Language Generation in the Limit

Background

Kleinberg and Mullainathan’s paper was presented at 38th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2024). It has already led to several additioanl studies,
which collectively were the basis of recent tutorial at COLT.

The paper

The introduction

+ contrasts “language generation in the limit” with “language identification in the
limit”.

+ relates the comparative ease of generation (as opposed to identification) to the suc-
cess of LLMs

« explains that a key limitation manifests itself in terms of what it calls the breadth
problem.

Preliminaries

« U is the universe.

« Let C' be a countable class of recursive languages { L, L, ...} where each L, C U.

+ Each L, € C has infinite cardinality (so no finite languages).

« Let C,, be the first n languages in C'.

+ K is the target language in the class. .S, is the set of words seen from K in times
steps 1 ... t.

- Identification: In each step, the algorithm observes S, and must output an
index ¢ (its guess for the true language K). The algorithm identifies K in the
limit if there is some t* such that for all steps ¢ > t*, the algorithm’s guess in
step ¢ is an an index ¢ for which L, = K.

* Generation: In each step, the algorithm observes S, and must output a string a,
(its guess for an unseen string in K). The algorithm generates from K in the limit if
there is some ¢* such that for all steps ¢ > t*, the algorithm’s guess a, belongs to
K —S,.


https://languagegeneration.github.io/

An Approach to Generation that Doesn’t Work

This section revisits the subset problem identified by Angluin 1980 that we studied. Ba-
sically the least L, € C which is consistent with .S, will not work because it may be the
case that S, C K C L,, and you will be generating incorrect strings.

Generation in the Limit via a Function
« This section is the core of the paper. It proves the following.

Theorem. For every countable collection of languages C, there is a func-
tion f- from finite subsets of U to elements of U, such that for every
enumeration of a language K € (), there is a t* such that for all £ > t*,
we have f-(5,) € K —S,.

+ The proof of this claim constructs the function f.. The idea is at time step ¢ it
considers ‘smallest’ languages in C; consistent with the .S,. These are called critical
(see below).

- Let L, be the language with the largest index n,, if it exists. If L, exists,
fc(S;) is defined to be the lowest-indexed element of L,, — 5.

— Ifit does not exists (so no languages in C, are consistent) then f~(.5,) is defined
arbitrarily (for example the least element in U).

« Alanguage L, is critical at step ¢ if L,, is consistent with .S,, and for every language
L, € C,, that is consistent with .S;, we have L, C L,. In other words, not only is
L, consistent with .S, it is a subset of every language in C,, that precedes L,, in the
indexing of C.

- Lemma: There is a time step ¢+ such that for all t > ¢*, K is critical.
- Lemma: Let¢ < j. If L, and L; are both critical at step ¢ then L; C L,.

« It follows that at time step ¢ there may be finitely many critical languages
L, ,L,,L,,, ... withn; <ny <ng.., which means that the sequence is nested
by inclusion: L, D L, DL, ,...

1 2 3

- Eventually K appears in this list.

- “But we now arrive at the crucial point, which is that beyond some finite index,
all the critical languages are subsets of [ K], so it is safe to generate from any
of them.”

Generation in the Limit via an Algorithm

This section essentially shows that at time step ¢, f~(.5S;) can be effectively computed
using enumeration and language membership queries.



Generation for Finite Collections of Languages
Here they consider the case where (' is finite.

« The closure of S,, denoted (.5,), is the intersection of all languages in C' consistent
with S,.

« “If there is a string in (S,) — S,, then it is always safe for the algorithm to generate
such a string; by definition, it must be an unseen string from the true language
[K].”

+ This allows them to prove the following

Theorem. There is an algorithm with the property that for any finite col-
lection of languages C, there is a number ¢(C'), such that for any language
K in C, and any sequence S of at least ¢(C') distinct elements from K,
the algorithm can produce an infinite sequence of distinct strings from

K- S.

Extension: Prompted Generation in the Limit

Here they consider the situation where at each time step ¢, the algorithm is not only
given a valid string w, from K but also a prompt string p,. The algorithm must produce
a completion string ¢, such that the concatenation p,c, belongs to K — S,.

Concluding Remarks

They write, “the solutions we develop highlight interesting tensions between the prob-
lem of producing valid strings that belong to the target language, and the problem of
maintaining breadth by not restricting to only a small subset of the target language. Our
approaches achieve validity through a strategy that implicitly gives up on breadth, and it
is interesting to ask if this is essentially necessary for any method that achieves language
generation in the limit.”
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