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Why We are Here

Turning to theoretical results on learning, it seems
that statistical learners may be more powerful
than non-statistical learners. For example, while
Gold’s famous results showed that neither finite
state nor context free languages can be learnt from
positive examples alone (Gold, 1967), it turns
out thatprobabilistic context free languages can
be learnt from positive examples alone (Horn-
ing, 1969). [emphasis in original]

(Johnson and RiezlerCognitive Science26:3, 2002)
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Their Explanation

Informally, a class of languages may be sta-
tistically learnable even though its categorical
counterpart is not because the statistical learning
framework makes stronger assumptions about the
training data (i.e. is it is distributed according to
some probabilistic grammar from the class) and
accepts a weaker criterion for successful learning
(convergence in probability).

(Johnson and RiezlerCognitive Science26:3, 2002)
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This talk

• What are these stronger assumptions about the possible
distributions that determine the presentation of the learning data?

• What does “convergence in probability” really contribute to
learning power?

• Are these results due to the “stronger assumptions” about the
training data limited to classes with probabilistic grammars?
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Presentations of Data - Functions

1. The set of all total functionsf : N → N is F[N, N].

2. For anyf ∈ F[N, N], acomplete presentationof f is

〈x0, f (x0)〉, 〈x1, f (x1)〉, . . .

such that for allx ∈ N there existsi ∈ N such thatxi = x.

3. Let φ0, φ1, . . . be a enumeration for all partial recursive
functions.
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Presentations of Data - Languages

1. A languageis a subset ofN.

2. Thecharacteristic functionis a total function with domainN and
codomain {0,1}, denoted[x ∈ L].

3. A complete presentationof a languageL is a complete
presentation of[x ∈ L].

4. A positive presentationof a languageL is a sequencex0, x1, . . .
such that for alli ∈ N, xi ∈ L ∪ {∗} and for allx ∈ L, there is
i ∈ N such thatxi = x.

5. Let W0, W1, . . . be an enumeration for recursively enumerable
subsets ofN.
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Inductive Inference Machines

1. An inductive inference machine Mis a Turing machine that
running on an input sequenceσ. We letM[σ] denotes the empty,
finite, or infinite sequence of numbers output byM.

2. A probabilistic inductive inference machine Mis like the one
above except there is also a coin tape which consists of an
infinite sequence of Hs and Ts.M may read from this tape, at
which point the tape head advances.M cannot write to the coin
tape. The next-state function ofM may depend on what is read.

7/28



Criteria of Identification: EX and TXTEX

1. Finite sequencesconvergeto their last element. Infinite
sequencesconvergeto the elementi iff all but finitely many
elements in the sequence arei.

2. An inductive inference machine MEX-identifies f∈ F[N, N] if
and only if for every complete presentationσ of f , M[σ] is a
non-empty sequence which converges to somei such thatφi = f .

3. An inductive inference machine MTXTEX-identifies L⊆ N if
and only if for every positive presentationσ of L, M[σ] is a
non-empty sequence which converges to somei such that
Wi = f .
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Probabilistic Criteria of Identification

• Pitt (1985) observes the set of coin tapes for which a probabilistic
inductive inference machineM converges is a measurable set. So
the probability thatM converges tof (or L) onσ is well-defined.

• A probabilistic inductive inference machineM EX-identifies
f ∈ F[N, N] with probability pif and only if for every complete
presentationσ of f , the probability thatM EX-identifiesf onσ is
at leastp.

• A probabilistic inductive inference machineM TXTEX-identifies
L ⊆ N with probability pif and only if for every positive
presentationσ of L, the probability thatM TXTEX-identifiesf
onσ is at leastp.
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EX and TXTEX Identifiable Classes

• EX denotes those classes of functionsC ⊆ F[N, N] for which
there exists an inductive inference machineM which
EX-identifies in the limit every functionf ∈ C.

• TXTEX denotes those classes of languagesL for which there
exists an inductive inference machineM which
TXTEX-identifies in the limit every languageL ∈ L.

• EXprob(p) denotes those classes of functionsC ⊆ F[N, N] for
which there exists a probabilistic inductive inference machineM
which EX-identifies in the limit every functionf ∈ C with
probabilityp.

• TXTEXprob(p) denotes those classes of languagesL for which
there exists an inductive inference machineM which
TXTEX-identifies in the limit every languageL ∈ L with
probabilityp.
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Results due to Pitt (1985)

Theorem 1.For allp > 1/2, EXprob(p) = EX.

Theorem 2.For allp > 2/3, TXTEXprob(p) = TXTEX.

• Conclusion: If we require TXTEX-identification
(EX-identification) with probability greater than 2/3 (1/2), extra
random information like coin tosses is no help.
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Probability Distributions and the Draw Oracle

1. Let X be a nonempty finite of countable set. Adistributionon X
is a functionD : X → [0, 1] such that

∑

x∈X D(x) = 1.

2. If X is any nonempty countable set andD is any distribution onX
thenDRAW(D) is a oracle that is called with no input and returns
an element ofX according toD. Each call is an independent
event.
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EX Identification with input from DRAW(D)

1. A distribution iscompleteif and only if D(X) > 0 for all x ∈ N.

2. If f ∈ F[N, N] andD is a distribution onN thenD andf
determine a distribution onN × N:

D[f ](〈x, y〉) = D(x) if f (x) = y

D[f ](〈x, y〉) = 0 if f (x) 6= y

Lemma 5. If D is a complete distribution on N andf ∈ F[N, N]
then the sequence of values returned by an infinite
sequence of calls toDRAW(D[f ]) is a complete
presentation with probability 1.
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Equivalence ofEXdraw(p) andEXprob(p)

• EXdraw(p) denotes those classes of functionsC ⊆ F[N, N] such
that for every complete distributionD on N, there exists an
inductive inference machineM that EX-identifies allf ∈ C when
run with oracleDRAW(D[f ]) as input with probability at leastp.

Theorem 6.EXdraw(p) = EXprob(p).

proof sketch. For anyC ∈ EXdraw(p), there is some inductive inference
machineM which identifiesC for any complete distributionD. Angluin
shows there is a probabilistic inductive inference machineM′ which
simulatesM when run on a particular distributionD.

Likewise, For anyC ∈ EXprob(p), there is some probabilistic inductive
inference machineM which identifiesC. Angluin shows there is an
inductive inference machineM′ which, when run on any complete
distributionD, simulatesM.
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TXTEX Identification with input from DRAW(D)

1. Thesupport of Dis

S(D) = {x ∈ X : D(x) > 0}

i.e. the elements of X with nonzero probability.

2. A distributionD on N ∪ {∗} is admissibleif and only if
S(D) − {∗} = L.

Lemma 8. If L is any language andD any distribution onN ∪ {∗}
admissible forL, then the sequence of values returned
by an infinite sequence of calls toDRAW(D) is a
positive presentation with probability 1.
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Equivalence ofTXTEXdraw(p) andTXTEXprob(p)

• TXTEXdraw(p) denotes those classes of languagesL such that for
every complete distributionD onN, there exists a probabilistic
inductive inference machineM that TXTEX-identifies allL ∈ L
when run with oracleDRAW(D) as input with probability at least
p.

Theorem 9.TXTEXdraw(p) = TXTEXprob(p).

proof sketch. As before. For anyC ∈ TXTEXdraw(p), there is some inductive
inference machineM which identifiesC for any complete distributionD.
Angluin shows there is a probabilistic inductive inferencemachineM′ which
simulatesM when run on a particular distributionD.

Likewise, For anyC ∈ TXTEXprob(p), there is some probabilistic inductive
inference machineM which identifiesC. Angluin shows there is an
inductive inference machineM′ which, when run on any complete
distributionD, simulatesM.
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Interim Discussion

⋆ If the presentation of the data is drawn from some complete
distribution,and nothing about the distribution is known, then it
is the same as tossing coins.
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Identifying Distributions

• The next results in the paper are aboutidentifying distributions.

How does identifying distributions relate to identifying
functions or languages?

• Is the problem of identifying languages or functions when
samples are drawn from some distribution the same as
identifying a distribution? Or are two distinct notions being
conflated?

• For example, is a PCFG uniquely determined by the distribution
it generates over strings?
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Approximately Computable Distributions

1. A distributionD on N is said to beapproximately computableif
and only if there is a total recursive functionf such that for every
x ∈ N, and every positive rational numberǫ, f (x, ǫ) is a rational
numberr such that|D(x) − r| ≤ ǫ.

2. The sequence of distributionsD0, D1, . . . is said to beuniformly
approximately computableif and only if there is a total recursive
function f such that for everyi ∈ N, for everyx ∈ N, and every
positive rational numberǫ, f (i, x, ǫ) is a rational numberr such
that |D(x) − r| ≤ ǫ.
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A Distance Measure for Distributions

• Defined∗(D1, D2) = sup{|D1(x) − D2(x)| : x ∈ N}

• Observed∗ is a distance metric.

1. d∗(D1, D2) = d∗(D2, D1).

2. d∗(D1, D2) = 0 iff D1 = D2.

3. d∗(D1, D3) ≤ d∗(D1, D2) + d∗(D2, D3).
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Approximately Computable distances between distributions

1. An oracle Xrepresentsa distributionD on N if and only if
whenever X is called withx ∈ N and a positive rational number
ǫ, the output of X is a rational numberr such that|r − D(x)| ≤ ǫ.

2. If d(D1, D2) is a distance metric on distributions, thend(D1, D2)
is approximately computableif and only if
(a) there are two oracles X and Y where X representsD1 and Y

representsD2

(b) there is Turing MachineMX,Y(ǫ) that calls on oracles X and Y
such that for any positive rational numberǫ, the output ofMX,Y(ǫ)
is a rational numberr such that|r − d(D1, D2)| ≤ ǫ.
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Properties ofd∗(D1, D2)

Lemma 13.d∗(D1, D2) is approximately computable.

• Let D〈n〉 denote the empirical distribution after drawingn
samples, forn ≥ 1. In other words

D〈n〉(x) =
|{0 ≤ i ≤ n− 1 : xi = x}|

n

Lemma 14.Let D be any distribution onN. Let a > 1 and let
I(n) =

√

6a(logn)/n. Then with probability 1,
d∗(D, D〈n〉) ≤ I(n) for all but finitely many values ofn.
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Finitely Approachable Distributions

Let ∆ = D0, D1, D2, . . . be a sequence of distributions onN.

1. If D is any distribution onN then let

approach∆(D) = inf{d∗(D, Di) : i ∈ N}

2. If for D there existsDi such thatD∗(D, Di) = approach∆(D)
thenD is finitely approachable by∆.

3. If approach∆(D) = 0 andD is finitely approachable by∆, then
D = Di.
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Criteria for Identifying Distributions and Main Result

• A machineM EX-identifies the distributionD if and only if the
probability is 1 thatM[Draw(D)] is a non-empty sequence of
indices that converges to somei such thatD = Di .

Theorem 15.Let ∆ = D0, D1, D2, . . . be a sequence of uniformly
approximately computable sequences of distributions
on N. There exists and inductive inference machineM
that EX-identifies anyDi from ∆.
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Proof Sketch of Theorem 15.

proof sketch. Angluin defines an inductive inference machineM that
uses∆. M works in stagesn = 1, 2, . . .. At stagen, M request an
input and forms the empirical distributionD〈n〉. For eachi,
0 ≤ i ≤ n− 1, M approximatesd∗(Di , D〈n〉) to within I(n). Let ei〈n〉
denote this approximation.M outputs the leasti < n such that
ei〈n〉 ≤ 2I(n) if there is such ani and then goes on to stagen + 1.

This works because

1. M is an effective procedure
2. It can be shown there existsN such that for alln > N, if Di is the

target distribution,
2.1 thenei〈n〉 ≤ 2I(n).
2.2 then for allj < i and for alln > N, ej〈n〉 ≥ 3I(n).
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Scope of Theorem 15

1. Recall thatW0, W1, . . . is an enumeration for recursively
enumerable subsets ofN.

2. Angluin shows how to define a uniformly approximately
computable sequence of distributionsE0, E1, . . . onN ∪ {∗} such
that for all i ∈ N, L(Ei) = Wi .

3. In other words, by Theorem 15, there is is EX-identifiable
computable sequence of distributions whose associated
languages are all the r.e. sets.
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Conclusion Part I

1. Horning’s (1969) result is essentially a corollary to the above.

2. Angluin suggests that the result (Theorem 15) has an analog
from Gold 1967 that all the r.e. sets are identifiable in the limit
from positive data if those positive presentations are required to
be generated by primitive recursive functions.
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Conclusion Part II

The key to this result is to concentrate on mod-
elling the functions presenting the text, which, be-
ing primitive recursive, are an enumerable class of
total functions. Similarly, our result on identify-
ing distributions, concentrates on an enumerable,
computationally tractable class of “generators”,
namely, uniformly approximately computable se-
quences of distributions. The analogy between
these results suggests there is a great power in at-
tempting to model “how” a behavior is produced,
as well as “what” behavior is produced.

(Angluin, p. 21)

• “how” a behavior is produced = the generating functions

• “what” behavior is produced = the target language, function, etc.
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