
Language Generation in the Limit

Background
Kleinberg and Mullainathan’s paper was presented at 38th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2024). It has already led to several additioanl studies,
which collectively were the basis of recent tutorial at COLT.

The paper
The introduction

• contrasts “language generation in the limit” with “language identification in the
limit”.

• relates the comparative ease of generation (as opposed to identification) to the suc-
cess of LLMs

• explains that a key limitation manifests itself in terms of what it calls the breadth
problem.

Preliminaries
• 𝑈 is the universe.
• Let 𝐶 be a countable class of recursive languages {𝐿1, 𝐿2, …} where each 𝐿𝑖 ⊆ 𝑈 .
• Each 𝐿𝑖 ∈ 𝐶 has infinite cardinality (so no finite languages).
• Let 𝐶𝑛 be the first 𝑛 languages in 𝐶.
• 𝐾 is the target language in the class. 𝑆𝑡 is the set of words seen from 𝐾 in times
steps 1 … 𝑡.

– Identification: In each step, the algorithm observes 𝑆𝑡 and must output an
index 𝑖 (its guess for the true language 𝐾). The algorithm identifies 𝐾 in the
limit if there is some 𝑡∗ such that for all steps 𝑡 ≥ 𝑡∗, the algorithm’s guess in
step 𝑡 is an an index 𝑖 for which 𝐿𝑖 = 𝐾.

• Generation: In each step, the algorithm observes 𝑆𝑡 and must output a string 𝑎𝑡
(its guess for an unseen string in K). The algorithm generates from 𝐾 in the limit if
there is some 𝑡∗ such that for all steps 𝑡 ≥ 𝑡∗, the algorithm’s guess 𝑎𝑡 belongs to
𝐾 − 𝑆𝑡.

1

https://languagegeneration.github.io/


An Approach to Generation that Doesn’t Work
This section revisits the subset problem identified by Angluin 1980 that we studied. Ba-
sically the least 𝐿𝑖 ∈ 𝐶 which is consistent with 𝑆𝑡 will not work because it may be the
case that 𝑆𝑡 ⊆ 𝐾 ⊆ 𝐿𝑖, and you will be generating incorrect strings.

Generation in the Limit via a Function
• This section is the core of the paper. It proves the following.

Theorem. For every countable collection of languages C, there is a func-
tion 𝑓𝐶 from finite subsets of 𝑈 to elements of 𝑈 , such that for every
enumeration of a language 𝐾 ∈ 𝐶, there is a 𝑡∗ such that for all 𝑡 ≥ 𝑡∗,
we have 𝑓𝐶(𝑆𝑡) ∈ 𝐾 − 𝑆𝑡.

• The proof of this claim constructs the function 𝑓𝐶. The idea is at time step 𝑡 it
considers ‘smallest’ languages in 𝐶𝑡 consistent with the 𝑆𝑡. These are called critical
(see below).

– Let 𝐿𝑛𝑡
be the language with the largest index 𝑛𝑡, if it exists. If 𝐿𝑛𝑡

exists,
𝑓𝐶(𝑆𝑡) is defined to be the lowest-indexed element of 𝐿𝑛𝑡

− 𝑆𝑡.
– If it does not exists (so no languages in𝐶𝑡 are consistent) then 𝑓𝐶(𝑆𝑡) is defined
arbitrarily (for example the least element in 𝑈 ).

• A language 𝐿𝑛 is critical at step 𝑡 if 𝐿𝑛 is consistent with 𝑆𝑡, and for every language
𝐿𝑖 ∈ 𝐶𝑛 that is consistent with 𝑆𝑡, we have 𝐿𝑛 ⊆ 𝐿𝑖. In other words, not only is
𝐿𝑛 consistent with 𝑆𝑡 it is a subset of every language in 𝐶𝑛 that precedes 𝐿𝑛 in the
indexing of 𝐶.

– Lemma: There is a time step 𝑡+ such that for all 𝑡 ≥ 𝑡+, 𝐾 is critical.
– Lemma: Let 𝑖 < 𝑗. If 𝐿𝑖 and 𝐿𝑗 are both critical at step 𝑡 then 𝐿𝑗 ⊆ 𝐿𝑖.

• It follows that at time step 𝑡 there may be finitely many critical languages
𝐿𝑛1

, 𝐿𝑛2
, 𝐿𝑛3

, … with 𝑛1 < 𝑛2 < 𝑛3 …, which means that the sequence is nested
by inclusion: 𝐿𝑛1

⊇ 𝐿𝑛2
⊇ 𝐿𝑛3

, ….
– Eventually 𝐾 appears in this list.
– “But we now arrive at the crucial point, which is that beyond some finite index,
all the critical languages are subsets of [𝐾], so it is safe to generate from any
of them.”

Generation in the Limit via an Algorithm
This section essentially shows that at time step 𝑡, 𝑓𝐶(𝑆𝑡) can be effectively computed
using enumeration and language membership queries.

2



Generation for Finite Collections of Languages
Here they consider the case where 𝐶 is finite.

• The closure of 𝑆𝑡, denoted ⟨𝑆𝑡⟩, is the intersection of all languages in 𝐶 consistent
with 𝑆𝑡.

• “If there is a string in ⟨𝑆𝑡⟩ − 𝑆𝑡, then it is always safe for the algorithm to generate
such a string; by definition, it must be an unseen string from the true language
[𝐾].”

• This allows them to prove the following
Theorem. There is an algorithm with the property that for any finite col-
lection of languages 𝐶, there is a number 𝑡(𝐶), such that for any language
𝐾 in 𝐶, and any sequence 𝑆 of at least 𝑡(𝐶) distinct elements from 𝐾,
the algorithm can produce an infinite sequence of distinct strings from
𝐾 − 𝑆.

Extension: Prompted Generation in the Limit
Here they consider the situation where at each time step 𝑡, the algorithm is not only
given a valid string 𝑤𝑡 from 𝐾 but also a prompt string 𝑝𝑡. The algorithm must produce
a completion string 𝑐𝑡 such that the concatenation 𝑝𝑡𝑐𝑡 belongs to 𝐾 − 𝑆𝑡.

Concluding Remarks
They write, “the solutions we develop highlight interesting tensions between the prob-
lem of producing valid strings that belong to the target language, and the problem of
maintaining breadth by not restricting to only a small subset of the target language. Our
approaches achieve validity through a strategy that implicitly gives up on breadth, and it
is interesting to ask if this is essentially necessary for any method that achieves language
generation in the limit.”

3


	Background
	The paper
	The introduction
	Preliminaries
	An Approach to Generation that Doesn't Work
	Generation in the Limit via a Function
	Generation in the Limit via an Algorithm
	Generation for Finite Collections of Languages
	Extension: Prompted Generation in the Limit
	Concluding Remarks


