machine that accepts exactly the "yes" instances. Because it must be total, 
it must also reject the "no" instances; in other words, it must not loop on 
any input. 

Problem (a) is easily decidable, since the number of states of M can be read 
off from the encoding of M. We can build a Turing machine that, given the 
encoding of M written on its input tape, counts the number of states of M 

and accepts or rejects depending on whether the number is at least 481. 

Problem (b) is decidable, since we can simulate M on input f with a uni­
versal machine for 481 steps (counting up to 481 on a separate track) and 

accept or reject depending on whether M has halted by that time. 

Problem (c) is decidable: we can just simulate M on all inputs of length 
at most 481 for 481 steps. If M takes more than 481 steps on some input, 
then it will take more than 481 steps on some input of length at most 481, 

since in 481 steps it can read at most the first 481 symbols of the input. 

The argument for problem (d) is similar. If M takes more than 481 steps 
on all inputs of length at most 481, then it will take more than 481 steps 
on all inputs. 

For problem (e), if M never moves more than 481 tape cells away from the 
left endmarker, then it will either halt or loop in such a way that we can 
detect the looping after a finite time. This is because if M has k states 
and m tape symbols, and never moves more than 481 tape cells away from 
the left endmarker, then there are only 482km481 configurations it could 

possibly ever be in, one for each choice of head position, state, and tape 
contents that fit within 481 tape cells. If it runs for any longer than that 
without moving more than 481 tape cells away from the left endmarker, 
then it must be in a loop, because it must have repeated a configuration. 
This can be detected by a machine that simulates M, counting the number 
of steps M takes on a separate track and declaring M to be in a loop if the 
bound of 482km481 steps is ever exceeded. 
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Problems (f) through (1) are undecidable. To show this, we show that the 

ability to decide anyone of these problems could be used to decide the 
halting problem. Since we know that the halting problem is undecidable, 
these problems must be undecidable too. This is called a reduction. 

Let's consider (f) first (although the same construction will take care of (g) 
through (i) as well). We will show that it is undecidable whether a given 
machine accepts f, because the ability to decide this question would give 
the ability to decide the halting problem, which we know is impossible. 

Suppose we could decide whether a given machine accepts f. We could then 
decide the halting problem as follows. Say we are given a Turing machine 

M and string x, and we wish to determine whether M halts on x. Construct 
from M and x a new machine M' that does the following on input y: 

I 

(i) erases its input Yj 

(ii) writes x on its tape (M' has x hard-wired in its finite control)j 

(iii) runs M on input x (M' also has a description of M hard-wired in its 
finite control)j 

(iv) accepts if M halts on x. 

M' 

x 
M 

Note that M' does the same thing on all inputs y: if M halts on x, then 
M' accepts its input Yj and if M does not halt on x, then M' does not halt 
on y, therefore does not accept y. Moreover, this is true for every y. Thus 

L(M') _ {~* if M halts on x, 
- flJ if M does not halt on x. 

Now if we could decide whether a given machine accepts the null string f, 

we could apply this decision procedure to the M' just constructed, and this 
would tell whether M halts on x. In other words, we could obtain a decision 

procedure for halting as follows: given M and x, construct M', then ask 

whether M' accepts f. The answer to the latter question is "yes" iff M halts 
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on x. Since we know the halting problem is undecidable, it must also be 

undecidable whether a given machine accepts f. 

Similarly, if we could decide whether a given machine accepts any string 
at all, or whether it accepts every string, or whether the set of strings it 

accepts is finite, we could apply any of these decision procedures to M' 
and this would tell whether M halts on x. Since we know that the halting 
problem is undecidable, all of these problems must be undecidable too. 

To show that (j), (k), and (1) are undecidable, pick your favorite r.e. but 

nonrecursive set A (HP or MP will do) and modify the above construction 

as follows. Given M and x, build a new machine Mil that does the following 

on input y: 

(i) saves y on a separate track of its tape; 

(ii) writes x on a different track (x is hard-wired in the finite control of 
Mil); 

(iii) runs M on input x (M is also hard-wired in the finite control of Mil); 

(iv) if M halts on x, then Mil runs a machine accepting A on its original 

input y, and accepts if that machine accepts. 

Either M does not halt on x, in which case the simulation in step (iii) never 

halts and Mil never accepts any string; or.M does halt on x, in which case 

Mil accepts its input y iff yEA. Thus 

L(M") = {~ if M halts on x, 
IU if M does not halt on x. 

Since A is neither recursive, CFL, nor regular, and 0 is all three of these 

things, if one could decide whether a given TM accepts a recursive, context­

free, or regular set, then one could apply this decision procedure to Mil and 
this would tell whether M halts on x. 
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Reduction 

There are two main techniques for showing that problems are undecid­
able: diagonalization and reduction. We saw examples of diagonalization in 
Lecture 31 and reduction in Lecture 32. 

Once we have established that a problem such as HP is undecidable, we 
can show that another problem B is undecidable by reducing HP to B. 
Intuitively, this means we can manipulate instances of HP to make them 
look like instances of the problem B in such a way that ''yes'' instances of 

HP become "yes" instances of B and "no" instances of HP become "no" 
instances of B. Although we cannot tell effectively whether a given instance 

of HP is a "yes" instance, the manipulation preserves "yes"-ness and "no"­
ness. If there existed a decision procedure for B, then we could apply it 
to the disguised instances of HP to decide membership in HP. In other 

words, combining a decision procedure for B with the manipulation proce­
dure would give a decision procedure for HP. Since we have already shown 
that no such decision procedure for HP can exist, we can conclude that no 
decision procedure for B can exist. 

We can give an abstract definition of reduction and prove a general theorem 

that will save us a lot of work in undecidability proofs from now on. 

Given sets A ~ ~* and B ~ ~*, a (many-one) reduction of A to B is a 
computable function 

u: ~* -~* 
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such that for all x E E*, 

x E A -<==> O"(x) E B. (33.1) 

In other words, strings in A must go to strings in B under 0", and strings 
not in A must go to strings not in B under 0". 

y 

B 

E* ~* 

The function 0" need not be one-to-one or onto. It must, however, be total 
and effectively computable. This means 0" must be computable by a total 

Turing machine that on any input x halts with O"(x) written on its tape. 

When such a reduction exists, we say that A is reducible to B via the map 
0", and we write A :5m B. The subscript m, which stands for "many-one," is 

used to distinguish this relation from other types of reducibility relations. 

The relation :5m of reducibility between languages is transitive: if A :5m B 
and B :5m C, then A :5m C. This is because if 0" reduces A to Band 7 

reduces B to C, then 700", the composition of 0" and 7, is computable and 

reduces A to C. 

Although we have not mentioned it explicitly, we have used reductions in 

the last few lectures to show that various problems are undecidable. 

Example 33.1 In showing that it is undecidable whether a given TM accepts the null 

string, we constructed from a given TM M and string x a TM M' that 

accepted the null string iff M halts on x. In this example, 

A = {M#x I M halts on x} = HP, 

B = {M I f E L(M)}, 

and 0" is the computable map M#x f-+ M'. o 

Example 33.2 In showing that it is undecidable whether a given TM accepts a regular 

set, we constructed from a given TM M and string x a TM Mil such that 
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L(M") is a nonregular set if M halts on x and 0 otherwise. In this example, 

A = {M#x I M halts on x} = HP, 

B = {M I L(M) is regular}, 

and q is the computable map M#x 1-+ Mil. o 

Here is a general theorem that will save us some work. 

Theorem 33.3 (i) If A :'5m Band B is r.e., then so is A. Equivalently, if A :'5m Band 
A is not r.e., then neither is B. 

(ii) If A :'5m Band B is recursive, then so is A. Equivalently, if A :'5m B 

and A is not recursive, then neither is B. 

Proof. (i) Suppose A :'5m B via the map q and B is r.e. Let M be a TM 
such that B = L(M). Build a machine N for A as follows: on input x, first 
compute q(x), then run M on input q(x), accepting if M accepts. Then 

N accepts x {::::::> M accepts u(x) definition of N 

{::::::> u( x) E B definition of M 

{::::::> x E A by (33.1). 

(ii) Recall from Lecture 29 that a set is recursive iff both it and its com­

plement are r.e. Suppose A :'5m B via the map 17 and B is recursive. Note 
that'" A :'5m '" B via the same 17 (Check the definition!). If B is recursive, 
then both Band'" Bare r.e. By (i), both A and'" A are r.e., thus A is 

recursive. 0 

We can use Theorem 33.3(i) to show that certain sets are not r.e. and 
Theorem 33.3(ii) to show that certain sets are not recursive. To show that 
a set B is not r.e., we need only give a reduction from a set A we already 
know is not r.e. (such as '" HP) to B. By Theorem 33.3(i), B cannot be r.e. 

Example 33.4 Let's illustrate by showing that neither the set 

FIN = {M I L(M) is finite} 

nor its complement is r.e. We show that neither of these sets is r.e. by 

reducing'" HP to each of them, where 

"'HP = {M#x I M does not halt on x}: 

(a) "'HP:'5m FIN, 

(b) '" HP :'5m '" FIN. 

Since we already know that'" HP is not r.e., it follows from Theorem 33.3(i) 
that neither FIN nor'" FIN is r.e. 
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For (a), we want to give a computable map u such that 

M#x E ..... HP {:::::::> u(M#x) E FIN. 

In other words, from M #x we want to construct a Turing machine M' = 
u(M#x) such that 

M does not halt on x {:::::::> L(M') is finite. (33.2) 

Note that the description of M' can depend on M and x. In particular, M' 
can have a description of M and the string x hard-wired in its finite control 
if desired. 

We have actually already given a construction satisfying (33.2). Given 
M#x, construct M' such that on all inputs y, M' takes the following 

actions: 

(i) erases its input Yj 

(ii) writes x on its tape (M' has x hard-wired in its finite control)j 

(iii) runs M on input x (M' also has a description of M hard-wired in its 
finite control)j 

(iv) accepts if M halts on x. 

If M does not halt on input x, then the simulation in step (iii) never halts, 
and M' never reaches step (iv). In this case M' does not accept its input y. 
This happens the same way for all inputs y, therefore in this case, L(M) = 
0. On the other hand, if M does halt on x, then the simulation in step (iii) 
halts, and y is accepted in step (iv). Moreover, this is true for all y. In this 
case, L(M) = ~*. Thus 

M halts on x => L(M') = ~* 
M does not halt on x => L(M') = 0 

=> L(M') is infinite, 
=> L(M') is finite. 

Thus (33.2) is satisfied. Note that this is all we have to do to show that 
FIN is not r.e.: we have given the reduction (a), so by Theorem 33.3(i) we 
are done. 

There is a common pitfall here that we should be careful to avoid. It is im­
portant to observe that the computable map u that produces a description 
of M' from M and x does not need to execute the program (i) through (iv). 
It only produces the description of a machine M' that does so. The compu­
tation of u is quite simple-it does not involve the simulation of any other 
machines or anything complicated at all. It merely takes a description of a 
Turing machine M and string x and plugs them into a general description 

of a machine that executes (i) through (iv). This can be done quite easily 
by a total TM, so u is total and effectively computable. 
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Now (b). By definition of reduction, a map reducing "'HP to "'FIN also 

reduces HP to FIN, so it suffices to give a computable map r such that 

M#x e HP ~ r(M#x) e FIN. 

In other words, from M and x we want to construct a Turing machine 

Mil = r(M#x) such that 

M halts on x ~ L(M") is finite. (33.3) 

Given M#x, construct a machine Mil that on input y 

(i) saves y on a separate track; 

(ii) writes x on the tape; 

(iii) simulates M on x for Iyl steps (it erases one symbol of y for each step 
of M on x that it simulates); 

(iv) accepts if M has not halted within that time, otherwise rejects. 

Now if M never halts on x, then Mil halts and accepts y in step (iv) after Iyl 
steps of the simulation, and this is true for all y. In this case L(M") = ~*. 
On the other hand, if M does halt on x, then it does so after some finite 

number of steps, say n. Then Mil accepts y in (iv) if Iyl < n (since the 

simulation in (iii) has not finished by Iyl steps) and rejects y in (iv) if 

Iyl ~ n (since the simulation in (iii) does have time to complete). In this 
case M" accepts all strings of length less than n and rejects all strings of 

length n or greater, so L(M") is a finite set. Thus 

M halts on x => L(M") = {y Ilyl < running time of M on x} 

=> L( M") is finite, 

M does not halt on x => L(M") = ~* 
=> L(M") is infinite. 

Then (33.3) is satisfied. 

It is important that the functions u and r in these two reductions can be 
computed by Turing machines that always halt. 0 

Historical Notes 

The technique of diagonalization was first used by Cantor [161 to show that 
there were fewer real algebraic numbers than real numbers. 
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Universal Turing machines and the application of Cantor's diagonalization 

technique to prove the undecidability of the halting problem appear in 

Turing's original paper [120]. 

Reducibility relations are discussed by Post [101]; see [106, 116]. 
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Rice's Theorem 

Rice's theorem says that undecidability is the rule, not the exception. It is 

a very powerful theorem, subsuming many undecidability results that we 
have seen as special cases. 

Theorem 34.1 (Rice's theorem) Every nontrivial property of the T.e. sets is undecid­
able. 

Yes, you heard right: that's every nontrivial property of the r.e. sets. So as 
not to misinterpret this, let us clarify a few things. 

First, fix a finite alphabet E. A property of the r.e. sets is a map 

P: {r.e. subsets of E*} -. {T,J.}, 

where T and 1. represent truth and falsity, respectively. For example, the 

property of emptiness is represented by the map 

P(A) = {T ~f A = .0, 
1. If A #.0. 

To ask whether such a property P is decidable, the set has to be presented 
in a finite form suitable for input to a TM. We assume that r.e. sets are 
presented by TMs that accept them. But keep in mind that the property 
is a property of sets, not of Turing machines; thus it must be true or false 
independent of the particular TM chosen to represent the set. 
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Here are some other examples of properties of r.e. sets: L(M) is finitej 
L(M) is regularj L(M) is a CFLj M accepts 101001 (Le., 101001 E L(M»j 
L( M) = ~*. Each of these properties is a property of the set accepted by 

the Turing machine. 

Here are some examples of properties of Turing machines that are not prop­
erties of r.e. sets: M has at least 481 statesj M halts on all inputsj M rejects 
101OO1j there exists a smaller machine equivalent to M. These are not prop­
erties of sets, because in each case one can give two TMs that accept the 
same set, one of which satisfies the property and the other of which doesn't. 

For IDce's theorem to apply, the property also has to be nontrivial. This 
just means that the property is neither universally true nor universally falsej 

that is, there must be at least one r.e. set that satisfies the property and 

at least one that does not. There are only two trivial properties, and they 

are both trivially decidable. 

Proof of Rice's theorem. Let P be a nontrivial property of the r.e. sets. As­

sume without loss of generality that P(0') = .L (the argument is symmetric 
if P(0') = T). Since P is nontrivial, there must exist an r.e. set A such that 
P(A) = T. Let K be a TM accepting A. 

We reduce HP to the set {M I P(L(M» = T}, thereby showing that the 

latter is undecidable (Theorem 33.3(ii». Given M#x, construct a machine 

M' = u(M#x) that on input y 

(i) saves y on a separate track someplacej 

(ii) writes x on its tape (x is hard-wired in the finite control of M')j 

(iii) runs M on input x (a description of M is also hard-wired in the finite 
control of M')j 

(iv) if M halts on x, M' runs K on y and accepts if K accepts. 

Now either M halts on x or not. If M does not halt on x, then the simulation 

in (iii) will never halt, and the input y of M' will not be accepted. This is 

true for every y, so in this case L(M') = 0'. On the other hand, if M does 
halt on x, then M' always reaches step (iv), and the original input y of M' 
is accepted iff y is accepted by Kj that is, if YEA. Thus 

M halts on x :::} L(M') = A :::} P(L(M'» = P(A) = T, 
M does not halt on x :::} L(M') = 0' :::} P(L(M'» = P(0') = .L. 

This constitutes a reduction from HP to the set {M I P(L(M» = T}. Since 
HP is not recursive, by Theorem 33.3, neither is the latter setj that is, it is 

undecidable whether L( M) satisfies P. 0 



Rice's Theorem 247 

Rice's Theorem, Part 1\ 

A property P : {r.e. sets} -+ {T,.l} of the r.e. sets is called monotone if 
for all r.e. sets A and B, if A ~ B, then P(A) ::; P(B). Here::; means 
less than or equal to in the order .l ::; T. In other words, P is monotone 
if whenever a set has the property, then all supersets of that set have it as 

well. For example, the properties "L(M) is infinite" and "L(M) = E*" are 
monotone but "L(M) is finite" and "L(M) = 0" are not. 

Theorem 34.2 (Rice's theorem, part II) No nonmonotone property of the r.e. sets is 
semidecidable. In other words, if P is a nonmonotone property of the r.e. 
sets, then the set Tp = {M I P(L(M)) = T} is not r.e. 

Proof. Since P is nonmonotone, there exist TMs Mo and Ml such that 

L(Mo) ~ L(M1), P(Mo) = T, and P(M1) = .l. 
We want to reduce ..... HP to Tp , or equivalently, HP to ..... Tp = {M I 
P(L(M)) = .l}. Since ..... HP is not r.e., neither will be Tp • Given M#x, we 
want to show how to construct a machine M' such that P(M') = .l iff M 
halts on x. Let M' be a machine that does the following on input y: 

(i) writes its input y on the top and middle tracks of its tape; 

(il) writes x on the bottom track (it has x hard-wired in its finite control); 

(iii) simulates Mo on input y on the top track, Ml on input y on the 

middle track, and M on input x on the bottom track in a round-robin 

fashion; that is, it simulates one step of each of the three machines, 

then another step, and so on (descriptions of Mo, Mb and M are all 

hard-wired in the finite control of M'); 

(iv) accepts its input y if either of the following two events occurs: 

(a) Mo accepts y, or 

(b) Ml accepts y and M halts on x. 

Either M halts on x or not, independent of the input y to M'. If M does 

not halt on x, then event (b) in step (iv) will never occur, so M' will accept 

y iff event (a) occurs, thus in this case L(M') = L(Mo). On the other hand, 
if M does halt on x, then y will be accepted iff it is accepted by either 

Mo or Ml; that is, if Y E L(Mo) U L(Ml). Since L(Mo) ~ L(M1), this is 
equivalent to saying that y E L(M1), thus in this case L(M') = L(Ml). We 
have shown 

M halts on x => L(M') = L(Ml) 

=> P(L(M')) = P(L(M1)) = .l, 
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M does not halt on x => L(M') = L(Mo) 

=> P(L(M')) = P(L(Mo)) = T. 

The construction of M' from M and x constitutes a reduction from'" HP 

to the set Tp = {M I P(L(M)) = T}. By Theorem 33.3(i), the latter set is 
not r.e. 0 

Historical Notes 

Rice's theorem was proved by H. G. Rice [104, 1051. 
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Undecidable Problems About CFLs 

In this lecture we show that a very simple problem about CFLs is undecid­

able, namely the problem of deciding whether a given CFG generates all 

strings. 

It is decidable whether a given CFG generates any string at all, since we 

know by the pumping lemma that a CFG G that generates any string at 
all must generate a short string; and we can determine for all short strings 
x whether x E L( G) by the CKY algorithm. 

This decision procedure is rather inefficient. Here is a better one. Let G = 
(N, ~, P, S) be the given CFG. To decide whether L(G) is nonempty, we 
will execute an inductive procedure that marks a nonterminal when it is 
determined that that nonterminal generates some string in ~* -any string 
at all-and when we are done, ask whether the start symbol S is marked. 

At stage 0, mark all the symbols of ~. At each successive stage, mark a 
nonterminal A E N if there is a production A -+ {3 E P and all symbols of 
{3 are marked. Quit when there are no more changes; that is, when for each 
production A -+ {3, either A is marked or there is an unmarked symbol of 
{3. This must happen after a finite time, since there are only finitely many 

symbols to mark. 

It can be shown that A is marked by this procedure if and only if there 
is a string x E ~* such that A"':"" x. This can be proved by induction, 

G 
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the implication => by induction on the stage that A is marked, and the 
implication <= by induction on the length of the derivation A -iJ z. 

Then L( G) is nonempty iff there exists an z E ~* such that S ~ z iff S 
G 

is marked. 

Believe it or not, this procedure can be implemented in linear time, so it 
is in fact quite easy to decide whether L(G) = 0. See also Miscellaneous 
Exercise 134 for another approach. 

The finiteness problem for CFLs is also decidable (Miscellaneous Exercise 
135). 

Valid Computation Histories 

In contrast to the efficient algorithm just given, it is impossible to decide 
in general for a given CFG G whether L( G) = ~*. We will show this by a 
reduction from the halting problem. 

The reduction will involve the set VALCOMPS(M,z) of valid computation 
histories of a Turing machine M on input z, defined below. This set is also 
useful in showing the undecidability of other problems involving CFLs, such 
as whether the intersection of two given CFLs is nonempty or whether the 
complement of a given CFL is a CFL. 

Recall that a configumtion a of a Turing machine M is a triple (q,y,n) 
where q is a state, y is a semi-infinite string describing the contents of the 
tape, and n is a nonnegative integer describing the head position. 

We can encode configurations as finite strings over the alphabet 

rx(Qu{-}), 

where Q is the set of states of M, r is the tape alphabet of M, and - is a 
new symbol. A pair in r x (Q U { - }) is written vertically with the element 
of r on top. A typical configuration (q, y, k) might be encoded as the string 

I- b1 ~ ba ... b" ... bm 

---- ... q ... -

which shows the nonblank symbols of y on the top and indicates that 
the machine is in state q scanning the kth tape cell. Recall that the start 
configuration of M on input z is 

I- al a2 ... an 
s - -

where s is the start state oiM and z = ala2 ... an. 
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A valid computation history of M on x is a list of such encodings of config­

urations of M separated by a special marker # I/. r x (Q U {-}); that is, a 
string 

#0.0#0.1#0.2#'" #aN# 

such that 

• 0.0 is the start configuration of M on x; 

• aN is a halting configuration; that is, the state appearing in aN is 
either the accept state t or the reject state r; and 

• ai+1 follows in one step from ai according to the transition function 

fJ of M, for 0 $ i $ N - 1; that is, 

1 
ai A1 ai+1, 0 $ i $ N - 1, 

where ~ is the next configuration relation of M. 
M 

In other words, the valid computation history describes a halting compu­

tation of the machine M on input x, if M does indeed halt. If M does not 
halt on x, then no such valid computation history exists. 

Let Ll = {#} U (r x (Q U { - } )). Then a valid computation history of M 
on x, if it exists, is a string in Ll *. Define 

VALCOMPS(M,x) ~f {valid computation histories of M on x}. 

Then VALCOMPS(M,x) ~ Ll*, and 

VALCOMPS(M,x) = 0 <==> M does not halt on x. 

Thus the complement ofVALCOMPS(M,x), namely 

""VALCOMPS(M,x) = Ll* - VALCOMPS(M,x), 

is equal to Ll * iff M does not halt on x. 

(35.1) 

The key claim now is that ""VALCOMPS(M,x) is a CFL. Moreover, with­
out knowing whether or not M halts on x, we can construct a CFG G for 

""VALCOMPS(M,x) from a description of M and x. By (35.1), we will 
have 

L( G) = Ll * <==> M does not halt on x. 

Since we can construct G effectively from M and x, this will constitute a 
reduction 

",HP $m {G I G is a CFG and L(G) = Ll*}. 

By Theorem 33.3(i), the latter set is not r.e., which is what we want to 
show. 
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To show that "'YALCOMPS(M, x) is a CFL, let us carefully write down 
all the conditions for a string z E f)" * to be a valid computation history of 
Monx: 

(1) z must begin and end with a #j that is, it must be of the form 

#aO#al#··· #aN#, 

where each ai is in (f)" - #)*j 

(2) each ai is a string of symbols of the form 

a 
or 

a 
q 

where exactly one symbol of ai has an element of Q on the bottom 
and the others have -, and only the leftmost has a f- on tOpj 

(3) ao represents the start configuration of M on Xj 

(4) a halt state, either t or r, appears somewhere in z (by our convention 
that Turing machines always remain in a halt state once they enter it, 
this is equivalent to saying that aN is a halt configuration)j and 

(5) ai + ai+l for 0 :::; i :::; N - 1. 

Let 

Ai = {x E f)" * I x satisfies condition (i)}, 1:::; i :::; 5. 

A string in f),,* is in YALCOMPS(M,x) iff it satisfies all five conditions 
listed abovej that is, 

YALCOMPS(M,x) = n A;. 
l$i$S 

A string is in "'YALCOMPS(M,x) iff it fails to satisfy at least one of 
conditions (1) through (5)j that is, if it is in at least one of the'" Ai, 
1 :::; i :::; 5. We show that each of the sets '" Ai is a CFL and show how 

to obtain a CFG Gi for it. Then "'YALCOMPS(M,x) is the union of the 
'" Ai, and we know how to construct a grammar G for this union from the 

Gi. 

The sets AI, A2 , Aa, and A4 are all regular sets, and we can easily construct 
right-linear CFGs for their complements from finite automata or regular 
expressions. The only difficult case will be As. 

The set Al is the set of strings beginning and ending with a #. This is the 
regular set 

#f),,*#. 
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To check that a string is in A2, we need only check that between every two 
#'s there is exactly one symbol with a state q on the bottom, and I- occurs 
on the top immediately after each # (except the last) and nowhere else. 
This can easily be checked with a finite automaton. 

The set As is the regular set 

# I- al a2 an # D. * 
s - - ... -

To check that a string is in ~, we need only check that t or r appears 
someplace in the string. Again, this is easily checked by a finite automaton. 

Finally, we are left with the task of showing that"" As is a CFL. Consider a 
substring· .. #a#{3# ... of a string in D. * satisfying conditions (1) through 

(4). Note that if a ~ {3, then the two configurations must agree in most 
M 

symbols except for a few near the position of the head; and the differences 

that can occur near the position of the head must be consistent with the 

action of 6. For example, the substring might look like 

.. ·#l-abaababb#l-ababbabb# .. · 
----q---- ---p-----

This would occur if 6(q, a) = (p, b, L). We can check that a ~ {3 by check-
M 

ing for all three-element substrings u of a that the corresponding three-
element substring v of {3 differs from u in a way that is consistent with the 
operation of 6. Corresponding means occurring at the same distance from 
the closest # to its left. For example, the pair 

a a b a b b 
-q- p--

occurring at a distance 4 from the closest # to their left in a and {3, 
respectively, are consistent with 6, since 6 (q, a) = (p, b, L). The pair 

abb abb 

occurring at distance 7 are consistent (any two identical length-three sub­
strings are consistent, since this would occur if the tape head were far away). 
The pair 

a b a a b a 

- - p 

occurring at distance 2 are consistent, because there exists a transition 
moving left and entering state p. 

We can write down all consistent pairs of strings of length three over D.. For 

any configurations a and {3, if a ~ {3, then all corresponding substrings 
M 
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of length three of a and {3 are consistent. Conversely, if all corresponding 
substrings of length three of a and {3 are consistent, then a ..2.... {3. Thus, 

1 M 
to check that a ---4 {3 does not hold, we need only check that there exists 

M 
a substring of a of length three such that the corresponding substring of (3 
oflength three is not consistent with the action of o. 
We now describe a nondeterministic PDA that accepts rv As. We need to 

check that there exists i such that ai+l does not follow from ai according 

to O. The PDA will scan across z and guess ai nondeterministically. It then 

checks that ai+l does not follow from ai by guessing some length-three 
substring u of ai, remembering it in its finite control, and checking that 
the corresponding length-three substring v of aiH is not consistent with u 
under the action of O. It uses its stack to check that the distance of u from 
the last # is the same as the distance of v from the last #. It does this by 

pushing the prefix of ai in front of u onto the stack and then popping as it 

scans the prefix of ai+l in front of v, checking that these two prefixes are 
the same length. 

For example, suppose o(q,a) = (p,b,R) and z contains the following sub­
string: 

.. ·#I-a b a a bab b#l-a b aabb b b# .. · 

------q-- -----p---

Then z does not satisfy condition (5), because 0 said to go right but z 
went left. We can check with a PDA that this condition is violated by 
guessing where the error is and checking that the corresponding length-three 
subsequences are not consistent with the action of O. Scan right, pushing 
symbols from the # up to the substring 

b a b 
- q -

(we nondeterministically guess where this is). Scan these three symbols, 
remembering them in the finite control. Scan to the next # without altering 
the stack, then scan and pop the stack. When the stack is empty, we are 
about to scan the symbols 

b b b 

p - -

We scan these and compare them to the symbols from the first configuration 

we remembered in the finite control, and then we discover the error. 

We have given a nondeterministic PDA accepting rv As. From this and the 
finite automata for rv Ai, 1 ::; i ::; 4, we can construct a CFG G for their 
union rvVALCOMPS(M,x), and 

L( G) = D. * ¢=> M does not halt on x. 
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If we could decide whether G generates all strings over its terminal alphabet, 

it would answer the question of whether M halts on x. We have thus reduced 

the halting problem to the question of whether a given grammar generates 

all strings. Since the halting problem is undecidable, we have shown: 

Theorem 35.1 It is undecidable for a given CFG G whether or not L( G) = E*. 

Many other simple problems involving CFLs are undecidable: whether a 

given CFL is a DCFL, whether the intersection of two given CFLs is a CFL, 

whether the complement of a given CFL is a CFL, and so on. These prob­

lems can all be shown to be undecidable using valid computation histories. 

We leave these as exercises (Miscellaneous Exercise 121). 

Historical Notes 

Undecidable properties of context-free languages were established by Bar­

Hillel et al. [8], Ginsburg and Rose [47], and Hartmanis and Hopcroft [56]. 

The idea of valid computation histories is essentially from Kleene [67, 68], 

where it is called the T -predicate. 
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Other Formalisms 

In this lecture and the next we take a brief look at some of the other tradi­

tional formalisms that are computationally equivalent to Turing machines. 
Each one of these formalisms embodies a notion of computation in one 
form or another, and each can simulate the others. In addition to Turing 

machines, we'll consider 

• Post systems; 

• type 0 grammars; 

• I'-recursive functions (I' = "mu", Greek for m); 

• >.-calculus (>. = "lambda", Greek for 1); 

• combinatory logic; and 

• while programs. 

Post Systems 

By the 1920s, mathematicians had realized that much of formal logic was 
just symbol manipulation and strongly related to emerging notions of com­
putability. Emil Post came up with a general formalism, now called Post 
systems, for talking about rearranging strings of symbols. A Post system 
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consists of disjoint finite sets N and ~ of nonterminal and terminal sym­
bols, respectively, a special start symbol SEN, a set of variables Xo, Xl, ... 

ranging over (N U ~)*, and a finite set of productions of the form 

XOXIXIX2X2Xa'" Xnxn .... YOYIYIY2Y2Ya'" YmYm, 

where the Xi and Yj are strings in (N U ~)*, and each Y; is some Xi that 
occurs on the left-hand side. If a string in (N U ~)* matches the left-hand 

side for some assignment of strings to the variables Xi, then that string 
can be rewritten as specified by the right-hand side. A string X E ~* is 

generated by the system if x can be derived from S by a finite sequence of 

such rewriting steps. 

Post systems and Turing machines are equivalent in computational power. 
Any Post system can be simulated by a TM that writes the start symbol 
on a track of its tape, then does the pattern matching and string rewrit­
ing according to the productions of the Post system in all possible ways, 
accepting if its input x is ever generated. Conversely, given any TM M, a 

Post system P can be designed that mimics the action of M. The sentential 

forms of P encode configurations of M. 

One of Post's main theorems was that Post systems in which all productions 
are of the more restricted form 

xX .... XY 

are just as powerful as general Post systems. Productions of this form say, 
"Take the string x off the front of the sentential form if it's there, and put 

Y on the back." If you did Miscellaneous Exercise 99 on queue machines, 
you may have already recognized that this is essentially the same result. 

Type 0 Grammars 

Grammars are a restricted class of Post systems that arose in formal lan­
guage theory. There is a natural hierarchy of grammars, called the Chomsky 
hierarchy, which classifies grammars into four types named 0, 1, 2, and 3. 
The type 2 and type 3 grammars are just the context-free and right-linear 
grammars, respectively, which we have already seen. A more general class 
of grammars, called the type 0 or unrestricted grammars, are much like 
CFGs, except that productions may be of the more general form 

a .... (3, (36.1) 

where a and (3 are any strings of terminals and nonterminals whatsoever. 
A type 0 grammar consists of a finite set of such productions. If the left­
hand side of a production matches a substring of a sentential form, then 
the substring c,an be replaced by the right-hand side of the production. A 
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string x of terminal symbols is generated by G, that is, x E L( G), if x can be 

derived from the start symbol S by some finite number of such applications; 

in symbols, S -!.... x. 
G 

Type 0 grammars are a special case of Post systems: the grammar produc­

tion (36.1) corresponds to the Post production 

XaY -+ X{3y. 

Type 0 grammars are the most powerful grammars in the Chomsky hier­

archy of grammars and generate exactly the r.e. sets. One can easily build 

a Turing machine to simulate a. given type 0 grammar. The machine saves 

its input x on a track of its tape. It then writes the start symbol S of the 

grammar on another track and applies productions nondeterministic ally, 

accepting if its input string x is ever generated. 

Conversely, type 0 grammars can simulate Turing machines. Intuitively, 

sentential forms of the grammar encode configurations of the machine, and 

the productions simulate 5 (Miscellaneous Exercise 104). 

Type 1 grammars are the context-sensitive grammars (CSGs). These are 

like type 0 grammars with productions of the form (36.1), except that we 

impose the extra restriction that lal ~ 1{31. Context-sensitive grammars are 

equivalent (except for a trivial glitch involving the null string) to nonde­
terministic linear bounded automata (LBAs), which are TMs that cannot 

write on the blank portion of the tape to the right of the input string (see 

Exercise 2 of Homework 8 and Exercise 2 of Homework 12). The bound on 

the tape in LBAs translates to the restriction lal ~ 1!3I for CSGs. 

The ",-Recursive Functions 

GOdel defined a collection of number-theoretic functions Nlo -+ N that, 
according to his intuition, represented all the computa.ble functions. His 

definition was as follows: 

(1) Successor. The function 8: N -+ N given by 8(X) = x+1 is computable. 

(2) Zero. The function z : N' -+ N given by z( ) = 0 is computable. 

(3) Projections. The functions 7I"i: : N" -+ N given by 7I"i:(X1, ••. ,xn ) = Xk, 
1 ~ k ~ n, are computable. 

(4) Composition. If I: Nk -+ N and 910 ... ,9k: N" -+ N are computable, 

then so is the function I 0 (gl, ... , gk) : N" -+ N that on in put x = 
Xl, ••• ,Xn gives 
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(5) Primitive recursion. If hi : l'f'-l -> Nand gi : l'f'H -> N are com­

putable, 1 ::; i ::; k, then so are the functions Ii : l'f' -> N, 1 ::; i ::; k, 
defined by mutual induction as follows: 

MO, x) ~f hi(x), 

Mx + 1,x) ~ gi(X,x,!1(x,x), ... , Ik(x,x)), 

where x = X2, •.. ,xn . 

(6) Unbounded minimization. If 9 : l'f'+l -> N is computable, then so is 

the function I : l'f' -> N that on input x = Xl, ... ,Xn gives the least 

y such that g(z, x) is defined for all z ::; y and g(y, x) = ° if such a y 
exists and is undefined otherwise. We denote this by 

f(x) = p,y.(g(y, x) = 0). 

The functions defined by (1) through (6) are called the p,-recursive func­
tions. The functions defined by (1) through (5) only are called the primitive 
recursive functions . 

• The constant functions constn ( ) = n are primitive recursive: 

def 
constn = so··· 0 s oz. 
~ 

n 

• Addition is primitive recursive, since we can define 

add(O,y) ~ y, 

add(x + 1,y) ~ s(add(x,y)). 

This is a bona fide definition by primitive recursion: in rule (5) above, 
take k = 1, n = 2, h = 7I"t, and 9 = s 071":. Then 

add(O,y) = h(y) = y, 

add(x + 1, y) = g(x, y, add(x, y)) = s(add(x, y)). 

• Multiplication is primitive recursive, since 

( ) def 
mult O,y = 0, 

mult(x+ 1,y) ~ add(y,mult(x,y)). 

Note how we used the function add defined previously. We are allowed 
to build up primitive recursive functions inductively in this way. 

• Exponentiation is primitive recursive, since 

( ) def 
exp x,D = 1, 

exp(x,y + 1) ~f mult(x, exp(x, y)). 
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• The predecessor function 

. 1 {X-1 
x - = 0 

is primitive recursive: 

0.!.1 ~f 0, 

(x + 1) .!. 1 d,g x. 

• Proper subtraction 

if x> 0, 
ifx=O 

x.!.y= { ~-y if x ~ y, 
if x < y 

is primitive recursive, and can be defined from predecessor in exactly 

the same way that addition is defined from successor. 

• The sign function is primitive recursive: 

sign(x) ~f 1 .!. (1 .!. x) 

_ {1 if x> 0, 
- 0 if x = o. 

• The relations <, :$, >, ~, =, and #, considered as (0,1)-valued func­

tions, are all primitive recursive; for example, 

compare::;(x,y) d,g 1.!. sign(x.!. y) 

_ { 1 
- 0 

if x :$ y, 
if x> y. 

• Functions can be defined by cases. For example, 

{ x+ 1 
g(x,y) = x 

is primitive recursive: 

if 2'" < y, 

if 2'" ~ y 

g(x, y) ~f compared 2"', y) . (x + 1) + compare?: (2" , y) . x. 

• Inverses of certain functions can be defined. For example, fiOg2 y 1 is 
primitive recursive:! fiog2yl = f(y,y), where 

f(O,y) d~r 0, 

f(x+ 1,y) ~f g(f(x,y),y), 

1 r x 1 = least integer not less than Xj log2 = base 2 logarithm. 
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and g is from the previous example. The function f just continues to 
add 1 to its first argument x until the condition 2'" ~ Y is satisfied. 
This must happen for some x $ y. Inverses of other common functions, 
such as square root, can be defined similarly. 0 

Observe that all the primitive recursive functions are total, whereas a p,­

recursive function may not be. There exist total computable functions that 
are not primitive recursive; one example is Ackermann's function: 

A(O,y) ~ y + 1, 

A(x+ 1,0) ~ A(x,l), (36.2) 

A(x + 1, Y + 1) d~f A(x,A(x + 1,y)). 



Lecture 37 

The A-Calculus 

The A-calculus (A = "lambda," Greek for 1) consists of a set of objects called 

A-term.s and some rules for manipulating them. It was originally designed 
to capture formally the notions of functional abstraction and functional 

application and their interaction. 

The A-calculus has had a profound impact on computing. One can see the 

basic principles of the A-calculus at work in the functional programming 

language LISP and its more modern offspring SCHEME and DYLAN. 

In mathematics, A-notation is commonly used to represent functions. The 

expression Ax.E(x) denotes a function that on input x computes E(x). To 

apply this function to an input, one substitutes the input for the variable 

x in the body E(x) and evaluates the resulting expression. 

For example, the expression 

AX.(X + 1) 

might be used to denote the successor function on natural numbers. To 
apply this function to the input 7, we would substitute 7 for x in the body 

and evaluate: 

(AX.(X + 1))7 ..... 7 + 1 = B. 

In the programming language DYLAN, one would write 



The A-Calculus 263 

(method (x) (+ xl» 

for the same thing. The keyword method is really A in disguise. If you typed 

«method (x) (+ xl» 7) 

at a DYLAN interpreter, it would print out 8. 

For another example, the expression 

AX./(gX) 

denotes the composition of the functions / and gj that is, the function that 

on input x applies 9 to x, then applies / to the result. The expression 

A/.Ag.AX./(gX) (37.1) 

denotes the function that takes functions / and 9 as input and gives back 
their composition AX./(gX). In DYLAN one would write 

(method (f) 

(method (g) 

(method (x) (f (g x»») 

To see how this works, let's apply (37.1) to the successor function twice. 

We use different variables in the successor functions below for clarity. The 

symbol --+ denotes one substitution step. 

(A/.Ag.AX.(f(gX))) (Ay.(y + 1)) (AZ.(Z + 1)) 

--+ (Ag.AX.«Ay.(y + 1)) (gx))) (AZ.(Z+ 1)) 

--+ Ax.«Ay.(y + 1)) «AZ.(Z + 1))x)) 

--+ AX.«Ay.(y + 1)) (x + 1)) 

--+ AX.«X + 1) + 1) 

substitute Ay.(y + 1) for / 

substitute AZ.(Z + 1) for 9 

substitute x for Z 

substitute x + 1 for y 

We could have substituted gx for y in the second step or (AZ.(Z + 1))x for 
y in the thirdj we would have arrived at the same final result. 

Functions represented by A-terms have only one input. A function with two 
inputs x, y that returns a value M is modeled by a function with one input 

x that returns a function with one input y that returns a value M. The 

technical term for this trick is currying (after Haskell B. Curry). 

The Pure A-Calculus 

In the pure A-calculus, there are only variables {I, g, h, x, y, ... } and opera­
tors for A-abstraction and application. Syntactic objects called A-terms are 
built inductively from these: 
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• any variable x is a 'x-term; 

• if M and N are 'x-terms, then MN is a 'x-term (functional application­

think of M as a function that is about to be applied to input N); 
and 

• if M is a A-term and x is a variable, then Ax.M is a A-term (functional 
abstraction-think of Ax.M as the function that on input x computes 
M). 

The operation of application is not associative, and unparenthesized ex­

pressions are conventionally associated to the left; thus, MNP should be 
parsed (MN)P. 

In the pure 'x-calculus, ,X-terms serve as both functions and data. There 

is nothing like "+1" as we used it informally above, unless we encode it 

somehow. We'll show how to do this below. 

The substitution rule described informally above is called {3-reduction. For­
mally, this works as follows. Whenever our 'x-term contains a subterm of 

the form ('xx.M)N, we can replace this subterm by the term s~(M), where 

s~(M) denotes the term obtained by 

(i) renaming the bound variables of M (those y occurring in the scope of 

some ,Xy) as necessary so that neither x nor any variable of N occurs 
bound in M; and 

(ii) substituting N for all occurrences of x in the resulting term. 

Step (i) is necessary only to make sure that any free variables y of N will not 
be inadvertently captured by a AY occurring in M when the substitution is 
done in step (ii). This is the same problem that comes up in first-order logic. 
We can rename bound variables in A-terms anytime, since their behavior 
as functions is not changed. For example, we can rewrite ,Xy.xy as AZ.XZ; 

intuitively, the function that on input y applies x to y is the same as the 

function that on input Z applies x to z. The process of renaming bound 

variables is officially called a-reduction. 

We denote a- and {3-reduction by ~ and L, respectively. Thus 

(Ax.M)N L sN(M). 

Computation in the 'x-calculus is performed by {3-reducing subterms when­
ever possible and for as long as possible. The order of the reductions doesn't 
matter, since there is a theorem that says that if you can reduce M to Nl 
by some sequence of reduction steps and M to N2 by some other sequence 

of reduction steps, then there exists a term P such that both Nl and N2 
reduce to P. 
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M 

P 

This is called the Church-Rosser property after Alonzo Church and J. 
Barkley Rosser. 

A term is said to be in normal lorm if no .a-reductions applYi that is, 
if it has no subterms of the form (Ax.M)N. A normal form corresponds 
roughly to a halting configuration of a Turing machine. By the Church­
Rosser property, if a A-term has a normal form, then that normal form is 
unique up to a-renaming. 

There are terms with no normal form. These correspond to nonhalting 
computations of Turing machines. For example, the A-term 

(AX.XX)(AX.XX) 

has no normal form-try to do a .a-reduction and see what happens! The 

term Ax.xx is analogous to a Turing machine that on input x runs MOl on 
x. 

Church Numerals 

To simulate the JV"recursive functions in the A-calculus, we must first encode 
the natural numbers as A-terms so they can be used in computations. Alonzo 
Church came up with a nice way to do this. His encoding is known as the 
Church numerals: 

- def 
0= A/.Ax.x, 
-def 
1 = A/.Ax.lx, 

2~ A/.Ax.l(fx), 

- def ) 
3 = >'1.Ax.I(f(fx ), 

- def 'I' In n = A .AX. X, 
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where rx is an abbreviation for the term 

f(f(···(fx)···)). 
"---v--" 

n 

In other words, n represents a function that on input f returns the n-fold 
composition of f with itself. The n are all distinct and in normal form. 

Using this representation of the natural numbers, the successor function 
can be defined as 

de! 
s = >.m.>.f.>.x.f(mfx). 

To see that this is correct, try applying it to any n: 

sn = (>.m.>.f.>.x.f(mfx)) (>.f.>.x.rx) 

~ (.~m.>'g.>'y.g(mgy)) (>.f.>.x.rx) 

L >.g.>.y.g«>.f.>.x.rx)gy) 

L >.g.>.y.g«>.x.gnx)y) 

L >.g.>.y.g(gny) 

= >.g.>.y.gn+1 y 

~ >.f·>.x·r+1x 

= n+ 1. 

One can likewise define addition, multiplication, and all the other It-recursive 
functions. 

Combinatory Logic 

Combinatory logic is a form of variable-free >.-calculus. It was first invented 

to study the mathematics of symbol manipulation, especially substitution. 

The system consists of terms called combinators that are manipulated using 

reduction rules. 

There are two primitive combinators Sand K, which are just symbols, as 
well as a countable set of variables {X, Y, ... }. More complicated combina­

tors are formed inductively: S, K, and variables are combinatorsj and if M 
and N are combinators, then so is MN. Here MN is just a term, a syntactic 
object, but we can think of M as a function and N as its inputj thus, MN 
represents the application of M to N. As with the >.-calculus, this operation 
is not associative, so we use parentheses to avoid ambiguity. By convention, 

a string of applications associates to the leftj thus, XYZ should be parsed 
(XY)Z and not X(YZ). 
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Computation proceeds according to two reduction rules, one for S and one 
for K. For any terms M, N, and P, 

SMNP -+ MP(NP), 

KMN-+M. 

Computation in this system consists of a sequence of reduction steps applied 
to subterms of a term. 

Other combinators can be built from Sand K. For example, the combinator 

I ~ SKK acts as the identity function: for any X, 

IX = SKKX 

-+ KX(KX) the S rule 

-+ X the K rule. 

Let B = SK. Whereas K picks out the first element of a pair, B picks out 
the second element: 

BXY = SKXY -+ KY(XY) -+ Y. 

One can construct fancy combinators from Sand K that can rearrange 
symbols in every conceivable way. For example, to take two inputs and 
apply the second to the first, use the combinator C = S(S(KS)B)K: 

CXY = S(S(KS)B)KXY 

-+ S(KS)BX(KX)Y 

-+ KSX(BX)(KX)Y 

-+ S(BX)(KX)Y 

-+ BXY(KXY) 

-+ YX. 

There is a theorem that says that no matter how you want to rearrange 
your inputs, there is a combinator built from Sand K only that can do it. 
In other words, for any term M built from Xl, ... ,Xn and the application 
operator, there is a combinator D built from Sand K only such that 

DX1X 2 ••• Xn ~ M. 

This theorem is called combinatorial completeness. 

There is a paradoxical combinator SII(SII), which corresponds to the ~­
term (~x.xx)(~x.xx). Like its counterpart, it has no normal form. 

Like the ~-calculus, combinatory logic is powerful enough to simulate Turing 
machines. 
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Historical Notes 

The late 19208 and 19308 were a hectic time. Turing machines (Turing 

[120)), Post systems (Post [99, 100)), p.-recursive functions (Godel [51), Her­

brand, Kleene [67)), the A-calculus (Church [23, 24, 25, 26), Kleene [66), 
Rosser [107)), and combinatory logic (SchOnfinkel [111), Curry [29)) were 

all developed around this time. 

The >.-calculus is a topic unto itself. Barendregt's book [9] is an indispens­
able reference. 

The p.-recursive functions were formulated by Godel and presented in a 
series of lectures at Princeton in 1934. According to Church [25), GOdel 

acknowledged that he got the idea originally from Jacques Herbrand in 
conversation. 

A proof of the equivalence of the p.-recursive functions and the A-calculus 

first appeared in Church [25), although Church attributes the proof chiefly 

to Kleene. The equivalence of TMs and the A-calculus was shown by Turing 
[120). 

Various perspectives on this important period can be found in Kleene 

[69), Davis [31, 32), Rogers [106), Yasuhara [124), Jones [63), Brainerd and 

Landweber [15), Hennie [58), and Machtey and Young [81). 

Chomsky [18) defined the Chomsky hierarchy and proved that the type 0 
grammars generate exactly the r.e. sets. 

The relationship between context-sensitive grammars and linear bounded 
automata was studied by Myhill [92), Landweber [78), and Kuroda [77). 
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While Programs 

We can relate the primitive and It-recursive functions of Godel to more 
modern concepts. Consider a simple programming language with variables 
Var = {x, y, ... } ranging over N containing the following constructs: 

(i) simple assignments x := 0 x:= y + 1 x:= y 

(ii) sequential composition p i q 

(iii) conditional if x < y then p else q 

(iv) lor loop for y do p 

(v) while loop while x < y do p 

In (iii) and (v), the relation < can be replaced by anyone of >, ;:::, ~, =, 
or #. In (ii) we can parenthesize using begin ... end if necessary. 

Programs built inductively from these constructs are called while pro­
grams. Programs built without the while construct (v) are called for pro­
grams. We will show in Theorem 1.1 that while programs compute ex­
actly the It-recursive functions and that for programs compute exactly the 
primitive recursive functions. 

The intuitive operation of the for loop is as follows: upon entering the loop 
for y do p, the current value of variable y is determined, and the program 



270 Supplementary Lecture I 

p is executed that many times. Assignment to the variable y within the 
body of the loop does not change the number of times the loop is executed, 
nor does execution of the body of the loop alone decrement y or change its 
value in any way except by explicit assignment. 

The intuitive operation of the while loop is as follows: upon entering the 

loop while x < y do p, the condition x < y is tested with the current 

values of the variables x, y. If the condition is false, then the body of the 
loop is not executed, and control passes through to the statement following 
the while loop. If the condition is true, then the body p of the loop is 
executed once, and then the procedure is repeated with the new values 
of x, y. Thus the while loop repeatedly tests the condition x < y, and if 
true, executes the body p. The first time that the condition x < y tests 
false (if ever), the body of the loop is not executed and control passes 
immediately to the statement following the loop. If the condition always 
tests true, then the while loop never halts, as for example with the program 

while x = x do x := x + 1. 

In the presence of the while loop, the for loop is redundant: for y do p is 
simulated by the while program 

z := 0 ; w := y ; while z < w do begin p ; z := z + 1 end 

where z and w are variables not occurring in p. However, note that for 
programs always halt. Thus the only source of potential nontermination is 
the while loop. 

Semantics of While Programs 

In order to prove the equivalence of while programs and the Jt-recursive 
functions, we must give formal semantics for while programs. 

A state or environment (1 is an assignment of a nonnegative integer to each 
variable in Var; that is, (1 : Var -+ N. The set of all such environments is 
denoted Env. If a program is started in an initial environment (1, then in the 

course of execution, the values of variables will be changed, so that if and 
when the program halts, the final environment will in general be different 

from (1. We thus interpret programs p as partial functions [p~ : Env -+ Env. 

The value [p~ ((1) is the final environment after executing the program p with 
initial environment (1, provided p halts. If p does not halt when started in 
initial environment (1, then [P]((1) is undefined. Thus [P] : Env -+ Env is 
a partial function; its domain is the set of (1 causing p to halt. Note that 
whether or not p halts depends on the initial environment; for example, 
if (1(x) = 0, then the program while x > 0 do x := x + 1 halts on initial 
environment (1, whereas if (1(x) = 1, then it does not. 
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Formally, the meaning [P] of a while program p is defined inductively as 

follows. For u e Env, x e Var, and a e N, let u[x +- a] denote the 

environment that is identical to u except for the value of x, which is a. 
Formally, 

u[x +- a](y) rI,g u(y), if y is not x, 

u[x +- a](x) rI,g a. 

Let IPr denote the n-fold composition of the partial function [P]: 

[p]n = [PI 0 ... 0 [P], 
'--v---" 

n 

where [Pt is the identity function on Env. Formally, 

[P]o(u) rI,g u, 

[pr+1(u) rI,g [p]((p]n(u)). 

Now define 

[x := O](u) rI,g u[x +- 0), 

[x := y](u) rI,g u[x +- u(y)], 

[x := y + 1](u) rI,g u[x +- u(y) + I], 

[p; qD(u) rI,g [qD([P](u)), or in other words, 

[p ; qJ ~f [d 0 [P] 

(here [q]([P](u)) is undefined if [P)(u) is undefined), 

[if x < y then p else qD(u) 

~ {[PD(u) if u(x) < u(y), 
- [q)(u) otherwise, 

[for y do p](u) 

rI,g [p]"(I/)(u), 

[while x < y do p](u) 

{ 
[pr(u) 

def 

= undefined 

if n is the least number such 

that IPr(u) is defined an<i 

IPr(u)(x) ~ [pr(u)(y), 
if no such n exists. 

We are now ready to give a formal statement of the equivalence of while 
programs and p.-recursive functions. 

Theorem 1.1 (i) For every p.- (respectively, primitive) recursive function J : ~ -+ 

N, there is a while (respectively, for) program p such that Jor any 
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environment u, [Pl(u) is defined iff l(u(x1), ... ,u(xn)) is defined; and 
il both are defined, then 

[PHu)(xo) = l(u(x1), ... ,u(xn)). 

(ii) For every while (respectively, for) program p with variables Xl, •.• ,xn 
only, there are p.- (respectively, primitive) recursive functions Ii : 
N" -+ N, 1 $ i $ n, such that lor any environment u, [P](u) is 

defined iff 1.(u(x1), ... , U(Xn)) is defined, 1 $ i $ nj and il all are 
defined, then 

Once we have stated the theorem, the proof is quite straightforward and 
proceeds by induction on the structure of the program or p.-recursive func­
tion. We argue one case explicitly. 

Suppose we are given a function I : N" -+ N defined by primitive recursion. 
For simplicity, assume that the k in the primitive recursive definition of 1 
is 1; then I is defined from h : N"-1 -+ N and 9 : N"+1 -+ N by 

1(0, x) = h(x), 

I(x + 1, x) = g(x, x, I(x, x)), 

where x = X2,' •• ,Xn • We wish to give a program p that takes its inputs in 
variables Xl and x, computes I on these values, and leaves its result in Xo. 
By the induction hypothesis, 9 and h are computed by programs q and r, 

respectively. These programs expect their inputs in variables X1>' .. ,Xn+1 
and X2, .. . ,Xn, respectively, and leave their outputs in Xo. Let Y1, ... ,Yn 
be new variables not occurring in either q or T. Then we can take p to be 
the following program: 

Yl := Xl ; •.. ; Yn := Xn ; 
T; 

Xl:= 0; 
for Yl do 

begin 

VI := Xl; 

X2 := Y2 ; ... ; Xn := Vn ; 

Xn+1 := Xo; 
q; 

Xl := YI + 1 
end 

/* save values of input variables * / 
1* set Xo to h(x) * / 
1* initialize iteration count * / 
1* at this point Xo contains I(xl, x) * / 

/* save iteration count * / 
1* restore values of other variables * / 
/* output from previous iteration * / 
1* set Xo to g(X1>"" xn+d * / 
/* increment iteration count * / 
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Historical Notes 

Godel originally worked exclusively with the primitive recursive functions. 

Ackermann's [11 discovery of the non-primitive recursive yet intuitively com­
putable total function (36.2) forced GOdel to rethink the foundations of his 
system and ultimately to include unbounded minimization, despite the fact 

that it led to partial functions. As we now know, this is inevitable: no r.e.list 
of total computable functions could contain all total computable functions, 
as can be shown by a straightforward diagonalization argument. 

The relationship between the primitive recursive functions and for pro­

grams was observed by Meyer and Ritchie [86]. 
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Beyond Undecidability 

Oracle Machines and Relative Computation 

We know that virtually all interesting questions about Turing machines­
whether a given TM halts on a given input, whether a given TM accepts a 
finite set, and so on-are undecidable. But are all these questions equally 
hard? For example, suppose by some magic we were given the power to 
decide the halting problem. Could we somehow use that power to decide 
if a given TM accepts a finite set? In other words, relative to the halting 
problem, is finiteness decidable? 

Questions about relative computability can be formalized and studied using 
oracle Turing machines. Intuitively, an oracle TM is a TM equipped with 
an oracle, a set B to which the TM may pose membership questions and 
always receive correct answers after a finite time. The interesting thing 
about this definition is that it makes sense even if B is not recursive. 

Formally, an oracle Turing machine is a TM that in addition to its ordinary 
read/write tape is equipped with a special one-way-infinite read-only input 
tape on which some infinite string is written. The extra tape is called the 
oracle tape, and the string written on it is called the oracle. The machine 
can move its oracle tape head one cell in either direction in each step and 
make decisions based on the symbols written on the oracle tape. Other than 
that, it behaves exactly like an ordinary Turing machine. 
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We usually think of the oracle as a specification of a set of strings. If the 

oracle is an infinite string over {O, I}, then we can regard it as the charac­

teristic function of a set B ~ I'll, where the nth bit of the oracle string is 1 

iff nEB. In that way we can study computation relative to the set B. 

There is nothing mysterious about oracle TMs. They operate exactly like 

ordinary TMs, the only difference being the oracle. Ordinary TMs are equiv­

alent to oracle TMs with the null oracle 0, whose characteristic function is 
00000· .. ; for such machines, the oracle gives no extra information that the 

TM doesn't already have. 

For A, B ~ E*, we say that A is recursively enumerable (r. e.) in B if there 

is an oracle TM M with oracle B such that A = L(M). In addition, if Mis 

total (Le., halts on all inputs), we write A ::;T B and say that A is recursive 

in B or that A Turing reduces to B. 

For example, the halting problem is recursive in the membership problem, 

since halting is decidable in the presence of an oracle for membership. Here's 

how: given a TM M and input x, first ask the oracle whether M accepts x. 
If the answer is yes, then M certainly halts on x. If the answer is no, switch 

accept and reject states of M to get the machine M', then ask the oracle 
whether M' accepts x. If the answer is yes, then M rejects x, therefore 

halts on x. If the answer is still no, then M neither accepts or rejects x, 
therefore loops on x. In all cases we can say definitively after a finite time 

whether M halts on x. 

Likewise, the membership problem is recursive in the halting problem, since 
we can determine membership in the presence of an oracle for halting. Given 
a TM M and input x, modify M so as never to reject by making the reject 
state r into a nonreject state. You can add a new dummy inaccessible 
reject state if you like. Call this modified machine M'. Now on any input, 
M' accepts iff it halts, and L(M) = L(M'), so we can determine whether 
M accepts x by asking the oracle whether the modified machine M' halts 
on x. 

It is not hard to show that the relation ::;T is transitive; that is, if A is 

recursive in Band B is recursive in C, then A is recursive in C. Moreover, 

the relation ::;m refines ::;T; in other words, if A ::;m B, then A ::;T B 
(Miscellaneous Exercise 141). 

The relation ::;T is strictly coarser than ::;m, since '" HP :tm HP but 
'" HP ::;T HP. In fact, any set A Turing reduces to its complement, since 
with an oracle for A, on input x one can simply ask the oracle whether 
x E A, accepting if not and rejecting if so. 
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The Arithmetic Hierarchy 

Once we have the notion of relative computation, we can define a hier­
archy of classes as follows. Fix the alphabet {O, I} and identify strings in 
{O, I} * with the natural numbers according to the one-to-one correspon­
dence (28.1). Define 

~O def { } 
.£.11 = r.e. sets , 

~~ ~ {recursive sets}, 

~~+1 ~f {sets r.e. in some B E ~~}, 

~~+1 ~f {sets recursive in some B E ~~}, 

II~ ~ {complements of sets in ~~}. 

Thus II~ is the class of co-r.e. sets. The classes ~~, II~, and ~~ comprise 
what is known as the arithmetic hierarchy. 

Here is perhaps a more revealing characterization of the arithmetic hierar­
chy in terms of alternation of quantifiers. Recall from Exercise 1 of Home­
work 11 that a set A is r.e. iff there exists a decidable binary predicate R 
such that 

A = {x 13y R(x,y)}. 

For example, 

HP = {M#x 13t M halts on x in t steps}, 

MP = {M#x 13t M accepts x in t steps}. 

(J.1) 

Note that the predicate "M halts on x" is not decidable, but the predicate 
"M halts on x in t steps" is, since we can just simulate M on input x 
with a universal machine for t steps and see if it halts within that time. 
Alternatively, 

HP = {M#x 13v v is a halting computation history of M on x}, 

MP = {M#x 13v v is an accepting computation history of M on x}. 

Thus the class ~~ is the family of all sets that can be expressed in the form 
(J.1). 

Similarly, it follows from elementary logic that II~, the family of co-r.e. sets, 
is the class of all sets A for which there exists a decidable binary predicate 
R such that 

A = {x I 'Vy R(x,y)}. (J.2) 
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We argued in Lecture 29 that a set is recursive iff it is both r.e. and co-r.e. 

In terms of our new notation, 

A.~ = ~~ n II~. 

These results are special cases of the following theorem. 

Theorem J.1 (i) A set A is in ~~ iff there exists a decidable (n + l)-ary predicate R 
such that 

A = {x 13Yl 'i/Y2 3Y3 ... QYn R(x, Yl, .. ·, Yn)}, 

where Q = 3 if n is odd, 'i/ if n is even. 

(ii) A set A is in II~ iff there exists a decidable (n + 1) -ary predicate R 
such that 

A = {x I'i/Yl 3Y2 'i/Y3 ... QYn R(x, Yl, ... ,Yn)}, 

where Q = 'i/ if n is odd, 3 if n is even. 

(iii) A.~ = ~~ n II~. 

Proof. Miscellaneous Exercise 137. 

Example J.2 The set EMPTY ~ {M I L(M) = 0} is in II~, since 

EMPTY = {M I 'i/x 'i/t M does not accept x in t steps}. 

o 

The two universal quantifiers 'i/x 'i/t can be combined into one using the 

computable one-to-one pairing function ~ -+ N given by 

(i,j) ...... (i+{+1 )+i. (J.3) 

j 

0 1 2 3 4 5 
0 0 1 3 6 10 15 
1 2 4 7 11 16 

2 5 8 12 17 

3 9 13 18 

4 14 19 

5 20 

Example J.3 The set TOTAL ~ {M I M is total} is in IIg, since 

TOTAL = {M I 'i/x 3t M halts on x in t steps}. 

o 

o 
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Example J.4 The set FIN ~ {M I L(M) is finite} is in I;g, since 

FIN = {M 13n 'TIx if Ixl > n then x ¢ L(M)} 

= {M 13n 'TIx 'TIt Ixl :::; n or M does not accept x in t steps}. 

Again, the two universal quantifiers 'TIx 'TIt can be combined into one using 

~~. 0 

Example J.5 A set is cofinite if its complement is finite. The set 

COF ~f {M I L(M) is cofinite} 

is in I;g, since 

COF = {M 13n 'TIx if Ixl > n then x E L(M)} 

= {M 13n 'TIx 3t Ixl :::; n or M accepts x in t steps}. 0 

Figure J.1 depicts the inclusions among the few lowest levels of the hier­

archy. Each level of the hierarchy is strictly contained in the next; that is, 

I;~ U II~ ~ 1l~+1' but I;~ U II~ f:. 1l~+1' We have shown that there exist r .e. 
sets that are not co-r.e. (HP, for example) and co-r.e. sets that are not r.e. 

('" HP, for example). Thus I;~ and II~ are incomparable with respect to set 
inclusion. One can show in the same way that I;~ and II~ are incomparable 
with respect to set inclusion for any n (Miscellaneous Exercise 138). 

Completeness 

The membership problem MP ~f {M#x I M accepts x} is not only un­
decidable but is in a sense a "hardest" r.e. set, since every other r.e. set 

:::;m-reduces to it: for any Turing machine M, the map 

x ...... M#x (JA) 

is a trivially computable map reducing L(M) to MP. 

We say that a set is r.e.-hard if every r.e. set :::;m-reduces to it. In other 
words, the set B is r.e.-hard if for all r.e. sets A, A :::;m B. As just ob­
served, the membership problem MP is r.e.-hard. So is any other problem 

to which the membership problem :::;m-reduces (e.g., the halting problem 
HP), because the relation :::;m is transitive. 

A set B is said to be r.e.-complete if it is both an r.e. set and r.e.-hard. For 
example, both MP and HP are r.e.-complete. 

More generally, if C is a class of sets, we say that a set B is :::;m -hard for C 

(or just C-hard) if A :::;m B for all A E C. We say that B is :::;m-complete 
for C (or just C-complete) if B is :::;m-hard for C and B E C. 
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II~ 

recursive sets 

Figure J.l. The Arithmetic Hierarchy 

One can prove a theorem corresponding to Theorem 33.3 that says that if' 
A :::;m Band B E E~, then A E E~, and if A :::;m Band B E .1.~, then 
A E .1.~. Since we know that the hierarchy is strict (each level is properly 

contained in the next), if B is :::;m-complete for E~, then B f/. II~ (or ~~ 

or E~_l)' 

It turns out that each of the problems mentioned above is $m-complete for 
the level of the hierarchy in which it naturally falls: 
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(i) HP is ::S;m-complete for ~y, 

(ii) MP is ::S;m-complete for ~~, 

(iii) EMPTY is ::S;m-complete for m, 
(iv) TOTAL is ::S;m-complete for rrg, 

(v) FIN is ::S;m-complete for ~g, and 

(vi) OOF is ::S;m-complete for ~g. 

Since the hierarchy is strict, none of these problems is contained in any 

class lower in the hierarchy or ::S;T-reduces to any problem complete for any 

class lower in the hierarchy. If it did, then the hierarchy would collapse at 

that level. For example, EMPTY does not reduce to HP and OOF does not 

reduce to FIN. 

We prove (v); the others we leave as exercises (Miscellaneous Exercise 142). 

We have already argued that FIN E ~g. To show that it is ::S;m-hard for ~g, 

we need to show that any set in ~g reduces to it. We use the characterization 

of Theorem J.1. Let 

A = {x 13y "Iz R(x,y,z)} 

be an arbitrary set in ~g, where R(x, y, z) is a decidable ternary predicate. 

Let M be a total machine that decides R. We need to construct a machine 
N effectively from a given x such that N E FIN iff x E Aj in other words, 

N accepts a finite set iff 3y "Iz R(x,y,z). Let N on input w 

(i) write down all strings y of length at most Iwlj 

(ii) for each such y, try to find a z such that ...,R(x, y, z) (Le., such that 

M rejects x#y#z), and accept if all these trials are successful. The 

machine N has x and a description of M hard-wired in its finite control. 

In step (ii), for each y of length at most Iwl, N can just enumerate strings 

z in some order and run M on x#y#z until some z is found causing M to 

reject. Since M is total, N need not worry about timesharing. If no such 

z is ever found, N just goes on forever. Surely such an N can be built 

effectively from M and x. 

Now if x E A, then there exists y such that for all z, R(x, y, z) (i.e., for all 

z, M accepts x#y#z)j thus step (ii) fails whenever Iwl ~ Iyl. In this case 

N accepts a finite set. On the other hand, if x ¢ A, then for all y there 

exists a z such that ...,R(x, y, z), and these are all found in step (ii). In this 

case, N accepts ~*. 
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We have shown that the machine N accepts a finite set iff x E A, therefore 

the map x H N constitutes a :5m-reduction from A to FIN. Since A was 
an arbitrary element of ~g, FIN is :5m-hard for ~g. 

The Analytic Hierarchy and II} 

The arithmetic hierarchy is defined in terms of first-order quantification, or 

quantification over natural numbers or strings. But it doesn't stop there: if 

we consider second-order quantification-quantification over functions and 

relations-we get the so-called analytic hierarchy consisting of classes ~~, 

il~, A~. The entire arithmetic hierarchy is strictly contained in Ai, the low­

est class in the analytic hierarchy. Elements of Ai are called hyperarithmetic 
sets. 

A remarkable theorem due to Kleene says that the sets of natural numbers 

definable by one universal second-order quantifier (i.e., the II} sets) are 

exactly the sets definable by first-order induction. 

The class ill also has natural complete problems. For example, suppose we 
are given a recursive binary relation -< on N; that is, a recursive subset of 
Nl .. A natural question to ask is whether the relation is well founded; that 

is, whether there exists no infinite descending chain 

no >- nl >- n2 >- .•.. 

This decision problem is :5m-complete for II}. 

These results are getting a bit beyond our scope, so we'll stop here. 

Historical Notes 

Oracle Turing machines were first defined by Turing [121]. The arithmetic 
and analytic hierarchies were studied by Kleene [68]; see also Rogers [106], 
Shoenfield [115], Kleene [69], and Soare [116]. 

Modern-day complexity theory has its roots in the theory of recursive func­
tions and effective computability. The :5T- and :5m-reducibility relations, 
the concepts of completeness and hardness, and the arithmetic hierarchy all 

have their subrecursive counterparts; see Karp [64], Cook [28], and Stock­

meyer [118]. For an introduction to complexity theory, see Hartmanis and 

Stearns [57], Garey and Johnson [40], or Papadimitriou [97]. 



Lecture 38 

Godel's Incompleteness Theorem 

In 1931 Kurt GOdel [50, 51] proved a momentous theorem with far-reaching 

philosophical consequences: he showed that no reasonable formal proof sys­
tem for number theory can prove all true sentences. This result set the logic 

community on its ear and left Hilbert's formalist program in shambles. This 

result is widely regarded as one of the greatest intellectual achievements of 

twentieth-century mathematics. 

With our understanding of reductions and r.e. sets, we are in a position to 

understand this theorem and give a complete proof. It is thus a fitting note 

on which to end the course. 

The Language of Number Theory 

The first-order language of number theory L is a formal language for ex­

pressing properties of the natural numbers 

N= {0,1,2, ... }. 

The language is built from the following symbols: 

• variables z, y, z, . .. ranging over Nj 

• operator symbols + (addition) and . (multiplication)j 
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• constant symbols 0 (additive identity) and 1 (multiplicative identity); 

• relation symbol = (other relation symbols <, ::;, >, and ~ are defin­
able); 

• quantifiers'r/ (for all) and 3 (there exists); 

• propositional operators V (or), 1\ (and), -, (not), -+ (if-then), and +-+ 

(if and only if); and 

• parentheses. 

Rather than give a formal definition of the well-formed formulas of this 

language (which we could easily do with a CFG), let's give some examples 

of formulas and their interpretations. 

We can define other comparison relations besides =; for example, 

def 3 
x ::; y = z x + z = y, 

x < y ~ 3z x + z = Y 1\ -,(z = 0). 

Many useful number-theoretic concepts can be formalized in this language. 
For example: 

• "q is the quotient and r the remainder obtained when dividing x by y 
using integer division": 

INTDIV(x,y,q,r) ~ x = qy + r 1\ r < y 

• "y divides x": 

DIV(y,Z) ~ 3q INTOIV(X,y,q,O) 

• "x is even": 

EVEN(X) ~ DIv(2,x) 

Here 2 is an abbreviation for 1+1. 

• "x is odd": 

ooo(x) ~ -,EVEN(X) 

• "x is prime": 

PRIME(X) ~ X ~ 2 1\ 'r/y (DIV(Y,X) -+ (y = 1 Vy = x)) 

• "x is a power of two" : 

POWER2(X) ~ 'r/y (DIV(Y,X) 1\ PRIME(Y)) -+ Y = 2 
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• "y is a power of two, say 2k, and the kth bit of the binary representation 

of x is 1": 

BIT(X,y) ~ POWER2(y) /\ \:Iq \:Ir (INTDIV(x,y,q,r) -+ ODD(q)) 

Here is an explanation of the formula BIT(X, V). Suppose x and yare num­
bers satisfying BIT(X, V). Since y is a power of two, its binary representation 
consists of a 1 followed by a string of zeros. The formula BIT(X,y) is true 
precisely when x's bit in the same position as the 1 in y is 1. We get hold 
of this bit in x by dividing x by y using integer division; the quotient q and 
remainder r are the binary numbers illustrated. The bit we are interested 

in is 1 iff q is odd. 

y 
x 

= 
= 

1000000000000 

J101}00~P1000~01101\ 

q r 

This formula is useful for treating numbers as bit strings and indexing into 
them with other numbers to extract bits. We will use this power below 
to write formulas that talk about valid computation histories of Turing 

machines. 

If there are no free (unquantified) variables, then the formula is called a 
sentence. Every sentence has a well-defined truth value under its natural 

interpretation in N. Examples are 

\:Ix 3y y = x + 1 

\:Ix 3y x = y+ 1 

"Every number has a successor." 

"Every number has a predecessor." 

Of these two sentences, the first is true and the second is false (0 has no 
predecessor in N). 

The set of true sentences in this language is called (first-order) number 

theory and is denoted Th(N). The decision problem for number theory is to 

decide whether a given sentence is true; that is, whether a given sentence 

is in Th(N). 

Peano Arithmetic 

The most popular proof system for number theory is called Peano arith­

metic (PA). This system consists of some basic assumptions called axioms, 

which are asserted to be true, and some rules of inference, which can be 
applied in a mechanical way to derive further theorems from the axioms. 

Among the axioms of PA, there are axioms that apply to first-order logic 
in general and are not particular to number theory, such as axioms for 
manipulating 
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• propositional formulas, such as (rp A 'I/J) - rpj 

• quantifiers, such as ('t/x rp(x)) - rp(17)j and 

• equality, such as 't/x 't/y 't/z (x = yAy = z - x = z). 

In addition, PA has the following axioms particular to number theory: 

't/x .... (0 = x + 1) 

't/x't/y (x + 1 = Y + 1- x = y) 

't/x x +0 = x 

't/x 't/y x + (y + 1) = (x + y) + 1 

't/x x· 0 = 0 

't/x't/y x . (y + 1) = (x· y) + x 

(rp(O) A't/x (rp(x) - rp(x + 1))) - 't/x rp(x) 

o is not a successor 

successor is one-to-one 

o is an identity for + 
+ is associative 

o is an annihilator for . 

. distributes over + 
induction axiom 

where rp(x) denotes any formula with one free variable x. The last axiom is 

called the induction axiom. It is actually an axiom scheme because it rep­

resents infinitely many axioms, one for each rp(x). It is really the induction 

principle on N as you know it: in words, 

• if rp is true of 0 (basis), and 

• if for any x, from the assumption that rp is true of x, it follows that rp 
is true of x + 1 (induction step), 

then we can conclude that rp is true of all x. 

There are also two rules of inference for deriving new theorems from old: 

These two rules are called modv.s ponens and generalization, respectively. 

A proof of rpn is a sequence rpo, rpl , rp2, ... ,rpn of formulas such that each rpi 

either is an axiom or follows from formulas occurring earlier in the list by 

a rule of inference. A sentence of the language is a theorem of the system if 
it has a proof. 

A proof system is said to be sound if all theorems are truej that is, if it 

is not possible to prove a false sentence. This is a basic requirement of 

all reasonable proof systemsj a proof system wouldn't be much good if its 

theorems were false. The system PA is sound, as one can show by induction 

on the length of proofs: all the axioms are true, and any conclusion derived 

by a rule of inference from true premises is true. Soundness means that the 
following set inclusions hold: 
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Th(N) ---Th(N) 

true sentences false sentences 

all sentences 

A proof system is said to be complete if all true statements are theorems of 
the system; that is, if the set of theorems coincides with Th(N). 



Lecture 39 

Proof of the Incompleteness Theorem 

G6del proved the incompleteness theorem by constructing, for any rea­
sonable proof system, a sentence of number theory <p that asserts its own 
un provability in that system: 

<p is true {::=> <p is not provable. (39.1) 

Any reasonable proof system, including PA, is sound; this means that for 
any sentence 'I/J, 

'I/J is provable '* 'I/J is true (39.2) 

(a proof system would not be worth much if some of its theorems were 
false). Then <p must be true, because otherwise 

<p is false '* <p is provable by (39.1) 

'* <p is true by (39.2), 

a contradiction. Since <p is true, by (39.1) <p is not provable. 

The construction of <p is quite interesting by itself, since it captures in 
no uncertain terms the notion of self-reference. The power that one needs 
to construct such a self-referential sentence is present in Turing machines 
and all modern programming languages. For example, the following is a C 
program that prints itself: 
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char *s="char *s=y.cy.sy.c;Y.cmainO{printf(s,34,s,34,10,10);}y'c"; 
main(){printf(s,34,s,34,10,10);} 

Here 34 and 10 are the ASCII codes for double quote (") and newline, 
respectively. Although it's a mind-bender to try to figure out what this 
program does, it's worth the attempt, because once you understand this 
you have understood the main idea behind GOdel's construction. 

We'll construct Godel's self-referential sentence in Supplementary Lecture 
K. For now we take a simpler approach that still retains the most impor­
tant consequences. We will argue that in P A or any other reasonable proof 
system for number theory, 

(i) the set of theorems (provable sentences) is r.e., but 

(ii) the set Th(N) of true sentences is not, 

therefore the two sets cannot be equal, and the proof system cannot be 
complete. This approach is due to Turing [1201. 

The set of theorems of PA is certainly r.e.: one can enumerate the theorems 
by enumerating all the axioms and systematically applying the rules of 
inference in all possible ways, emitting every sentence that is ever derived. 
This is true for any reasonable proof system. 

The crux then is to show: 

Lemma 39.1 Th(N) i8 not r.e. 

Proof. We prove this by a reduction "'HP :5m Th(N). The result will then 
follow from Theorem 33.3(i) and the fact that'" HP is not r.e. Recall that 

HP = {M#x I M halts on input x}. 

Given M#x, we show how to produce a sentence 'Y in the language of 
number theory such that 

M#x E "'HP {::::::} 'Y E Th(N); 

that is, 

M does not halt on x {::::::} 'Y is true. 

In other words, given M and x, we want to construct a sentence 'Y in the 
language of number theory that says, "M does not halt on x." This will be 
possible because the language of number theory is strong enough to talk 
about Turing machines and whether or not they halt. 

Recall the formula BIT(1I, x) constructed in Lecture 38, which allows us to 
think of numbers as bit strings and extract bits from them. Using this as 
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a starting point, we will be able to construct a series of formulas culmi­

nating in a formula VALCOMPM,,,(Y) that says that y represents a valid 
computation history of M on input Xi that is, y represents a sequence of 
configurations ao, al, ... ,aN of M, encoded over some alphabet ~, such 
that 

(i) ao is the start configuration of M on x, 

(ii) ai+l follows from ai according to the transition function 8 of M, and 

(iii) aN is a halt configuration. 

These are the same valid computation histories we saw in Lecture 34. Once 
we have the formula VALCOMPM,,, (y), we can say that M does not halt on 
x by saying that there does not exist a valid computation history: 

'Y ~f .,3y VALCOMPM,,,(Y). 

This constitutes a reduction from'" HP to Th(N). 

It remains only to provide the gory details of the construction of 'Y from 
M and x. Here they are. Assume that configurations of M are encoded 
over a finite alphabet ~ of size p, where p is prime. Every number has 
a unique p-ary representation. We use this representation instead of the 
binary representation for convenience. 

Let the symbols of the start configuration of M on x = al a2 ... an be 
encoded by the p-ary digits ko, ... ,kn as shown: 

I- al a2 a3 a4 an 
S -

ko kl k2 k3 k4 kn 

Let the blank symbol u be encoded by the p-ary digit k. 

Let C be the set of all sextuples (a, b, c, d, e, f) of p-ary digits such that if 
the three elements of ~ represented by a, b, and c occur consecutively in 
a configuration ai, and if d, e, and f occur in the corresponding locations 
in ai+l, then this would be consistent with the transition function 6. For 
example, if 

6(q,a) = (p,b,R), 

then the sextuple 

a a b 

- q -

would be in C. 

a b b 

-p 

Now it's time to define some formulas. 
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• "The number '0 is a power of p." Here p is a fixed prime that depends 
onM. 

POWERp('O) ~ Vz (DIV(Z, '0) " PRIME(Z) -+ Z = p) 

• "The number d is a power of p and specifies the length of vasa string 

over 6." 

LENGTH(V, d) ~ POWERp(d) " v < d 

• "The p-ary digit of vat position '0 is b" (assuming '0 is a power of pl. 
def 

DIGIT(V,'O,b) = 3u3a (v=a+by+uP'g" a<'O" b<p) 

• "The three p-ary digits of v at position '0 are b, e, and d" (assuming '0 
is a power of pl. 

3DIGIT( v, '0, b, e, d) ~f 311. 3a (v = a + by + cpy + dppy + upppy 

" a < '0 " b < p " e < p " d < p) 

• "The three p-ary digits of v at position '0 match the three p-ary digits 
of vat Z according to 6" (assuming '0 and Z are powers of pl. 

MATCH(V,'O,Z) 
def v 3DIGIT(v,'O,a,b,e) " 3DIGIT(v,z,d,e,j) 

(a,b,c,d,e,f)EC 

• "The string v represents a string of successive configurations of M of 
length e up to d" = "All pairs of three-digit sequences exactly e apart 

in v match according to 6" (assuming e and d are powers of pl. 

MOVE(v,e,d) ~V'O (POWERp('O) " 'Oppe < d) -+ MATCH(v,'O,ye) 

• "The string v starts with the start configuration of M on input x = 
ala2 ... an padded with blanks out to length e" (assuming e is a power 

of Pi n and Pi, 0 $ i $ n, are fixed constants depending only on M). 

n 

def 1\ . START(v,e) = DIGIT(V,p',ki)" pn < e 
i=O 

" "1'0 (POWERp('O) " pn < '0 < C -+ DIGIT(V,'O, k)) 

• "The string v has a halt state in it somewhere." 

HALT(V,d) ~ 3'0 (POWERp('O) " '0 < d" V DIGIT(v,'O,a)) 
aEH 
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Here H is the set of all p-ary digits corresponding to symbols of !1 
containing halt states. 

• "The string v is a valid computation history of M on x." 

VALCOMPM,.,(V) d~f 3c 3d (POWERp(C) 1\ C < d 1\ LENGTH(V,d) 

1\ START(V,C) 1\ MOVE(V,c,d) 1\ HALT(V,d)) 

• "The machine M does not halt on x." 

...,3v VALCOMPM,.,(V) 

This concludes the proof of the incompleteness theorem. o 
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Godel's Proof 

GOdel proved the incompleteness theorem by constructing, for any rea­
sonable proof system, a sentence of number theory that asserts its own 
unprovability. Here is the essence of Godel's construction. 

We use the symbols I- and 1= for provability in Peano arithmetic (PA) and 
truth, respectively. That is, 

1= cp ~ sentence cp is true in N, 

I- cp ~ sentence cp is provable in PA. 

To say that PA is sound says that every theorem of PA is true; in other 
words, for any sentence cp, if I- cp, then 1= cpo The soundness of PA can be 
established by induction on the length of proofs, using the fact that all 
axioms of PA are true and the induction rules preserve truth. (We haven't 
defined truth, but we'll come back to this later.) 

Let formulas of number theory be coded as natural numbers in some rea­
sonable way. Fix this coding and let r cp' denote the code of the formula cpo 
First we prove a lemma due to Godel that is a kind of fixpoint theorem. 

Lemma K.l (Godel's fixpoint lemma) For any formula 1JI(x) with one free variable 
x, there exists a sentence T such that 
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I- r +-+ tP(r r')j 

that is, the sentences rand tP (r r') are provably equivalent in PA. 

Note that r is heavily self-referential. It asserts that its own code satisfies 
the property tP. 

Proof. Let Xo be a fixed variable. One can construct a formula 

SUBST(X, y, z) 

with free variables x, y, z asserting the following: 

The number z is the code of the formula obtained by substituting 

the constant whose value is x for all free occurrences of the 

variable Xo in the formula whose code is y. 

For example, if rp(xo) is a formula possibly containing a free occurrence of 
Xo but no other free variables, then the sentence 

SUBST(7, rrp(xo)', 312) 

is true iff 312 = rrp(7)'. 

We omit the details of the construction of SUBST, but the crucial insight is 

that given a sufficiently nice encoding of formulas as numbers, the logical 

machinery is powerful enough to talk about formulas and substitution. One 
would presumably think of numbers as bit strings and use the formula 
BIT(X,y) constructed in Lecture 37 for this purpose. 

Now define 

O'(x) ~ 'fly SUBST(X,x,y) -+ tP(y), 

r ~f O'(r O'(xo)'). 

Then r is the desired fixpoint of tP: 

r = O'(rO'(xon 

= 'fly SUBSTrO'(Xo)',rO'(xo)',y) -+ tP(y) 

{:::::} 'fly y = rO'{rO'{xon' -+ tP{y) 

= 'fly y = rr' -+ tP(y) 

{:::::} tP(rr'). 

We have argued informally that r and tPrr') are equivalent, but the entire 
argument can be formalized in PA. 0 

Now we observe that the language of number theory is also strong enough 
to talk about provability in Peano arithmetic. In particular, it is possible 
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to code sequences of formulas as numbers and write down a formula 

PROOF(X,y) 

that asserts that the sequence of formulas whose code is given by x is a legal 

proof in PA and constitutes a proof of the formula whose code is given by 
y. That is, for any sequence 11" of formulas and formula rp, 

f- PROOF(r1l"',rrp') {:::::::} 11" is a proof in PA of rp. 

Provability in PA is then encoded by the formula 

PROVABLE(y) ~ 3x PROOF(X,y). 

Then for any sentence rp of L, 

f- rp {:::::::} 1= PROVABLE(r rp '). (K.l) 

Moreover, 

(K.2) 

This says, "rp is provable iff it is provable that rp is provable." The direction 
(=> ) holds because if rp is provable, then there exists a proof 11" of rp, and PA is 
clever enough to recognize that 11" is a proof of rp (Le., that PROOF(r 11"', r rp')) 
and use this fact in a proof that such a proof exists. The direction ({:::) 
follows from (K.l) and the soundness of PA. 

Applying the fixpoint lemma (LemmaK.l) to the predicate ...,PROVABLE(X), 

we obtain a sentence p that asserts its own un provability: 

(K.3) 

in other words, p is true iff it is not provable in PA. By the soundness of 
PA, we have 

Then the sentence p must be true, since if not, then 

1= ""p => 1= PROVABLE(r p') 

=> f- p 

=> 1= p 

by (KA) 

by (K.l) 

by the soundness of P A, 

a contradiction. Therefore 1= p. But again, 

1= P => 1= ...,PROVABLE(r p') 

=> ¥ PROVABLE(r p') 

=>¥ P 

Thus p is true but not provable. 

by (KA) 

by the definition of truth 

by (K.l). 

(KA) 



Godel's Proof 295 

The Second Incompleteness Theorem 

In the last section we constructed a sentence p such that 

(i) p is true, but 

(ii) p is not provable in PA. 

Now in a weak moment, we might reason as follows. If PA is so all-powerful, 
why can't we just encode the whole argument of the previous section in PA 
as well? Then (i) and (ii) should be provable in PA. But this would say that 
p is provable in PA, yet provably not provable in PA. We would appear to 
have a paradox on our hands. Thinking about this is enough to make your 
head swim. 

To sort this out, observe that there is logic going on at two levels here. 
The object of our study is a logical system, namely the language of number 
theory L and its deductive system PA; but we are reasoning about it using 
another logical system, which we will call the metasystem. The symbols 1-, 
1=, =>, and {::::} that we used in the previous section are not symbols of L, 
but metasymbols, or symbols of the metasystem. The statements we made 
about truth and provability of sentences of L are metastatements. 

For example, let ep be a sentence of L. The statement I- ep is not a sentence 
of L but a metastatement that says, "ep is provable in PA." Similarly, 1= ep 
is a metastatement that says, "ep is true." 

Now certain metastatements about Land PA can be encoded in L us­
ing the coding scheme rep' and reasoned about in PA. For example, the 
metastatement I- tp is encoded as the sentence PROVABLE(r'"tp') of L. The 
metastatement (K.l) expresses the correctness of this encoding. 

Other metastatements cannot be expressed in L. For example, the meta­
statement "ep is true" cannot be expressed in L. You might think that the 
sentence ep itself does this, but it doesn't, at least not in the way we want 
to use it: to encode meta-arguments in PA, we have to work with the code 
rep' of ep, so there would have to be a formula TRUE(X) of L such that for 
all sentences ep of L, 

(K.S) 

But it follows from the fixpoint lemma (Lemma K.l) that no such formula 
can exist. If it did, then there would exist a sentence u such that 

1= u {::::} 1= ...,TRUE(r U '); 

but by (K.5), 
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1= (J' -¢=:> 1= TRUE(r (J' '), 

a contradiction. 

The language L is not powerful enough to express the truth of sentences of L 

or the soundness of PA (which refers to truth). These are external concepts, 

and we must deal with them in the metasystem. However, Land PA are 

powerful enough to express and reason about provability and consistency, 

which are the internal analogs of truth and soundness, respectively. Con­

sistency just means that no contradiction can be derived; in other words, 
.L (falsity) is not a theorem. The consistency of PA is expressed in L as 
follows: 

CONSIS ~f -,PROVABLE(r .L '}. 

Meta-arguments involving only the concepts of provability and consistency 

can typically be mapped down into PA. For example, the argument we gave 

in the last section for (K.2) can be mapped down into PA, giving 

I- PROVABLE(r <p'} +-+ PROVABLE(rpROVABLE(r <p '}'}. (K.6) 

With this in mind, we can try to recreate the argument of the previous 
section without reference to truth or soundness. This leads to the following 

amazing consequence. 

Theorem K.2 (G8del's second incOInpleteness theorem) No sufficiently powerful 
deductive system can prove its own consistency, unless it is inconsistent. 

Of course, if the system is inconsistent (i.e., if it can prove .L), then it can 
prove anything, including its own consistency. 

We prove the second incompleteness theorem for PA. But it actually holds 
for any sufficiently powerful deductive system, where "sufficiently powerful" 
just means strong enough to encode and reason about certain simple met as­
tatements involving provability and consistency such as those discussed 
above. 

Proof. Let p be the formula of (K.3). If I- p, then I- PROVABLE(r p'} by 

(K.2), but also I- -,PROVABLE(r p'} by (K.3), so PA would be inconsistent. 

Furthermore, this argument can be mapped down into PA using (K.6), 
giving 

I- PROVABLE(r p'} - -,CONSIS, 

or in contrapositive form, 

(K.7) 
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Now suppose that consistency were provable; that is, I- CONSIS. By (K.7), 
we would have I- "'PROVABLE(r p'). Then by (K.3), we would have I- p. But 
we have just shown that this implies that PA is inconsistent. 

Thus if PA is consistent, then,lt CONSIS. o 

The Consistency of Mathematics 

The metasystem we have been talking about so glibly is Zermelo-F'raenkel 
set theory (ZF), a modification of Cantor's original set theory that evolved 
after Russell discovered an inconsistency. 

In Cantor's system one could form the set of all elements satisfying any 
given property. But consider the property x ¢ x. If you could form the set 

b~f{xlx¢x}, 

then b E b iff b ¢ b, a contradiction. This is known as Russell's paradox. 
(Notice any similarities to anything in Lecture 3l?) 

Over the years, mathematicians and logicians have come to fairly univer­
sal agreement that ZF forms a reasonable foundation for most of classical 
mathematics (type theory and intuitionism excluded). Pure ZF set theory 
is a first-order theory that deals with nothing but sets, sets of sets, sets of 
sets of sets, and so on. There is an "element of" relation E, a basic set 0, 

and ways of constructing more complicated sets inductively. The natural 
numbers are defined inductively as certain sets: 

0~0, 

1 ~ {O}, 

2 ~f {O,l}, 

def { } 3 = 0,1,2, 

and so on. There are axioms and proof rules for manipulating sets, and the 
Peano axioms for number theory can be derived from them. 

In ZF one can give formal semantics for the language L of number theory, 
including a definition of truth. One can then prove that relative to that 

semantics, PA is sound, therefore consistent. But is ZF consistent? No one 
knows. And Godel's theorem says that no one can ever know, short of 

discovering an inconsistency. As far as we can tell, a new Russell's paradox 
could be discovered tomorrow, and much of the structure of mathematics 
that has been built over the last century would come crashing down. 

GOdel's theorem says that we cannot prove the consistency of ZF in ZF 
any more than we can prove the consistency of PA in PA. In order to prove 
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the consistency of ZF, we would have to go outside of ZF to an even larger 
metasystem. But then we would be faced with the same question about the 
consistency of that metasystem. At some point, we just have to stop and 

take consistency as a matter of faith. Most mathematicians would agree 
that ZF is just as good a place as any to do this. But the only assurance we 
have that the ice is solid under our feet is that no one has broken through 
yet-at least not since Cantor! 



Exercises 



Homework 1 

Homework 1 301 

1. Design deterministic finite automata for each of the following sets: 

(a) the set of strings in {4,8, 1}* containing the substring 481; 

(b) the set of strings in {a} * whose length is divisible by either 2 or 

7; 

(c) the set of strings x E {O, 1}* such that #O(x) is even and #1(x) 
is a multiple of three; 

(d) the set of strings over the alphabet {a, b} containing at least three 

occurrences of three consecutive b's, overlapping permitted (e.g., 

the string bbbbb should be accepted); 

(e) the set of strings in {O, 1, 2} * that are ternary (base 3) representa­

tions, leading zeros permitted, of numbers that are not multiples 

of four. (Consider the null string a representation of zero.) 

2. Consider the following two deterministic finite automata. 

a b 

lr-r-r 
2F I 2 1 

a b 

1 1IT3 2 3 1 

3F 1 2 

Use the product construction to produce deterministic automata ac­
cepting (a) the intersection and (b) the union of the two sets accepted 
by these automata. 

3. Let M = (Q, E, h, s, F) be an arbitrary DFA. Prove by induction on 
Iyl that for all strings x, y E E* and q E Q, 

6(q,xy) = 6(6(q,x),y), 

where 6 is the extended version of h defined on all strings described in 
Lecture 3. 

4. For k ~ 1 and p ~ 2, let 

Ak,p ~ {x E {O, 1, ... ,p - I} * I x is a p-ary representation of 
a multiple of k}. 

In Lecture 4 we gave a DFA for the set Aa,2, the multiples of three in 

binary, and proved it correct. Generalize the construction and proof 
to arbitrary k and p. 
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Homework 2 

1. The following nondeterministic automaton accepts the set of strings in 

{ a, b} * ending in aaa. Convert this automaton to an equivalent deter­

ministic one using the subset construction. Show clearly which subset 
of {s, t, 'It, v} corresponds to each state of the deterministic automaton. 

Omit inaccessible states. 

a,b 

Q a 
- .. a 

•• 
s t 

2. The reverse of a string x, denoted rev x, is x written backwards. 

Formally, 

def 
reVE = E, 

def 
rev xa = a rev x. 

For example, rev abbaaab = baaabba. For A ~ l:*, define 

rev A ~ {rev x I x E A}. 

For example, rev {a,ab,aab,aaab} = {a,ba,baa,baaa}. Show that for 

any A ~ l:*, if A is regular, then so is rev A. 

3. The Hamming distance between two bit strings x and y (notation: 
H(x,'O)) is the number of places at which they differ. For example, 

H(Ol1, 110) = 2. (If Ixl ::f. 1'01, then their Hamming distance is infinite.) 
If x is a string and A is a set of strings, the Hamming distance between 
x and A is the distance from x to the closest string in A: 

H(x,A) ~ minH(x,'O). 
ilEA 

For any set A ~ {0,1}* and k ~ 0, define 

Nk(A) ~ {x I H(x, A) 5 k}, 

the set of strings of Hamming distance at most k from A. For ex­

ample, No({OOO}) = {OOO}, N1 ({000}) = {OOO,OOl,OlO,lOO}, and 

N2({000}) = {O, 1P - {111}. 

Prove that if A ~ {0,1}* is regular, then so is N2(A). (Hint: If A is 

accepted by a machine with states Q, build a machine for N2(A) with 
states Q x {O, 1, 2}. The second component tells how many errors you 
have seen so far. Use nondeterminism to guess the string yEA that 
the input string x is similar to and where the errors are.) 
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1. Give regular expressions for each of the following subsets of {a, b} *. 
(a) {x I x contains an even number of a's} 

(b) {x I x contains an odd number of b's} 

(c) {x I x contains an even number of a's or an odd number of b's} 

(d) {x I x contains an even number of a's and an odd number of b's} 

Try to simplify the expressions as much as possible using the algebraic 

laws of Lecture 9. Recall that regular expressions over {a, b} may use 

E, ~, a, b, and operators +, *, and· only; the other pattern operators 

are not allowed. 

2. Give deterministic finite automata accepting the sets of strings match-

ing the following regular expressions. 

(a) (000* + 111*)* 

(b) (01 + 10)(01 + 10)(01 + 10) 

(c) (0+ 1(01*0)*1)* 

Try to simplify as much as possible. 

3. For any set of strings A, define the set 

MiddleThirds A = {y I 3x, z Ixl = Iyl = Izi and xyz E A}. 

For example, MiddleThirds{ f, a, ab, bab, bbab, aabbab} = {f, a, bb}. Show 
that if A is regular, then so is MiddleThirds A. 
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Homework 4 

1. Show that the following sets are not regular. 

(a) {anbm In = 2m} 

(b) {x e {a, b, c}* I x is a palindrome; i.e., x = rev(x)} 

( c) {x e {a, b, c} * I the length of x is a square} 

(d) The set PAREN of balanced strings of parentheses ( ). For ex-

ample, the string « ( ) ( ) ) ( » is in PAREN, but the string 
) «) is not. 

2. The operation of shuffle is important in the theory of concurrent sys­

tems. If x, y e ~*, we write x II y for the set of all strings that can be 
obtained by shuffling strings x and y together like a deck of cards; for 
example, 

ab II cd = {abed, acbd, acdb, cabd, cadb, cdab}. 

The set x II y can be defined formally by induction: 

f II y~f {y}, 

xllf~{x}, 

xa II yb ~ (x II yb) . {a} U (xa II y) . {b}. 

The shuffle of two languages A and B, denoted A II B, is the set of all 
strings obtained by shuffling a string from A with a string from B: 

AIIB~ U x lIy· 

For example, 

zEA 
!lEB 

{ab} II {cd, e} = {abe, aeb, eab, abed, acbd, acdb, cabd, cadb, edab}. 

(a) What is (01)* II (1O)*? 

(b) Show that if A and B are regular sets, then so is A II B. (Hint: 
Put a pebble on a machine for A and one on a machine for B. 
Guess nondeterministically which pebble to move. Accept if both 
pebbles occupy accept states.) 
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3. For each of the two automata 

a b a b 
-+ 1 1 4 -+ IF 3 5 

2 3 1 2F 8 7 
3F 4 2 3 7 2 
4F 3 5 4 6 2 

5 4 6 5 1 8 
6 6 3 6 2 3 

7 2 4 7 1 4 

8 3 1 8 5 1 

(a) say which states are accessible and which are noti 

(b) list the equivalence classes of the collapsing relation ~ defined in 

Lecture 13: 

p ~ q ~ 'Vx E E* (6(P,x) E F {::::::> 6(q,x) E F)i 

(c) give the automaton obtained by collapsing equivalent states and 

removing inaccessible states. 



306 Exercises 

Homework 5 

1. The following table defines four special types of CFGs obtained by 

restricting productions to the form shown, where A, B represent non­

terminals, a a single terminal symbol, and x a string of terminals: 

Grammar type Form oj produ.ctions 

right-linear A-xB orA- x 
strongly right-linear A-aB orA- f 
left-linear A_ Bx orA- x 
strongly left-linear A- Baor A-f 

Prove that each of these four types of grammars generates exactly the 

regular sets. Conclude that every regular set is a CFL. 

2. Prove that the CFG 

8 - a8b I b8a I 88 I f 
generates the set of all strings over {a, b} with equally many a's and 
b's. (Hint: Characterize elements of the set in terms of the graph of 
the function #b(y) - #a(y) as y ranges over prefixes of x, as we did 
in Lecture 20 with balanced parentheses.) 

3. Give a CFG for the set PAREN2 of balanced strings of parentheses of 
two types ( ) and []. For example, ( [() []] ( []» is in PAREN2, 

but [(] ) is not. Prove that your grammar is correct. Use the following 
inductive definition: PAREN2 is the smallest set of strings such that 

(i) f E PAREN2i 

(ti) if x E PAREN2, then so are (x) and [xl i and 

(iii) if x and y are both in PAREN2, then so is xy. 

(Hint: Your grammar should closely model the inductive definition of 

the set. For one direction of the proof of correctness, use induction 

on the length of the derivation. For the other direction, use induction 
on stages of the inductive definition of PAREN2. The basis is (i), and 
there will be two cases of the induction step corresponding to (ii) and 
(iii).) 

4. Give a PDA for the set PAREN2 of Exercise 3 that accepts by empty 
stack. Specify all transitions. 
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1. Prove that the following CFG G in Greibach normal form generates 

exactly the set of nonnull strings over {a, b} with equally many a's and 

b's: 

S-aB IbA, 
A-aSlbAAla, 

B - bS I aBB I b. 

(Hint: Strengthen your induction hypothesis to describe the sets of 
strings generated by the nonterminals A and B: for :z; :F E, 

S +:z; ~ #a(:z;) = #b(:z;), 

A • 111 G:Z;~···' 

B~:z;~???) 
G 

2. Construct a pushdown automaton that accepts the set of strings in 

{ a, b} * with equally many a's and b's. Specify all transitions. 

3. Let b(n) denote the binary representation of n ~ 1, leading zeros 

omitted. For example, b(5) = 101 and b(12) = 1100. Let $ be another 
symbol not in {a, I}. 

(a) Show that the set 

{b(n)$b(n+ 1) I n ~ I} 

is not a CFL. 

(b) Suppose we reverse the first numeral; that is, consider the set 

{revb(n)$b(n+ 1) I n ~ I}. 

Show that this set is a CFL. 

4. Recall from Exercise 3 of Homework 5 the set PAREN2 of balanced 
strings of parentheses of two types, ( ) and []. Give CFGs in Chomsky 

and Greibach normal form generating the set PAREN 2 - { E }, and prove 
that they are correct. 
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Homework 7 

1. Describe a parser to parse regular expressions according to the prece­

dence relation 

* >. > + 
Here> means "has higher precedence than." The main differences you 
will have to account for between regular expressions and the arith­
metic expressions discussed in Lecture 26 are: (i) the unary operator 

* comes after its operand, not before it as with unary minus; and (ii) 
the concatenation operator· can be omitted. lllustrate the action of 

your parser on the expression 

(a + b)* + ab*a. 

2. Prove that if A is a CFL and R is a regular set, then An R is a CFL. 

(Hint: Use a product construction.) 

3. Recall the shuffle operator II from Homework 4. Show that the shuffle 
of two CFLs is not necessarily a CFL. (Hint: Use the previous exercise 
to simplify the argument.) 

4. Let A be any regular set. Show that the set 

{x 13y Iyl = 21.,1 and xy E A} 

is regular. 



Homework 8 

Homework 8 309 

1. Describe a TM that accepts the set {an 1 n is a power of 2}. Your 

description should be at the level of the descriptions in Lecture 29 of 
the TM that accepts {ww 1 w E ~*} and the TM that implements the 
sieve of Eratosthenes. In particular, do not give a list of transitions. 

2. A linear bounded automaton (LBA) is exactly like a one-tape Turing 
machine, except that the input string z E ~* is enclosed in left and 
right endmarkers I- and -l which may not be overwritten, and the 
machine is constrained never to move left of the I- nor right of the -l. 
It may read and write all it wants between the endmarkers. 

(a) Give a rigorous formal definition of deterministic linearly bounded 

automata, including a definition of configurations and accep­

tance. Your definition should begin as follows: "A deterministic 
linearly bounded automaton (LEA) is a 9-tuple 

M = (Q, ~, r, 1-, -l, 0, s, t, r), 

where Q is a finite set of states, ... " 

(b) Let M be a linear bounded automaton with state set Q of size k 

and tape alphabet r of size m. How many possible configurations 
are there on input z, Izl = n? 

(c) Argue that the halting problem for deterministic linear bounded 
automata is decidable. (Hint: You need to be able to detect after 
a finite time if the machine is in an infinite loop. Presumably the 
result of part (b) would be useful here.) 

(d) Prove by diagonaiization that there exists a recursive set that is 
not accepted by any LBA. 

3. Let A be any regular set. Show that the set 

{z 13y Iyl = IZl2 and zy E A} 

is regular. 
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Homework 9 

1. Prove that the following question is undecidable. Given a Turing ma­

chine M and state q of M, does M ever enter state q on some input? 

(This problem is analogous to the problem of identifying dead code: 
given a PASCAL program containing a designated block of code, will 

that block of code ever be executed?) 

2. Prove that it is undecidable whether two given Turing machines accept 
the same set. (This problem is analogous to determining whether two 
given PASCAL programs are equivalent.) 

3. Prove that the emptiness problem for deterministic linearly bounded 

automata (Le., whether L(M) = 0) is undecidable. (Hint: Think 

VALCOMPS.) 

4. Prove that an r.e. set is recursive iff there exists an enumeration 
machine that enumerates it in increasing order. 

5. For A, B ~ ~*, define 

AlB ~f {x 13y E B xy E A}, 

A - B ~ {x IVy E B xy E A}. 

(a) Show that if A is regular and B is any set whatsoever, then AlB 
and A - B are regular. 

(b) Show that even if we are given a finite automaton for A and a Tur­
ing machine for B, we cannot necessarily construct an automaton 

for AlB or A - B effectively. 
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1. Show that neither the set 

TOTAL ~f {M I M halts on all inputs} 

nor its complement is r.e. 
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2. Consider one-tape Turing machines that are constrained not to over­
write the input string. They may write all they want on the blank 
portion of the tape to the right of the input string. 

(a) Show that these machines accept only regular sets. (If you're 
thinking, "Hey, why not just copy the input string out to the 
blank portion of the tape," think again ... ) 

(b) Show that, despite (a), it is impossible to construct an equivalent 
finite automaton effectively from such a machine. 

3. Show that it is undecidable whether the intersection of two CFLs is 
nonempty. (Hint: Use a variant of VALCOMPS in which every other 
configuration is reversed: 

ao#rev al #a2 #rev a3 # ... #an . 

Express this set as the intersection of two CFLs.) 
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Homework 11 

1. Recursive enumerability is intimately linked with the idea of unbounded 
existential search. Often an algorithm for accepting an r.e. set can be 

characterized in terms of searching for a witness or prool that a given 
input x is in the set. 

A binary relation R on strings over {O, I} is called recursive if the set 

{x#y I R(x,y)} 

is a recursive set. Here # is just another input symbol different from 

° or 1. 

Show that a set A ~ {O, I} * is r .e. if and only if there exists a recursive 
binary relation R such that 

A = {x E {O, 1}* 13y R(x,y)}. 

2. Show that it is undecidable whether the intersection of two given CFLs 

is again a CFL. (Hint: Use Homework 10, Exercise 3.) 
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1. A context-sensitive grammar (CSG) or type 1 grammar is a type 0 

grammar that obeys the following additional restriction: all produc­
tions a -4 f3 satisfy lal ~ 1f31. Give CSGs for the following sets. 

(a) {x E {a,b,c}+ I #a(x) = #b(x) = #c(x)} 

(b) {an'ln~l} 

2. Show that context-sensitive grammars and nondeterministic linearly 

bounded automata are equivalent in the following sense: 

(a) for every context-sensitive grammar G, there is a nondetermin­

istic LBA M such that L(M) = L(G); and 

(b) for every nondeterministic LBA M, there is a context-sensitive 
grammar G such that L(G) = L(M) - {f}. 

3. Give constructions showing that the following number-theoretic func­
tions are primitive recursive. 

(a) quotient(x,y) = quotient when dividing x by y using integer 
division; for example, quotient (7, 2) = 3. 

(b) remainder( x, y) = remainder when dividing x by y using integer 
division; for example, remainder(7,2) = 1. 

(c) prime( x) = 1 if x is prime, 0 otherwise. 
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Finite Automata and Regular Sets 

1. Let B be a set of strings over a fixed finite alphabet. We say B is 
transitive if BB ~ B and reflexive if fEB. Prove that for any set of 
strings A, A * is the smallest reflexive and transitive set containing A. 
That is, show that A * is a reflexive and transitive set containing A, 
and if B is any other reflexive and transitive set containing A, then 
A* ~ B. 

2. Consider the following pairs of deterministic finite automata. Use the 
product construction to produce deterministic automata accepting (i) 
the intersection and (ii) the union of the sets accepted by these au­
tomata. 

(a) 

a b a b 
-+ 

1 Iii -+ 

1m-2F 1 1 2F 2 1 

(b) 

a b a b 
-+ !fIT -+ !FIIT 2F 3 1 2 1 3 

3F 1 2 3F 2 1 
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(c) 

a b 

1122 
2F 11 1 

a b 

11""2"1 
2F 11 2 

3. Consider the following nondeterministic finite automaton. 

(a) Give a string beginning with a that is not accepted. 

(b) Construct an equivalent deterministic automaton using the sub­

set construction. Assuming the states are named s, t, u, v from 

left to right, show clearly which subset of {s, t, u, v} corresponds 

to each state of the deterministic automaton. Omit inaccessible 

states. 

4. Consider the following NFA. 

(a) Construct an equivalent DFA using the subset construction. Omit 
inaccessible states. 

(b) Give an equivalent regular expression. 

5. Convert the following nondeterministic finite automata to equivalent 

deterministic ones using the subset construction. Show clearly which 

subset of {s, t, u, v} corresponds to each state of the deterministic 

automaton. Omit inaccessible states. 

(a) 

a,b 

Oa a b .® ... • • 
s t u v 
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(b) 

~a 
U ~. a 

• • 
s t u v 

H6. Prove that NFAs are exponentially more succinct than DFAs: for any 

m, there exists an NFA with m states such that any equivalent DFA 
has at least 2m - 1 states. 

7. A convenient way of specifying automata is in terms of transition ma­
trices. If the automaton has n states, the transition function 6 can be 

specified by an n x n matrix G, indexed by states, whose u, vth entry 

gives the set of input symbols taking state u to state Vj in symbols, 

Guv = {a E ~ 16(u,a) = v}. 

For example, the transition function of the automaton of Example 3.1 

of Lecture 3 could be represented by the 4 x 4 matrix 

{a} 
{b} 
o 
o 

o 
{a} 
{b} 
o 

o 1 o 
{a} . 

{a,b} 

Consider the collection of square matrices indexed by Q whose entries 

are subsets of ~*. We can define addition and multiplication on such 

matrices in a natural way as follows: 

(A + B)uv ~f Autl U Buv , 

(AB)uv ~ U AuwBwv. 
wEQ 

Let us also define the identity matrix I: 

Iutl ~f { ~} if u = v, 
otherwise. 

The powers of a matrix are defined inductively: 

AO ~f I, 

An+1 ~ AnA . 

• s ( a) Prove that 

(An)utl = {x E ~* Ilxl = n and 8(u, x) = v}. 
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(b) Define the asterate A* ofthe matrix A to be the componentwise 
union of all the powers of A: 

(A*)uv ~f U (An) .. v. 
n;:::O 

Let s be the start state of the automaton and F the set of accept 

states. Prove that 

L(M) = U (A*)st. 
tEF 

8. Generalize Homework 2, Exercise 3 to arbitrary distance k. That is, 
prove that if A ~ {O, 1}* is regular, then so is N1c(A), the set ofstrings 
of Hamming distance at most k from some string in A. 

9. (a) Show that if an NFA with k states accepts any string at all, then 

it accepts a string of length k - 1 or less. 

H(b) Give an NFA over a single letter alphabet that rejects some 
string, but the length of the shortest rejected string is strictly 
more than the number of states . 

.. H(C) Give a construction for arbitrarily large NFAs showing that the 

length of the shortest rejected string can be exponential in the 
number of states. 

10. Recall from Lecture 10 that an NFA with e-tmnsitions is a structure 

M = (Q, ~, E, ll, S, F) 

such that E is a special symbol not in ~ and 

ME = (Q, ~ U {E}, ll, S, F) 

is an ordinary NFA over the alphabet ~ U {E}. 

Define the e-closure GE(A) of a set A ~ Q to be the set of all states 
reachable from some state in A under a sequence of zero or more 
e-transitions: 

Ge(A) d~ U A(A,x). 

"'E{E}* 

(a) Using e-closure, define formally acceptance for NFAs with e­
transitions in a way that captures the intuitive description given 
in Lecture 6. 

(b) Prove that under your definition, NFAs with e-transitions accept 
only regular sets. 
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(c) Prove that the two definitions of acceptance-the one given in 

part (a) involving E-closure and the one given in Lecture 10 
involving homomorphisms-are equivalent. 

11. Give regular expressions for each of the following subsets of {a, b} *. 
Recall that regular expressions over {a, b} may use 1:, ~, a, b, and 
operators +, *, and· only. 

(a) {x I x does not contain the substring a} 

(b) {x I x does not contain the substring ab} 

** (c) {x I x does not contain the substring aba} 

Try to simplify the expressions as much as possible using the algebraic 
laws of Lecture 9. 

12. Match each NFA with an equivalent regular expression. 

(a) 1 (b) 1 (c) 1 

1 0 0 

o 0 0 

(d) 1 (e) 1 

1 0 

o 0 

(i) E + 0(01 *1 + 00)*01 * 

(ii) E + 0(10*1 + 10)*10* 

(iii) E + 0(10*1 + 00)*0 

(iv) E + 0(01 *1 + 00)*0 

(v) f + 0(10*1 + 10)*1 
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13. Match each NFA with an equivalent regular expression. 

(a) (b) (c) 

b a a 

a a 

a a 

(d) 

a a 

a a 

a a 

(i) (aa*b + ba*b)*ba* 

(li) (aa*a + aa*b)*aa* 

(iii) (ba*a + ab*b)*ab* 

(iv) (ba*a + aa*b) *aa* 

(v) (ba*a + ba*b)*ba* 

a 

14. Give an NFA with four states equivalent to the regular expression 

(01 + 011 + 0111)*. 

Convert this automaton to an equivalent deterministic one using the 

subset construction. Name the states of your NFA, and show clearly 

which set of states corresponds to each state of the DFA. Omit inac­

cessible states. 

15. Give a regular expression equivalent to the following automaton . 

• ~b 
a,b b~ 

16. Give deterministic finite automata equivalent to the following regular 

expressions. 
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(a) (00 + 11)* (01 + 10) (00 + 11)* 

(b) (000)*1 + (00)*1 

(c) (0(01)*(1 + 00) + 1(10)*(0 + 11))* 

17. Give a regular expression equivalent to the following DFA. 

a 

a 

b 

18. Consider the regular sets denoted by the following pairs of regular 

expressions. For each pair, say whether the two sets are equal. If so, give 

a proof using the algebraic laws of Lecture 9; if not, give an example 
of a string in one that is not in the other. 

(i) (0 + 1)* 0* + 1* 

(ii) 0(120)*12 01(201)*2 

(iii) ~* E* 

(iv) (0*1*)* (0*1)* 

(v) (01 + 0)*0 0(10 + 0)* 

19. Let 0: = (a + b)*ab(a + b)*). Give a regular expression equivalent to 
the pattern '" 0: when 

(a) ~ = {a,b}, 

(b) ~ = {a,b,c}. 

Simplify the expressions as much as possible. 

20. Prove the following theorems of Kleene algebra. Reason equationally 
using axioms (A.1) through (A.15) only. 

S(a) a*a* = a* 

(b) a*a = aa* 

(c) a** = a* 
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(d) (a*b)*a* = (a + b)* 

(e) a(ba)* = (ab)*a 

(f) a* = (aa)* + a(aa)* 

21. Prove Lemma A.1. 

·22. Prove that in the presence of Kleene algebra axioms (A.I) through 

(A.ll), axioms (A.12) and (A.14) are equivalent (and by symmetry, so 

are (A.13) and (A.15)). 

·23. Here is a purely algebraic version of Miscellaneous Exercise 1. An el­

ement c of a Kleene algebra I( is said to be reflexive if I ::; c and 
transitive if cc ::; c. We say that c contains a if a ::; c. Prove that for 
any a E 1(, 

(a) a* is reflexive and transitive and contains a; and 

(b) a* is the least element of I( satisfying these properties. That is, if 

c is any element of I( that is reflexive and transitive and contains 
a, then a* ::; c. 

This justifies the terminology reflexive transitive closure. 

··24. Prove Lemma A.2: the family M(n, I() of n x n matrices over a Kleene 
algebra I( with the matrix operations defined as in Supplementary 
Lecture A again forms a Kleene algebra. 

s25. Prove Theorem A.3. 

HS26. For any set of strings A, define the set 

FirstHalvesA = {x 13y Iyl = Ixl and xy E A}. 

For example, FirstHalves {a, ab, bab, boob} = {a, bb}. Show that if A is 
regular, then so is FirstHalves A. 

27. For any set of strings A, define the set 

FirstThirds A = {x 13y Iyl = 21xl and xy E A}. 

For example, FirstThirds {to, a, ab, bab, bbab} = {to, b}. Show that if A is 
regular, then so is FirstThirds A. 

28. Given a set A ~ {O, I}*, let 

A' = {xy I xly E A}. 
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That is, A' consists of all strings obtained from a string in A by deleting 

exactly one 1. Show that if A is regular, then so is A'. 

29. For A a set of natural numbers, define 

binary A = {binary representations of numbers in A} ~ (0 + 1) *, 

unaryA={OnlnEA} ~ 0*. 

For example, if A= {2,3,5}, then 

binary A = {10, 11, 101}, 

unary A = {OO,OOO,OOOOO}. 

Consider the following two propositions: 

(i) For all A, if binary A is regular, then so is unary A. 

(ii) For all A, if unary A is regular, then so is binary A. 

One of (i) and (ii) is true and the other is false. Which is which? Give 

a proof and a counterexample. 

·30. Let A be a regular set. Consider the two sets 

{x 13n ;:: 0 3y E A y = xn}, 

{x 13n ;:: a 3y E A x = yn}. 

One is necessarily regular and one is not. Which is which? Give a proof 
and a counterexample . 

• H31. One of the following subsets of {a, b, $} * is regular and the other is 

not. Which is which? Give proofs. 

{xy I x,y E {a,b}*, #a(x) = #b(y)} 

{x$y I x,y E {a,b}*, #a(x) = #b(y)} 

••• H32. Two of the following three sets are always regular for any regular set 

A. Which are they? Give two proofs and a counterexample. 

(a) {x I xl"l E A} 

(b) {x 13y Iyl = 221 - 1 and xy E A} 

(c) {x 13y Iyl = log Ixl and xy E A} 

•• Hs33. Let p be any polynomial of degree d with nonnegative integer coeffi­

cients. Show that if A is a regular set, then so is the set 

A' = {x 13y Iyl = p(lxl) and YEA}. 
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***34. (Seiferas and McNaughton [113]) Let!: N -+ N be a function. Call 
! regularity preserving if the set 

{x 13y Iyl = !(Ixl) and xy e A} 

is regular whenever A is. Call ! weakly regularity preserving if the set 

{x 13y Ivl = !(Ixl) and yeA} 

is regular whenever A is. Prove that the following statements are 
equivalent: 

(a) f is regularity preserving; 

(b) f is weakly regularity preserving; 

(c) for any ultimately periodic set U S;; N, the set 

rl(U) = {m I f(m) e U} 

is also ultimately periodic; and 

(d) for any n e N, the set {m I f(m) = n} is ultimately periodic, 
and f is ultimately periodic mod p for any p ;?: 1 in the sense 
that 

00 

'Vp;?: 1 3q;?: 1 'V n J(n) == J(n + q) mod p. 

00 

Here 'V means "for almost all" or "for all but finitely many." 
Formally, 

00 de! 
'V n <p(n) <===> 3m ;?: 0 'Vn;?: m <p(n). 

s35. Show that the set {ww I we {O, 1}*} is not regular. 

536. Show that the set 

PRIMES ~ {aP I p is prime} 

is not regular. 

37. Which of the following sets are regular and which are not? Give justi­
fication. 

(a) {an b2m In;?: 0 and m ;?: O} 

(b) {anbm In = 2m} 

(c) {anbm In # m} 

(d) {aP- 1 I p is prime} 



(e) {xcx I x e {a,b}*} 

(f) {xcy I x,y e {a,b}*} 

(g) {anbn+481 I n ~ O} 

(h) {anbm In - m ~ 481} 
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(i) {anbm I n ~ m and m ~ 481} 

(j) {anbm I n ~ m and m ~ 481} 

(k) L«a*b)*a*) 

(1) {anbncn I n ~ O} 

(m) {syntactically correct PASCAL programs} 

38. For each of the following subsets of {O, 1} *, tell whether or not it is 
regular. Give proof. 

(a) {x I #1(x) = 2· #O(x)} 

(b) {x I #1(x) - #O(x) < lO} 

(c) {x I #1(x) . #O(x) is even} 

39. Prove that the set {anbmck I n,m, k ~ 0, n + m = k} is not regular. 

40. Prove that the set {aibi I i is even or j < i} is not regular. 

41. Prove that no infinite subset of {anbn I n ~ O} is regular. 

··42. Give a set A !; {a,b}* such that neither A nor {a,b}* - A contains 
an infinite regular subset. Prove that this is true of your set . 

.. H43. Give a nonregular set that satisfies condition (P) of the pumping 

lemma for regular sets (Lecture 11); that is, such that the demon has a 
winning strategy. Thus (P) is a necessary but not a sufficient condition 
for a set to be regular. 

44. Prove the following stronger versions of the pumping lemma for regular 
sets that give necessary and sufficient conditions for a set to be regular . 

• 8(a) (Jaffe [62]) A set A I:;; E* is regular if and only if there exists 

k ~ 0 such that for all y e E* with Iyl = k, there exist u, v, w e 
E* such that y = uvw, v f:. E, and for all z e E* and i ~ 0, 

yz e A -¢:::::} uviwz e A. 
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O(b) (Stanat and Weiss [117]) A set A ~ E* is regular if and only 

if there exists k ~ 0 such that for all y E E* with Iyl ~ k, there 

exist U,V,W E E* such that y = UVW, v =j:. €, and for all X,Z E E* 

and i ~ 0, 

xuz E A¢::::} xuviz E A. 

45. Let A be any subset of {a}* whatsoever. 

oH(a) Show that A* is regular. 

"S(b) Show that 

A* = {anp I n ~ O} - G, 

where G is some finite set and p is the greatest common divisor 

of all elements of the set {m I am E A}. This is a generalization 

of the so-called postage stamp problem: any amount of postage 
over 7 cents can be made with some combination of 3 and 5 cent 

stamps. 

46. Prove that the DFA with 15 states shown in Lecture 5 for the set (5.1) 

is minimal. 

47. Minimize the following DFAs. Indicate clearly which equivalence class 

corresponds to each state of the new automaton. 

(a) (b) 
a b a b 

-> 1 6 3 -> 1 2 3 
2 5 6 2 5 6 

3F 4 5 3F 1 4 

4F 3 2 4F 6 3 
5 2 1 5 2 1 

6 1 4 6 5 4 

(c) (d) 
a b a b 

-> OF 3 2 -> 0 3 5 
IF 3 5 1 2 4 
2 2 6 2 6 3 
3 2 1 3 6 6 
4 5 4 4F 0 2 

5 5 3 5F 1 6 

6 5 0 6 2 6 
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(e) (f) 
a b a b 

-+ 0 3 5 -+ 0 2 5 

1 6 3 1 6 2 
2 6 4 2 6 6 

3 6 6 3 6 4 
4F 0 5 4F 5 0 

5F 2 4 5F 4 3 
6 1 6 6 1 6 

(g) (h) 
a b a b 

-+ 1F 6 4 -+ 1 6 2 
2F 7 5 2 3 6 

3 2 8 3F 2 4 
4 1 8 4F 5 3 
5 2 6 5 4 1 
6 3 1 6 1 5 

7 5 2 7 1 8 
8 4 2 8 8 7 

48. Consider the DFA with states Zs = {O, 1, 2, 3, 4}, input alphabet {O, 1}, 

start state 0, final state 0, and transition function 

8(q,i) = (q2 - i) mod 5, q E Zs, i E {0,1}. 

Prove that this DFA accepts exactly the set of binary strings containing 

an even number of l's. 

HS49. Prove the correctness of the collapsing algorithm of Lecture 14 (The­
orem 14.3). 

50. Let E = {a, b}. For any x E E*, define 

sufx = {ux I U E E*}, 

the set of strings ending with x. The set suf x is accepted by a non­

deterministic finite automaton with Ixl + 1 states. For example, here 

is a nondeterministic finite automaton for suf abbaba: 

b ... b a .. .. . b .. . 
(a) Draw the minimal deterministic finite automaton for suf abbaba. 
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.. H (b) Argue that for any x, the minimal deterministic finite automaton 

for suf x has exactly Ixl + I states. 

**H51. (Greibach) Let M be an NFA, A = L(M). Starting with M, do the 

following: 

(a) reverse the transitions and interchange start and final states to 

get an NFA for rev A; 

(b) determinize the resulting NFA by the subset construction, omit­

ting inaccessible states; 

(c) do the above two steps again. 

Prove that the resulting automaton is the minimal DFA for A. 

52. For each of the following finite automata: 

(i) Give an equivalent minimal deterministic finite automaton. Don't 

forget to remove inaccessible states. 

(ti) Give an equivalent regular expression. 

(a) (b) 

a b a b 
-+ IF 2 5 -+ IF 2 6 

2F I 4 2F I 7 

3 7 2 3 5 2 
4 5 7 4 2 3 
5 4 3 5 3 I 

6 3 6 6 7 3 

7 3 I 7 6 5 

(c) (d) 

a b a b 
-+ I I 3 -+ IF 2 5 

2F 6 3 2F I 6 
3 5 7 3 4 3 
4F 6 1 4 7 1 

5 I 7 5 6 7 

6F 2 7 6 5 4 

7 5 3 7 4 2 
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53. Consider the DFA with states 2:5 = {a, 1,2,3, 4}, input alphabet {O, I}, 
start state 0, final state 0, and transition function 

t5(q, i) = (q2 + i) mod 5, q E 2:5, i E {O, I}. 

Give an equivalent minimal DFA. 

54. Let == be any right congruence of finite index on E*. Prove that any 
equivalence class of == is a regular subset of E* . 

55. Consider the regular set R represented by the regular expression 

a*b* + b*a*. 

(a) Draw the minimal DFA for R. 

H (b) Give a regular expression describing each of the equivalence classes 
of the Myhill-Nerode relation ==R defined in Lecture 16. 

56. Let PAREN be the set of balanced strings of parentheses [ ]. Describe 

the equivalence classes of the relation ==PAREN defined in Lecture 16 . 

.. s57. For strings x and y over a finite alphabet E, define x!; y if x is a (not 

necessarily contiguous) substring of Yi that is, if x can be obtained 

from Y by deleting zero or more letters. For example, 

abc !; ababac !; cabacbaac. 

A subset A C E* is said to be closed downward under C if x E 
A whenever z- !; y and yEA. Show' that any subset of £* closed 
downward under!; is regular. 

You may use Higman's lemma: any subset of E* has a finite !;-base. 
A !;-base of a set X is a subset Xo ~ X such that for all y E X there 
exists an x E Xo such that x !; y. Higman's lemma is equivalent to 
saying that the set of !;-minimal elements of any X ~ E* is finite. 
You need not prove Higman's lemma. 

58. (Kapur) Allow a concise representation of strings by using exponents 

to denote repeated substrings. For example, 

Denote by / x/the length of the most concise representation of string 
x (exponents are given in binary). Let Ixl denote the ordinary length 
of x. Let R be a regular set. 
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·(a) Show that there exist constants c and d depending only on R 

such that for all x E R, there exists another string y E R such 

that Iyl-Ixl :5 d and /y/ :5 clog Iyl· 

··(b) Answer the same question with the condition Iyl - Ixl :5 d re­
placed by the condition Iyl = Ixl . 

... 859. Here is a generalization of nondeterminism. An alternating finite au­
tomaton (AFA) is a 5-tuple 

M = (Q, ~, 0, F, 0:) 

where Q is a finite set of states, ~ is a finite input alphabet, F : Q -+ 

{O, I} is the characteristic function of a set of final states, that is, 

F( ) = {I if q is ~ final state, 
q ° othel"Wlse, 

o is the transition function 

0: (Q x~) -+ «Q -+ {O,l}) -+ {O,l}), 

and 0: is the acceptance condition 

0:: (Q -+ {O, I}) -+ {O, I}. 

Intuitively, a computation of M generates a computation tree whose 

depth is the length of the input string. The function F gives a labeling 
of ° or 1 to the leaves of this computation tree. For all q E Q and 
a E ~, the Boolean function 

o(q,a): (Q -+ {O,l}) -+ {O,l} 

takes a Boolean labeling on states at level i and computes a new la­

beling at level i-I; this is used to pass Boolean labels ° or 1 back up 
the computation tree. The machine accepts if the labeling at level ° 
satisfies 0:. An NFA is just an AFA in which the Boolean functions 0: 

and o(q, a) compute the Boolean "or" of some subset of the inputs. 

Formally, the transition function 0 uniquely determines a map 

6: (Q x ~*) -+ «Q -+ {O, I}) -+ {O, I}), 

defined inductively as follows: for q E Q, a E ~, and x E ~*, 

6(q,€)(u) = u(q), 

6(q,ax)(u) = 0(q,a)(>.p.(6(p,x)(u))). 

(Here ">.p ... " means "the function which on input p computes ... ;" 
see Lecture 37.) The machine is said to accept x E ~* if 

0:(>.p.(6(P,x)(F))) = 1. 
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Prove that a set A ~ ~* is accepted by a k-state alternating finite 

automaton if and only if its reverse rev A is accepted by a 2k-state 

deterministic finite automaton. 

H60. Show that minimal-state NFAs are not necessarily unique. 

61. (Vardi [122]) In this exercise we show that two-way nondeterministic 
finite automata accept only regular sets. Let M be a 2NFA with states 

Q, start states S, accept state t, and transition function 

t::.: Q x (~U {I-, -I}) -+ 2QX({L,R}). 

Assume without loss of generality that whenever M accepts, it moves 
its head all the way to the right endmarker -I and enters its accept 

state t. 

(a) Let x = aIa2· .. an E ~*, ai E~, 1:5 i:5 n. Let ao =1- and 
an+1 = -I. Argue that x is not accepted by M iff there exist sets 

Wi ~ Q, 0:5 i:5 n+ 1, such that 

• S ~ Wo; 

• ifu E Wi, 0:5 i:5 n, and (v,R) E t::.(u,ai), then v E Wi+1; 

• ifu e Wi, 1 :5 i :5 n+1, and (v,L) e t::.(u,ai), then v E Wi-I; 

and 

H(b) Using (a), show that "'L(M), hence L(M), is regular. 

62. Prove Lemma B.S. 

63. Prove that if a bisimulation between two NFAs is a one-to-one corre­
spondence on the states, then it is an isomorphism. 

64. Prove that if NFAs M and N are bisimilar, then the relation (B.1) of 
Supplementary Lecture B gives a bisimulation between the determin­

istic automata obtained from M and N by the subset construction. 

65. Prove that two DFAs are bisimilar if and only if they accept the same 
set. 

66. Prove Lemma C.1l. 

67. Prove Lemma D.2. 
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68. Prove that the relation =A defined in the statement of the Myhill­

Nerode theorem for term automata (Theorem D.3) is a congruence on 
the term algebra TIJ(A). 
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Pushdown Automata and Context-Free Languages 

69. Consider the following context-free grammar G: 

S --+ ABS lAB, 

A --+ aA I a~ 
B --+ bA. 

Which of the following strings are in L( G) and which are not? Provide 
derivations for those that are in L( G) and reasons for those that are 
not. 

(a) aabaab 

(b) aaaaba 

(c) aabbaa 

(d) abaaba 

oH70. Consider the context-free grammar G with start symbol S and pro­
ductions 

S --+ aAB I aBA I bAA I E, 

A --+ as I bAAA, 

B --+ aABB I aBAB I aBBA I bS. 
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Prove that L( G) is the language consisting of all words that have 
exactly twice as many a's as b's. 

71. Give a grammar with no f- or unit productions generating the set 

L(G) - {f}, where G is the grammar 

S -+ aSbb I T, 

T -+ bTaa I S I f. 

72. Give grammars in Chomsky and Greibach normal form for the follow­
ing context-free languages. 

(a) {an b2nck I k,n ~ 1} 

(b) {anbkan I k,n ~ 1} 

(c) {akbmcn I k,m,n ~ 1, 2k ~ n} 

( d) {a, b} * - {palindromes} 

73. Let I; = {0,1}. Let x denote the Boolean complement of Xj that is, 
the string obtained from x by changing all O's to l's and l's to O's. Let 
rev x denote the reverse of Xj that is, the string x written backwards. 
Consider the set 

A = {x I rev X =x}. 

For instance, the strings 011001 and 010101 are in A but 101101 is 
not. 

(a) Give a CFG for this set. 

(b) Give grammars in Chomsky and Griebach normal form for A -

{fl· 

• 74. Consider the set of all strings over {a, b} with no more than twice as 

many a's as b's: 

{x E {a,b}* I #a(x) :::; 2#b(x)}. 

(a) Give a CFG for this set, and prove that it is correct. 

(b) Give a pushdown automaton for this set. Specify completely all 
data (states, transitions, etc.) and whether your machine accepts 
by final state or empty stack. Show sample runs on the input 
strings aabbaa, aaabbb, and aaabaa. 
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75. Our definition of patterns and regular expressions in Lecture 7 was a 
little imprecise since it did not mention parentheses. Make this defini­
tion precise by using a CFG to specify the set of regular expressions 

over an alphabet ~. The grammar you come up with should have 
terminal symbols ~ U {E, f), +, " (, ), *}. 

76. Consider the set 

a*b*c* - {anbncn I n ~ O}, 

the set of all strings of a's followed by b's followed by c's such that the 
number of a's, b's, and c's are not all equal. 

(a) Give a CFG for the set, and prove that your grammar is correct. 

(b) Give an equivalent PDA . 

• 877. What set is generated by the following grammar? 

S -+ bS I Sa I aSb I € 

Give proof. 

878. For A, B ~ ~*, define 

AlB ~ {x E}J* 13y E B xy E A}. 

Prove that if L is a CFL and R is a regular set, then LI R is CFL. 

H79. Show that the context-free languages are closed under homomorphic 
images and preimages. 

H80. (Ginsburg and Rice [45]) Show that any context-free subset of {a}* 
is regular. 

81. The specification of while programs at the beginning of Supplemen­
tary Lecture I is rather imprecise. Give a rigorous context-free specifi­
cation. 

82. Prove that the set 

PRIMES ~f {aP I p is prime} 

is not context-free. 

uH83. Show that {a,b}* - {anbn2 I n ~ O} is not context-free. 
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84. Which of the following sets are context-free and which are not? Give 

grammars for those that are context-free and proof for those that are 

not. 

(a) {anbmc" I n,m,k ~ 1 and (2n = 3k or 5k = 7m)} 

(b) {anbmc" I n,m,k ~ 1 and (2n = 3k and 5k = 7m)} 

(c) {anbmc" In, m, k ~ 1 and (n -::f. 3m or n -::f. 5k)} 

(d) {anbmc" I n,m,k ~ 1 and (n -::f. 3m and n -::f. 5k)} 

(e) {anbmc"ln,m,k~landn+k=m} 

(f) {a'lh"dl I i,j, k,l ~ 1, i = j, k = l} 

(g) {a'bic"dll i,j,k,l ~ 1, i = k, j = l} 

(h) {a'bic"dll i,j,k,l ~ 1, i = l, j = k} 

85. Say whether the following sets are (i) regular, (ii) context-free but not 

regular, or (iii) not context-free. Give justification. 

(a) {x E {a,b,c}* I #a(x) = #b(x) = #c(x)} 

(b) {ai I j is a power of 2} 

(c) {x E {O, I} * I x represents a power of 2 in binary} 

(d) L(a*b*c*) 

(e) the set of all balanced strings of parentheses of three types, 
()[]{} 

(f) {anbm In =fi m} 

(g) {anbmc"dl 12n = 3k or 5m = 7l} 

(h) {anbmc"dl 12n = 3k and 5m = 7l} 

(i) {anbmc"dl 12n = 3m and 5k = 7l} 

(j) {anbmc"dl I2n = 31 and 5k = 7m} 

(k) {aibic" I i,j, k ~ 0 and i > j and j > k} 

(1) {aibick I i,j, k ~ ° and (i > j or j > k)} 

(m) {x E {a,b}* I #a(x) > #b(x)} 

(n) {ambn I m,n ~ 0, 5m + 3n = 24} 

(0) {ambn I m,n ~ 0, 5m - 3n = 24} 
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.. H86. Give a non-context-free set that satisfies the condition of the pumping 

lemma for CFLs given in Lecture 22; that is, such that the demon has 
a winning strategy. 

87. Let :E be a finite alphabet. For a set A ~ :E*, define 

cycle A = {yx I xy E A}, 

permute A = {y 13x E A Va E :E #a(x) = #a(y)}. 

For example, if:E = {a,b,c} and A = {aaabe}, then 

cycle A = {aaabc, aabca, abcaa, bcaaa, caaab} , 

permute A = {aaabe, aabca, abcaa, beaaa, eaaab, 
aabae,abaea,baeaa,aeaab,eaaba, 
abaae,baaea,aaeab,aeaba,eabaa, 
baaac, aaaeb, aaeba, aebaa, ebaaa}. 

Which of the following propositions are true and which are false? Give 

proof. 

(a) For all A ~ :E*, if A is regular, then so is cycle A. 

(b) For all A ~ :E*, if A is regular, then so is permute A . 

.. H(C) For all A ~ :E*, if A is context-free, then so is cycleA. 

(d) For all A ~ :E*, if A is context-free, then so is permute A. 

88. Recall the shuflle operator II from Homework 4. 

(a) Show that if L is context-free and R is regular, then L II R is 
context-free. 

*(b) If L is a DCFL, is L II R necessarily a DCFL? Give proof. 

* 89. For A, B ~ :E*, define 

AlB ~ {x 13y E B xy E A} 

A+- B ~f {x I Vy E B xy E A}. 

Exactly one of the following two statements is true. 

(a) If L is context-free, then so is LI:E*. 

(b) If L is context-free, then so is L +- :E*. 

Which is true? Give a proof and a counterexample. 

90. Let :E = {a, b, e}. Exactly one of the following four statements is true. 
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(a) For any A ~ ~*, if A is regular, then so is {xx I x E A}. 

(b) For any A ~ ~*, if A is regular, then so is {x I xx E A}. 

(c) For any A ~ ~*, if A is context-free, then so is {xx I x E A} . 

• H(d) For any A ~ ~*, if A is context-free, then so is {x I xx E A}. 

Which is true? Give a proof and three counterexamples. 

91. Using the grammar 

S -+ AB, A -+ a, B -+ AB I b, 

run the CKY algorithm on the string aab. Draw a table like the 
following one and fill it in completely. 

o 

92. (a) Modify the CKY algorithm to count the number of parse trees 
of a given string and to construct one if the number is nonzero. 

(b) Test your algorithm of part (a) on the grammar 

S -+ ST I a, 

T-+ BS, 

B-++ 

and string 

a+a+a+a. 

(Sanity check: the string has five parse trees.) 

... 893. Let D ~ ~* be a DCFL. One of the following sets is always a DCFL, 
the other is not necessarily. Which is which? Give proof for both. 

(a) {x 13a E ~ xa E D} 

(b) {x 13a E ~ ax E D} 

Conclude that the family of DCFLs is not closed under reversal. 
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94. Let I: be a fixed finite signature as described in Supplementary Lecture 
C. Give an unambiguous context-free grammar for the set of ground 

terms over I:. Unambiguous means that there is exactly one parse tree 

for each ground term. Prove that your grammar is correct and that it 

is unambiguous. 

··95. The context-free language {anbn In;:: O} is the unique ~ -minimal 
solution of the equation 

X=aXb+f. 

In general, let I: be a finite alphabet. Consider finite systems of equa­
tions of the form 

where the Xi are variables ranging over subsets of I:* and the Ei are 

regular expressions over Xl, ... ,Xn and I:. 

(a) Argue that any such system has a unique minimal solution 

You may want to use the Knaster-Tarski theorem: any monotone 
map on a complete partial order has a unique least fixpoint. A 
map 1 on a partially ordered set is monotone if x :5 Y -+ I(x) :5 
I(Y). A partially ordered set is complete if every subset of that 
set has a least upper bound. 

(b) For the Xl, ... ,Xn of part (a), show that Xl is a context-free 
language. 

(c) Show that all context-free languages arise in this way. 
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Turing Machines and Effective Computability 

96. Give a Turing machine with input alphabet {a} that on input am halts 

with am' written on its tape. Describe the operation of the machine 
both informally and formally. Be sure to specify all data. 

97. The Euclidean algorithm com pu tes the greatest common divisor (GCD) 
of two nonnegative integers: 

procedure gcd(m,n): 
if n = 0 then return(m) 

else return(gcd(n,m mod n» 

Give a Turing machine with input alphabet {a, #} that on input 
am#an halts with agcd(m,n) written on its tape. Describe the oper­

ation of the machine both informally and formally. Be sure to specify 
all data. 

98. Prove that the class of r.e. sets is closed under union and intersection. 

99. A queue machine is like a Turing machine, except that it has a queue 

instead of a tape. It has a finite queue alphabet r and a finite input 
alphabet I: ~ r. If x E I:* is the input, the machine starts in its start 
state s with x$ in the queue, where $ is a special symbol in r - I:. In 
each step, it removes a symbol from the front of the queue. Based on 
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that symbol and the current state, it pushes a string Z E r* onto the 
back of the queue and enters a new state according to the transition 
function o. It accepts by emptying its queue. 

S(a) Give a rigorous formal definition of these machines, including 

a definition of configurations and acceptance. Your definition 

should begin as follows: "A queue machine is a sextuple 

M = (Q, E, r, $, D, s), 

where ... " 

.. oHS(b) Prove that queue machines and Turing machines are equivalent 

in power. 

100. A one-counter automaton is an automaton with a finite set of states Q, 
a two-way read-only input head, and a separate counter that can hold 

any nonnegative integer. The input x E E* is enclosed in endmarkers 
1-, -1 f/. E, and the input head may not go outside the end markers. The 

machine starts in its start state s with its counter empty and with its 

input head pointing to the left endmarker 1-. In each step, it can test 

its counter for zero. Based on this information, its current state, and 
the symbol its input head is currently reading, it can either add one 

to its counter or subtract one, move its input head either left or right, 
and enter a new state. It accepts by entering a distinguished final state 
t. 

(a) Give a rigorous formal definition of these machines, including a 
definition of acceptance. Your definition should begin as follows: 

"A one-counter automaton is a septuple 

M = (Q, E, 1-, -1, s, t, D), 

where ... " 

O(b) Prove that the membership problem for deterministic one-counter 
automata is decidable: given M and x, does M accept x? 

H(c) Prove that the emptiness problem is undecidable: given a one­

counter automaton M, is L(M) = 0? 

101. A ray automaton consists of an infinite number of deterministic finite 
automata Ao, AI, A 2 , ••• arranged in a line. The automata all have the 

same set of states Q, the same start state s, and the same transition 
function 0 except Ao, which has a different transition function Do since 
it has no left neighbor. They all start simultaneously in their initial 
state s and execute synchronously. In each step, each Ai moves to a new 
state, depending on its own current state and the current states of its 
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immediate left and right neighbors, according to its transition function. 
The ray automaton is said to halt if Ao ever enters a distinguished final 
state t. There is no input alphabet. 

(a) Give a rigorous formal definition of ray automata, including a 
definition of execution and halting. Your definition should begin 

as follows: "A my automaton is a quintuple 

A = (Q, s, t, 00, 0), 

where Q is a finite set of states, ... " 

(b) Prove that the halting problem for ray automata is undecidable. 

(c) Is the halting problem for ray automata semidecidable? Why or 

why not? 

102. A deterministic two-dimensional Thring machine is like a Turing ma­
chine except that instead of a one-dimensional tape it has a two­
dimensional tape that is like a chessboard, infinite in all directions. 

It has a finite input alphabet E and a finite tape alphabet r contain­

ing E as a subset. If x E E* is the input, ixi = n, the machine starts in 
its start state s with x written in tape cells (0, 1), (0, 2), ... , (0, n), the 
origin (0,0) containing a special symbol 0 E r - E, and all other cells 
(i,j) containing a special blank symbol u E r - E. It has a read/write 
head initially pointing to the origin. In each step, it reads the symbol 

of r currently occupying the cell it is scanning. Depending on that 
symbol and the current state of the finite control, it writes a symbol 

of r on that cell, moves one cell either north, south, east, or west, and 
enters a new state, according to its transition function 0.1t accepts its 
input by erasing the entire board; that is, filling all cells with u. 

H(a) Give a rigorous formal definition of these machines, including 
a definition of configurations, the next configuration relation, 
and acceptance. Try to be as precise as possible. Your definition 
should begin as follows: "A two-dimensional Thring machine is 
a 7-tuple 

M = (Q, E, r, u, 0, s, 0), 

where Q is a finite set of states, ... " 

(b) Argue that two-dimensional Turing machines and ordinary Tur­

ing machines are equivalent in the sense that each can simulate 
the other. Describe the simulations informally (Le., no transi­
tions) but in sufficient detail that transitions implementing your 
description could readily be written down. 
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103. A nondeterministic Turing machine is one with a multiple-valued tran­
sition relation. Give a formal definition of these machines. Argue that 
every nondeterministic TM can be simulated by a deterministic TM. 

104. Show that the type 0 grammars (see Lecture 36) generate exactly the 

r.e. sets. 

105. For A, B ~ ~*, define 

AlB ~f {x E}J* 13y E B xy E A}. 

(a) Show that if A and Bare r.e., then so is AlB. 

OH(b) Show that every r.e. set can be represented as AlB with A and 

B CFLs. 

106. Is it decidable, given M #y, whether the Turing machine M ever writes 
a nonblank symbol on its tape on input y? Why or why not? 

107. Is it decidable for TMs M whether L(M) = rev L(M)? Give proof. 

108. Tell whether the following problems are decidable or undecidable. Give 
proof. 

(a) Given a TM M and a string y, does M ever write the symbol # 
on its tape on input y? 

(b) Given a CFG G, does G generate all strings except €? 

(c) Given an LBA M, does M accept a string of even length? 

(d) Given a TM M, are there infinitely many TMs equivalent to M? 

109. Tell whether or not the following sets are r.e. Give proof. 

(a) {(M,N) I M takes fewer steps than N on input €} 

(b) {M I M takes fewer than 481481 steps on some input} 

(c) {M I M takes fewer than 481481 steps on at least 481481 

different inputs} 

(d) {M I M takes fewer than 481481 steps on all inputs} 

110. Show that the set {M I M accepts at least 481 strings} is r.e. but not 
co-r.e. 
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111. One of the following sets is r.e. and the other is not. Which is which? 
Give proof for both. 

(a) {M I L(M) contains at least 481 elements} 

(b) {M I L(M) contains at most 481 elements} 

112. Show that the set 

{M I M halts on all inputs of length less than 481} 

is r.e., but its complement is not. 

s 113. Let M range over Turing machine descriptions. Show that neither the 

set 

REG ~ {M I L(M) is a regular set} 

nor its complement is recursively enumerable. 

114. Let IMI denote the length of the description of the Turing machine M. 
Are the following problems decidable? Give proof. 

(a) Does a given Turing machine M take at least IMI steps on some 
input? 

(b) ... on all inputs? 

115. Tell whether the following problems are decidable or undecidable, and 
give proof: 

(a) whether a given TM runs for at least 481481 steps on input a481 ; 

(b) whether a given TM ever reenters its start state on any input; 

*(c) whether a given Turing machine will ever move its head left more 
than ten times on input a481 ; 

*(d) whether a given Turing machine will ever print more than 481 
nonblank symbols on input a481 • 

116. Think for two minutes about why the following problems are undecid­
able, but don't write anything down: 

(a) whether two given C++ programs compute the same function; 

(b) whether a given C++ program will ever get into an infinite loop 
on some input; 
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(c) whether a given Jt-recursive function is totalj 

(d) whether a given 'x-term reduces to normal form. 

117. Show that the following problems of pairs of Turing machines are 
undecidable: 

(a) whether L(M) = L(N)j 

(b) whether L(M) ~ L(N)j 

(c) whether L(M) n L(N) = 0'j 

(d) whether L(M) n L(N) is a recursive setj 

(e) whether L(M) n L(N) is finite. 

··118. Formalize and prove the following extension of Rice's theorem that has 
the results of Exercise 117 as special cases: every nontrivial property 
of pairs of r.e. sets is undecidable. 

119. Let G and G' denote context-free grammars over {a,b}. Prove that 
the following problems are undecidable: 

H(a) whether L(G) = L(G')j 

(b) whether L(G) ~ L(G')j 

·(c) whether L(G) = L(G)L(G). 

120. One of the following problems is decidable and the other is not. Which 
is which? Give proof for both. 

(a) Given a CFL L and a regular set R, is L ~ R? 

(b) Given a CFL L and a regular set R, is R ~ L? 

H121. Prove that the following problems are undecidable: 

(a) whether a given CFL is a DCFLj 

(b) whether the intersection of two given CFLs is a CFLj 

(c) whether the complement of a given CFL is a CFLj 

··(d) whether the union of two given DCFLs is a DCFL. 

122. Prove that it is undecidable whether a given LBA halts on all inputs. 
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H123. Show that the finiteness problem for Turing machines reduces to the 

finiteness problem for LBAs. 

124. Prove that it is undecidable whether a given LBA accepts a regular 

set. 

125. Consider the following context-sensitive productions. 

S -+ bSb, 

S ...... AcA, 

Ab -+ A, 

Ab -+ b, 

bA -+ b, 

bA -+ A. 

Let G be the grammar given by all the rules except for the last, and let 

Gt the grammar given by all the rules including the last. One of L( G) 

and L( Gt ) is regular, and the other is context-free but not regular. 

Which is which, and why? 

126. Give a set over a single letter alphabet in each of the following classes, 
or explain why such a set does not exist: 

(a) regular; 

(b) DCFL but not regular; 

(c) CFL but not DCFL; 

(d) recursive but not CFL; 

(e) r.e. but not recursive; 

(f) not r.e. 

127. Prove that every infinite regular set contains a non-r.e. subset. 

*H128. Prove that every infinite r.e. set contains an infinite recursive subset. 

*129. In this exercise we will prove a kind of fixpoint theorem for Turing 
machines known as the recursion theorem. 

If M is a TM, let M(x) denote the contents of M's tape at the point 
that M halts on input x, provided M does indeed halt on input x. If 
M does not halt on input x, then M(x) is undefined. 
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A partial function u : E* -+ E* is said to be a computable function 
if u(x) = M(x) for some Turing machine M. In addition, u is a total 
computable function if M is total. 

Let M., be the TM whose encoding over E* is x. 

Theorem (Recursion theorem) Let u : E* -+ E* be any total computable 
function. Then there exists a string u such that 

L(Mu) = L(Mu(u)). 

(a) Let u : E* -+ E* be a given total computable function, say 

computable by a total TM K. Let N be a TM that on input x 

computes a description of a machine that does the following on 
input y: 

• constructs M.,j 

• runs M., on input Xj 

• if it halts, runs K on M.,(x)j 

• interprets the result of that computation, K(M,,(x)), as the 
description of a TM, and simulates that TM on the original 
input y, accepting or rejecting as that machine accepts or 
rejects, respectively. 

Argue that N is total and that 

L(MN (,,)) = L(Mu(Mz(zn)' 

(b) Let v be a description of the machine Nj that is, N = Mv. Argue 
that N(v) is the desired fixpoint of u. 

H130. Give a short proof of Rice's theorem using the recursion theorem (see 
Miscellaneous Exercise 129). 

uH 131. A TM is minimal if it has the fewest states among all TMs that accept 
the same set. Prove that there does not exist an infinite r.e. set of 
minimal TMs. 

132. H(a) Show that there does not exist an r.e. list of Turing machines 
such that every machine on the list is total (Le., halts on all 
inputs) and every recursive set is represented by some machine 
on the list . 

.. H(b) Show that there exists an r.e. list of Turing machines such that 

every machine on the list accepts a recursive set and every re­
cursive set is represented by some machine on the list. 
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··133. In addition to the usual constructs of while programs (simple assign­

ment, conditional, while loop, sequential composition), add a print 
statement 

print x and halt 

that prints the current value of a variable and halts. Call two programs 
equivalent if for all initial values of the variables, one program halts 

iff the other does, and whenever they both halt, they print the same 
value. 

One of the following problems is decidable and the other is undecidable. 
Which is which? Justify your answers. 

(a) Given a program, does there exist an equivalent program with at 
most one while loop? 

(b) Given a program, does there exist an equivalent program with 
no while loops? 

134. This question is for those who know something about propositional 

logic. A propositional Horn clause is a disjunction of literals with at 

most one positive literal. The clause 

-,Pl V -,P2 V··· V -'Pn V Q 

is often written as 

P1 A P2 A .•. A Pn ~ Q, 

and the clause 

can be written as 

Pl A P2 A ... A Pn -+ .1, 

where .1 denotes falsity. Any single positive literal Q is also a Horn 

clause. 

(a) Show that the emptiness problem for context-free languages (i.e., 

given a context-free grammar G, deciding whether L(G) = 0) 
reduces to the satisfiability problem for finite conjunctions of 
Horn clauses, and vice versa. 

(b) Since the satisfiability of propositional formulas is decidable, what 

can we conclude about the decidability of the emptiness problem 
for CFLs? 



Turing Machines and Effective Computability 349 

B135. Show that the finiteness problem for regular sets and context-free lan­

guages (Le., whether a given machine/grammar accepts/generates a 
finite set) is decidable. 

136. Show that FIN :5T REG. In other words, suppose you are given an 
oracle that will always answer questions ofthe form "Is L(M) a regular 
set?" truthfully. Show how to use such an oracle to decide questions 
of the form "Is L(M) finite?" 

**137. Prove Theorem J.1. 

*B138. Let HPI ~ HP, and let HPn+1 be the halting problem for oracle 
Turing machines with oracle HPn , n ;:: Ii that is, 

HP n+1 ~ {M #x I M is an oracle TM with oracle HP n, 

M halts on input x}. 

The oracle need not be represented in the description of the oracle 
machine M. Show that HPn E ~~ - II~. 

139. Show that the integer square root function is primitive recursive. On 
input n, the function should return the greatest integer less than or 
equal to the square root of n. 

B140. A language B is said to be computable in linear time if there exists 
a deterministic Turing machine M and a constant c > 0 such that 
L(M) = Band M always halts within en steps on inputs of length n. 
Show that there exists a recursive set that is not computable in linear 
time. 

141. Show that the Turing reducibility relation :5T is reflexive and transitive 

and that :5m refines :5T. 

142. Prove that the following sets are :5m-complete for the given classes: 

(a) EMPTY is :5m-complete for II~i 

*(b) TOTAL is :5m-complete for IIgi 

U(c) COF is :5m-complete for ~~i 

**(d) the set 

REG ~f {M I L(M) is a regular set} 

is :5m-complete for ~~. 
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*H143. Prove that there exists a total computable function f : N -+ N that is 
not provably total in Peano arithmetic. 



Hints for Selected Miscellaneous Exercises 

6. Look for a clue in Lecture 5. 

9. (b) Build an NFA with seven states arranged in loops of length two 
and five. Assign start and final states so that the shortest rejected 
string is of length 9 = 2 . 5 - 1. 

(c) The product of a set of distinct primes is exponential in their 
sum. 

26. Given a DFA M for A, build an NFA M' for FirstHalvesA that imple­
ments the following idea: put a white pebble on the start state of M 

and green and blue pebbles on an arbitrary guessed state of M. Never 
move the green pebble. Move the white pebble forward in response to 
input symbols and move the blue pebble forward according to some 
nondeterministically guessed input symbol. Accept if the white and 

green pebbles occupy the same state and the blue pebble occupies an 
accept state when the input string is exhausted. Describe M' formally 
and prove that it accepts the set FirstHalves A. Presumably the set of 
states of M' will be the set Q x Q x Q encoding the positions of the 
three pebbles. 

In general, you will see several problems of the form 

show that if A is a regular set, then so is A', 
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where A' is some set formed by massaging A in some way. Exercise 
2 of Homework 2 about rev A and Exercise 3 of Homework 3 about 
MiddleThirds A are of this type. Most of these problems can be solved 
by applying the following five-step protocol: 

Step 1 Assume we are given a deterministic finite automaton 

M = (Q, ~, 0, s, F) 

accepting A. We want to build a nondeterministic automaton 

M' - (Q' ~ tl' 8' F') - " , , 

accepting A'. Come up with an intuitive design of M' in terms of 
moving pebbles around on the states of M. Think about the initial 

configuration of pebbles, how the pebbles should move in response to 
each input symbol, and what the accepting configurations should be. 

Step 2 Write down a formal description of Q', ~, tl', 8', and pi that formally 
captures your intuition about moving the pebbles developed in step 1. 
The first thing to think about is what the states Q' should be. You 
need to figure out how to encode formally the information that the 

new machine needs to remember at each step. Make sure the types 

are right; for example, whatever you decide the set of states Q' should 
be, the start state should be an element of Q' and the set of accept 

states pi should be a subset of Q'. If you are designing a deterministic 

machine M', then 0' should be a function Q' x ~ -t Q'. If M' is to be 
nondeterministic, then you should have tl' : Q' x ~ -t 2Q'. 

Step 3 In step 2, you defined a transition function /).' of M'. Most likely, /).' 
was defined in terms of the transition function 8 of M. State a lemma 
extending this relationship to a relationship between '8 and ii'. 

Step 4 Prove the lemma stated in step 3 by induction on Ixl. The proof will 

most likely use the standard inductive definitions of '8 and ~', as well 
as the definition you gave in step 2 of tl' in terms of o. 

Step 5 Prove that L( M') = A'. The proof will generally use the lemma proved 
in step 4 and the definitions of 8' and pi. 

Step 1 is usually not much of a problem, since it is usually easy to 
see how to move the pebbles. Steps 2 and 3 typically give the most 
trouble. If the lemma in step 3 is formulated correctly, the proofs in 4 

and 5 should be fairly routine. 

An example of an application of this protocol is given in the solution 
to this exercise on p. 358. 

31. One of the sets is {a,b}*. 
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32. Use the matrix representation of Miscellaneous Exercise 7. 

33. Use the fact that 

d (") 

p(n+l)= EP·.~n), 
i=O Z. 

where p(i) denotes the ith derivative of p. 

43. Try 

U (a+ct(b+ct + (a + b + c)*cc(a + b+ c)* 
n;::O 

with k = 3. 

45. (a) By Theorem 12.3, it suffices to show that A* is ultimately peri­
odic. You can take as period the length of the smallest nonnull 
element of A. This is not necessarily the smallest period, but it 

will do. 

49. For the direction (=», use induction on the stages of the algorithm. 
For the direction (-¢=), use induction on Ixl. 

50. (b) Consider the relation 

y == z ~ overlap(y,x) = overlap(z,x), 

where overlap(y, x) is the longest string that is both a suffix of y 

and a prefix of x. Use the Myhill-Nerode theorem. 

51. Suppose that you start with a DFA for B with no inaccessible states, 
reverse the transitions and exchange the start and final states to get 

an NFA for rev B, then construct an equivalent DFA using the sub­

set construction, omitting inaccessible states. Prove that the resulting 
automaton is the minimal DFA for rev B. 

55. (b) Two of them are e and aa*. 

60. aa* == a*a. 

61. (b) Build an NFA whose states are subsets of Q. Let the machine 
guess the sets Wi. 
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70. Prove inductively that 

S ....!.... x<==> #a(x) = 2#b(x), 
G 

A....!.... x<==> #a(x) = 2#b(x) + 1, 
G 

B....!.... x<==> #a(x) = 2#b(x) - 2. 
G 

Think about the graph of the function #a(y) - 2#b(y) for prefixes y 
of x. 

79. Everything you need can be found in Lecture 10. 

80. Use Parikh's theorem (Theorem H.1) and the theorem on ultimate 
periodicity (Theorem 12.3). 

83. Use Parikh's theorem (Theorem H.1) and the fact that the complement 
of a semilinear subset of Nk is semilinear. 

86. Show that the condition (P) of the pumping lemma for regular sets 
given in Lecture 11 implies the condition of the pumping lemma for 
context-free languages given in Lecture 22. Give a non-context-free set 
satisfying (P). A slightly modified version of the hint for Miscellaneous 
Exercise 43 should do. 

87. (c) Build a PDA that pushes and pops antimatter. 

90. (d) Consider the set 

A = {anbncmambkck I n,m,k;::: 1}. 

93. (a) Let 

M = (Q, E, r, 6, J., -I, 8, .0) 

be a DPDA for D that accepts by empty stack. Prove that for 

p, q E Q and a E E, 

hE r* I (p,a,,},) -if (q,e,e)} 

is a regular set. 

(b) See the end of Lecture 27. 

99. (b) Simulating a queue machine with a Turing machine is easy. The 
other direction is tricky. Make the queue of the queue machine 
contain a representation of the configuration of the Turing ma-
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chine. The hard part is simulating a left move of the Turing 

machine. You need to go all the way around the queue. 

You might try breaking your solution into two steps: 

(i) First invent a new kind of Turing machine, a one-way Tur­

ing machine. These machines can only move right on the tape. 

When they see the right endmarker, they magically jump back 
to the left endmarker. Show that one-way machines can sim­
ulate ordinary TMs. Simulate a left move of the ordinary TM 
by pushing a marker all the way around to the right. 

(ii) Simulate one-way machines with queue machines. 

100. (c) Think VALCOMPS. 

102. (a) The infinite checkerboard should be Z x Z, where Z is the set 
of integers { ... , -2, -1,0, 1, 2,3, ... }. Tape contents should be 

modeled by functions J : Z x Z ~ r, which assign a tape symbol 
in r to each cell (i,j) E Z x Z. 

105. (b) Think VALCOMPS. 

119. (a) Take G to be S ~ as I bS I f. 

121. Think VALCOMPS. 

123. Think VALCOMPS. 

128. Use Exercise 4 of Homework 9. 

130. Let P be a nontrivial property of the r.e. sets. Then there exist TMs 

MT and MJ. such that P(L(MT)) = T and P(L(MJ.)) = 1.. Show that 
if it were decidable for TMs M whether P(L(M)) = T, then we could 

construct a total computable map (j with no fixpoint, contradicting 

the recursion theorem (see Miscellaneous Exercise 129). 

131. Use the recursion theorem (see Miscellaneous Exercise 129). 

132. (a) Diagonalize. 

(b) Let::::; be an arbitrary computable linear order on the set of input 

strings. Given M, let M' be a machine that on input x simulates 
M on all y::::; x. 
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135. Use the pumping lemma. 

138. Diagonalize. 

140. Construct a list of total Turing machines that run in linear time such 
that every set computable in linear time is accepted by some machine 
on the list. Build a machine that diagonalizes over this list. 

143. Diagonalize. 
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7. (a) By induction on n. 

Basis 

if u = v, 
otherwise 

* ~ = {x E 1: Ilxl = 0 and 6(u,x) = v}. 

Induction step 

(An+l)uv 

= (AnA)uv 

= U (An)uwAwv 
wEQ 

U * ~ = {XE1: Ilxl=nand6(u,x)=w}·{aEI:16(w,a)=v} 
wEQ 

* ~ = {xa E 1: Ilxl = nand 3w 6(u,x) = wand 6(w,a) = v} 

= {xa E 1:* Ilxl = nand 8(u,xa) = v} 

= {y E 1:* Ilyl = n + 1 and 8( u, y) = v}. 
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20. (a) We'll show the inequality in both directions using the axioms 

(A.l) through (A.l5). 

Since a* = l+aa* by (A.lO), we have 00* :5 a* by the definition 

of :5. Then a*a* :5 a* follows from (A.l4). 

Conversely, 

a*a* = a*(l + oo*} by (A.lO) 

= a* + a* aa* by (A.B); 

therefore, a* :5 a*a* by the definition of :5. 

25. We show first that A *b is a solution of x = Ax + b. By Lemma A.2, we 

have that A* = AA* + I; this is just axiom (A.lO) of Kleene algebra. 

Multiplying both sides by b and distributing, we get A*b = AA*b+ b, 
which is just x = Ax + b with A*b substituted for x. 

Now we wish to show that A*b is the least solution. Let c be any other 

solution; then c = Ac + b. The array c is a vector of length n over the 

Kleene algebra /C. Form a square matrix C by juxtaposing n copies of 

c. Form the matrix B from b similarly. Then C = AC + B. By Lemma 
A.2 and axiom (A.12) of Kleene algebra, A* B :5 C, therefore A*b:5 c. 

26. We show that if A is regular, then so is FirstHalvesA using the five-step 

protocol given in the hint for this exercise on p. 351. 

Step 1 Let 

M = (Q, ~, 0, s, F) 

be a DFA for A. Here is an informal description of an NFA M' for 
FirstHalves A in terms of pebbles. There will be a white pebble, a 
green pebble, and a blue pebble on the automaton at any point in 

time. We start with the white pebble on the start state of M and 

the blue and green pebbles together on a nondeterministically chosen 

state of M. The initial position of the blue and green pebbles is a 

guess as to where M will be after scanning x. In each step, we move 

the white pebble forward according to the input symbol and move the 

blue pebble forward according to some nondeterministically chosen 

symbol. The green pebble never moves. When the end of the input x 
is reached, we accept iff the white pebble and green pebble occupy the 

same state and the blue pebble occupies an accept state. The white 
pebble will occupy the state c5( s, x), since we moved it according to the 
input x. The blue pebble will occupy some state q reachable from the 

position of the green pebble under some string y such that Iyl = Ixl. 
H the white and green pebbles occupy the same state and the blue 
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pebble occupies an accept state, then we can concatenate x and y to 
get a string twice as long as x accepted by M. 

Step 2 Now let's do this formally. Define the NFA 

M' = (Q', ~, !:J.', S', F') 

as follows. We take the states of M' to be Q' ~f Q3, the set of ordered 

triples of elements of Q. For (p, q, r) E Q', the first component models 

the position of the white pebble, the second models the position of the 
green pebble, and the third models the position of th"e blue pebble. 

The transition function !:J.' must be a function 

!:J.':Q'x~->2Q'. 

For any p,q,r E Q and a E ~, we define 

!:J.'((p,q,r),a) ~ {(8(p,a),q,8(r, b)) I b E ~}. 

These are the possible next pebble positions after (p, q, r) on input 

a E ~. The first component 8(p,a) says that we move the white pebble 
according to the input symbol aj the second component q says that we 
leave the green pebble where it iSj and the third component 8(r, b) says 

that we move the blue pebble according to b E ~. All possible bare 

included, which reflects the idea that M' is guessing the next symbol 

of the string y. 

We define the start states of M' to be 

S' ~f {(s,t,t) It E Q}, 

modeling all possible initial configurations of pebbles. The white peb­
ble initially occupies the start state of M and the green and blue 
pebbles occupy an arbitrary nondeterministically chosen state of M. 

Finally, we take the accept states of At' to be 

F' ~ {(u,u,v) I'll. E Q, v E F}, 

indicating that we accept provided the white and green pebbles occupy 
the same state and the blue pebble occupies an accept state. 

Step 3 Our formal definition specifies a relationship between 8 and !:J.'. Now 

let's try to extend it to a relationship between 8 and Li'. Intuitively, 
after scanning a string:;; oflength n starting in some start state (s, q, q), 

the machine M' can be in any state ofthe form (8(s,x),q,8(q,y)) for 
some y E ~n. 

Lemma For any x E ~*, 

Li'(s',x) = {(8(s,x),q,8(q,y)) I q E Q, y E ~I"'I}. 
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Step 4 We prove the lemma of step 3 by induction on Ixl. For the basis x = e, 
we use the base clauses (3.1) and (6.1) in the inductive definitions of 

6 and Li' and the definition of 8': 

Li'(8', e) = 8' 

= {(s,q,q) I q E Q} 

= {(6(s,e),q,6(q,e)) I q E Q} 

= {(6(s,e),q,6(q,y)) I q E Q, y E ~O}. 

For the induction step, assume that the lemma is true for Xj that is, 

~, I ~ ~ II 
/1 (8 ,x) = {(6(s,x),q,6(q,y)) I q E Q, y E ~ z}. 

We want to show that it is true for xaj that is, 

~, , ~ ~ II 
/1 (8 ,xa) = {(6(s,xa),q,6(q,yb)) I q E Q, y E ~" , b E ~}, 

where a E ~. The argument uses the inductive definitions of Li' and 6, 
the induction hypothesis, and the definition of /1' in terms of 6 given 
in step 2: 

Li'(8',xa) 

= u /1'((p,q,r),a) by (6.2) 

(p,q,r)E;;;'(S' ,z) 

U /1' ((6(s, x), q, 6(q, y)), a) induction hypothesis 

qEQ, lIEElzl 

U {(6(6(s,x),a),q,6(6(q,y), b)) I b E~} 
qEQ, lIEE1-1 

definition of /1' 

= U {(6(s,xa),q,6(q,yb)) I b E~} by (3.2) 

qEQ, lIEEI-1 

~ ~ II = {(6(s,xa),q,6(q,yb)) I q E Q, y E ~" , b E ~}. 

Step 5 Finally, we prove L(M') = FirstHalves L(M). For any x E ~*, 

x E L(M') 

{:::::> Li'(8', x) n F' =I 0 

{:::::> {(6(s,x),q,6(q,y)) I q E Q, y E ~I"I} the lemma of step 3 

n {(u,u,v) I u E Q, v E F} =I 0 definition of F' 

{:::::> 3y E ~I"I 3q E Q 6(s, x) = q and 6(q,y) E F 

{:::::> 3y E ~I"'I 6(6(s,x),y) E F 

o 

{:::::> 3y E ~I"'I 6(s,xy) E F Homework 1, Exercise 3 
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{:::::} 3y E Ei"'l xy E L(M) 

{:::::} X E FirstHalves L(M). 

33. Using the fact that 

d pC;)(n) 
p(n+1)= 2:-,,-, 

;=0 z. 

where pCi) denotes the ith derivative of p, we have 

(j) _ ~ pC;+j)(n) _ ~ pCk)(n) 

p (n + 1) - L...J i! - L....-. (k _ ')!' 
;=0 k=) J 

therefore 

Also, 

p(j)(n + 1) = ~ ( k ) pCk)(n) 

" L...J' k" J. k' J . 
=) 

pUleO) 
-.-,-=aj, 

J. 

o 

(1) 

(2) 

where aj is the coefficient of n j in pen). Let M = (Q, E, ~, s, P) be 

an NFA for A. We will build a DFA M' = (Q', E, fl, s', P') for A'. 
Let B be the square Boolean matrix indexed by states of M such that 

B ~ {1 if 3a E EvE ~(u,a), 
uv - 0 otherwise. 

Let B n be the nth Boolean power of B, BO the identity matrix. One 
can show by induction on n that 

(B n )",,= {1 if3YE.En V ELi({u},y), (3) 
o otherwIse. 

In other words, (B n )"" = 1 iff there exists a path of length n from u 
to v in the graph representation of the automaton. 

Now consider the set of all square Boolean matrices indexed by the 

states of M. The states Q' of M' will be the set of all sequences 

(CO,C1,00. ,Cd) of d + 1 such matrices, which we denote by (C; I 
0::; i ::; d). Define 

d k 

8'((C; I 0 ::; i ::; d),a) = (II d j ) 10::; j ::; d), 
k=j 

s' = (BB' I 0 ::; i ::; d), 

P' = {( Ci I 0 ::; i ::; d) I 3q E P (Co) sq = 1}. 
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Lemma Let x e E*. Then 

6\s',x) = (Bp(i)CI"I)/i! 10::::; i ::::; d). 

Proof. By induction on Ixl. 

Basis 

6' (s', f) = s' definition of 6' 
= (B a• I 0 ::::; i ::::; d) definition of s' 

= (W(')CO)/i! I 0 ::::; i ::::; d) by (2) 

= (BP(')CIEI)/i! I 0 ::::; i ::::; d). 

Induction step 

Assume true for x. Then 

6'(s',xa) = 6'(6'(s',x),a) definition of 6' 
= 6'«BP(')CI"i)/i! 10::::; i ::::; d),a) induction hypothesis 

d 

= (11 (BP(·)CI"i)/k!)C7) 10::::; j ::::; d) definition of 6' 

k=j 

= (BL::=;C;)p(·)(I"I)/k! I 0 ::::; j ::::; d) 

= (BP(')(I"I+l)/i! I 0 ::::; i ::::; d) by (1) 

= (W(')(I"al)/i! I 0 ::::; i ::::; d). o 

Theorem L(M') = A'. 

Proof. 

x e L(M') 

-¢::=::? 6' ( s' , x) E P' 

-¢::=::? (W(')CI"I)/i! I 0 ::::; i ::::; d) e P' 

-¢::=::? 3q e P WC1:z:1)(s,q) = 1 

-¢::=::?3yeEP(I"I) pn~({S},Y):f0 

-¢::=::? 3y E EP(I:z:1) y E L(M) 

-¢::=::?xE A' 

35. Let 

A = {ww I w E {0,1}*}. 

definition of acceptance 

by the lemma 

definition of P' 

by (3) 

definition of acceptance 

definition of A' 0 

Note that {ww I w E {O} *} is regular-it is just the set of strings of 

O's of even length. 
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To show that A is nonregular, we will show that we have a winning 
strategy in the demon game. The demon picks some k. Now we take 

x = 0, y = 1", and z = 01". Then xyz = 01"'01", which is in A, and 
Iyl = k. The demon must now choose u,v,w such that y = uvw and 
v ::f:. f. Say the demon picks u, v,w of lengths i, m, n, respectively. Then 
k = i + m + n and m > O. But whatever the demon picks, we can win 

by taking i = 0: 

xuvowz = xuwz = 01 k-m 01 Ie, 

which is not in A because it is not of the form ww for any w. 

36. Recall that a number is prime if it is greater than 1 and has no divi­

sors other than 1 and itself. PRIMES is an example of a single letter 

alphabet set that is not regular because the elements of the set do not 

appear with any predictable pattern. 

Suppose the demon chooses k. You choose x = Z = f and y = aP, where 
p is the smallest prime greater than k (Euclid proved that there exist 

infinitely many primes, so p exists). Then xyz = ol' E PRIMES and 

Iyl = p > k. The demon must now choose u, v, w such that y = uvw 
and v ::f:. f. Say the lengths of u, v, ware i, m, n, respectively. Then 

k = i + m + n and m > O. You now need to find i such that xuv'wz ¢ 
PRIMES (Le., Ixuv'wzl is not prime). But 

IX'l£v'wzl = i +im+n = p+ (i -l)m, 

so we need to find i such that p + (i - l)m is not prime. Take i = p + 1. 

Then 

p+ (i -l)m = p+pm = p(l +m), 

which is not prime since it has factors p and 1 + m. You win. 

44. (a) First we show that the given condition is necessary for regularity. 
Let A s;; ~* be a regular set, and let k be the number of states 
of a DFA for A. Then for all y E ~* with Iyl = k, the automaton 
repeats a state while scanning y. Let v be a nonnull substring of y 

such that the automaton is in the same state just before and just 
after scanning v, and let y = uvw. Then for all z E ~* and i ;?: 0, 

the automaton is in the same state after scanning yz = uvwz as 
after scanning 'l£V'WZj therefore, 

yz E A {::::::::} uv'wz EA. 

Now we show that the given condition is sufficient for regularity. 

Let A ~ ~* such that A satisfies the given condition. For any 

x E ~* with Ixl ;?: k, by applying the condition with i = 0 
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as many times as necessary, we can repeatedly delete nonnull 
substrings of x until we obtain a string x' of length k - 1 or less 
such that for all Z E ~*, 

xz E A-¢::=} x'z E A. 

This says that x =A x', where =A is the relation (16.1). Since 

every =A-class contains a string oflength k-1 or less, the relation 

=A is of finite index. By the Myhill-Nerode theorem, A is regular. 

45. (b) Equivalently, if A ~ N and A is the smallest subset of N con­
taining A and 0 and closed under addition, then A* consists of 
all but finitely many multiples of gcd A. 

First we consider the case JAJ = 2. Let mN denote the set of all 

nonnegative multiples of m, and let mN + nN denote the set of 
all sums am + bn for a, b ~ O. Write A '" B if A and B differ by 

a finite set; that is, if the set (A - B) U (B - A) is finite. 

Lemma Let m and n be positive integers, g = gcd( m, n). Then 

mN + nN '" gN. 

Moreover, lcm(m,n) - m - n is the largest multiple of g not 
expressible in the form am + bn with a, b ~ O. 

Proof. We first show a special case: if m and n are relatively 

prime, then mN + nN '" N. Moreover, the largest number not 
expressible in the form am + bn with a, b ~ 0 is mn - m - n. 

Suppose mn-m-n were so expressible, say am+bn = mn-m­
n. Then (a + 1)m + (b + 1)n = mn. Since m and n are relatively 
prime, m must divide b+ 1 and n must divide a + 1. The smallest 
values of a and b for which this is true would be a = n - 1 and 
b = m - 1, which are already too big: 

(n -1)m + (m -1)n = 2mn - m - n > mn - m - n. 

Now let's show that mn - m - n + 1 is expressible. Let u < n 
and v < m such that vn - um = 1. (The numbers u and v 
can be produced by an extended version of the Euclidean GCD 

algorithm.) Take a = n - u - 1 and b = v - 1. Then 

am + bn = (n - u - 1)m + (v - 1)n 

= mn - um - m + vn - n 

= mn - m - n+ 1. 

Now we proceed by induction. Suppose we have some am + bn ~ 
mn - m - n + 1. Since 

(u - 1)m + (m - v - 1)n = um - m + mn - vn - n 
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=mn-m -n -1, 

we must have either a ~ u or b ~ m - v. If the former, take 
a' = a - u and b' = b + v to get . 

a'm +b'n = (a - u)m+ (b+v)n 

= am - um+bn+vn 

= am+bn+ 1. 

If the latter, take a' = a + n - u and b' = b - m + v, and again 

a'm+b'n= (a+n-u)m+(b-m+v)n 

= am + mn - um + bn - mn + vn 

=am+bn+1. 

If m and n are not relatively prime, say 9 = gcd(m,n), then 

everything is scaled by g. Any am + bn is a multiple of 9 since 9 

divides m and n, and the largest multiple of 9 not so expressible 
is 

«mjg)(njg) - mjg - njg)g = lcm(m,n) - m - n. 

Now we use this to show that for any A ~ N, A consists of all 

but finitely many multiples of 9 = gcd A. This follows from the 

observation that gcd A = gcd X for some finite subset X ~ A 
and from applying the lemma iteratively to obtain 

L LmN",gN. o 
mEX 

49. Suppose first that {p,q} is marked. We proceed by induction on the 
stages of the algorithm. If {p, q} is marked in step 2, then either p E F 

and q f/. F or vice versa, therefore p ~ q (take z = E in the definition of 
~). If it is marked in step 3, then for some a E I;, {6(p, a), 6(q, a)} was 
marked at some earlier stage. By the induction hypothesis, 6(p,a) ~ 
6(q,a), therefore p ~ q by Lemma 13.5. 

Conversely, !uppose p ~ q. B"'y definition, there exists an z E I;* such 
that either 6(P,z) E F and 6(q,z) f/. F or vice versa. We proceed by 

induction on the length of z. If z = E, then either p E F and q f/. F 

or vice versa, so {p,q} is marked in step 2. If z = ay, then either 

6(6(p,a),y) E F and 6(6(q,a),y) f/. F or vice versa. By the induction 
hypothesis, {6(p,a),6(q,a)} is eventually marked by the algorithm, 
and {p,q} will be marked in the following step. 

57. A subset of I;* is closed downward under [; iff its complement is closed 
upward under [;. Since the complement of any regular set is regular, 

it suffices to show that all upward-closed sets are regular. 
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Let minX denote the set of ~-minimal elements of X, and let 

111 ={xEI:*11I~x}. 

Then X is upward-closed iff 

X = {x E I:* I 311 E min X 11 ~ x} 

= U 111· 
lIEminX 

By Higman's lemma, this is a finite union of sets of the form 111. Since 
a finite union of regular sets is regular, it suffices to show that any 111 
is regular. But 

alaa'" an 1 = L(I:*a1 I:*a2E* ... E*anE*). 

59. To construct a DFA from an AFA, let 

A = (QA, E, 6A, FA, Q:A) 

be the given AFA, IQAI = k. Let QD be the set of all functions QA -+ 

{O, I}. Define the DFA 

D = (QD, E, 6D, FD, SD), 

where 

6D(u,a)(q) = 6A(q,a)(u), 

FD = Q:A, 

SD = FA' 

To construct an AFA from a DFA, let 

D = (QD, E, 6D, FD, SD) 

(4) 

(5) 

(6) 

be the given DFA, IQDI = k. Let QA be any set of size [logkl and 
identify each element of QD with a distinct function QA -+ {O, I}. 
Define the AFA 

A = (QA, I:, 6A, FA, Q:A), 

where 6A, FA, and Q:A are defined such that (4), (5), and (6) hold. (For 
u ¢ QD, define 6A(q,a)(u) arbitrarily.) 

In both reductions, one can show by induction on Ixl that for any 
q E QA, U E QD, and x E E*, 

6D(U,X)(q) = ~(q,revx)(u). 

In particular, 

x E L(D) {:::::} FD(6.0(SD,X)) = 1 
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<==> aA(6D(FA,X)) = 1 

<==> aA(Aq.(6D(FA,X)(q))) = 1 

<==> aA(Aq.(6A(Q, rev X)(FA))) = 1 

<==> rev x E L(A). 

77. The set generated is {a,b}*. We can prove this by induction on string 
length. The null string is generated in one step. For nonnull strings, ei­
ther the string begins with b, in which case we use the first production; 
or ends with a, in which case we use the second production; or neither, 
in which case we use the third production. In any case the induction 
hypothesis implies that the rest of the string can be generated. 

78. Let P be a PDA for L and M a DFA for R. Build a PDA for L/ R that 
on input x scans x and simulates P, then when it comes to the end of 
the input x, guesses the string y and continues to simulate P (from the 
same configuration where it left off) but also runs M simultaneously 
on the guessed y starting from the start state. It accepts if both L and 
M accept. Thus it accepts its original input x if it was successfully 
able to guess a string y such that xy E L(P) and y E L(M); that is, if 
there exists y such that xy ELand y E R. 

Here is an alternative proof using homomorphisms. Suppose the al­
phabet is {a, b}. Let {a', b'} be another copy of the alphabet disjoint 
from {a,b}. Let h be the homomorphism that erases marks; that is, 
h(a) = h(a') = a and h(b) = h(b') = b. Let 9 be the homomorphism 
that erases the unmarked symbols and erases the marks on the marked 
symbols; that is, g(a) = g(b) = e, g(a') = a, g(b') = b. Then 

L/ R = g(h-l(L) n {a',b'}* R). (7) 

This is a CFL, since CFLs are closed under homomorphic preimage, 
intersection with regular set, and homomorphic image. 

To see (7), first consider the set h-1(L). This is the set of all strings 

that look like strings in L, except that some of the symbols are marked. 
Now intersect with the regular set {a', b'} * R. This gives the set of 
strings of the form x'y such that the symbols of x' are marked, those 
of yare unmarked, xy E L, and y E R. Now apply 9 to this set of 
strings. Applied to a string x'y as described above, we would get x. 
Therefore, the resulting set is the set of all x such that there exists y 
such that x'y E h-1(L) n {a', b'}* R; in other words, such that xy E L 
and y E R. This is L/ R. 



368 Solutions to Selected Miscellaneous Exercises 

99. (a) A queue machine is a sextuple 

M= (Q,~, r, $, s, 6), 

where 

• Q is a finite set of states, 

• ~ is a finite input alphabet, 

• r is a finite queue alphabet, 

• $ E r - ~ is the initial queue symbol, 

• 8 E Q is the start state, and 

• 6: Q x r -+ Q x r* is the transition function. 

A configuration is a pair (q, 'Y) E Q x r* giving the current state 

and current contents of the queue. The start configuration on 

input x is the pair (s,x$). The next configuration relation ~ 
M 

is defined as follows: if 

6(p,A) = (q,'Y), 

then 

(p,Aa) ~ (q,a'Y). 
M 

The relation -.!... is the reflexive transitive closure of ~. An 
M M 

accept configuration is any configuration of the form (q, f), where 

q E Q and f is the null string. The queue machine M is said to 
accept x E ~* if 

(8, x$) -.!... (q, €) 
M 

for some q E Q. 

(b) To simulate a queue machine U on a 'lUring machine T, let T 

maintain the contents of U's queue on its tape and simulate the 

action of U, shuttling back and forth from the front to the back 

of the simulated queue. Each simulated step of U consists of 

T moving to the front of the simulated queue, erasing the first 

symbol and remembering it in the finite control, then moving to 

the back of the simulated queue to write symbols. The simulated 

queue migrates to the right on T's tape, but that's okay, because 

there's plenty of room. The machine T accepts if its tape ever 

becomes completely blank, which indicates that the simulated 

queue of U is empty. 

The simulation in the other direction is much harder. Given a 

'lUring machine T, we build a queue machine U that simulates 
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moves of T, using the queue to maintain a description of T's 
current configuration. We will represent configurations by strings 

such as 

r a b a a b a q b b a $ 

for example; exactly one of the symbols is a state of T (q in this 

example), and its position in the string indicates the position 

of the tape head of T, which is immediately to the right of the 

state. If the state is just before the $, this models T scanning a 

blank cell to the right of the portion of its tape represented in 

the configuration. 

The queue machine U will also have an "internal queue" that will 
hold two symbols of this configuration; since this is only a finite 

amount of information, the internal queue can be encoded in the 
finite control of U. The remaining portion of the configuration 

will be held in the external queue. Since configurations have at 

least three symbols (state, left endmarker, $), even if the tape is 

blank, the external queue will never be prematurely emptied. 

Let x be the input string. The queue machine U starts with x$ 

in its external queue. It enters a state representing an internal 

queue of 

s r 
The internal and external queues concatenated together repre­

sent the start configuration of T on input x: 

s r x $ 

A rotate operation consists of rotating the symbols on the in­
ternal and external queues as follows: 

internal queue external queue 

C __ b _a_ -_'~~~~~~~~_a_b_a_q_b_b_$_r_a_a_b __ ) 

Formally, this is done by popping the first element off the front of 

the external queue and pushing the front element of the internal 

queue onto the back of the external queue, then changing state 

to reflect the new contents of the internal queue. In this example, 

after one rotation we would have 

aa b a q b b $ r a a b b 

on the internal and external queues, respectively. 
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113. Let 

We simulate a step of T as follows. If the rightmost symbol of the 
internal queue is not a state of T, we rotate until this becomes 

true. In this example, after three more steps we would have 

aq bb$l-aabbaab 

Now we have the symbol that T is scanning (say b) at the head of 

the external queue and the current state of T (say q) rightmost 
on the internal queue. We read b at the head of the queue. If b is 

not $, we simulate a move of T as follows . 

• If DT(q,b) = (P,c,R) and the leftmost symbol ofthe internal 

queue is d, we push d onto the back of the external queue and 

make (c p) the new internal queue. 

• If DT (q, b) = (p, c, L) and the leftmost symbol of the internal 

queue is d, we push p onto the back of the external queue and 
make (d c) the new internal queue. 

In the example above, this would give 

ap b$l-aabbaaba 

if DT(q,b) = (p,a,R), and 

aa b$l-aabbaabq 

if DT(q,b) = (p,a,L). If the symbol at the head of the external 
queue is $, then this indica.tes that the tape head of T is scanning 

a blank symbol to the right of the portion of the tape represented 
in the configuration. For example, 

bq $I-aabbbaabab 

In this case, when we pop $ we don't simulate a move of T im­

mediately; first we insert an extra blank symbol u between the 

state and the $. We do this by pushing both symbols in the in­

ternal queue onto the back of the external queue and making the 

new internal queue (u $). In this example, the resulting queue 
contents would be 

u $ I- a a b b b a a b a b b q 

We continue to simulate moves of T. If T ever enters its accept 

state, then U goes into a little subroutine that just empties its 

external queue, thereby accepting. 

REG = {M I L(M) is regular}. 
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A corollary of Rice's theorem for r.e. sets (Theorem 34.2) is that any 
semidecidable property of the r.e. sets is monotone. That is, if P is a 

property ofr.e. sets such that {M I P(L(M))} is r.e., A and Bare r.e. 

sets, A ~ B, and P(A), then P(B). Applying this corollary with P(C) 

= "C is regular," A = 0, and B = {anbn I n ~ O} gives immediately 
that REG is not r.e. Similarly, applying the corollary with P( C) = "C 
is not regular," A = {anbn I n ~ a}, and B = :E* gives immediately 
that REG is not co-r.e. 
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2DFA, 120, 122 

by empty stack, 160, 163, 164 

by final state, 160, 164 

DFA,16 

DPDA,177 

NFA, 26,33 

NFA with €-transitions, 65, 318 
term automaton, 111 
Turing machine, 210, 213, 216 

Accept state, 15, 111, 121, 158, 210, 
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Accessible, 29, 75, 77, 78, 84, 94, 95, 
103,116 

Ackermann, W., 273 
Ackermann's function, 261, 273 

Aho, A.V., 190 

Algorithm 

CKY, 191-195,249,338 

Cocke-Kasami-Younger, see CKY 

collapsing, 84-88,106-107,327,365 

Euclidean, 340, 364 

maximal bisimulation, 106-107 

minimization, see collapsing 

parsing, 181-190 
primality, 217-219 

recursive, 214 

Alphabet, 8 

single letter, 73, 74, 318, 326, 335, 
346 

stack, 158 

a-reduction, 264 

Alternating 

finite automaton, 330, 366 

quantifiers, see quantifier 

Ambiguous, 131, 182, 186, 339 

Analytic hierarchy, see hierarchy 
Annihilator, 12, 56 
Antimatter, 354 

Antisymmetry, 56, 96 
Application operator, 267 
Arbib, M.A., 118 

Arithmetic hierarchy, see hierarchy 
Arity, 108 
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Associativity, 9, 11, 42, 45, 55, 264, 
266, 285 

Asterate, 11, 56 

closure of CFLs under, 195 

closure of regular sets under, 38 
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Autobisimulation, 103 

maximal, 106 
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counter, 224-225,227, 341 
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deterministic, 15, 24, 54 

nondeterministic, 26, 32, 39 
two-way, 119-128,331 

with e-transitions, 36-37, 65, 318 

linear bounded, 4, 258, 268, 309, 

313 
product, 22 
pushdown, 4, 131, 175 

deterministic, 163,176-177,191, 
196 

nondeterministic, 157 
one-state, 172 

quotient, 80 
term, 108-118 
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Axioms 

Kleene algebra, 55-56 
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Backhouse, R.C., 60 
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Bar-Hillel, Y., 71, 147, 156, 197, 255 
Basic pump, 203 
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Begin statement, 130 
,B-reduction, 264 
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relation, 110 

representation, 19, 207, 224, 284, 

301, 307, 323, 329 
symbol,108 

Bisimilar, 101 
Bisimilarity class, 101 

Bisimulation, 100, 101, 331 
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Bloom, S.L., 60 
BNF, 3ee Backus-Naur form 
Boffa, M., 60 
Brainerd, W.S., 118, 268 

Cantor, G., 230, 243, 297, 298 

Capture of free variable, 264 

Cardinality, 10, 208 

Carrier, 110 

Cell, 119, 157 

CFL, 3ee context-free language 

Characteristic function, 275, 330 

Chomsky 

hierarchy, 4, 257, 268 

normal form, 3ee normal form 

Chomsky, N., 4, 54,134,147,175, 
200, 268 

Chomsky-Schiitzenberger theorem, 
198-200 

Church 
-Rosser property, 265 

-Turing thesis, 8ee Church's thesis 

numerals, 265 

Church, A., 4, 206, 207, 214, 265, 268 

Church's thesis, 207-208, 214 

CKY algorithm, 191-195, 197, 249, 

338 
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properties 
of CFLs, 154, 155, 195-197,308, 

335,367 
of DCFLs, 177-180,196-197,338 

of r .e. sets, 340 
of regular sets, 21-24,37-39,47, 

62,302 

reflexive transitive, 56, 110, 160, 
213, 315, 322 
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Coarsest, 97 

Cocke, J., 197 
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Collapsing, 77, 81 
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NFA, 100-107 
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196 
closure of recursive sets under, 219 

closure of regular sets under, 23 
r.e. sets not closed under, 219 

Completeness 
for a class of decision problems, 

278-281, 349 

combinatorial, 267 
deductive, 286 

Complete partial order, 339 
Complexity theory, 281 
Composition 

functional, 240, 258, 263, 271 
relational, 57, 101, 110, 122 

sequential, 269 

Compound pattern, 40, 41 
Computability, 5, 206, 207, 256 

Computable 
function, 347 

total, 273, 347, 350 

reduction, 240 

Concatenation 
closure of CFLs under, 195 
closure of regular sets under, 37 
set, 10, 37 
string, 9 

Concurrency, 100 
Conditional, 269 
Configuration 

2DFA,122 

DPDA,I77 
PDA,158 

queue machine, 368 

start, 122, 159, 212, 216, 250 
Turing machine, 212, 216, 250 

Congruence, 114, 115, 117,202 

class, 116 

right, 90, 95, 97, 116 
Consistency, 296, 297 

Constant, 108 
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Context, 116 
Context-free 

Index 391 
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Coset, 202 
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automaton, 224-225, 227, 341 
Curry, 263 
Curry, H.B., 4, 206, 263, 268 
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Davis, M., 268 
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language 
Dead code, 310 
Decidability, 220, 235-236 

Decision problem, 7, 284 

Demon game 

for CFLs, 153-155 

for regular sets, 71-73 
De Morgan laws, 12, 24, 45 
Denesting rule, 57 
Depth, 150, 203, 330 
Derivation 

leftmost, 149, 168 
rightmost, 149 
tree, 8ee parse tree 

Determinism, 176 

Deterministic 

context-free language, 177, 191, 196 
finite automaton, 54 

pushdown automaton, 163, 
175-177,191,196 

DFA, 8ee finite automaton 

Diagonalization, 230-234, 239, 243 

Direct product, 108 
Disjoint 

pumps, 205 
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Disjoint (cont.) 
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DPDA, see deterministic pushdown 

automaton 

Dyck language, see parenthesis 

language 

DYLAN,262 

Dynamic programming, 191 

Effective, see computability 
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Eilenberg, S., 118 
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for CFLs, 249, 348 
for LBAs, 310 
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Encoding, 207, 292 
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Endmarker, 120, 163, 176, 196, 211 

Engelfriet, J., 118 
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machine, 225-227 
state, 226 
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Epimorphism, 113, 116 

e-closure, 37, 65, 318 

e-production, 141-142,145, 147, 334 
e-transition, 36-37, 65, 158, 179, 318 

Equational logic, 50 

Equivalence 

among variations of TMs, 221-227 

class, 80 
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of acceptance by final state and 

empty stack, 164-166 

of bisimilar automata, 103 

of CSGs and LBAs, 258, 268 

ofDFAs and 

2DFAs,124-128 
NFAs, 28-36 

NFAs with e-transitions, 318 
regular expressions, 46-54, 59 

right-linear grammars, 54, 306 

of ~-recursive functions and the 
,x-calculus, 265 
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CFGs, 167-175 

one-state NPDAs, 172 

of primitive recursive functions and 

for programs, 273 
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enumeration machines, 225-227 
four-counter automata, 224-225 
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Post systems, 257 
two-counter automata, 225 
two-stack automata, 224 

type 0 grammars, 258, 268, 343 
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functions, 271 

problem, 310 

relation, 49, 80, 90, 96 

Erase, 217 

Esik, Z., 60 
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Euclidean algorithm, 340, 364 
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Evey, J., 175 
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regular, see regular expression 
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Final state, see accept state 
Finer, 96 
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alternating, 330, 366 

deterministic, 15, 24, 54 

nondeterministic, 32, 39 
two-way, 119-128, 331 

with e-transitions, 36-37, 65, 318 
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index, 90, 95, 116-117 

-state transition system, 14, 24 
Finitely generated, 202 
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for CFLs, 250, 349 

for regular sets, 349 
Fischer, P.C., 180, 227 
Fixpoint, 293, 339, 346, 347 
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loop, 269 

progrann, 269, 273 
Formalist progrann, 5, 209, 282 

Formal proof system, 282 
Free 

commutative monoid, 202 

monoid,202 
variable, 284, 293 
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Ackermann's, 261, 273 

characteristic, 275, 330 

computable, 347 

monotone, 339 

J'-recursive, 4, 206, 214, 256, 
258-261,268,269,345 

pairing, 277 
partial, 270, 273, 347 
primitive recursive, 259, 269, 273, 

313 
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transition, see transition function 
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abstraction, 262-264 
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composition, see composition 
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DPDA, 177, 179-180 

LBA,309 
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undecidability of, 231-234, 244 
Turing machine, 213, 216 

Hamming distance, 65, 302 
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Hardness, 278 
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read/write, 210, 212, 220, 221 
write-only, 225 
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second-order, 281 

Loop, 75 

Looping 
2DFA,122 
DPDA, 177, 179-180 

LBA,309 
PDA,161 
Turing machine, 210, 213, 216 

Machtey, M., 268 
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relatively, 364 

Primitive 

recursion, 259 
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operator, 181, 283 
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of first-order logic, 284 
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