Language Generation in the Limit

Background

Kleinberg and Mullainathan’s paper was presented at 38th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2024). It has already led to several additioanl studies,
which collectively were the basis of recent tutorial at COLT.

The paper

The introduction

+ contrasts “language generation in the limit” with “language identification in the
limit”.

+ relates the comparative ease of generation (as opposed to identification) to the suc-
cess of LLMs

« explains that a key limitation manifests itself in terms of what it calls the breadth
problem.

Preliminaries

« U is the universe.

« Let C' be a countable class of recursive languages { L, L, ...} where each L, C U.

+ Each L, € C has infinite cardinality (so no finite languages).

« Let C,, be the first n languages in C'.

+ K is the target language in the class. .S, is the set of words seen from K in times
steps 1 ... t.

- Identification: In each step, the algorithm observes S, and must output an
index ¢ (its guess for the true language K). The algorithm identifies K in the
limit if there is some t* such that for all steps ¢ > t*, the algorithm’s guess in
step ¢ is an an index ¢ for which L, = K.

* Generation: In each step, the algorithm observes S, and must output a string a,
(its guess for an unseen string in K). The algorithm generates from K in the limit if
there is some ¢* such that for all steps ¢ > t*, the algorithm’s guess a, belongs to
K —S,.

https://languagegeneration.github.io/

An Approach to Generation that Doesn’t Work

This section revisits the subset problem identified by Angluin 1980 that we studied. Ba-
sically the least L, € C which is consistent with .S, will not work because it may be the
case that S, C K C L,, and you will be generating incorrect strings.

Generation in the Limit via a Function
« This section is the core of the paper. It proves the following.

Theorem. For every countable collection of languages C, there is a func-
tion f- from finite subsets of U to elements of U, such that for every
enumeration of a language K € (), there is a t* such that for all £ > t*,
we have f-(5,) € K —S,.

+ The proof of this claim constructs the function f.. The idea is at time step ¢ it
considers ‘smallest’ languages in C; consistent with the .S,. These are called critical
(see below).

- Let L, be the language with the largest index n,, if it exists. If L, exists,
fc(S;) is defined to be the lowest-indexed element of L,, — 5.

— Ifit does not exists (so no languages in C, are consistent) then f~(.5,) is defined
arbitrarily (for example the least element in U).

« Alanguage L, is critical at step ¢ if L,, is consistent with .S,, and for every language
L, € C,, that is consistent with .S;, we have L, C L,. In other words, not only is
L, consistent with .S, it is a subset of every language in C,, that precedes L,, in the
indexing of C.

- Lemma: There is a time step ¢+ such that for all t > ¢*, K is critical.
- Lemma: Let¢ < j. If L, and L; are both critical at step ¢ then L; C L,.

« It follows that at time step ¢ there may be finitely many critical languages
L, ,L,,L,,, ... withn; <ny <ng.., which means that the sequence is nested
by inclusion: L, D L, DL, ,...

1 2 3

- Eventually K appears in this list.

- “But we now arrive at the crucial point, which is that beyond some finite index,
all the critical languages are subsets of [K], so it is safe to generate from any
of them.”

Generation in the Limit via an Algorithm

This section essentially shows that at time step ¢, f~(.5S;) can be effectively computed
using enumeration and language membership queries.

Generation for Finite Collections of Languages
Here they consider the case where (' is finite.

« The closure of S,, denoted (.5,), is the intersection of all languages in C' consistent
with S,.

« “If there is a string in (S,) — S,, then it is always safe for the algorithm to generate
such a string; by definition, it must be an unseen string from the true language
[K].”

+ This allows them to prove the following

Theorem. There is an algorithm with the property that for any finite col-
lection of languages C, there is a number ¢(C'), such that for any language
K in C, and any sequence S of at least ¢(C') distinct elements from K,
the algorithm can produce an infinite sequence of distinct strings from

K- S.

Extension: Prompted Generation in the Limit

Here they consider the situation where at each time step ¢, the algorithm is not only
given a valid string w, from K but also a prompt string p,. The algorithm must produce
a completion string ¢, such that the concatenation p,c, belongs to K — S,.

Concluding Remarks

They write, “the solutions we develop highlight interesting tensions between the prob-
lem of producing valid strings that belong to the target language, and the problem of
maintaining breadth by not restricting to only a small subset of the target language. Our
approaches achieve validity through a strategy that implicitly gives up on breadth, and it
is interesting to ask if this is essentially necessary for any method that achieves language
generation in the limit.”

	Background
	The paper
	The introduction
	Preliminaries
	An Approach to Generation that Doesn't Work
	Generation in the Limit via a Function
	Generation in the Limit via an Algorithm
	Generation for Finite Collections of Languages
	Extension: Prompted Generation in the Limit
	Concluding Remarks

