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Why We are Here

Turning to theoretical results on learning, it seems
that statistical learners may be more powerful
than non-statistical learners. For example, while
Gold's famous results showed that neither finite
state nor context free languages can be learnt from
positive examples alone (Gold, 1967), it turns
out thatprobabilistic context free languages can
be learnt from positive examples alone (Horn-
ing, 1969). [emphasis in original]

(Johnson and Riezl€Cognitive Sciencg6:3, 2002)



Their Explanation

Informally, a class of languages may be sta-
tistically learnable even though its categorical
counterpart is not because the statistical learning
framework makes stronger assumptions about the
training data (i.e. is it is distributed according to
some probabilistic grammar from the class) and
accepts a weaker criterion for successful learning
(convergence in probability).

(Johnson and Riezl€ognitive Sciencg6:3, 2002)
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This talk

¢ What are these stronger assumptions about the possible
distributions that determine the presentation of the legrdata?

¢ What does “convergence in probability” really contribute t
learning power?

o Are these results due to the “stronger assumptions” abeut th
training data limited to classes with probabilistic granns®a
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Presentations of Data - Functions

1. The set of all total functiont : N — N is F[N, N].
2. Foranyf € F[N,N], acomplete presentatioof f is

(%0,f(x0)), (1, f(x0)), - ..

such that for alk € N there exists € N such thatg = x.

3. Let ¢o, ¢1, . . . be a enumeration for all partial recursive
functions.
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Presentations of Data - Languages

. A languageis a subset oN.
2. Thecharacteristic functions a total function with domaiiN and

codomain {0,1}, denotedi € L].

. A complete presentatioof a languagé. is a complete

presentation ofx € L].

. A positive presentatioof a languagé. is a sequencgy, X1, . . .

such that for all € N, x; € LU {x} and for allx € L, there is
i € N such thatg = x.

. LetWp, Wy, ... be an enumeration for recursively enumerable

subsets of.



Inductive Inference Machines

1. Aninductive inference machine M a Turing machine that
running on an input sequenee We letM o] denotes the empty,
finite, or infinite sequence of numbers outputMy

2. A probabilistic inductive inference machine isllike the one
above except there is also a coin tape which consists of an
infinite sequence of Hs and T8l may read from this tape, at
which point the tape head advanctcannot write to the coin
tape. The next-state function bf may depend on what is read.
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Criteria of Identification: EX and TXTEX

1. Finite sequencesonvergeto their last element. Infinite
sequencesonvergeto the elemeni iff all but finitely many
elements in the sequence are

2. Aninductive inference machine EX-identifies fe F[N, N] if
and only if for every complete presentatiorof f, M[o] is a
non-empty sequence which converges to sosueh thaty; = f.

3. An inductive inference machine MXTEX-identifies IC N if
and only if for every positive presentatienof L, M[o] is a
non-empty sequence which converges to someh that
W = f.
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Probabilistic Criteria of Identification

¢ Pitt (1985) observes the set of coin tapes for which a prdistibi
inductive inference machind converges is a measurable set. So
the probability thatM converges td (or L) ono is well-defined.

¢ A probabilistic inductive inference machimé EX-identifies
f € F[N, N] with probability pif and only if for every complete
presentatiorr of f, the probability thaM EX-identifiesf ono is
at leastp.

¢ A probabilistic inductive inference machiné TXTEX-identifies
L € N with probability pif and only if for every positive
presentatiorr of L, the probability thaM TXTEX-identifiesf
ono is at leasip.
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EX and TXTEX Identifiable Classes

EX denotes those classes of functighs_ F[N, N] for which
there exists an inductive inference machiiavhich
EX-identifies in the limit every functiof € C.

TXTEX denotes those classes of languagdsr which there
exists an inductive inference machiktewhich
TXTEX-identifies in the limit every languade € L.

EXoron(p) denotes those classes of functié@hs: F[N, N] for
which there exists a probabilistic inductive inference hiaeM
which EX-identifies in the limit every functiof € C with
probability p.

TXTEXon(p) denotes those classes of languagder which
there exists an inductive inference machiiavhich
TXTEX-identifies in the limit every languade € £ with
probability p.
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Results due to Pitt (1985)

Theorem 1.Forallp > 1/2, EXyronp) = EX.
Theorem 2.For allp > 2/3, TXTEXyop(p) = TXTEX

e Conclusion: If we require TXTEX-identification
(EX-identification) with probability greater than 2/3 (}/2xtra
random information like coin tosses is no help.



12/28

Probability Distributions and the Draw Oracle

. Let X be a nonempty finite of countable setdstributionon X

is a functionD : X — [0, 1] such thaty , , D(x) = 1.

. If X'is any nonempty countable set aldds any distribution orK

thenDRAWD) is a oracle that is called with no input and returns
an element oK according tdD. Each call is an independent
event.



EX Identification with input from DRAW(D)

1. Adistribution iscompletaf and only if D(X) > 0 for all x € N.

2. If f € FIN,N] andD is a distribution orN thenD andf
determine a distribution oN x N:

DIfJ((xy)) =D(X) if f(x) =y

DIf]((x,y)) = 0iff(x) #y

Lemma 5. If D is a complete distribution on N arfde F|N, N]
then the sequence of values returned by an infinite
sequence of calls tDRAWDI[f]) is a complete
presentation with probability 1.
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Equivalence o0& Xgrawp) aNdEX;ron(p)

o EXyrau(p) denotes those classes of functiéhs- F[N, N] such
that for every complete distribution on N, there exists an
inductive inference machind that EX-identifies alf € C when
run with oracleDRAWDIf]) as input with probability at leagt

Theorem 6.EXyrawp) = EXorob(p)-

proof sketch. For anyC € EXyraw(p), there is some inductive inference
machineM which identifiesC for any complete distributio®. Angluin
shows there is a probabilistic inductive inference macMnhevhich
simulatesM when run on a particular distributidd.

Likewise, For anyC € EXyon(p), there is some probabilistic inductive
inference machin® which identifiesC. Angluin shows there is an
inductive inference machird’ which, when run on any complete
distributionD, simulatesM.

14/28



TXTEX ldentification with input from DRAW(D)

1. Thesupport of Dis
S(D) = {x € X: D(x) > 0}

i.e. the elements of X with nonzero probability.
2. AdistributionD onN U {«} is admissiblef and only if
SD) — {*} = L.
Lemma 8. If L is any language and any distribution orN U {x}
admissible folL, then the sequence of values returned

by an infinite sequence of calls BRAWD) is a
positive presentation with probability 1.
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Equivalence off XTEXyawp) and TXTEXopp)

o TXTEXyau(p) denotes those classes of languagesich that for
every complete distributio® on N, there exists a probabilistic
inductive inference machind that TXTEX-identifies allL € £
when run with oracl®©RAWD) as input with probability at least

p.
Theorem 9. TXTEXjrawp) = TXTEXron(p)

proof sketch. As before. For anfC € TXTEXjaw(p), there is some inductive
inference machin®! which identifiesC for any complete distributioD.
Angluin shows there is a probabilistic inductive inferentachineM’ which
simulatesM when run on a particular distributid.

Likewise, For anyC € TXTEX;on(p), there is some probabilistic inductive
inference machin® which identifiesC. Angluin shows there is an
inductive inference machirid’ which, when run on any complete
distributionD, simulatesM.
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Interim Discussion

* |If the presentation of the data is drawn from some complete
distribution,and nothing about the distribution is knowthen it
is the same as tossing coins.
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ldentifying Distributions

e The next results in the paper are abilantifying distributions

How doesidentifying distributions relate to identifying
functions or languages?

¢ |s the problem of identifying languages or functions when
samples are drawn from some distribution the same as
identifying a distribution? Or are two distinct notions igi
conflated?

e For example, is a PCFG uniqguely determined by the distobuti
it generates over strings?

18/28



Approximately Computable Distributions

1. AdistributionD on N is said to beapproximately computablié
and only if there is a total recursive functidrsuch that for every
x € N, and every positive rational numberf (x, ¢) is a rational
numberr such thafD(x) —r| < e.

2. The sequence of distributio¥y, Dy, . . . is said to beuniformly
approximately computabliéand only if there is a total recursive
functionf such that for every € N, for everyx € N, and every
positive rational number, f (i, X, €) is a rational number such
that|D(x) —r| < e.
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A Distance Measure for Distributions

e Defined,(D1,D2) = sup{|D1(x) — D2(X)| : x € N}
e Observal, is a distance metric.

1. d.(D1,D;) = d,(Dy, Dy).
2. d,(D1,D,) = 0iff Dy = D,.

3. d.(D1,D3) < di(D1,D3) + d. (D2, D3).
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Approximately Computable distances between distribgti

1. An oracle Xrepresents distributionD on N if and only if
whenever X is called witlx € N and a positive rational number
¢, the output of X is a rational numbersuch thatr — D(x)| < e.

2. If d(D1, D) is a distance metric on distributions, the{D, D2)
is approximately computabliéand only if

(a) there are two oracles X and Y where X repres@itand Y
represent®,

(b) there is Turing Machin&1*-Y (¢) that calls on oracles X and Y
such that for any positive rational numhethe output oM*-Y(€)
is a rational number such thafr — d(D1, Dy)| < e.
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Properties ofl, (D;, D5)

Lemma 13.d,.(D1, D) is approximately computable.

e LetD(n) denote the empirical distribution after drawing
samples, fon > 1. In other words

HO<i<n-—1:x =X}
n

D(n)(x) =

Lemma 14.Let D be any distribution oM. Leta > 1 and let

I(n) = y/6a(logn)/n. Then with probability 1,
d.(D,D(n)) < I(n) for all but finitely many values af.




Finitely Approachable Distributions

Let A = Dg, D1, Do, ... be a sequence of distributions bin
1. If D is any distribution orN then let

approacty (D) = inf{d.(D,Dj) : i € N}

2. If for D there exist®; such thaD, (D, D;) = approach (D)
thenD is finitely approachable byA.

3. If approach, (D) = 0 andD is finitely approachable by, then
D = D;.
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Criteria for Identifying Distributions and Main Result

¢ A machineM EX-identifies the distributio® if and only if the
probability is 1 thaM[Draw(D)] is a non-empty sequence of
indices that converges to sornsuch thaD = D;.

Theorem 15.Let A = Do, D1, Do, ... be a sequence of uniformly
approximately computable sequences of distributions
on N. There exists and inductive inference macHihe
that EX-identifies anyD; from A.
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Proof Sketch of Theorem 15.

proof sketch. Angluin defines an inductive inference machMehat
usesA. M works in stages = 1,2, .. .. At stagen, M request an
input and forms the empirical distributidd(n). For each,

0 <i < n-1,M approximatesl, (D;, D(n)) to within I (n). Letg(n)
denote this approximatiom outputs the least< n such that

e (ny < 2I(n) if there is such amand then goes on to staget- 1.

This works because

1. M is an effective procedure
2. It can be shown there exisi$ésuch that for alh > N, if D; is the
target distribution,
2.1 thene(n) < 2I(n).
2.2 thenfor allj < i and for alln > N, g(n) > 3I(n).
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Scope of Theorem 15

1. Recall thatWp, W1, . .. is an enumeration for recursively
enumerable subsets Nf
2. Angluin shows how to define a uniformly approximately

computable sequence of distributioBg Ej, ... onN U {x} such
that for alli € N, L(Ej) = Wi.

3. In other words, by Theorem 15, there is is EX-identifiable
computable sequence of distributions whose associated
languages are all the r.e. sets.
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Conclusion Part |

1. Horning’s (1969) result is essentially a corollary to thewd

2. Angluin suggests that the result (Theorem 15) has an analog
from Gold 1967 that all the r.e. sets are identifiable in thetli
from positive data if those positive presentations areireduo
be generated by primitive recursive functions.



Conclusion Part Il

The key to this result is to concentrate on mod-
elling the functions presenting the text, which, be-
ing primitive recursive, are an enumerable class of
total functions. Similarly, our result on identify-
ing distributions, concentrates on an enumerable,
computationally tractable class of “generators”,
namely, uniformly approximately computable se-
guences of distributions. The analogy between
these results suggests there is a great power in at-
tempting to model “how” a behavior is produced,
as well as “what” behavior is produced.

(Angluin, p. 21)

¢ “how” a behavior is produced = the generating functions
e “what” behavior is produced = the target language, functaio.
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