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ABSTRACT.  Logical languages, which combine formal logics with representations, are argued to have many 

benefits for the description and analysis of phonological systems. They inform questions relating to locality, 

typology, psychology, as well as learning and acquisition, and offer insights unavailable with traditional rule-

based or constraint-based phonological formalisms. This article reviews the main insights and recent 

developments offered by unearthing the logical structure of phonological generalizations.  
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1. Introduction 

In this article, I argue that the logical structure of phonological generalizations is not only 

“regular”, but also “less than regular” in a particularly “local” way. These concepts provide a 

way to understand the extensive variation cross-linguistically, how these patterns can be 

acquired from examples, and the important role played by representation in grammar. I argue 

that formalizing these insights directly with logic will lead to better theories of phonology than 

theories based on global optimization (e.g. Prince and Smolensky 2004), or theories based on 

serial rule application (e.g. Chomsky and Halle 1968). The primary reason is that the hypothesis 

that phonological generalizations can be characterized with weak logics over particular 

representations is both sufficiently expressive to account for variation observed cross-

linguistically and simultaneously sufficiently restrictive to provide an account for how such 

generalizations can be learned with limited resources. While this article overlaps with 

arguments I have made elsewhere (Heinz 2011a,b, 2018), it also incorporates recent research 

results since those pieces were written over a decade ago. 

 

2. Background 

I begin with what I regard to be the insight made in the 20th century which is foundational 

to generative phonology. In my view, it is that the best explanation of the systematic variation 

in the pronunciation of morphemes is to posit a single underlying mental representation of the 

phonetic form of each morpheme and to derive its pronounced variants with context-sensitive 

transformations. Readers are referred to Kenstowicz and Kisseberth (1979, chapter 6) and 

Odden (2014, chapter 5) for arguments for this position. 

To illustrate, consider the following Finnish words in Table 1 (Odden 2014:86). The 

partitive singular suffix shows an [a/æ] alternation, but let us focus on the [e/i] alternation 

which occurs at the ends of some nouns, including the ones meaning ‘river’ and ‘door.’ 
 

Table 1. Finnish Words 

Nominative Singular Partitive Singular  

aamu aamua ‘morning’ 

kello kelloa ‘clock’ 

kylmæ kylmææ ‘cold’ 

kømpelø kømpeløæ ‘clumsy’ 

æiti æitiæ ‘mother’ 

tukki tukkia ‘log’ 

yoki yokea ‘river’ 

ovi ovea ‘door’ 

 



 

 

A standard phonological analysis would posit that the long-term memory representation of 

the pronunciation of the morphemes ‘river’ and ‘door’ would be /yoke/ and /ove/, respectively 

and the phonological generalization that unround, mid, front vowels raise in word-final position. 

Formally, that transformation is expressed with the SPE-style rewrite rule e → [+high] / __ #. 

It is also expressed in Optimality Theory with the ranking *e# >> IDENT(HIGH), where, of all 

the faithful constraints whose violation could resolve a violation of *e#, IDENT(HIGH) is ranked 

the lowest. Despite their differences, both theories adopt the fundamental insight in the 20th 

century. 

Any theory which agrees with the position that the best explanation for the systematic 

variation in the pronunciation of morphemes is due to a lawful transformation from underlying 

representation to the surface representation must address three questions. 
 

1. What is the nature of the more abstract, underlying, lexical representations? 

2. What is the nature of the more concrete, surface representations? 

3. What is the nature of the transformation from underlying forms to surface forms? 
 

While different theories of phonology may disagree on the answers to these questions, they 

agree on the questions being asked. 

It is a truism that grammars are productive, and make predictions regarding unseen forms. 

It is also a truism that different grammars may generate the same transformations, like the SPE-

style rewrite rule and the OT grammar above for Finnish word-final /e/ raising. Both these 

grammars map the URs /yoke, ove/ to SRs [yoki, ovi], respectively, and both would map 

possible URs like /manile/ to [manili]. Each (UR, SR) pair is a point in a space, and the set of 

these points – a string map — constitutes what I call the extension of the grammar, in the same 

way that there is a set of points that satisfy an equation for a line, such as y = 2x + 1. 

Another important truism is that grammars may have properties largely independent of 

grammatical particulars. For example, lines are lines regardless of whether they are described 

with Cartesian or Polar coordinates. One foundation in computer science is that string sets and 

string maps can be defined equally well with different kinds of grammatical formalisms 

(Kleene 1956; Elgot and Mezei 1965; Scott and Rabin 1959). These ideas are not uncommon 

in phonology. For example, Tesar’s (2014) definition of output-driven maps does not depend 

on the grammatical formalism, and Baković and Blumenfeld (2024) provide an analysis of the 

ways string maps may interact. In the next section, I want to draw attention to an important 

property of phonological generalizations, regardless of how they are formalized: they are 

regular.  

 

3. The regularity of phonology 

In phonology, there are several computations that grammars engage in. For a given 

constraint C and representation R, we may want to know whether R violates C. We may also 

want to know how many times. Similarly, for a given grammar G and underlying representation 

R, we want to know which surface representation(s) G transforms R into? Determining the 

answers to these questions uses resources, and knowing what kinds of resources are necessary 

and sufficient to answer these questions tells us something about the given constraint or 

grammar. 

Technically, a set of strings is regular, if it can be defined with a regular expression, a 

finite-state acceptor, or with Monadic Second Order logic over string models, and string maps 

are similarly defined (Kozen 1997; Engelfriet and Hoogeboom 2001). However, unless one is 

familiar with these terms, no knowledge is gained because one unfamiliar term has been 

replaced with other unfamiliar ones. Therefore, I will provide the following intuition for what 

it means for a grammar to be regular. A grammar is regular provided the memory required to 

generate the output is bounded by a constant, regardless of the size of the input. Bear in mind 



 

 

that this is not a technical definition, and this attempt to convey what regular means in terms 

of memory is not perfect. Nonetheless, I believe it suffices to get the crucial idea across. Figure 

1 visualizes what it means for a computation to be regular. In the graph on the left, no matter 

how large the input is, the amount of memory required to process it never exceeds a fixed, 

constant threshold. On the other hand, in the graph on the right, as the input size increases, the 

amount of memory required to process the input, in the worst case, increases without bound.  
 

 

Figure 1. Regular and Non-regular patterns 
 

To give a phonologically-motivated example, consider two logically-possible vowel 

harmony patterns. In Progressive Harmony, vowels agree in backness with the first vowel in 

the underlying representation. In Majority Rules Harmony, vowels agree in backness with the 

majority of vowels in the underlying representation. These generalizations are exemplified in 

Table 2 with hypothetical URs.  
 

Table 2. Progressive and Majority Rules Vowel Harmony 

UR Progressive Majority Rules 

nokelu nokolu nokolu 

nokeli nokolu nikeli 

pidugo pidige pudugo 

pidugomemi pidigememi pidigememi 
 

It can be shown that Progressive Harmony is regular but Majority Rules Harmony is not 

(Riggle 2004; Heinz and Lai 2013). Intuitively for Progressive Harmony, when computing the 

SR for any UR, once the backness of the first vowel is known, producing the SR is just a matter 

of making the other vowels in the word match in backness. The only memory required is 

knowing the backness of the first vowel, which does not change as words become longer. On 

the other hand, in Majority Rules Harmony, when computing the SR for any UR, one must 

know whether the front or back vowels constitute a majority in the word. There is no single 

vowel that determines this. Instead, one needs to store in memory the difference between the 

number of front and back vowels in a word, and as words get longer, this difference can increase 

without bound in the worst case. 

What makes this particular example interesting are three facts. First, Progressive Harmony 

is attested, but Majority Rules Harmony is not (Baković 2000). Second, human subjects fail to 

learn Majority Rules Harmony in artificial grammar learning experiments, unlike Progressive 

Harmony (Finley 2008, 2011). And third, as mentioned, Majority Rules Harmony is not regular, 

but Progressive Harmony is. Are these facts coincidental? In my opinion, the non-regular 

nature of Majority Rules Harmony accounts for the difference between it and Progressive 

Harmony with respect to attestedness and learnability in artificial grammar learning 

experiments.  

This explanation is not available in Optimality Theory. There exists a CON and ranking 

over it which generates Majority Rules: AGREE(BACK)>>IDENT(BACK) (Frank and Satta 1998; 

Riggle 2004; Gerdemann and Hulden, 2012). Some believe changing CON helps address this 

issue. However, there are many results that pin the blame not on CON, but on global 



 

 

optimization itself. This is because limiting CON to simpler constraints does not appear to reign 

in global optimization (Hao 2019, 2024; Lamont 2021, 2022). In summary, global optimization 

allows one to solve problems that are non-regular; that is, which require memory to grow as 

the input size grows. It does this because it allows structures in different parts of the word to 

interact with each other in all kinds of non-local ways. 

On the other hand, there is evidence that phonological generalizations are regular. This 

evidence originates with Johnson (1972) and Kaplan and Kay (1994), who showed how to 

translate any ordered sequence of SPE-style rewrite rules into a finite-state transducer which 

maps URs to SRs. Since virtually any phonological grammar can be expressed as an ordered, 

finite sequence of SPE-style rewrite rules, no matter how inelegantly, this means “being regular” 

is a property of the string maps that any phonological grammar defines. Furthermore, 

constraints on well-formed surface representations are regular since the set of outputs produced 

by finite- state transducers are also regular (Scott and Rabin 1959). A similar argument holds 

for the constraints on well-formed underlying representations.  

An analogy may be useful. Consider grammars which build shapes. Some grammars can 

build all kinds of shapes: circles, pentagons, and quadrilaterals. Some grammars can only build 

quadrilaterals. Regular grammars are like the grammars that only build quadrilaterals. 

Examination of phonological generalizations shows they always have four sides. Optimality 

Theory by its very nature constructs non-quadrilaterals even when CON is sharply limited so 

it cannot explain this finding. Further inspection of phonological generalizations, reveal they 

are in fact squares. This last point will be explained in the remainder of this article while also 

introducing how logic and representation provide theories of phonology which help determine 

their shape and character.  

 

4. Constraints and transformations with First Order logic 

There is ample precedent for using logic and model theory to describe and analyze 

phonological generalizations (Coleman and Local 1991; Scobbie et al. 1996; Potts and Pullum 

2002; Graf 2010). The basic idea is that phonological representations can be formalized as 

relational structures, in which there are a number of events, each which exhibit certain 

properties, and which are related to each other by particular kinds of relations. The properties 

and relations which constitute the structure are the atomic predicates in a logical language. This 

section illustrates these ideas using first order logic, broad classes of phonetic properties, and 

the successor relation, which relates events which occur one after another in time. 

As a first example, I will illustrate how to define the constraint *e#, which is plausibly a 

markedness constraint driving word-final /e/ raising in Finnish. This constraint is defined below.  
 

(1) ∗e# ≔ ¬ (∃x) [vocalic(x) ∧ mid(x) ∧ front(x) ∧ unround(x) ∧(∃y) [x◁ y ∧ #(y)]] 
 

To understand this sentence of First Order (FO) logic, it can be useful to think of variables like 

x and y as positions (events) in a sequence. A predicate property(x) means position x has that 

property. The relation x◁ y means position y is the next position after x and is read “y is the 

successor of x.” The symbol ∧ means AND; symbol ∨ means OR; symbol ¬ means NOT; and 

symbol ∃ means EXISTS. Putting it all together, the above sentence reads “There does not exist 

a position x which is a mid, front, unrounded vowel whose successor position y is the word 

boundary.” More simply, this translates to “There are no word-final [e] vowels.” 

Figure 2 shows the relational structure for the form [ove]. There are five positions (events), 

each of which corresponds either to a word boundary or to one of the segments in the word. 

These are related by the successor relation, which arranges them in time. 

Evaluating the constraint *e# is straightforward. We must check whether there is a position 

x satisfying the properties of a mid, front, unrounded vowel, followed by a position y satisfying 

the property of being a word boundary. There is such a position (position 4 in Figure 2). Thus, 



 

 

the logical sentence *e# in (1) evaluates to False when presented with the relational structure 

in Figure 2. This means that structure violates the constraint. 

In contrast, if one imagined the relational structure for [ovi], it would be nearly identical 

 

 

Figure 2. The relational structure of the word [ove] 
 

to the one shown in Figure 2. The only difference would be that position 4 would satisfy a 

predicate high and not satisfy the predicate mid. When presented with this structure, the 

sentence *e# would evaluate to True because there are no positions corresponding to mid, front, 

unrounded vowels succeeded by word boundaries. 

In this way, this logical language provides a precise way of evaluating constraints. 

Furthermore, since FO logic is a fragment of Monadic Second Order (MSO) logic, all 

constraints defined with this logical language, including conjunctions of such constraints, are 

regular. Good references on finite model theory and logic include Keisler and Robbin (1996), 

Enderton (2001),  Libkin (2004), Hedman (2004), and Pratt-Hartmann (2023). 

Logic can also be used to transform one structure into another (Courcelle 1994; Courcelle 

and Engelfriet 2012) to map a UR to a SR, for example. Such a transformation can be specified 

with a collection of sentences which collectively define properties of the positions in the output. 

These sentences have the form shown below, and should be understood as saying “Position x 

has property P in the output only if corresponding position x in the input satisfies predicate Q.”  
 

(2) φP(x) ≔ Q(x) 
 

The symbol φ in the left-hand side is only there to signify that the predicate φP(x) may be 

distinct from predicate P(x). The former indicates whether position x has property P in the 

output structure and the latter indicates whether position x has property P in the input structure. 

To illustrate, I will now provide a collection of sentences specifying the transformation of 

word-final /e/ raising in Finnish. First, most of the underlying structure surfaces intact. Only 

the properties high and mid are different between the underlying and surface structures. 

Therefore, any property P which is distinct from both high and mid (e.g. vocalic) is the same 

in the surface form as it is in the underlying form. This faithfulness of property P can be 

expressed with a sentence like the one below. 
 

(3) φP(x) ≔ P(x) 
 

This means specifically that a position x will have the property P in the output only if the 

position x in the input has property P.  

Next, the successor relation is itself unchanged. The sentence below asserts that position y 

is the successor of position x in the output only if y is the successor of position x in the input. 
 

(4) φ(x◁ y) ≔  x◁ y 
 

What remains is to specify which positions have the properties high and mid, respectively. 

A position x in the output bears the property high if its corresponding position x in the input is 

high OR if it is a word-final /e/. Similarly, a position x in the output bears the property mid if 

its corresponding position x in the input is mid AND it is NOT a word-final /e/. 
 



 

 

(5) φhigh(x) ≔ high(x) ∨ (e(x) ∧ final(x)) 

(6) φmid(x) ≔ mid(x) ∧ ¬ (e(x) ∧ final(x)) 
 

The formulas above make use of the predicates e(x) and final(x). For completeness, these 

predicates are defined below. 
 

(7) e(x) ≔ vocalic(x) ∧ mid(x) ∧ front(x) ∧ unround(x)  

(8) final(x) ≔ (∃y) [x◁ y ∧ #(y)] 
 

This collection of sentences defines a logical transduction which, given some input 

relational structure, provides an effective procedure for constructing an output relational 

structure. I have omitted some details, and readers are referred to Strother-Garcia (2018, 2019), 

Dolatian (2020), and Chandlee and Jardine (2021) for more complete introductions. 

To conclude this section, I return to the question of why anyone should care that we can 

describe constraints and transformation with logical languages. The first reason is that the use 

of First Order logic guarantees that the memory resources are bounded by a constant; that is, 

that the process we are describing is regular. This is because any logic equivalent to some 

fragment of MSO is at most regular, and First Order logic is a fragment of MSO. 

The second reason is that choosing a logical formalism and a representation fixes a theory. 

The choice of logic and the choice of representation, which combine to yield a logical language, 

parameterize a space of possible theories. Logic and representation provide an “encyclopedia 

of categories” in Humboldt’s (1836/1999) sense, against which the “encyclopedia of types” – 

that is the observed phonological patterning – can be compared against. 

For example, the theory above combines FO logic with representations of words using the 

successor relation. A well-known aspect of this theory is that it is insufficiently expressive to 

account for long-distance constraints or processes that are found in phonology. To express such 

phenomena, one either has to use a more powerful logic such as MSO logic, or alter the 

representation of words to include either the notion of general precedence (Heinz, 2010; Rogers 

et al., 2013) or the notion of the phonological tier (Heinz et al. 2011; McMullin 2016; Rogers 

and Lambert 2019a; Lambert 2023). In this way, phonological phenomena can be classified 

according to the logical languages by which they can be expressed. 

A third reason to be interested is that weaker logics facilitate learning and acquisition. It is 

well known that the class of constraints and processes defined with MSO logic are not learnable 

exactly from positive examples, even in the absence of noise. Nor are they even approximately 

learnable under typical probabilistic assumptions. On the other hand, constraints and processes 

which can be expressed with logics weaker than FO logic are known to be feasibly learnable 

(Valiant 1984; Strother-Garcia et al. 2016; Lambert et al. 2021).  

In the example above, we used a FO logical language for Finnish.  Evidently it was 

sufficient, but are there weaker logics that are still sufficient? In the next section I argue that 

weaker logics, with the right representations, are not only sufficient for expressing the diversity 

of phonological generalizations found in natural languages, but they are also sufficiently 

restrictive for successful learning to take place. 

 

5. The strengths of weaker logics 

This section considers logics weaker than FO. For constraints, I consider a Propositional 

logic and two smaller fragments of it. For transformations, I consider a Quantifier-Free logic.  

 

5.1 Constraints 

This section introduces a propositional logic for defining constraints over relational 

structures (Rogers and Lambert 2019a). Propositional logic has no variables like x nor 

quantifiers like ∃ . It only uses connectives like ∧ , ∨  and ¬ to combine the atomic 



 

 

propositions. The atomic propositions themselves are factors, which are connected pieces of 

structures. A relational structure S satisfies an atomic proposition F if and only if S contains F. 

For example, the factor e# is defined to be the structure shown in Figure 3. This factor is 

an atomic proposition in the logical language. The relational structure for [ove] shown in Figure 

2 contains the factor e# and therefore that structure satisfies the propositional sentence φ ≔ e#. 

On the other hand, the relational structure for [ove] shown in Figure 2 does not satisfy the 

sentence φ′ ≔ ¬ e# because only structures which do not contain the factor e# satisfy φ′.  
 

 

Figure 3. The factor e# 
 

More generally, sentences of the form ¬F1 ∧¬F2 . . . ∧¬Fn mean that well-formed 

structures do not contain any factor Fi for 1 ≤ i ≤ n. If sentences of propositional logic are 

restricted to sentences of this form, we obtain a logic known as the Conjunction of Negative 

Literals (CNL). If these conjunctive sentences also admit positive literals – that is conjunctions 

like F1 ∧ F2 which would require structures to contain factors F1 and F2 – then they constitute 

a logic known as the Conjunction of Positive and Negative Literals (CPNL). Such sentences 

reduce well-formedness to simply checking whether local regions of the structure contain a 

forbidden or required factor. 

It is of interest to know to what extent sentences of propositional logic are able to describe 

phonological well-formedness conditions in natural languages. An early result is that with the 

right representations, both local and long-distance segmental phonotactic patterns can be so 

described (Heinz 2010). 

More recently, Rogers and Lambert (2019b) examine the StressTyp2 database (Goedemans 

et al. 2015), which provides non-lexical stress patterns for over 700 languages, for which 106 

distinct patterns have been encoded as finite-state acceptors. They show that 98/106 patterns 

can be described with CPNL. Six more require implication: “F1 implies ¬F2” and two more 

appear to require MSO logic because they contain “hidden alternation pattern that requires an 

odd number of syllables to occur in certain spans of the word.” These become CPNL if 

secondary stress is perceptible, as has been argued in similar cases (Becker 2022). Lambert (to 

appear) provides a more refined analysis of these stress patterns. 

The above results employed linear representations, but non-linear representations, such as 

syllabic and autosegmental structures, have been studied too. These representations are also 

relational structures, and constraints can be expressed with sentences of CNL logic over factors 

that refer to different levels of structure. Strother-Garcia (2018, 2019) shows that constraints 

given by ONSET, NOCODA, and the Sonority Sequencing Principle follow from forbidding 

particular factors using syllabic representations. She also shows that the basic CV typology, 

and extensions thereof, can be obtained with sentences of CNL. Similarly, Jardine (2016, 2017) 

shows that well-studied patterns of tonal association can all be expressed with sentences of 

CNL over autosegmental representations, including position-specific plateaus, position-

specific contours, melody constraints, and quality dependent plateaus. 

These results are important for a couple of reasons. First, they show that global optimization 

of ranked constraints is not necessary to characterize well-formedness conditions. Second, they 

show that the computational complexity is less than what was previously known. In particular, 



 

 

the fact that many patterns can be expressed with CNL means the well-formedness conditions 

are localized: it is sufficient to attend to individual factors to determine well-formedness. 

The examples so far are inviolable, language-specific constraints. This itself is not an 

issue if they can be learned. Chandlee et al. (2019) show that the space of factors forms a partial 

order, and design the Bottom-Up Factor Inference Algorithm (BUFIA) to search this space for 

forbidden factors without statistics. This algorithm is actually a family of algorithms whose 

implementation depends on the particular representations involved. Li (2024) implements 

BUFIA for autosegmental representations and applies it to a curated list of monomorphemic 

forms from a Hausa dictionary. It returns seven forbidden factors, three of which were 

previously identified by linguists, two of which are more specific versions of constraints 

previously reported (because the dictionary contains forms violating those previously reported 

constraints). The last two are previously unreported constraints. In another study, Swanson et 

al. (2024) implement BUFIA for learning segmental phonotactics and examine the local and 

long-distance phonotactics found in Quechua. Wilson & Gallagher (2018) had argued that 

phonotactic learning over featural representations necessitates statistical methods such as 

Maximum Entropy (Hayes & Wilson, 2008). On the contrary, Swanson et al. (2024) shows that 

BUFIA learns constraints over featural representations for Quechua, just as well as, if not better 

than, the maximum entropy learning algorithm Wilson and Gallagher employ. The reason for 

BUFIA’s success is not a mystery: the space of possible constraints is structured and restricted 

in a way that facilitates successful, feasible learning. 

To summarize, restricted forms of propositional logic provide good typological coverage, 

as well as learning algorithms with good theoretical and empirical results. Finally, I turn to the 

question of whether weaker logics for transformations have the same strengths. 

  

5.2 Processes 

It is not known to me how to define processes in terms of a propositional logic over factors 

as was the case above. However, Quantifier-Free (QF) logic is a fragment of FO logic that, as 

we will see, ensures that transformations it specifies involve only local computations. 

A formula of FO logic is quantifier-free if the right-hand side does not include any 

quantification. Compare the two formulas below, each of which presents a definition for 

whether a position x in the output structure has property P. 
 

(9) φP(x) ≔ Q(x) ∧ (∃y) [R(y)] 

(10) φP(x) ≔ Q(x) ∧ R(x) 
 

The first formula uses a quantifier on the right-hand side, but the second does not. For the 

former, to decide whether position x in the output structure has property P, one has to examine 

the whole structure for a position y satisfying R, whereas for the latter, all the necessary 

information is local to position x. 

Lindell and Chandlee (2016) show that Quantifier-Free transductions over string 

representations are Input Strictly Local (ISL) transformations, which Chandlee (2014) and 

Chandlee and Heinz (2018) showed is a property belonging to approximately 95% of the 

individual processes in P-Base (Mielke 2008, v.1.95), including local substitution, deletion, 

epenthesis, and synchronic metathesis. Furthermore, many opaque transformations without any 

special modification are also ISL (Chandlee et al. 2018). 

Chandlee et al. (2014) show ISL transformations are feasibly learnable from positive 

examples given a non-negative integer parameter k. ISL transformations can also be 

generalized to operate on a phonological tier to account for long-distance harmony and 

spreading processes (McMullin 2016; Burness and McMullin 2019; Burness et al. 2021; 

Lambert and Heinz 2023). Given an arbitrary finite-state transducer, one can decide whether it 

is (tier) ISL or not (Lambert and Heinz 2023). 



 

 

It is of course of interest to see to what extent QF transformations inform our understanding 

of non-linear representations. Strother-Garcia (2018) shows that the process of syllabification 

in Imdlawn Tashlhiyt Berber (ITB; Dell and Elmedlaoui 1985; Prince and Smolensky 1993) is 

Quantifier Free. She concludes “…syllabification in ITB can be represented by a QF [logical] 

transduction, a formalism restricted to substantially lower computational complexity than 

[traditional] phonological grammars…Establishing that ITB syllabification is QF highlights an 

insight not apparent from [those traditional] grammatical formalisms…” (152). Similarly, 

Dolatian (2020) examines the phonology-morphology interface in light of Quantifier Free 

logical transductions. He concludes “the bulk of the morphology-phonology interface requires 

local computation, not global computation.” (iii). 

The use of logical transformations over relational structures is also a valuable way to 

compare competing phonological representations to identify significant differences. When 

stronger logics are necessary to translate between representations, then the differences between 

them are more significant. Strother-Garcia (2019) shows that different syllabic representations 

can be obtained via QF translations, an indicator that their differences are relatively minor. In 

a similar vein, (Oakden 2020) compares different tonal representations (Yip 1989; Bao, 1990) 

and demonstrates their inter-translatability with quantifier free logic. Both these researchers 

conclude these different representations are better thought of as notational variants instead of 

as competing proposals. Jardine et al. (2021) shows that autosegmental representations and Q-

theoretic representations (Shih and Inkelas 2018) are also intertranslatable with quantifier-free 

logic and shows that Q-theory is mostly the same as autosegmental representations, claims to 

the contrary notwithstanding. On the other hand, (Nelson 2022) examines the phonetics-

phonology interface, and shows how to convert coupling graphs in Articulatory Phonology 

(Browman and Goldstein 1992) to familiar segmental representations and vice versa with FO 

logic. It remains to be seen whether a QF translation exists. 

In short, like the propositionally-defined constraints earlier, QF transformations exhibit 

good typological coverage and theoretical learning results. They also strongly implicate local 

computation as an important characteristic of phonological generalizations, as opposed to 

global optimization. Finally, they provide a new technique for comparing representations 

proposed for phonology or its interfaces. 

If MSO is a logic which can only build quadrilaterals, this section has presented logics that 

can only build squares. The fact that so many phonological generalizations are square-like is 

notable, and it is not something one would anticipate given a rule-based theories like SPE or 

theories based on global optimization like OT. 

 

6. Conclusion 

The logical structure of phonological generalizations reveals that many, if not all, 

phonological generalizations are local with the right representations and that the computations 

are mostly, if not all, subregular. Unlike in Optimality Theory, the constraints defined here are 

inviolable constraints and language-specific. That is not a problem provided they can be learned 

from examples. Learning algorithms exploiting these properties exist and continue to be 

developed. The logical structure of phonological generalizations reveals what learners must 

attend to, and in this way explains the kinds of phonological generalizations which are learned, 

and provides explanations for the phonological generalizations we do and do not observe.  

There are many reasons to pursue phonological description and analysis with logical 

systems and relational structures. They can express phonological generalizations precisely, 

accurately, and completely. They are easy to learn with only a little practice. They provide an 

“encyclopedia of categories” which can be used to examine typologies and compare 

phonological theories. They inform questions regarding memory, processing, and learning. 

They can be weighted to compute probabilities, count violations, and handle optionality, among 



 

 

other uses (Droste and Gastin 2009). Developments in algebraic methods have made it easier 

to determine which logics over strings can express given constraints or processes (Lambert 

2022, to appear; Lambert and Heinz, 2023, 2024). Research continues to show that weaker 

logics admit learnability results that are unavailable to more expressive logics. Finally, logic 

will still be here in hundreds of years. Thus, even researchers whose primary focus is the 

documentation of understudied languages benefit from describing grammars using logical 

languages as it provides a measure of longevity unequaled by other grammatical formalisms. 

There are many avenues for future research. Many more phonological representations can 

be studied within phonology and its interfaces, and compared more carefully (Danis to appear). 

Similarly, more logics including fixed point logics, Boolean Monadic Recursive Schemes 

(Chandlee and Jardine, 2019, 2021), and logics without negation for the expression of natural 

classes (Nelson 2022b), can be further studied and developed. Finally, there are many open 

learning problems to be investigated for grammars expressed with logical languages. Learning 

lexicons, grammars, exceptions, and variation and learning transformations over non-linear 

representations are all current and exciting areas to pursue. 
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