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Summary

Algorithms are the step- by- step instructions used in computing for achieving 

desired results, much like recipes in cooking. In both cases the recipe designer 

has a certain controlled environment in mind for realizing the recipe, and 

foresees how the desired outcome will be achieved. Th e algorithms I discuss 

in this book are special. Unlike most algorithms, they can be run in environ-

ments unknown to the designer, and they learn by interacting with the envi-

ronment how to act eff ectively in it. Aft er suffi  cient interaction they will have 

expertise not provided by the designer, but extracted from the environment. 

I call these algorithms ecorithms. Th e model of learning they follow, known 

as the probably approximately correct model, provides a quantitative frame-

work in which designers can evaluate the expertise achieved and the cost of 

achieving it.

Th ese ecorithms are not merely a feature of computers. I argue in this 

book that such learning mechanisms impose and determine the charac-

ter of life on Earth. Th e course of evolution is shaped entirely by organ-

isms interacting with and adapting to their environments. Th is biological 

inheritance, as well as further learning from the environment aft er con-

ception and birth, have a determining infl uence on the course of an indi-

vidual’s life. Th e focus  here will be the unifi ed study of the mechanisms 

of evolution, learning, and intelligence using the methods of computer 

science.

Th e book has the following simple structure. Chapters 1, 2, and 4 set the 

scene for the natural phenomena to which the quantitative computational ap-

proach is to be applied. Chapter 3 is an introduction to computer science, 

particularly the quantitative study of algorithms and their complexity, and 

describes the background for the methodology used. Chapters 5, 6, and 7 con-

tain the resulting theory for learning, evolution, and intelligence, respectively. 
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Th e fi nal chapters make some informal and more speculative suggestions with 

regard to some consequences for humans and machines.

Mathematics

Th e language of mathematics will be used, but only a little, and will be ex-

plained where used.





Chapter One

Ecorithms

In 1947 John von Neumann, the famously gift ed mathematician, was key-

note speaker at the fi rst annual meeting of the Association for Computing 

Machinery. In his address he said that future computers would get along 

with just a dozen instruction types, a number known to be adequate for 

expressing all of mathematics. He went on to say that one need not be sur-

prised at this small number, since 1,000 words  were known to be adequate 

for most situations in real life, and mathematics was only a small part of 

life, and a very simple part at that. Th e audience reacted with hilarity. Th is 

provoked von Neumann to respond: “If people do not believe that mathe-

matics is simple, it is only because they do not realize how complicated 

life is.”

Th ough counterintuitive, von Neumann’s quip contains an obvious truth. 

Einstein’s theory of general relativity is simple in the sense that one can write 

the essential content on one line as a single equation. Understanding its 

meaning, derivation, and consequences requires more extensive study and 

eff ort. However, this formal simplicity is striking and powerful. Th e power 

comes from the implied generality, that knowledge of one equation alone 

will allow one to make accurate predictions about a host of situations not 

even conceived when the equation was fi rst written down.

Most aspects of life are not so simple. If you want to succeed in a job 

 interview, or in making an investment, or in choosing a life partner, you 

can be quite sure that there is no equation that will guarantee you success. 

In these endeavors it will not be possible to limit the pieces of knowledge 

that might be relevant to any one defi nable source. And even if you had all 

the relevant knowledge, there may be no surefi re way of combining it to 

yield the best decision.
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Th is book is predicated on taking this distinction seriously. Th ose aspects 

of knowledge for which there is a good predictive theory, typically a mathe-

matical or scientifi c one, will be called theoryful. Th e rest will be called theo-

ryless. I use the term theory  here in the same sense as it is used in science, 

to  denote a “good, eff ective, and useful theory” rather than the negative 

sense of “only a theory.” Predicting the orbit of a planet based on Newton’s 

laws is theoryful, since the predictor uses an explicit model that can accu-

rately predict everything about orbits. A card player is equally theoryful in 

predicting an opponent’s hand, if this is done using a principled calculation 

of probabilities, as is a chemist who uses the principles of chemistry to pre-

dict the outcome of mixing two chemicals.

In contrast, the vast majority of human behaviors look theoryless. Never-

theless, these behaviors are oft en highly eff ective. Th ese abundant theoryless 

but eff ective behaviors still lack a scientifi c account, and it is these that this 

book addresses.

Th e notions of the theoryful and the theoryless as used  here are relative, 

relative to the knowledge of the decision maker in question. While gravity 

and mechanics may be theoryful to a physicist, they will not be to a fi sh or a 

bird, which still have to cope with the physical world, but do so, we presume, 

without following a theory. Worms can burrow through the ground without 

apparently any understanding of the physical laws to which they are subject. 

Most humans manage their fi nances adequately in an economic world they 

don’t fully understand. Th ey can oft en muddle through even at times when 

experts stumble. Humans can also competently navigate social situations 

that are quite complex, without being able to articulate how.

In each of these examples the entity manages to cope somehow, without 

having the tenets of a theory or a scientifi c law to follow. Almost any biologi-

cal or human behavior may be viewed as some such coping. Many instances 

of eff ective coping have aspects both of the mundane and also of the grand 

and mysterious. In each case the behavior is highly eff ective, yet if we try to 

spell out exactly how the behavior operates, or why it is successful, we are 

oft en stumped. How can such behavior be eff ective in a world that is too 

complex to off er a clear scientifi c theory to be followed as a guide? Even 

more puzzling, how can a capability for such eff ective coping be acquired in 

the fi rst place?

Science books generally restrict their subject matter to the theoryful. 

However, I am impressed with how eff ectively life forms “cope” with the theo-
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ryless in this complex world. Surely these many forms of coping have some 

commonality. Perhaps behind them all is a single basic phenomenon that is 

itself subject to scientifi c laws.

Th is book is based on two central tenets. Th e fi rst is that the coping 

mechanisms with which life abounds are all the result of learning from the 

environment. Th e second is that this learning is done by concrete mecha-

nisms that can be understood by the methods of computer science.

On the surface, any connection between coping and computation may 

seem jarring. Computers have traditionally been most eff ective when they 

follow a predictive science, such as the physics of fl uid fl ow. However, com-

puters also have their soft er side. Contrary to common perception, com-

puter science has always been more about humans than about machines. 

Th e many things that computers can do, such as search the Web, correct our 

spelling, solve mathematical equations, play chess, or translate from one 

language to another, all emulate capabilities that humans possess and have 

some interest in exercising. Depending on the task, the per for mance of 

present- day computers will be better or worse than humans. But in regard-

ing computers merely as our slaves for getting things done, we may be miss-

ing the point. Th e overlap between what computers and humans do every 

day is already vast and diverse. Even without any extrapolation into the fu-

ture, we have to ask what computers already teach us about ourselves.

Th e variety of applications of computation to domains of human interest 

is a totally unexpected discovery of the last century. Th ere is no trace of 

anyone a hundred years ago having anticipated it. It is a truly awesome 

phenomenon. Each of us can identify our own diff erent way of being im-

pacted by the range of applications that computers now off er. A few years 

ago I was interested in the capabilities of a certain model of the brain. In a 

short, hermit- like span of a few weeks I ran a simulation of this model on 

my laptop and wrote up a paper based on the calculations performed by my 

laptop. I used a word pro cessor on the same laptop to write and edit the 

article. I then emailed it off  to a journal again from that laptop. Th is may 

sound unremarkable to the present- day reader, but a few generations ago, 

who would have thought that one device could perform such a variety of 

tasks? Indeed, while for most ideas some long and complex history can be 

traced, the modern notion of computation emerged remarkably suddenly, 

and in a most complete form, in a single paper published by Alan Turing 

in 1936.
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Science prior to that time made no mention of abstract machines. Tur-

ing’s theory did. He defi ned the mathematical notion of computation that 

our all- pervasive information technology now follows. But in off ering his 

work, he made it clear that his goal went beyond understanding only ma-

chines: “We may compare a man in the pro cess of computing a real number 

to a machine which is only capable of a fi nite number of conditions.” With 

these words he was declaring that he was aiming to formalize the pro cess of 

computation where a human mechanically follows some rules. He was seek-

ing to capture the limits of what could be regarded as mechanical intellec-

tual work, where no appeal to other capabilities such as intuition or creativity 

was being made.

Turing succeeded so well that the word computation is now used in 

 exactly the sense in which he defi ned it. We forget that a “computer” in the 

1930s referred to a human being who made a living doing routine calcula-

tions. Speculations that phi los o phers or psychologists entertained in earlier 

times as to the nature of mechanical mental capabilities equally dim in the 

memory. Turing had discovered a precise and fundamental law that both 

living and inert things must obey, but which only humans had been ob-

served to exhibit up to that time. His notion is now being realized in billions 

of pieces of technology that have transformed our lives. But if we are blinded 

by this technological success, we may miss the more important point that 

Turing’s concept may enable us to understand human activity itself.

Th is may seem paradoxical. Humans clearly existed before Turing, but 

Turing’s notion of computation was not noticed before his time. So how can 

his theory be so fundamental to humans if little trace of it had even been 

suspected before?

My answer to this is that even in the pre- Turing era, in fact since the 

 beginning of life, the dominating force on Earth within all its life forms 

was computation. But the computations  were of a very special kind. Th ese 

computations  were weak in almost every respect when compared with the 

capabilities of our laptops. Th ey  were exceedingly good, however, at one en-

terprise: adaptation. Th ese are the computations that I call ecorithms— 

algorithms that derive their power by learning from what ever environment 

they inhabit, so as to be able to behave eff ectively in it. To understand these 

we need to understand computations in the Turing sense. But we also need 

to refi ne his defi nitions to capture the more par tic u lar phenomena of learn-

ing, adaptation, and evolution.
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Understanding learning has been one of my personal research goals for 

several de cades. Th e natural phenomenon of young children learning is ex-

traordinary. A spectacular facet of this learning is that, beyond remembering 

individual experiences, children will also generalize from those experiences, 

and very quickly. Aft er seeing a few examples of apples or chairs, they know 

how to categorize new examples. Diff erent children see diff erent examples, 

yet their notions become similar. When asked to categorize examples they 

have not seen before, their rate of agreement will be remarkably high, at 

least within any one culture. Young children can sort apples from balls even 

when both are round and red.

Th is ability to generalize looks miraculous. Of course, it cannot really be 

a miracle. It is a highly reproducible natural phenomenon. Ripe apples fall 

from the tree to the ground predictably enough that one can base a uni-

versal law of gravitation on this phenomenon. Children generalizing suc-

cessfully from their specifi c experiences manifest a similarly predictable 

phenomenon, which therefore also begs for a scientifi c explanation. I seek to 

explain this in terms of concrete computational pro cesses.

Th e phenomenon of generalization has been widely discussed by phi los o-

phers for millennia. It has been called the problem of induction. I have 

found that as a scientist I have some advantages over phi los o phers: It is 

 suffi  cient to aim to capture the fundamental part of a specifi c reproducible 

phenomenon. I need not explain all of the many senses in which the words 

induction or generalization have been used. Scientifi c discovery— for ex-

ample, Johannes Kepler discovering his laws of planetary orbits— may have 

some commonality with the phenomenon of generalization exhibited by 

children learning words, but it may be a secondary and harder to reproduce 

by- product of a more basic and fundamental capability. Turing did not 

 attempt to capture all the connotations that the word computing may have 

had in his day. He sought only to uncover a phenomenon associated with 

that word that had fundamental reality in de pen dent of any word usage.

What kind of explanation of induction do we need? Does it need to be 

mathematical? Th ere is no better answer to this than what is implicit in the 

work of Turing himself. I have already referred to his successful mathemati-

cal formulation of computation. But he is also famous for the notion that 

is now known as the Turing Test, which he off ered as a test for recognizing 

whether a machine can be considered to think. A simplifi ed defi nition is as 

follows. A machine passes the Turing Test if a person, conversing with it via 
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remote electronic interactions, cannot distinguish it from a person. Th e 

Turing Test is an important notion, and researchers in artifi cial intelligence 

have not succeeded in either building machines that can pass the test or in 

showing it to be irrelevant. However, it is an informal notion. Unlike Tur-

ing’s mathematical defi nition of computation, it does not tell us how exactly 

to proceed in order to emulate thinking. As a result, it has not led to prog-

ress in artifi cial intelligence remotely comparable to the success of general 

computation.

Hence the right goal must be to fi nd a mathematical defi nition of learn-

ing of a nature similar to Turing’s notion of computation, rather than an 

informal notion like the Turing Test. Aft er all, where would we be if Turing 

had given for computation only an informal defi nition? Let us think about 

that. What would have been an informal notion of the “mechanically com-

putable” that would have sounded plausible in Turing’s time? How about 

this: “A task is mechanically computable if and only if it can be computed by 

a person of average intelligence while at the same time doing a mundane but 

exacting task, such as eating spaghetti.” Few could have disputed the reason-

ableness of such a defi nition. But I doubt such a defi nition in 1936 could 

have spawned the twenty- fi rst century we see around us.

At the heart of my thesis  here is a mathematical defi nition of learning. It 

is called the PAC or the probably approximately correct model of learning, 

and its main features are the following: Th e learning pro cess is carried out 

by a concrete computation that takes a limited number of steps. Organisms 

cannot spend so long computing that they have no time for anything  else or 

die before they fi nish. Also, the computation requires only a similarly lim-

ited number of interactions with the world during learning. Learning should 

enable organisms to categorize new information with at most a small error 

rate. Also, the defi nition has to acknowledge that induction is not logically 

fail- safe: If the world suddenly changes, then one should not expect or re-

quire good generalization into the future.

Th e biology of living organisms can be described in terms of complex 

circuits or networks that act within and between cells. Our biology is based 

on proteins and the interactions among them. Our DNA contains more 

than 20,000 genes that describe various proteins. Additionally, the DNA 

encodes descriptions of the regulation mechanism, a specifi cation of how 

much new protein of each kind is to be produced, or expressed. Th is overall 

regulation mechanism is absolutely fundamental to our biology, and is called 
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the protein expression network. It is of enormous complexity. Even though 

many of its details remain to be discovered, we can ask: How have these well- 

functioning, highly intricate networks with so many interlocking parts come 

into being? I believe that all these circuits are the result of some learning 

pro cess instigated by the interactions between a biological entity and its 

environment.

Life’s interactions can be viewed in terms of either a single organism’s 

lifetime or the longer spans during which genes and species evolve. In either 

case the information gained by the entity from the interaction is pro cessed 

in some mechanical way by what I call an ecorithm. Th e primary purpose of 

the ecorithm is to change the circuits so that they will behave better in the 

environment in the future and produce a better outcome for the own er.

Human biochemistry is an important enough topic. However, our neural 

circuits, comprising some tens of billions of neurons, may be viewed as be-

ing involved in our personal experiences even more intimately. Our psycho-

logical behavior is controlled by these circuits. How do these circuits arise 

in evolution, and how are they updated during life? By the same arguments 

they too must be the result of information obtained from interactions, by 

ourselves or our ancestors, and incorporated in our genes or brain by some 

adaptive mechanism.

If biological circuits are fundamentally shaped by learning pro cesses, 

there seems little chance of understanding them, or their manifestations 

in our psychology, unless we recognize their origins in learning. We may 

not yet know in detail the actual ecorithms used in biology on Earth. How-

ever, the fact that our behaviors have their origins in such learning algo-

rithms already has implications.

Earlier I listed as two central tenets that the behaviors that need explana-

tion all arose from learning, and that this learning can be understood as a 

computational pro cess. Th ese tenets are not off ered  here as mere unproved 

assumptions, but as the consequences of the assumption that life has a mech-

anistic explanation.

Th e argument that these tenets actually follow from the formulation of 

ecorithms goes as follows: I start with the mechanistic assumption that 

biological forms came into existence as a result of concrete mechanisms 

operating in some environments. Th ese mechanisms have been of two 

kinds, those that operate in individuals interacting with their environ-

ment, and those that operate via ge ne tic changes over many generations. 
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I then make two  observations. First, ecorithms are defi ned broadly enough 

that they encompass any mechanistic pro cess. Th is follows from the work of 

Turing and his contemporaries that established the principle, known as the 

Church- Turing Hypothesis, that all pro cesses that can be regarded as mecha-

nistic can be captured by a single notion of computation or algorithm. Sec-

ond, ecorithms are also construed broadly enough to encompass any pro cess 

of interaction with an environment. From these two observations one can 

conclude that the coping mechanisms of nature have no sources of infl uence 

on them that are not fully accounted for by ecorithms, simply because we 

have defi ned ecorithms broadly enough to account for all such infl uences.

To put this in a diff erent way, the news reported  here is that there is a bur-

geoning science of learning algorithms. Once the existence of such a science 

is accepted, its centrality to the study of life is more or less self- evident.

Of course, the reader should be cautious when confronted with pur-

ported logical arguments such as the one I just gave. Indeed, later chapters 

will address the general pitfalls of reasoning about theoryless subject mat-

ter. It is appropriate, therefore, to attempt to corroborate my proposition. 

Is there somewhere we can turn for a sanity check? Th e answer is machine 

learning, a method for fi nding patterns in data that are usefully predictive 

of future events but which do not necessarily provide an explanatory 

theory.

Machine learning is already a widely used technology with diverse ap-

plications. For example, companies such as Amazon and Netfl ix make rec-

ommendations to shoppers based on the predictions of learning algorithms 

trained on past data. Of course, there is no theory of which books or movies 

you will like. You may even completely change your tastes at any time. Nev-

ertheless, using machine learning algorithms, it is possible to do a useful job 

in making such recommendations. Financial institutions likewise use ma-

chine learning algorithms, in their case, for example, for detecting whether 

individual credit card purchase attempts are likely to be fraudulent. Th ese 

algorithms pick up various kinds of relevant information, such as the geo-

graph i cal pattern of your previous purchases, to make some decisions based 

on data collected from many past transactions. Th e development of the 

learning algorithms used may well be theoryful. But this again does not 

mean that fraud itself is theoryful. New kinds of fraud are being invented all 

the time. Th e algorithms merely fi nd patterns in past credit card purchases 
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that are useful enough to give fi nancial institutions a statistical edge in 

 coping with this area of the theoryless.

Much of everyday human decision making appears to be of a similar 

 nature— it is based on a competent ability to predict from past observations 

without any good articulation of how the prediction is made or any claim of 

fundamental understanding of the phenomenon in question. Th e predic-

tions need not be perfect or the best possible. Th ey need merely to be useful 

enough. Th e fact that these algorithms are already in widespread use, and 

produce useful results in areas most would regard as theoryless, is good evi-

dence that we are on the right track.

However, the idea of an ecorithm goes well beyond the idea of machine 

learning in its current, general usage. Within the study of ecorithms several 

additional notions beyond the learning algorithms themselves are included. 

First, there is the notion that it is important to specify what we expect a 

learning algorithm to be able to do before we can declare it to be successful. 

Second, using such a specifi cation, we can then discuss problems that are 

not learnable— some environments will be so complex that it is impossible 

for any entity to cope. Th ird, there is the question of how broad a function-

ality one wants to have beyond generalization in the machine learning 

sense. To have intelligent behavior, for example, one needs at least a reason-

ing capability on top of learning. Finally, biological evolution must fi t some-

how into the study of coping mechanisms, but it is not clear exactly how, 

since traditional views of evolution do not exactly fi t the machine learning 

paradigm. In studying ecorithms, we want to embrace all of these issues, 

and more.

Th e problem of dealing with the theoryless is ever present in our lives. 

Every day we are forced to put our trust in the judgment of experts who op-

erate outside the bounds of any strict science. Your doctor and car mechanic 

are paid to make judgments, based on their own experience and that of their 

teachers. We presume that their expertise is the result of learning from a 

substantial amount of real- world experience and, for that reason, is eff ective 

in coping with this complex world. Th eir expertise can be evaluated by how 

well their diagnoses and predictions work out. In some areas we can evalu-

ate per for mance, at least aft er the fact.

We are also exposed every day to commentators and pundits whose dia g-

noses and predictions are infrequently checked for ultimate accuracy. We 
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hear about what will happen in politics, the stock market, or the economy, 

but these predictions oft en seem hardly better than random guessing.

In late 2008 Queen Elizabeth II asked a group of academics why the 

world fi nancial crisis had not been predicted. She was not the only one ask-

ing this question. Was the crisis inherently unpredictable in some sense, or 

was the failure due to some gross negligence? Aft er the crisis a substantial 

amount of public discussion pertained to this question. Is there a rational 

way of predicting rare events? Why do humans have so many intellectual 

frailties and behave as irrationally as they do? Why are humans subject so 

easily to deception and self- deception? Why do humans systematically de-

lude themselves into thinking that they are good predictors of future events 

even if they are not?

Many reasons have been given for the diffi  culty of making predictions, 

and the mistakes that people are prone to make have been widely analyzed. 

Th e following, for example, is an instructive argument. Aft er any signifi cant 

historical event numerous explanations of the causes are off ered. Th ese ex-

planations can be so beguilingly plausible that we easily mistake them for 

actual causes that might have been detected before the events in question. We 

are then communally led into the belief that world events have identifi able 

causes and are generally predictable. Hence pop u lar disappointment that 

the world fi nancial crisis had not been better anticipated can be ascribed to 

widespread overexpectation and naïveté with regard to the possibility of 

making predictions.

Th is book departs from this approach and takes an opposing, more 

positive view. While making predictions may be inherently diffi  cult, and we 

humans have our special failings, human predictive abilities are substantial 

and reason enough for some celebration. Humans, and biological systems 

generally, do have an impressive capability to make predictions. Th e ability 

of living organisms to survive each day in this dangerous world is surely evi-

dence of an ability to predict the consequences of their actions and those of 

others, and to be prepared for what ever happens, and be rarely taken totally 

by surprise. In human terms, the fact that we can go through a typical day, 

one that may include many events and interactions with others, and be sel-

dom surprised is testament surely of our good predictive talents. Of course, 

the domains in which we make these reliable predictions oft en relate only to 

everyday life— what other people will say or other drivers do. Th ey are mun-
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dane, almost by defi nition. But even mundane predictions become mystify-

ing once one tries to understand the pro cess by which the predictions are 

being made, or tries to reproduce them in a computer.

From this viewpoint, the general disappointment that the world fi nancial 

crisis had not been better predicted was not based entirely on naïve illusion. 

It was based on the well- justifi ed high regard we have for our predictive 

abilities, and so it would be clearly to our advantage to identify why they 

failed. It may be that the world was changing in such a random fashion that 

the past did not even implicitly contain reliable information about the fu-

ture. Or perhaps the past did indeed contain this information, but that it 

was somehow so complex that it was not practically feasible to dig it out. A 

third case is that prediction was indeed feasible, but the wrong algorithm or 

the wrong data had been used.

Th e study of ecorithms is concerned with delineating among these pos-

sibilities. Having the ability to make these distinctions among topics of 

everyday concern, such as predictions about the course of the economy, 

seems important. One may be able to do more than merely lament human 

frailties in this regard. Are there inherent reasons why reliable predictions are 

not possible regarding the course of a country’s economy? Perhaps one can 

show that there are. It would then follow that there is no reason to listen to 

pundits other than for entertainment.

Computation allows one to construct concrete situations in which the 

world does reveal suffi  cient information for prediction in principle, but not 

in practice. Consider the area of encryption. If messages in the wireless con-

nection of your home computer are encrypted, the intention is that if your 

neighbor listens in, he should not be able to get any information about what 

you are doing. Even if he listens in over a long period and does clever com-

putations on the data he collects using a powerful computer, he should not 

be able to invade your privacy. Th is is another way of saying that the envi-

ronment defi ned by your enciphered messages should be too complex for 

your neighbor, or anyone  else, to make any sense of.

How can entities cope with what they do not fully understand? Th e sim-

plest living organisms have had to face this problem from the beginnings of 

life. With limited mechanisms they had to survive in a complex world and 

to reproduce. Every evolving species has faced a similar problem, as do indi-

vidual humans going through their daily lives. I shall argue that solutions to 
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these problems have to be sought within the framework of learning algo-

rithms, since this is the mechanism by which life extracts information from 

its environment. By the end of the book I hope to have persuaded the reader 

that when seeking to understand the fundamental character of life, learning 

algorithms are a good place to start.





Chapter Two

Prediction and Adaptation

Only adapt.
Adapted from E. M. Forster

“You never walk into a situation and believe that you know better than the 

natives. You have to listen and look around. Otherwise you can make some 

very serious mistakes.” Th is was a lesson that Kofi  Annan, the former Sec-

retary General of the United Nations learned, not on some far- fl ung diplo-

matic posting for the UN, but as a young man in St. Paul, Minnesota. He 

had arrived from Africa to study economics as an undergraduate. Inexperi-

enced as he was with cold weather, when he fi rst saw local students wearing 

ear muff s he thought they looked ridiculous. But aft er walking round the 

campus on a cold day, he went out to buy some for himself.

Th e logic of ecorithms has much in common with Annan’s analysis. Th at 

logic emphasizes listening and looking around. It encourages caution in 

 applying specialized expertise gained in one environment to another, and 

gives respectful deference to observed experience. It says that it is we who 

must seek to adapt.

Such an adaptive imperative is absent from most aphorisms. “Neither 

a borrower nor a lender be” urges one to act in a specifi c way rather than to 

adapt to one’s environment. Th e pitfalls of following such nonadaptive ad-

vice are clear. While the advice may be good in some circumstances, per-

haps those from which it was derived, in others it may not be.

Annan’s strategy has the strength that it accepts that there are many pos-

sible worlds and warns against assuming that they are all the same. On the 

other hand, it is not too specifi c in prescribing a course of action. I shall argue 

that some of the most important phenomena of biology and cognition arise 
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from general adaptive strategies akin to Annan’s, empty as they may appear 

to be of any specifi c expert knowledge. Although such strategies as listening 

and looking are not fi ne- tuned to any par tic u lar environment, they may 

nonetheless be eff ective in any environment that has certain weak regulari-

ties hidden among all the complexities. I shall suggest that not only are they 

eff ective, but, further, they are integral to any explanation of life and culture 

as we witness these on Earth.

Th e new word ecorithm that I use to encapsulate these ideas derives from 

the word algorithm and the prefi x eco-. An algorithm is simply any well- 

defi ned procedure. It is derived from the Latinized transliteration Algoritmi 

of the name of the mathematician Al- Khwārizmī, who worked in the  House 

of Wisdom in Baghdad in the ninth century and authored an infl uential 

book on algebra. I invoke the word algorithm intentionally. In the domain 

in which it is most widely used, namely computer science, the standards of 

explicitness— of what is considered well defi ned— are high. In the words of 

computer scientist Donald Knuth, “Science is what we understand well 

enough to explain to a computer. Art is everything  else we do.” I want to 

discuss evolution, learning, and intelligence in terms of algorithms that are 

unambiguous and explicit enough that they can be “explained to,” and 

hence simulated by, a computer. Th e prefi x eco-, from the ancient Greek 

word oikos meaning  house hold or home (and which evokes the word ecol-

ogy), signals that we are interested in algorithms that operate in complicated 

environments, especially environments that are much more complex than 

the algorithm itself. Th ere is no contradiction in this. While the algorithm 

has to perform well in a complex environment, about which it has little knowl-

edge initially, it has a chance of doing so if it is allowed to interact extensively 

with the environment and learn from it.

Within the realm of computation I make the following distinction. Al-

gorithms as traditionally studied in mathematics and computer science are 

designed to solve instances of par tic u lar problems, such as solving alge-

braic equations or searching for a word in a text. All the expertise they 

need for their success is encoded in their own description by their designer. 

For example, Euclid in his textbook Th e Elements describes an elegant algo-

rithm for fi nding the greatest common divisor of two numbers. (Th e great-

est common divisor of 30 and 42 is 6.) His algorithm is correct and effi  cient 

in a specifi able sense even for arbitrarily large numbers. Its exact behavior 
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on all pairs of numbers is entirely predictable, and no doubt foreseen by 

Euclid.

Ecorithms are special algorithms. In contrast with those designed to 

solve specifi c mathematical problems, these operate in environments that 

are not fully known to the designer, and may have much arbitrariness. Nev-

ertheless, ecorithms can perform well even in these environments. While 

their success is foreseeable, the actual course they take will vary according 

to the environment.

Th e requirements that such an algorithm must meet to off er a plausible 

explanation of a natural phenomenon, such as biological evolution, are quite 

onerous. In par tic u lar, the algorithm must achieve its goals aft er a limited 

number of interactions and with the expenditure of limited resources. Th e 

concept of ecorithms and the general model of learning in which they are 

embedded, which I call probably approximately correct (or PAC) learning, 

insist on such quantitative practicality. Th e phenomena that they seek to 

explain are some of the most familiar to human experience: learning, resil-

ience, and adaptation. I argue that broader phenomena still, in par tic u lar 

evolution and intelligence, are also best understood in these terms.

Evolution in biology is the idea that life forms have changed over time, 

and that these changes have resulted in the organisms seen on Earth today. 

Although closely associated with Charles Darwin, the roots of the idea 

reach back to antiquity and the recognition of evident family resemblances 

among the various animal and plant species. In more recent history, Charles 

Darwin’s grandfather, Erasmus Darwin, wrote a treatise, Zoonomia; or, Th e 

Laws of Organic Life, arguing for this idea in the 1790s. Th is view was widely 

debated and controversial. William Paley, in a highly infl uential book, Nat-

ural Th eology (1802), argued that life, as complex as it is, could not have 

come into being without the help of a Designer. Numerous lines of evidence 

have become available in the two centuries since, through ge ne tics and the 

fossil record, that persuade professional biologists that existing life forms on 

Earth are indeed related and have indeed evolved. Th is evidence contradicts 

Paley’s conclusion, but it does not directly address his argument. A convinc-

ing direct counterargument to Paley’s would need a specifi c evolution mech-

anism to be demonstrated capable of giving rise to the quantity and quality 

of the complexity now found in biology, within the time and resources be-

lieved to have been available.
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Th e main contribution of Charles Darwin was, of course, exactly so mo-

tivated. He posited the outlines of an evolution mechanism with two primary 

parts, namely variation and natural selection, that he argued was suffi  cient 

to explain biological evolution on Earth without a Designer. In its simplest 

form, the theory of natural selection asserts that each organism has some 

level of fi tness in a given environment and that it is capable of producing a 

range of variants of itself as its progeny. It then attributes evolution to the 

phenomenon that among the variants, individuals that have characteristics 

that constitute greater fi tness will have a higher probability of having de-

scendents in later generations than those with less fi tness.

Among biologists there is broad consensus that Darwin’s theory is essen-

tially correct. Biochemical descriptions of the basis of life provide a concrete 

language in terms of which the actual evolutionary path taken by life on 

Earth may one day be spelled out in detail and explained. At present there 

are many gaps in our knowledge. Th e relationship between the DNA (the 

genotype) and the behavior and physiology of the organism (phenotype) to 

which it belongs is little understood. In spite of this, over the last 150 years 

Darwin’s theory has become the central tenet of biology by virtue of sub-

stantial other evidence. Most recently, DNA sequencing has given incontro-

vertible experimental confi rmation for the proposition that the varied life 

forms found on Earth are ge ne tically related. Nothing that I will say  here 

is  intended or should be interpreted as casting doubt on this proposition. 

However, it remains the case that Darwin presented only an outline of a 

mechanism. It is not specifi c enough to be subject to a quantitative analysis 

or to a computer simulation. No one has yet shown that any version of varia-

tion and selection can account quantitatively for what we see on Earth. Th ere 

is much that needs to be explained. Evolution has found solutions to many 

diffi  cult problems that are of value to life on Earth. Th ese include, among 

many others, locomotion, vision, fl ight, magnetic navigation, and echo loca-

tion. Humans have managed to fi nd artifi cial solutions to these physical chal-

lenges only aft er enormous eff ort.

Th e achievements of evolution are palpable and objectively impressive. 

Th e possibility remains that every version of variation and selection, as we 

currently understand these terms, would have needed a million times as 

long to yield existing life forms than is believed to have been available. Say-

ing that evolution is a contest or even a struggle for life does not go far in 

explaining these facts. No theory is known that would explain how compe-
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tition by itself leads to such spectacular achievements. Lotteries, singing com-

petitions, and gladiatorial contests have not produced similar improvements 

or novelty. Evolution is a special kind of contest. How are we to go about 

understanding how this special contest, of what ever kind it is, has been able 

to produce the spectacular inventions that it has?

Th e term evolution evokes many images— indeed almost all facets of 

the history of life on Earth. I will restrict attention  here to the one primary 

question of how complex mechanisms can arise at all within the limited 

time scale and resources in which they apparently have. Th e numerous 

other questions that are widely discussed by evolutionary theorists I regard 

as secondary to this one. Th e advantages off ered by sex to evolution have 

been much debated, but evolution was far along when sex arrived on the 

scene. Th e intellectual challenge of understanding how peacocks could have 

acquired their elaborate plumage was much troubling to Darwin. But again, 

peacocks came along late in the game. In short, what I seek to address is a 

gap between the general formulation of natural selection as currently under-

stood and any demonstration that any specifi c mechanism can account for 

the biological evidence we see around us. Every scientifi c theory has a gap 

that leaves some question unexplained. Evolution is by no means unique in 

that respect. Having a gap is no fatal fl aw. However, the natural selection 

hypothesis as currently formulated has the gaping gap that it can make no 

quantitative predictions as far as the number of generations needed for the 

evolution of a behavior of a certain complexity. I believe that the time is ripe 

for working toward fi lling this gap. And I believe computer science is the 

tool for doing it.

Th is may be an unconventional claim, but I will argue that Darwin’s 

theory lies at the very heart of computer science. Darwin’s theory may even 

be viewed as the paradigmatic ecorithmic idea. One of computation’s most 

fundamental characteristics is the separation between the physical real-

ization of a mechanism and its manifest behavior. Th is is equally true of 

Darwin’s theory. Although the fi tness of a biological organism depends both 

on the biochemistry of the organism and on all the physical, chemical, and 

ecological factors present in its environment, the principle of natural selec-

tion makes no mention of biochemistry, physics, or ecol ogy, and it incorpo-

rates no specifi c knowledge about the fi tness of a par tic u lar species in a 

par tic u lar environment. We are driven to the almost paradoxical conclu-

sion that organisms that perform at such a sophisticated level of expertise in 
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physics, biochemistry, and ecol ogy are the products of generic mechanisms 

that incorporate no such expertise. Th is striking contrast summarizes the 

basic challenge that ecorithms in general, and evolutionary algorithms in 

par tic u lar, need to overcome.

Given the central role that Darwin’s theory now plays in biology, the fol-

lowing fact is more than a little disconcerting. From the fi rst availability of 

digital computers many intelligent, curiosity- driven individuals have sought 

to simulate selection- based evolutionary algorithms in order to demon-

strate their effi  cacy. Th ese simulation experiments, carried out over more 

than half a century, have been disappointing, at least in my view, in creat-

ing mechanisms remotely reminiscent of those found in the living cell. 

In fact, these experiments are seldom quoted as corroborating evidence for 

evolution.

Th is failure cannot be ignored. It suggests that the natural selection 

hypothesis has to be refi ned somehow if it is to off er a more explanatory 

scientifi c theory. Further, the refi nement will need to have a quantitative 

component that refl ects the realities of the actual bounded numbers of gen-

erations, and bounded numbers of individuals per generation, that appar-

ently have been suffi  cient to support evolution in this universe. Th at evolution 

could work in principle in some infi nite limit is obvious and needs little 

discussion. But modern humans are believed to have existed for no more 

than about 10,000 generations and with modest population sizes for much 

of that history. Our pre de ces sor species may have had not dissimilar statis-

tics. Th eories of evolution that assume unbounded resources for evolution, 

in generations or population sizes, or those that do not address this issue 

at all, cannot resolve the central scientifi c question of whether some in-

stance of natural selection does fi t the constraints that have ruled in this 

universe.

I am not the fi rst to point out that there is a tension between the long 

time apparently needed for evolution and the limited resources that evi-

dence from the physical sciences suggests have been available. No one was 

more aware of this tension than Darwin himself. In an attempt to fi nd cor-

roborating evidence for the long time scale he believed was needed for evo-

lution, he looked to geology. In the fi rst edition of On the Origin of Species he 

included an estimate of 300 million years for the time needed for erosion to 

have created the Weald formation in southern En gland. Th is estimate im-

mediately came under fi re from the scientifi c community. Darwin omitted 
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it, and any other such estimate, from subsequent editions. William Th om-

son (later Lord Kelvin) and other authoritative physicists of his day derided 

Darwin’s estimate as impossibly too high even for the age of the Earth itself. 

Th eir arguments  were based on applying the principles of physics as then 

understood to the question of the rate at which the Earth had been losing 

heat. Th is indirect line of attack on his theory of evolution gave Darwin 

much reason for concern. He wrote, “Th omson’s views on the recent age of 

the world have been for some time one of my sorest troubles.” Kelvin’s fi nal 

published estimate was as low as 24 million years. Physicists now estimate 

the age of the Earth, thankfully, to be much higher, about 4.5 billion years 

(and 13.8 billion years for that of this universe). Nevertheless, we still do 

not have a quantitative explanation of how life could have reached its cur-

rent state even within this more extended period that is now allotted by the 

physicists, whether on the Earth or in the broader universe.

Th e theory off ered  here, of treating Darwinian evolution as a compu-

tational learning mechanism and quantitatively analyzing its behavior, is 

the only approach I know that addresses these questions explicitly. Previous 

mathematical approaches to evolution, such as those of population ge ne tics, 

analyze the eff ects of competition on relative population sizes. For example, 

the famous Hardy- Weinberg principle from the early twentieth century 

shows that if reproduction is sexual and members of a population have 

two copies of each gene, as in humans, then diversity in the gene pool will be 

conserved in the following sense. If two variants of a gene exist in the popu-

lation in a certain ratio and they are equally benefi cial, then their ratio of 

occurrence in the population will converge to a stable value, with both vari-

ants continuing to occur. Analyses of relative population sizes such as this, 

however, do not address how more complex forms can come into being from 

simpler ones— this is the most fundamental question and the one that 

 opponents of evolution usually target. One is not performing a ser vice to 

science if one pretends to have a solution when one does not.

Advances in biology over the last half century have made concrete what 

needs to be explained in ways that  were not known to the earlier pioneers 

of population ge ne tics such as the eminent statistician Ronald Fisher. We 

now know that biological organisms are governed by protein expression 

networks. To understand evolution we need to have an explanation of how 

such complex circuits can evolve from simpler ones and maintain them-

selves in changing environments. Th e protein expression networks on 
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which our biology depends are known to have more than 20,000 genes, and 

the outputs they produce depend in a highly complicated way on the innu-

merably many possible input combinations. Th ese circuits defi ne how the 

concentration levels of the many proteins in our cells are controlled in terms 

of each other. We can seek to describe them mathematically. For example, the 

amount produced of our seventh protein may depend on the concentrations 

of three others— say, the third, twenty- fi rst, and seventy- third. Th e depen-

dence is something specifi c, perhaps f = 1.7x + 3.4x + 0.5x, or more likely 

something  else. But in any case it is some par tic u lar de pen den cy f(x, . . .  , 

x,) on all the available proteins and possibly on some additional pa ram-

e ters, such as temperature. What ever this de pen den cy f is, it will change 

during evolution if some other such de pen den cy becomes more benefi cial to 

the organism because of changing circumstances.

What an evolutionary theory must do is explain how these dependencies 

are updated during evolution. How long will it take to evolve to a new func-

tion f ' if the environment changes so that the new function f ' is better than 

the old f? Of course, this only accounts for evolution with a fi xed set of 

proteins. A successful theory must also explain the evolution of new pro-

teins. I believe that this will need a similar kind of analysis but for a diff erent 

kind of circuit.

Over the last several de cades it has emerged that there are computational 

laws that apply to the existence and effi  ciency of algorithms that are as strik-

ing as physical laws. Th ese computational laws off er a powerful new view-

point on our world that meets the challenge that the facts of biology lay 

down in regard to both evolution and learning. Th e laws that are most rele-

vant to these phenomena are diff erent from those that are the most useful 

for programmers of digital computers, and they need to be investigated sepa-

rately. Th is will be our point of departure.

Nothing  here is intended as the last word on any of the topics covered. 

Th e approach I propose needs extensive development both internally and in 

interaction with the experimental sciences it relates to. Th e idea that math-

ematical equations are useful for expressing the laws of physics, that labora-

tory experiments can uncover the facts of chemistry, and that statistical 

analyses in the social sciences yield clues about causation are all widely 

appreciated. But the notion that natural phenomena can be understood 

as computational pro cesses or algorithms is much more recent. I have no 

doubt, however, that this algorithmic viewpoint is poised to take its place 
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among the more familiar arsenal of weapons used for uncovering the secrets 

of nature. I hope to off er  here a glimpse of how this algorithmic perspective 

will come to occupy a central position in science. First, however, we must 

turn to the questions of the nature and scope of computational pro cesses in 

general.
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Chapter Three

The Computable

Not everything that can be defined can be computed.

Computer science is no more about computers

than astronomy is about telescopes.
Edsger Dijkstra

3.1 The Turing Paradigm

In retrospect, humans have been remarkably uncurious for too long about 

information pro cessing. Animals take complex inputs when seeing, smell-

ing, touching, or hearing, and then produce behaviors that depend in com-

plicated ways on these inputs. Human behavior can be even more perplexing 

and hard to understand. Phenomena like these we can observe every day. It 

would seem natural to wonder: Just how do living organisms pro cess infor-

mation and decide what to do? Curiously, until recent de cades little intel-

lectual eff ort has been put into understanding this question. To be fair to 

our pre de ces sors, however, it is clear that, until recently, anyone attempting 

to study information pro cessing would have been stymied by a fundamental 

impediment— no way was known of even formulating the question.

Th is only changed in the 1930s, when Alan Turing published a mathe-

matical paper, “On Computable Numbers, with an Application to the 

Entscheidungsproblem,” that inaugurated one of the most signifi cant scien-

tifi c revolutions in history. Th e Entscheidungsproblem (or decision problem, 

in En glish) refers to a question raised by mathematician David Hilbert in 

1928 concerned with deciding the validity of statements in mathematical 

logic. However, in his paper Turing went far beyond answering this one 
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question. He formulated a notion that has changed how we view the world. 

Th rough its technological impact, this notion has changed how we live. His 

discovery was that computation, or the execution of step- by- step procedures 

for pro cessing information, could be defi ned and studied systematically. 

Since that time we have been on a recognizable track toward understanding 

what such procedures can and cannot do. Th at is to say, we have come to 

understand computation. We have also been exploiting that understanding 

to produce technology, but technology is not my concern  here.

Th e technical concept of computability makes an important distinc-

tion: It is one thing to specify, even unambiguously, what result you expect 

from a computation for every input of data. It is quite another to specify a 

step- by- step computation that gets you there. Th e diff erence is not imme-

diately apparent. Nevertheless, Alan Turing proved that there exist prob-

lems for which there is no ambiguity as to what result is desired, but for 

which there is no set of step- by- step instructions that will get you the right 

result for  every input. Th is was a stunning fi nding. Research over the past 

several de cades has developed a rich science for making even fi ner distinc-

tions, particularly with regard to effi  ciency. It turns out that there are also 

problems that are not computable effi  ciently enough to be practical, even 

if in principle they can be computed. Th at fact poses its own problems: We 

want computations not only to exist in principle, but also to deliver an-

swers within a reasonable period of time. To obtain the result we should 

not have to wait for months, or years, or until aft er our galaxy has ceased 

to exist.

Th ese laws of computation apply to all algorithms. Because ecorithms are 

algorithms, though of a special kind, they too must follow the same basic 

laws as computation in general. Th is new science of the ultimate limitations 

on the possibility and the effi  ciency with which computations for learning 

and evolution can proceed off ers a fundamental new approach to under-

standing these phenomena of learning and evolution, because, regardless of 

how they are implemented— in silicon, DNA, neurons, or something  else 

entirely— there are some ultimate logical laws that limit what these mecha-

nisms can do.

Turing’s paper contained several ingredients that are now seen as fun-

damental to the study of computation. First, he described a model, now 

called the Turing machine, that captures the phenomenon he was attempt-

ing to describe, namely that of mechanistic step- by- step procedures. Sec-
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ond, he proved a strong possibility result for what can be achieved on his 

model. In par tic u lar, he showed how to design a universal Turing machine 

that is capable of executing every possible mechanical procedure. Th is 

universality property is what enables computer technology to be so perva-

sively useful, and would be utterly astonishing  were it not so common-

place now by virtue of its eff ectiveness. Th ird, Turing also proved a strong 

impossibility result, that not all well- defi ned mathematical problems can 

be solved mechanically.

Turing’s impossibility result is as striking as universality is on the posi-

tive side. It is concerned with the problem of predicting, for an arbitrary 

computer program and an input for it, whether that program started on that 

input will ever halt its computation aft er a fi nite number of steps, as op-

posed to getting stuck in a loop in perpetuity. Th is so- called Halting Prob-

lem is well defi ned. Once we specify a language for expressing the programs 

there is no ambiguity at all about what would and what would not constitute 

a solution to it. It would be good to be able to tell ahead of time whether a 

computer program will get stuck in a perpetual loop. Yet, as Turing showed, 

it cannot be solved in all cases by any Turing machine. We will never be 

able to solve this problem routinely.

Many of the foremost thinkers of the early part of the twentieth century 

had wondered, somewhat informally, whether mechanical procedures ex-

isted for resolving all mathematically well- posed questions. Some, such as 

the phi los o pher Bertrand Russell and the mathematician David Hilbert, 

 were optimistic. Turing’s discovery that one could defi ne precisely what 

such an assertion meant, and then prove that such a statement was false, had 

revolutionary implications. Th e shock of this is still taking its time to per-

meate the community of the educated.

Important as the three particulars of Turing’s paper are— namely Turing 

machines, universality, and noncomputability— they become even more 

signifi cant when viewed as an instance of a general class of what I call a 

Turing triad: an unambiguous model of computation that captures some 

real- world phenomenon (mechanical calculation in Turing’s specifi c case), 

and both possibility and impossibility results about that model. Learning, 

evolution, and intelligence are all manifestations of computational pro-

cesses. As realized in nature, they may be subtle and operate near the limits 

of computational feasibility. We may need a correspondingly sophisticated 

understanding of computation before we can unravel their secrets. My 



Figure 3.1 An example of a simple Turing machine. Th e diagram at the top 

describes the program that controls the machine. Th e input is the sequence of 

0s and 1s on successive squares of the tape. Th e machine has three states q, q, 

and qf . It starts in state q and with the read/write head on the square pointed 

to by the thick arrow. If the machine is in state q and the symbol under the 

head is 1 (as it is initially in this example), then the path indicated by the arrow 

out of the q node with label starting with a 1 will be taken, in this case the ar-

row labeled (1, mR) with endpoint q. Executing this (1, mR) will result in the 

contents of the square being unchanged and the head moving one square to the 

right. Th e endpoint of the arrow indicates that the next state will be q again. 

An arrow labeled (1, mL) would mean the same except that the head moves to 

the left . An arrow labeled (1, c0) would mean that the square is changed from 

1 to 0 and the head does not move. Th e labels (0, mR), (0, mL), and (0, c1) have 

analogous meanings and apply when instead the symbol under the head is 0. 

Th e computation halts if and when a fi nal state qf is reached. Th e reader may 

verify by working through this example that, eventually, when the read/write 

head reaches the 0 at the * sign, the machine will change the 0 there to a 1 and 

change the state to q, then move the head back fi nally to the starting position, 

and then halt in state qf . (Note that we can obtain an example of a machine 

that never halts on this input by changing the (0, mR) arrow from q to go to q 

rather than to qf .)

00000 011111 0000

qf

The initial position of 
the read/write head 
on the unbounded 

tape.

(0, mR)(0, c1)

(1, mL)(1, mR)

The Tape:

The Program:

q0 q1

*



The Computable   |   

strategy for shedding light on them will be to seek Turing triads for these 

phenomena also.

3.2 Robust Computational Models

Th e reader may have noticed that in the previous section there was an un-

explained leap. Th e assertion that the Halting Problem was not computable 

by any Turing machine was identifi ed with the claim that it was not com-

putable by any conceivable mechanical procedure. To justify this leap, we 

will need a notion known as the robustness of models under variation, one 

of computer science’s deepest and most fortunate mysteries.

We have seen that an essential ingredient of the Turing methodology is 

that of defi ning a model of computation that captures a real- world phenom-

enon, in this case that of mechanical pro cesses, including those that no one 

had (or has yet) envisaged. Th at last part is crucial: With his machine, Tur-

ing aimed to capture all pro cesses a human could exploit while performing 

a mental task that can be regarded as mechanical as opposed to requiring 

creativity or inspiration. Th e audaciousness of the attempt has attracted 

many who would prove Turing’s machine insuffi  cient to the power Turing 

claimed for it. However, when diff erent individuals have tried to defi ne their 

own notions of mechanical pro cesses in hopes of creating models of greater 

power, all the models they have devised— no matter how diff erent they may 

seem— could be proved to have no greater capabilities than those of Turing 

machines. For example, having two tapes, or fi ve tapes, or a two- dimensional 

tape adds no new power. Similarly, allowing the program to make random 

decisions, or transitions that have the parallelism suggested by quantum 

mechanics, also adds no new capabilities. Extensive eff orts at fi nding mod-

els that have greater power than Turing machines, but still correspond to 

what one would instinctively regard as mechanical pro cesses, have all failed. 

Th erefore there is now overwhelming historical evidence that Turing’s 

 notion of computability is highly robust to variation in defi nition. Th is has 

placed Turing computability among the most securely established theories 

known to science.

Th is robustness under variation of the model off ers the fundamental 

key and launching pad for our study  here. For learning and evolution, ro-

bust models are as indispensable as they are for general computation. Without 

this robustness the value of any model or theory is questionable. We are not 

interested in properties of arbitrary formalisms. We want some assurance 
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that we have captured the characteristics of some real- world phenomenon. 

Robustness of models is the only known source of such assurance.

Th e discovery of the notion of computability constituted a new approach 

to discovering truths about the world. Th e logician Kurt Gödel generously 

acknowledged that computability theory “has for the fi rst time succeeded 

in giving an absolute defi nition of an interesting epistemological notion, i.e., 

one not depending on the formalism chosen.” What can be computed does 

not change as one varies the details of the model. In later chapters, I shall try 

to persuade the reader that, for the same reason, analogous absolute defi ni-

tions should be sought also for other notions, and in par tic u lar learning and 

evolution.

Th ere is, of course, no reason to believe that for every notion for which 

there is a word in a dictionary there exists an absolute defi nition, or a robust 

computational model that captures its essence. Indeed, computability, learn-

ability, and evolvability may be among the few. For most other notions no 

such robust computational models are known, and although robust models 

may be discovered one day for some, for the rest no such models may exist at 

all. Th e question of whether notions such as free will or consciousness can 

be made theoryful by the algorithmic method pursued  here hangs, I believe, 

on whether robust computational models can be found for them.

3.3 The Character of Computational Laws

Turing’s contributions amounted to more than a series of specifi c discover-

ies; they provided a new way of pursuing science. In this, his importance 

demands comparison with that of Isaac Newton. Newton’s infl uence on phys-

ics is without parallel, not because he described gravity or made any other 

par tic u lar discovery, but because it was through his work that it became 

accepted that the physical world obeys laws that can be described by mathe-

matical equations, and that solving these equations could yield accurate pre-

dictions of what will happen in the future. Newton’s theories not only had 

the immediate generality that they applied very broadly to mechanical sys-

tems. Th ey had a higher level supergenerality in that they off ered a blueprint 

for developing theories for fi elds that had yet to be conceived. Physicists have 

followed this lodestone of expressing physical laws by mathematical equa-

tions ever since. Electromagnetic theory, general relativity, and quantum 

mechanics are not implied by Newton’s mechanics, but they follow the same 

intellectual pattern: physical laws expressed as mathematical equations. In 



The Computable   |   

this sense, equations off ered the wizardry that enabled successive genera-

tions of physicists to achieve an understanding of the physical world beyond 

that of which previous generations could have dreamed. Since the seven-

teenth century physics has been transformed several times as far as the 

range of phenomena that it could explain. Even as the par tic u lar discoveries 

of Newton have been superseded, physics is still being pursued with a meth-

odology recognizably similar to that used by Newton.

No one knows why such supergenerality should exist in physics. It is 

 suffi  cient for most purposes to recognize that it does. Th e physicist Eugene 

Wigner suggested that we simply enjoy its benefi ts: “Th e miracle of the ap-

propriateness of the language of mathematics for the formulation of the laws 

of physics is a wonderful gift  which we neither understand nor deserve. We 

should be grateful for it and hope that it will remain valid in future research 

and that it will extend, for better or for worse, to our plea sure, even though 

perhaps also to our baffl  ement, to wide branches of learning.” 

Robust computational models, I expect, will turn out to provide super-

generality in computer science as mathematical equations have in physics. 

Th ey will enable the extent and limits of computational phenomena, in all 

their variety, to be uncovered. Just as, in retrospect, the texture of all the 

discoveries in physics over the last three centuries can be recognized already 

in the work of Newton, the texture of much of the new science of the coming 

centuries will be traceable to Turing.

One can make some further observations regarding the two fi elds. Phys-

ics concentrates on understanding a minimal set of basic pro cesses that are 

suffi  cient to explain the dynamics of the physical world, such as how parti-

cles move under natural forces. In contrast, computer science entertains 

much more diverse sets of processes— in fact, any pro cess that can be formu-

lated as step- by- step rules. As long as the trajectory of objects under the laws 

of physics can be simulated by step- by- step rules, as appears to be the case, 

computation will embrace all the pro cesses studied in physics. However, 

computational pro cesses, though more general than those of physics, are not 

totally arbitrary. Th ey are governed by their own logical laws and limitations. 

Th e laws that govern them are our concern in the present chapter.

Prior to Turing, mathematics was dominated by the continuous mathe-

matics used to describe physics, in which (classically, anyway) changes are 

thought of as taking place in arbitrarily small, infi nitesimal increments. 

Th e Turing machine, however, is a discrete model. Before his time, discrete 



   |   probably approximately correct

mathematics had been little explored or developed; in fact, a seldom dis-

cussed infl uence of Turing’s work is the rise of discrete mathematics sub-

sequent to it. It is striking that for the phenomena that we shall study  here, 

including learning and evolution, discrete models again provide the most 

immediate robust models and have been most useful in isolating the basic 

phenomena. Continuous models are ultimately of at least as great interest, 

but for the initial explorations necessary to identify the most fundamental 

concepts they are not the most fruitful.

Besides the discrete versus continuous dichotomy, there is a more funda-

mental diff erence between physics and computer science. In physics we think 

of the equation as the immutable fundamental law, expressing such facts as 

that the gravitational force between two objects is proportional to the square 

of the inverse distance, and to no other function of the distance. In compu-

tation we have much broader latitude in constructing programs than this. 

We allow arbitrary programs composed of steps from some repertoire of 

basic steps. Th e immutable laws of computation are not constraints on how 

programs can be composed. Rather, like the noncomputability of the Halt-

ing Problem, they state what can or cannot be achieved by any program of a 

specifi ed kind.

In computation the laws are statements, subject to mathematical proof or 

refutation, but their relevance relies on the robustness of the model in ques-

tion. One may consider the laws of physics to be analogous to the laws of com-

putation. However, as far as not being subject to mathematical verifi cation, 

x

y y

x

Figure 3.2 In a continuous model there are infi nitely many possible states that 

are related to each other smoothly. Th e left - hand diagram shows an example 

where each state is represented by a point on the curve. In a discrete model the 

states need have no such relation. Th e right- hand diagram shows a model with 

four states, as indicated by the dots.



The Computable   |   

the laws of physics correspond in computation rather to assertions about the 

robustness of the models. Th e commonality between the laws of physics and 

robustness questions in computational models can be also stated positively—

in both cases one needs to go to realities beyond mathematical formalisms 

for supporting evidence or falsifi cation.

3.4 Polynomial Time Computation

Once computers had become more widely available and broader eff orts  were 

made to program them, the importance of understanding computational 

limitations in fi ner detail than computability theory provides came to the 

fore. Th e study of these limitations came to be known as computational 

complexity. In that fi eld one does not distinguish merely whether an algo-

rithm for a specifi ed task does or does not exist. One also quantifi es how 

many steps any algorithm, if one exists, must take.

Using this idea, one can try to classify both familiar and unfamiliar tasks 

according to the number of basic operations that are required to perform 

them. Th e pro cess of long multiplication for obtaining the product of two 

numbers is a familiar enough algorithm, taught in elementary schools world-

wide. To fi nd the product of two numbers, each of n digits in standard deci-

mal notation, it takes about n basic operations on pairs of single digits, as 

illustrated in Figure 3.3.

For long multiplication the actual number of operations on individual 

pairs of digits may be 4n or 5n or cn for some fi xed number c, depending 

on what exactly you consider an operation. It will not, however, grow faster 

than n, such as n or n; nor will it grow more slowly, such as n.. We can 

describe the order of growth using what is known as O notation, while omit-

ting the less important detail of the value of c. We simply say that the long 

multiplication algorithm is an O(n) algorithm.

In general, we distinguish between an algorithm taking polynomial time 

versus one that takes exponential time. It is polynomial time if it takes O(nk) 

basic steps for some constant k, where n is the number of digits or bits 

needed to write down the input. Of course, it is best if k is a small number 

such as 1 or 2. An exponential time algorithm takes the form kn (such as 

2n or 10n). Exponential time algorithms become impractical even for moder-

ate input sizes. For example, for a task taking 10n steps, if n is just 30, then 

1,000,000,000,000,000,000,000,000,000,000 steps are needed. A computer 

doing a trillion steps per second would take more than 30 billion years, 
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more than twice the currently estimated age of this universe, to accomplish 

this. Running many computers in parallel does not change the picture too 

much. If you had one computer for every particle in this universe, of which 

there are currently believed to be fewer than 10, then within this 30 billion 

years one could do 10 × 10, or 10, operations. For a task taking 10n 

steps, one could then solve instances of size n = 120. If we increased the 

speed of each computer by a factor of 1,000 we would increase the allowed 

input size only by 3, to get a limit on n of 123.

314159265358979 
× 271828182845904

                       1256637061435916 
                                     0000000000000000 
                                 2827433388230811 
                             1570796326794895 
                                      1256637061435916 
                                    2513274122871832 
                                    628318530717958 
                                2513274122871832 
                                314159265358979 
                            2513274122871832 
                            628318530717958 
                        2513274122871832 
                        314159265358979 
                    2199114857512853 
                    628318530717958    
                    85397342226735418150399772016

Figure 3.3 When performing long multiplication on two numbers each of 

n decimal digits,  here n = 15, we multiply the fi rst n- digit number by each of 

the n digits of the second number in turn, and then add the results. Th is can all 

be done by performing proportional to n basic operations, additions and mul-

tiplications on pairs of single digits. However, these n operations look repeti-

tious. Th is raises the question of whether the same result can be achieved with 

far fewer operations. It is hard to explain why this very natural question had to 

wait till the 1960s to be asked and answered.
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Th e point is that numbers such as 123 are very modest as input sizes. An 

input of 123 digits requires less than two lines on this page to write down. 

Most applications of computers need much larger inputs. For example, if 

one is scheduling a fl eet of aircraft , then the input size will be in the thou-

sands. If one is performing computations on data read in from the World 

Wide Web, perhaps analyzing articles written about some topic, then input 

sizes may be in the millions. In all such cases algorithms taking 10n steps 

would be totally impractical. Even having all the resources of our universe 

at our disposal would be far from enough.

Th e class of tasks or problems that can be computed in polynomial time 

is represented by the capital letter P. Th e task of multiplying two integers is 

therefore a member of this class P, because the standard algorithm for it, as 

we have noted, takes O(n) steps, which is polynomial. In general, P charac-

terizes what can be computed in practice.

Fundamental to computational complexity is the distinction between the 

outcome one wants to achieve, say, fi nding the product of two numbers, and 

the many possible ways of achieving it. Also fundamental is the notion that 

there exist easily specifi ed problems that are computable in principle in the 

sense of Turing but for which all algorithms are impractically ineffi  cient. 

Th e idea that we should classify tasks according to their computational 

diffi  culty appears to be very natural, and so this idea plays a central role in 

computer science. Yet there is an implication that goes a little against the 

grain of traditional science education. In conventional mathematics and 

science courses the computational tasks presented are invariably limited 

to those that are easy to compute, such as arithmetic and linear algebra. 

Th is tradition has the obvious justifi cation that it presents only methods 

that are practical. However, a traditional education along these lines does 

leave the mistaken impression that every easily specifi ed problem can be 

solved effi  ciently. It ill- prepares the student to face entirely novel chal-

lenges and fi nd approaches to them that are computationally feasible. Tur-

ing’s war time work in breaking codes was centered on the problem of 

deducing from an encrypted message the original message, without per-

forming an exhaustive search of the exponentially many possible keys that 

might have been used for encryption. Similarly, many natural tasks people 

would like to solve by computer, such as scheduling, involve fi nding the 

best solution from potentially exponentially many solutions. For many of 

these tasks exponential time algorithms are known, but none faster. Our 
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scientifi c culture is still in the pro cess of absorbing the signifi cance of this 

phenomenon.

Th e impracticality of exponential time computations is self- evident. 

While the boundary between the practically computable and the infeasible 

is not sharp, the polynomial time criterion is the most con ve nient place that 

has been found to put that boundary. Clearly, polynomial time with high 

exponent, such as n, is as infeasible in practice as exponential time, even 

for modest values of n. However, the polynomial versus exponential distinc-

tion has proved very useful, simply because the majority of algorithms that 

are known for important problems con ve niently dichotomize between feasi-

bly low degree polynomials, such as quadratic, O(n), and proper exponen-

tials, such as 2n. Hence, for reasons that are not understood, this polynomial 

versus exponential criterion is more useful in practice than its bare defi ni-

tion justifi es. Experience shows that if someone claims to be able to compute 

a function routinely for arbitrary inputs of signifi cant size, but claims that 

the problem is not in P, then there is a good chance that more can be and 

needs to be said. Perhaps the inputs are not really arbitrary but restricted to 

a special subclass or a probability distribution for which the problem is in-

deed solvable in polynomial time. More oft en than not, on further examina-

tion, one can explain such unexpectedly good per for mance. Indeed, much 

current research in computer science centers on the question of identifying 

the circumstances, sometimes one application at a time, in which poly-

nomial time computation can be achieved in some useful sense, even if not 

in complete generality.

When defi ning computation, there is a further important distinction. A 

computation is deterministic if each step is uniquely determined from what 

has gone before. In the defi nition of P this is assumed. However, for all prac-

tical purposes we can relax this constraint of determinism to permit com-

putations that make random choices as if they  were tossing coins. Th ese 

algorithms may still arrive at the correct answer with high probability, even 

if not with certainty. So- called randomized algorithms, ones that do arrive 

at correct answers with high probability for every input, are as eff ective as 

deterministic ones in practice, the probabilities involved arising only from 

the coin tosses the algorithm makes. Such algorithms give a wrong answer 

only for combinations of coin tosses that occur very rarely, such as getting 

heads only three times in a thousand tosses. Further, for every input, the 

probability that an error occurs can be driven down to be exponentially 
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small by simply repeating the algorithm enough times, the probability of 

error being in de pen dent for each repetition. One can extend the defi nition of 

standard deterministic Turing machines to allow them to make decisions ac-

cording to the toss of a coin in this way. Th ese are called randomized Turing 

machines. Th e corresponding polynomial class is called BPP, for bounded 

probabilistic polynomial time. It is possible that P and BPP are mathemati-

cally identical, in which case every computation that uses randomization 

could be simulated in polynomial time by one without it. Th is question of 

whether P and BPP are equal is currently unresolved.

A class broader still than BPP is called BQP, for bounded quantum poly-

nomial time. Th is class is inspired by quantum physics, which posits that a 

physical system can be in multiple states at the same time, in a certain spe-

cifi c sense. It is natural to ask whether such quantum phenomena can be 

exploited to speed up computation. Oversimplifying a little, quantum phe-

nomena may permit a million computations to be pursued simultaneously 

in a single quantum computer, while conventional computers would need to 

Figure 3.4 An example of a randomized algorithm. One can estimate the area 

of any shape by drawing it in a square of known area, throwing darts randomly 

at the square, and counting what fraction fall within the shape. Th is will work 

for any shape. All that is required is that the darts have uniform probability of 

hitting any part of the square, and that the successive throws be in de pen dent 

of each other. Th e only risk of getting a bad approximation of the area is that of 

being unlucky and getting throws that are not representative of uniformity. 

Th e probability of such an outcome goes down as one throws more and more 

darts. Randomized algorithms and the class BPP have essentially this guaran-

tee of success.
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do these one aft er the other in a million phases on a single machine, or in 

parallel on a million machines. Much eff ort has been expended to under-

stand the power of polynomial time quantum computation. On the one 

hand, one would like to understand better, in mathematical terms, the 

power of the restricted parallelism that quantum theory seems to off er. On 

the other, one would like to know whether such machines can be con-

structed at all in this physical world, since quantum computers require cer-

tain capabilities that have not been shown to be realizable.

One can defi ne the class PhysP to be the maximal class of problems that 

the physical universe we live in permits to be computed in polynomial time. 

Identifying the limits of the class PhysP would appear to be one of the great 

scientifi c questions of our time. BQP is a natural candidate. If it turns out 

not to be realizable, then BPP is the most natural alternative known.

While identifying PhysP is fundamentally a question about physics, 

mathematics may have a role in resolving it. It is possible that one can 

prove by a mathematical demonstration that P = BPP or BPP = BQP or even 

P = BPP = BQP. Th is last eventuality, for example, would show once and for 

all that polynomial time quantum machines have no more power than poly-

nomial time versions of the standard deterministic machines defi ned by 

Turing that was illustrated in Figure 3.1.

One thing we do know is that each of these three classes— P, BPP, and 

BQP— itself has substantial robustness under variation. Attempts to charac-

terize deterministic, randomized, or quantum computations have yielded 

just one good candidate computational model for each class. Th is robust-

ness for the randomized and quantum classes is known only for problems 

with yes/no answers. Th is currently leaves two main candidates, BPP and 

BQP, for the practically computable yes/no problems in this physical world. 

Having two candidates is only a small embarrassment, further alleviated by 

the fact that the range of natural problems that have been identifi ed to be 

in BQP but are not known to be in BPP is somewhat limited.

If we leave aside the constraint of polynomial time, of course, any of 

the algorithm types— deterministic, randomized, or quantum— is provably 

as good as any other. Th e characteristic robustness of Turing machines re-

mains. In the opposite direction, if we instead impose more and more 

constraints, beyond the polynomial constraint, to reach the learning and 

evolvability classes that we shall meet later, the robustness criteria become 

increasingly challenging to satisfy.
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3.5 Possible Ultimate Limitations

Th e Turing methodology that we described earlier when applied to a specifi c 

task such as integer multiplication would consist of the following three 

components. Defi ne an appropriate model that captures the realistic cost of 

computing the task. Prove possibility results, in this case effi  cient algo-

rithms for the task that take few steps. Prove some impossibility result that 

shows, for example, that for the model defi ned no algorithm exists that 

takes fewer than so many steps.

Th ere are many problems that we would wish to solve effi  ciently but do 

not know how. Th e most effi  cient algorithms known for a large class of these 

problems take an exponential, rather than a polynomial, number of steps. 

Certainly, there is no necessary reason why the best currently known algo-

rithm should be the best possible algorithm. Let’s return to the problem of 

multiplication. Th e basic question is this: What is the most effi  cient method 

for multiplying two n- digit numbers? Th is question has inspired a research 

program that has been pursued for half a century now. In 1960 an initial 

algorithm that took only O(n.) steps was discovered by Anatoly Karatsuba, 

working in the Soviet  Union. For large values of n, this already improved 

substantially on the classical O(n) method. It is more than a little surpris-

ing that this discovery, that integers could be multiplied much faster than by 

the standard method taught to children worldwide, came so recently.

Aft er this initial discovery there rapidly followed a sequence of improve-

ments. Th ese culminated in the algorithm published by Arnold Schönhage 

and Volker Strassen in 1971. Th is had runtime close to but not quite 

linear— that is, O(n)— but better than O(n+x) for any x > 0. As a result of 

these developments we now know that integer multiplication is easier to 

compute than anyone would have had reason to suspect in earlier centuries, 

when only O(n) methods  were known and nothing better suspected.

To our embarrassment, we do not yet know whether multiplication is 

substantially more diffi  cult than addition, which can be done by the stan-

dard method in linear time. Ironically, there has been little (in fact close to 

no) progress on establishing such an impossibility result. It is clear that any 

algorithm would need to look at all the 2n digits of the two input numbers, 

and hence that this computation cannot be done in fewer than 2n steps. 

However, the possibility remains that there exist linear time algorithms for 

multiplication, say 10n operations on pairs of one- digit numbers, as there 

are for addition. Resolving whether such a linear time algorithm exists for 
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integer multiplication with inputs and outputs represented in the standard 

decimal or binary notation remains a major challenge for theoretical com-

puter science. Is multiplication an inherently harder task than addition, or 

does it just appear to be so?

Multiplication is a comparatively simple problem, and clearly already 

computable in practice by means of the ancient algorithm. Th e question of 

whether polynomial time algorithms will be found someday for any of the 

many problems for which we currently have only exponential time algo-

rithms is addressed in the fi eld of complexity theory. We shall now review 

some of these results in the remainder of this section. Th e reader may fi nd 

this interesting background in computer science, but it is not indispensable 

for what comes later.

A celebrated class of problems is the so- called NP, or nondeterministic 

polynomial time, class. Th ese are characterized as the problems for which 

solutions may or may not be hard to fi nd but for which a candidate solution 

is easily verifi ed. For example, suppose we want to know whether a target 

number x, say 923, can be factored as the product of two smaller numbers p 

and q. Th en for any given candidate pair p, q we can easily verify whether or 

not they are the factors of x simply by multiplying them together and check-

ing whether the answer equals x. (For example, given the candidate num-

bers 71 and 13, it is easy to determine whether or not 71 × 13 is equal to the 

target 923.) But given just the number 923, there is no similarly easy route 

known to discovering the 71 or the 13. One naïve method for discovering 

such factors would be to enumerate all numbers less than the target x and 

test each one for whether it divides x exactly. Th is would, however, take 

about 10n steps for n digit numbers. (Th e best method currently known for 

fi nding the factors of n- digit numbers is exponential in the cube root of n, 

which is a considerable improvement, but still not polynomial.)

Th e primality problem is the problem of determining for an arbitrary 

number x whether it has factors other than itself and 1. It is an NP problem 

since this verifi cation of a par tic u lar candidate solution can be done in poly-

nomial time (i.e., as we have observed, given an n- digit number x and two 

further numbers p and q, we can verify whether pq = x in O(n) steps). It 

turns out that, in fact, there do exist some very clever algorithms that can 

determine in polynomial time whether a number is prime. Th ey reveal 

whether factors exist, but, curiously, not what these factors are. Hence this 

par tic u lar NP problem of determining primality is in fact also in P.
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Currently, there is no way known for fi nding the factors in polynomial 

time, even with randomization (BPP). Th e apparent exponential gap for 

classical computation between the diffi  culty of testing whether factors exist 

and fi nding them if they do is the basis of widely used cryptographic schemes, 

notably the RSA cryptosystem. In the RSA system you choose two large 

prime numbers p and q, and multiply them together to get their product x. 

You then make public only the result x, and keep p and q secret. Anyone in 

the world who sees x can encipher messages intended for you, but only you, 

who know p and q, will be able to decrypt any such message. Th e point is 

that generating arbitrary primes p and q requires only the generation of 

some random numbers and testing whether they are prime. Th e eavesdrop-

per needs to do the apparently much harder task of actually fi nding the fac-

tors of a par tic u lar x. (Th is factoring problem is known to be in BQP, or 

computable in polynomial time on a quantum Turing machine. Th is fact 

lends some intrigue, at least, to the question of whether it is feasible to con-

struct quantum computers.)

Th e importance of NP is that it captures the very general pro cess of 

mental search. We call these problems mental search because they can be 

solved by searching objects one generates internally in one’s head or com-

puter. Th ey do not require searching in the outside world, as one would 

when searching for a phrase in the World Wide Web or for oil in the ground. 

Given a par tic u lar problem, one can characterize a set of potential solutions 

large enough that any true solution must be in that set of candidates. For the 

problem of determining whether some n- digit number x can be factored, 

one may specify the potential solutions as the integers {2, 3, . . .  , x − 1}. Find-

ing the solution is simply a matter of testing each number, one by one, to 

see whether it divides x. Such exhaustive searches are not feasible for large 

values of n, for this or any other problem. For any NP problem the crucial 

question therefore is whether a more effi  cient pro cess for detecting the exis-

tence of solutions than such an exhaustive search is possible.

Th e primality problem does have such a fast alternative algorithm, but it 

is by no means typical of NP problems. For a very large class, and one could 

say for the majority of natural NP problems, no algorithm is known that 

puts them in P or BPP or even, like the factoring problem, BQP. Remarkably, 

it has been shown that all the members of a very large class of NP problems 

are in fact provably equivalent to each other, in the sense that a polynomial 

time algorithm for one would give a polynomial time algorithm for any 
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other. Th is class has the further remarkable property that each member is 

provably the hardest member of NP. In other words, for these so- called 

NP- complete problems, no one currently knows a polynomial time algo-

rithm for any of them, but if someone did fi nd such an algorithm for any 

one, then polynomial time algorithms would follow for all problems in NP.

An example of such an NP- complete problem is the Traveling Salesman 

Problem.  Here one is given a map containing some cities, the distances 

between the pairs of cities that have direct roads between them, and a num-

ber x. Th e problem is to determine whether there is a tour that traverses 

 every city exactly once and has total distance no more than x. Th is problem 

is in NP because given a candidate tour it is easy enough to verify that each 

city is traversed exactly once and that the total length of roads used in the 

tour is less than x. Scheduling problems in all their variety off er a host of 

other mental search tasks for which we wish we had effi  cient algorithms, but 

we now know that most are NP- complete. NP- complete problems can be 

found in every area of mathematics. For example, for algebraic equations we 

have the primality question as to whether, given an n digit integer c, the 

equation xy = c has a solution in integers x and y. Of course some equations 

are easier to solve than this. Given integers a, b, and c, whether the equation 

ax + bx + c = 0 has an integer solution can be solved by the standard formula 

for solving quadratic equations. On the other hand, the superfi cially similar 

question of whether the equation ax + by + c = 0 has any integer solutions x, 

y, is NP- complete! Yes, we are told only about the easy things in high school.

Because intensive eff orts to fi nd polynomial time algorithms for NP- 

complete problems have to date failed, many currently conjecture that 

P ≠ NP, or equivalently, that no polynomial time algorithm exists for NP- 

complete problems. (NP- complete problems are similarly conjectured not to 

be in BPP or QBP either.) Whether this conjecture is in fact a computational 

law, like Turing’s proven assertion that the Halting Problem is not comput-

able, is potentially resolvable, and I expect that it will be proved or disproved 

one day. Th e postulate P ≠ NP, while it remains unresolved in either direc-

tion, might be compared to laws in physics, which likewise have not been 

mathematically proven. Of course, a physical law cannot be proven by math-

ematics. Such computation postulates can play analogous roles to physical 

laws in the sense that we can make good use of them as working hypotheses, 

at least until someone disproves them. In this instance the working hypoth-
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esis is that polynomial time algorithms do not exist for NP- complete prob-

lems. Th e eventuality that this is disproved could, of course, be a very happy 

one if it is accompanied by the discovery of an effi  cient algorithm for all 

NP- complete problems, which would have revolutionary consequences if it 

was effi  cient enough.

In later chapters as I move on to consider learning, reasoning, and evolu-

tion, I shall seek to follow the Turing triad: establishing a robust compu-

tational model, proving some strong possibility results, and proving some 

impossibility results that explain the ultimate limitations. As in complexity 

theory generally, proving impossibility results is particularly challenging. 

We may need to be ready to postulate certain algorithmic laws, in analogy 

with NP- completeness, without being able to prove them. Such postulates 

can then be treated as working hypotheses, at least until someone disproves 

them and fi nds, unexpectedly and pleasantly, that a  whole range of compu-

tational phenomena, currently believed to be infeasible, is indeed feasible.

A potentially wider class of computations still than NP is #P (pronounced 

“sharp P”). Th is is the class of problems that enumerate the number of solu-

tions of NP problems. Th ey give a number as the output. Th is class also has 

a class of its hardest members, called the #P-complete problems, analogous 

to the NP- complete problems. It is clear that for an NP- complete problem 

counting the number of solutions is at least as hard as detecting whether 

there are any, since the answer will be a number, and if it is greater than 

zero, then we will know that there exist solutions. More interestingly, there 

are many natural problems where testing whether there exists a solution is 

in P but counting their number is #P-complete. Th is means that while the 

existence of solutions can be detected fast, counting the number of solutions 

is as hard as for NP- complete problems. Examples of such problems abound 

in the context of reliability— for example, where one wants to determine the 

probability that a complex network or system will fail from the failure prob-

abilities of the components. Since the probability of something happening 

is closely related to the number of ways it can happen, these problems can 

be viewed as counting problems. It turns out that this class #P is at least as 

powerful as not only NP but also the quantum class BQP. It remains a pos-

sibility therefore that a yet undiscovered polynomial time algorithm exists 

that computes all problems in #P, and hence also all problems in BPP, BQP, 

and NP.
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BQP:
quantum

#P: counting

P: deterministic

NP: searching

#P-complete

NP-complete

BPP: randomizing

PAC: learnable

Figure 3.5 An illustration of the relative computational power of some com-

plexity classes, as understood in 2013. Each ellipse represents a class of prob-

lems or tasks. Each point in each ellipse represents a problem, such as testing 

numbers for being prime, or the Traveling Salesman Problem. Th e fi rst 

glimpse that natural problems  were related in this elegant way was given in a 

historic paper published by Stephen Cook in 1971 that defi ned the NP- complete 

class. Th e diagram illustrates the previously unsuspected rich structure that is 

now known to abound among diff erent problems. Th e PAC class represents 

the feasibly learnable and is the subject of Chapter 5.

Th e importance of these complexity classes derives from the additional 

fact that they are useful for classifying naturally occurring problems. Many 

problems that arise are mental search problems or their corresponding 

counting problems. It just so happens that when we come across a new task 

that we would like to have solved, if we cannot fi nd a polynomial time algo-

rithm for it, then more oft en than not, we can prove that it is complete in 

(i.e., is a hardest member of) its class NP or #P. Logically they could fall in 
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between, but for reasons we do not understand, they rarely do. For this rea-

son this theory gives useful guidance as to the practical solvability of new 

problems as they arise. Why natural problems should dichotomize in this 

way is not predicted or explained by any known theory. It is one of those 

Wignerian mysteries that we neither understand nor deserve, but should be 

grateful for and simply enjoy.

Th ese basic questions, about the relative extents of these complexity 

classes, are related intimately to the question of the real extent of PhysP, the 

class that this universe physically permits to be computed effi  ciently. If the 

quantum class BQP turns out to equal PhysP, we still would like to know 

whether NP or #P is within that class, and hence also permitted by physics. 

Questions about the relative power of these complexity classes can be viewed 

therefore as questions of physics also.

3.6 Simple Algorithms with Complicated Behavior

Ultimately, as we have seen, there are some limitations on what algorithms 

can do. Another way of saying this is that our powers to specify what we 

wish to compute are greater than the expressive power of computation itself. 

Nevertheless, the language of algorithms, despite these limitations, can be 

itself very expressive. Turing’s result that there exist universal Turing ma-

chines that can simulate any computation is a clear statement of the breath-

taking power of algorithms, the algorithm in question there being the one 

that controls the universal machine.

Th at, of course, we have already seen. A diff erent facet of the richness of 

algorithms is that even some very simple specifi c cases can have behaviors 

that are mystifying to mere mortals. A well- known example of a simple pro-

cedure that has so far defi ed analysis is the following:

1) Start with any positive integer n.

2) Repeat until n = 1:

(a) If n is even, replace n with n/2.

(b) If n is odd, replace n with 3n + 1.

For example, starting from n = 44, we get the following sequence: 44, 22, 11, 

34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. For a fi xed starting point, such as 

n = 44, computing the successive members of the resulting sequence is easy 

enough. What is not known is whether the sequence generated for every 
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starting point n eventually reaches the value n = 1 and terminates. Many 

starting points have been tried since the mathematician Lothar Collatz 

posed the problem in 1937. Th ey all resulted in computations that did termi-

nate at n = 1. But— somewhat shockingly, given how simple the problem is to 

describe— no one has been able to off er a proof that this pro cess would ter-

minate for every possible starting point, or that it would not.

Collatz’s problem is an example of apparent inherent complexity in 

simple procedures, even those isolated from any complex environment. In 

this case the notion of input can be removed altogether by considering a 

compound procedure that feeds the starting numbers n = 2, 3, 4 in succes-

sion to the basic procedure, going on to the next starting number when the 

sequence generated by the previous one has terminated at n = 1. Asking 

whether this compound procedure will ever get to every starting number n, 

rather than get stuck in perpetuity aft er a specifi c n, is equivalent to the 

original problem. In this light we should not be so shocked by the non-

computability of the Halting Problem, which would need to be able to make 

some kind of prediction about the ultimate fate not just of one, but of any 

computation.

3.7 The Perceptron Algorithm

Our journey through the major themes of computational complexity now 

brings us fi nally to the vicinity of our destination, the study of ecorithms. 

Our fi nal point of departure is a simple but important algorithm that, like 

Collatz’s problem, can also have complicated behavior, but these complica-

tions can be attributed to the outside environment in which it operates. Th is 

example is the perceptron algorithm, proposed by Frank Rosenblatt in the 

1950s.

Th e perceptron algorithm operates in the following context. Assume that 

there is a set of potential examples, each one specifi ed by some description, 

and further that there is a criterion for which some of the examples are true 

examples and the others false. For instance, an example may be an individ-

ual fl ower, and the criterion may be whether that fl ower belongs to species A 

or species B. Th e perceptron algorithm requires that the examples be de-

scribed somehow. For this case, let us say that the description consists of two 

numbers x and y that specify the length and width of one of its petals.

Th e perceptron algorithm is a member of the class of supervised learning 

algorithms, which means it can be trained to do the work of classifying ex-
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amples according to our criterion and descriptions. First, the algorithm is 

given descriptions of a set of training examples, as well as the correct label of 

each. For instance, one fl ower may have a petal 3 units long and 1 unit wide, 

and be labeled as a member of species A. In a subsequent phase the algo-

rithm is fed with a set of test examples, which consist of descriptions of ex-

amples but no labels. Th e goal of the algorithm is to predict reliably for each 

test example whether it is true or false, or as in the fl ower case, an instance 

of species A or species B.

Th e perceptron algorithm works when there is a certain mathematical 

criterion, known as a linear separator, dividing the two possible classes. Th is 

criterion, in the case of our fl owers, is a rule of the form

px + qy > r

where p, q, and r are numbers, such that every fl ower that satisfi es it is of 

species A, and every one that does not is of species B. For example, suppose 

that p = 2, q = −3 and r = 2, so that the rule is

2x − 3y > 2.

Th en a fl ower with petal length 5 and width 2 would be classifi ed as type A 

since (2 × 5) − (3 × 2) = 4, and 4 > 2. On the other hand a fl ower with petal 

length 3 and width 2 would be classifi ed as type B since (2 × 3) − (3 × 2) = 0 

and 0 < 2. In graphical terms this means that if all the examples are plotted 

in two dimensions, representing the length by x and the width by y, then 

there is a straight line corresponding to equation 2x − 3y = 2, so that all the 

species A fl owers lie on one side of this line, and the species B fl owers on the 

other (or on it). Th is is illustrated in Figure 3.6.

Of course, the perceptron algorithm does not know the true equation for 

the separator in advance. Instead, it must fi nd it. Th e algorithm works by 

scanning through the training data, possibly many times. At each instant it 

maintains a hypothesis, of the form of ax + by > c, about the linear separator. 

We shall for simplicity work with the case c = 0. Th e algorithm then starts 

with the hypothesis 0x + 0y > 0. It goes through each training example one 

by one, and if the example label is correctly predicted by the current hy-

pothesis, then the hypothesis is not changed. If the example label is not 

predicted correctly, then the hypothesis is updated so as to be “more likely,” 
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in a certain sense, to be correct on that same example if presented again 

later.

To be more precise, if the hypothesis misclassifi es a true positive example 

(u, v) as negative (i.e., because au + bv ≤ 0), then a is updated by having u 

added to it, and b by having v added to it. Th e left - hand side of the updated 

hypothesis will then be (a + u)x + (b + v)y, and it will have value (a + u)

u + (b + v)v if presented with the same example (u, v) on a subsequent run 

through the data. Th e value of the sum will be larger than before by a posi-

tive quantity u + v, and hence will be “more likely” to exceed 0 in value and 

correctly identify the positive example as true. For the opposite case, when a 

negative example is misclassifi ed to be positive, a is updated by having u sub-

tracted from it, and b by having v subtracted from it. Th is will have the eff ect 

of reducing the value of the left - hand side by u + v if the same input (u, v) is 

presented again later, and hence will make it “more likely” to be less than 0 

and hence result in a correct negative classifi cation in that eventuality.

Depending on the order in which training data is fed to the perceptron, 

it  could generate exceedingly many distinct histories of hypotheses. Th e 

 interesting fact about the perceptron algorithm is that, in spite of our lack of 

control over its exact fate as we let it loose on arbitrary data, it nonetheless 
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Figure 3.6 Th e sloping line contains the points satisfying 2x − 3y = 2. Th e points 

(x = 4, y = 1), (x = 5, y = 1), and (x = 5, y = 2) all satisfy 2x − 3y > 2 and are marked 

as “+,” while the points (x = 1, y = 2), (x = 3, y = 2), and (x = 4, y = 3) do not and 

are marked as “−.” In other words, the fl owers of species A will lie below the 

line, and those of species B above or on it.
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manages to achieve something quite remarkable. Th e most basic statement 

of the power of this algorithm, proved by Albert Novikoff  soon aft er the al-

gorithm was fi rst proposed, is that if there is a true linear separator, then 

the algorithm is sure to fi nd it, or another hypothesis that also correctly 

classifi es all the examples, aft er having made misclassifi cations only a fi nite 

number of times. Furthermore, an upper bound on the number of such mis-

classifi cations can be computed given the data. Th is upper bound is equal to 

M/m, where M is the square of the distance of the furthest data point in the 

training set from the point (0, 0) and m is the margin. Th e margin has a 

trickier defi nition: It is the minimum distance of any data point from the 

separating line for the line for which this distance is the largest. Th e conse-

quence of m being in the denominator is that the closer the data points are 

to the separator, the more mistakes this procedure can potentially make.

Th e importance of the algorithm derives from several additional facts. 

First, it works within bounds of the form M/m not just for problems with 

two variables but for problems with any number of variables. Second, in 

practice, it oft en works well even for data that is corrupted by noise. Th ird, 

there are general methods for dealing with data that is separable not by linear 

relations but by more complex curves. For example, suppose that the two 

categories are not separated by a straight line as they are in Figure 3.6, but we 

suspect that some more complex curve would separate them. In our two- 

dimensional case we could try to learn the separator ax + by + cxy + dx + ey > f 

where x, y are variables and a, b, c, d, and e are the constants to be learned. 

Th is in e qual ity is not linear in x, y, since it contains higher order terms such 

as x. However, it can be viewed as linear if we regard the set of variables not 

as {x, y} but as {x, y, xy, x, y}. We can translate any example given as a pair 

{x, y} of numbers to the corresponding fi ve numbers {x, y, xy, x, y} by multi-

plication. In this way the perceptron algorithm can be applied directly to 

nonlinearly separable data also.

Th is linearization is an important idea that greatly extends the range of 

applicability of the perceptron algorithm, but it is not the complete panacea 

that it may seem. If there are few nonlinear terms, and we know which they 

are, then there are no problems. But if there are numerous terms potentially 

to look for, then this will introduce higher, possibly exponential, costs.

Th e criterion that only a fi nite number of mistakes are made over any, 

even infi nite, number of examples does not appear to be a natural fi t for hu-

man learning. It raises the question of what outcome we should really require 



Figure 3.7 Example of a run of the perceptron algorithm in three dimensions 

on the set of six examples +(4, 1, 1), −(1, 2, 1), +(5, 1, 1), −(3, 2, 1), +(5, 2, 1), 

−(4, 3, 1) repeated in that order three times. Th e signs indicate the labels of the 

examples. Th e initial hypothesis is 0x + 0y + 0z > 0. Th e fi rst example (4, 1, 1) 

when substituted in the left - hand side of the initial hypothesis gives 0, and 

hence does not satisfy it, as indicated by the negative sign in the third column. 

Th e fi rst column indicates that the true label of this fi rst example (4, 1, 1) is 

positive. Th e algorithm therefore adds the coordinates (4, 1, 1) of the example 

to the coeffi  cients (0, 0, 0) of the hypothesis, to give 4x +1y +1z > 0 as the up-

dated hypothesis. Aft er the six examples are cycled through twice, the hypoth-

esis 3x − 6y − 1z > 0 is obtained. In the third cycle it is confi rmed that this 

hypothesis satisfi es all six examples.

True 

Value

Example Classifi cation 

by Previous 

Hypothesis

Updated 

Hypothesis

0x + 0y + 0z > 0

+ (4, 1, 1) − 4x + 1y + 1z > 0

− (1, 2, 1) + 3x − 1y + 0z > 0

+ (5, 1, 1) + 3x − 1y + 0z > 0

− (3, 2, 1) + 0x − 3y − 1z > 0

+ (5, 2, 1) − 5x − 1y + 0z > 0

− (4, 3, 1) + 1x − 4y − 1z > 0

+ (4, 1, 1) − 5x − 3y + 0z > 0

− (1, 2, 1) − 5x − 3y + 0z > 0

+ (5, 1, 1) + 5x − 3y + 0z > 0

− (3, 2, 1) + 2x − 5y − 1z > 0

+ (5, 2, 1) − 7x − 3y + 0z > 0

− (4, 3, 1) + 3x − 6y − 1z > 0

+ (4, 1, 1) + 3x − 6y − 1z > 0

− (1, 2, 1) − 3x − 6y − 1z > 0

+ (5, 1, 1) + 3x − 6y − 1z > 0

− (3, 2, 1) − 3x − 6y − 1z > 0

+ (5, 2, 1) + 3x − 6y − 1z > 0

− (4, 3, 1) − 3x − 6y − 1z > 0
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of a learning algorithm before we declare it successful. Th is is the main 

question that will be addressed in Chapter 5. Before we get there, however, 

we need to take a more general look at what a computationally sound, mech-

anistic explanation of a natural phenomenon— whether of evolution, or cog-

nition, or some other pro cess of interest— might look like.

But there is one intuition suggested by the perceptron algorithm that will 

be important for what comes later. Learning is achieved in many steps that 

are plausible but innocuous when viewed one by one in isolation. Th ese steps 

work because there is an overall algorithmic plan. In combination the steps 

achieve something, in par tic u lar, some kind of convergence. We shall claim 

that evolution is similar. Th e many small steps taken do not make too much 

sense one by one. But there is an algorithmic plan, so that taken in unison 

the many steps do achieve something remarkable.
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Chapter Four

Mechanistic Explanations of Nature

What might we look for?

I hope it will not shock experimental physicists too much if I 

say that we do not accept their observations unless they are 

confi rmed by theory.
Arthur Eddington

On February 28, 1953, Francis Crick announced to the patrons of the Ea gle 

pub in Cambridge, En gland, that he and James Watson had discovered the 

“secret of life.” What they had discovered was the double- stranded helical 

structure of DNA, the molecule that by then was suspected to be the carrier 

of heredity. Th is structure, with the two strands containing identical infor-

mation, was suggestive of the pro cess by which cells might copy their DNA 

during replication. Th e two strands simply separate, each strand carry ing 

all the information it needs to give rise to a new double- stranded version of 

itself in its own new cell.

Something that became alarmingly clear aft er the content of the human 

genome had become largely known is that knowledge of the DNA sequence 

does not by itself unlock all the secrets of life. Th e sequence specifi es the 

circuits of human biochemistry, but in a code we understand only partially. 

More than half a century aft er Crick and Watson’s discovery, we still know 

little about how knowledge of the sequence can be exploited to understand the 

physical pro cesses inside the living cell or to help cure disease. Despite every-

thing that we know we do not know, we do have some insight into the compu-

tational nature of DNA. A strand of DNA consists of a sequence of nucleobases, 

each of which is one of four diff erent chemicals, adenine, guanine, thymine, 
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and cytosine. Th e sequence of bases contains the information that is carried 

by the living cell and inherited by its off spring. It may seem elementary, but 

it is still noteworthy that the way the information is represented in DNA is 

the same as it is represented in a Turing machine, as a sequence of symbols 

from a fi xed alphabet. In the case of DNA the alphabet has the four symbols 

A, G, T, C, standing for the four nucleobases. And as Turing showed, a one- 

dimensional sequence of symbols from a fi xed fi nite alphabet can describe 

and support all computations.

Th at the information in DNA is stored in a sequence is simply the fi rst 

and most immediate of the many ways in which biology may be viewed as 

computational. When the cell divides, the base sequences are scanned for 

copying much like Turing machine tapes are during computations. Random 

mutations are realized by bases changing one to another just like random-

ized Turing machines would change a symbol. Since errors may be made in 

copying, methods are also needed for correcting errors.

Th e operations carried out in living cells and larger structures, such as 

our neural networks, can be usefully viewed as computations at many 

deeper levels as well. One is at the level of the protein expression circuits 

that the DNA sequences defi ne. At any one time some of the proteins are 

expressed (produced) in the cell, and these in turn cause other proteins to be 

expressed according to the interdependencies specifi ed in the protein ex-

pression circuit. On a diff erent scale, the ner vous system can be viewed 

equally as a very large circuit that performs elaborate computations that we 

as yet also understand only a little.

We can also ask the higher level question of how these protein or neural 

circuits are themselves created and maintained. Evolution is realized by 

modifi cations in the DNA sequences and hence in the protein circuits. Th ese 

modifi cations can be regarded as computations also. With regard to neural 

networks, organisms learn during life by adapting their neurons in response 

to events. Th ese adaptations are again computations.

An early example of a computational view of biology was given by Turing 

himself, in his theory of morphogenesis, or the development of shape. Th is 

has had considerable infl uence on thinking about how the many cells of the 

embryo can diff erentiate themselves and take up their various roles in a com-

plex organism, despite having arisen from one unspecialized cell. Among 

other things, Turing suggested that the wide variation of the dappled pat-

terns on animal fur, whether Dalmatians or leopards, might be accounted 
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for by random variation during development, even if the animals are ge ne-

tically all identical. Turing demonstrated his suggestions by simulations (as 

shown in Figure 4.2). He was giving one of the earliest examples of computa-

tional science, the idea that facts about the world can be discovered not just 

by physical experimentation or by positing theories, but also by computational 

simulations. Such simulations can sometimes pursue the consequences of 

hypothesized theories beyond where mathematical analysis is able to go.

Biology therefore is based on complex mechanisms at many diff erent 

 levels that are as yet little understood. What Crick and Watson had done 

was to discover the physical substrate on which heritable information is rep-

resented, much like silicon is the physical substrate of present- day comput-

ers. For both substrates it is impressive how the exacting requirements 

imposed on them can be achieved with as much miniaturization and econ-

omy as they are. However, no one would say that the secret of computers is 

in the silicon, since computers can be equally well realized in many other 

physical substrates, though perhaps not quite so eco nom ical ly at present. 

Indeed, one reason that computer development has been as rapid as it has is 

w

t

z

y

x

Figure 4.1 An illustration of a circuit. A situation is described by values x, y, z, 

and t that are input to the circuit. Th e value of the response of the circuit is w. 

Each circuit component performs some operation on the input values or on the 

results of previous operations. A circuit can be regarded as a general computa-

tion where the dependence among the various inputs, outputs, and intermediate 

computed values can be made explicit, as in this diagram. A neural or protein 

circuit will be eff ective if its response is benefi cial to the own er of the circuit in 

typically encountered situations. For theoryless decisions it is suffi  cient that the 

circuit be eff ective in situations that are most frequently encountered by the 

owner— no theory or understanding of why it is eff ective is needed. Ecorithms 

are the mechanisms by which such circuits are acquired and kept in tune.
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that computer scientists made a conceptual separation at the very beginning 

between the physical technology in which the computer was implemented 

and the algorithmic content of what was being executed on the machines. 

Th is enabled hardware, soft ware, and algorithms to evolve in de pen dently, 

and at their own spectacular rates.

Making similar headway in our study of biology, whether evolutionary or 

cognitive, demands the same separation of algorithm and substrate. Th e 

distinction made  here between a physical object and the information pro-

cessing it performs is self- evident for anyone dealing with computers. Th e 

distinction is in no way subtle. Even for a traffi  c light one can easily distin-

guish between its symbolic function and its physical construction. But 

 perhaps these distinctions  were not quite so obvious in former times. Th e 

mind- body problem of Descartes and his followers may have been an earlier 

reference to such a distinction. But now when computers are ubiquitous, 

there is no reason for confusing “what it does” and “what does it.”

Figure 4.2 A dappled pattern reminiscent of animal fur derived by Turing by 

means of a computational pro cess. Th e par tic u lar pattern obtained is deter-

mined by minor random variations made in early stages of the pro cess, rather 

than by any preprogrammed or ge ne tic element. Th e short horizontal line is a 

scale indicator of the generating pro cess. One gets very diff erent but equally 

natural- looking patterns every time one runs the randomized pro cess. Turing 

comments that he obtained this diagram in a “few hours by a manual 

computation”— evidently he did not have a machine available. (Copyright © 

1952, Th e Royal Society)
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Before moving on to the question of which algorithms might be realized 

by biology, I note that learning theory may inform the investigation of biol-

ogy in a diff erent sense also. A biologist performing experiments can be re-

garded as a learner who wishes to uncover the complex mechanisms of a 

par tic u lar system. As we shall see, there are inherent limits to the complex-

ity of mechanisms that can be learned. Th e limits on what is learnable, 

which we will see in the next chapter, may be viewed as warning signals that 

the accumulation of experimental behavioral data by itself may not neces-

sarily lead to progress in understanding how a system works. Individual 

human behaviors have been closely observed and widely recorded for thou-

sands of years, yet we understand little about the mechanisms of the brain 

that gave rise to these behaviors.

Aft er Alan Turing died, Max Newman, his mentor and friend, described 

in an obituary the central theme that had inspired Turing’s many contribu-

tions to science: “Th e varied titles of Turing’s published work disguise its 

unity of purpose. Th e central problem with which he started, and to which 

he constantly returned, is the extent and the limitations of mechanistic ex-

planations of nature.”  Th is is an insightful characterization, which we owe 

to someone who had known Turing well. It emphasizes the need for study-

ing “extent and limitations,” both of which  were to become fundamental 

characteristics of computer science. Th e characterization further asserts the 

novelty of Turing’s quest in suggesting that, while the established sciences— 

physics, chemistry, and biology— also aim for mechanistic explanations, 

nature also requires explanations of a kind that these older sciences do not 

address. In Turing’s mid- twentieth- century writings one can already detect 

the pulse of the twenty- fi rst century. Turing’s place in history is assured by 

his discovery and successful pursuit of this previously unsuspected dimen-

sion to science.
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Chapter Five

The Learnable

How can one draw general lessons from 

par tic u lar experiences?

All generalizations are false, including this one.
Mark Twain

5.1 Cognition

Th e idea that biological and cognitive pro cesses should be viewed as compu-

tations appeared almost immediately upon the discovery of universal com-

putation, and it was discussed by the early pioneers, including Turing and 

von Neumann. Because of subsequent slow progress in making this connec-

tion concrete or useful, some have despaired that it can never be made into 

more than meta phor, and that for fundamental reasons it cannot be made 

into a science. I disagree. I believe that developing any new science is fraught 

with challenges, and that we are making progress in this area at about the 

pace that might be reasonable to expect.

Th e universality of computation is what justifi es this approach to cog-

nition. Some have complained that the favored meta phor for the brain in 

every age has been the most complicated mechanism known at the time. 

Since the computer is currently that most complex mechanism, is it not a 

fallacy to adopt that meta phor? I would argue that the computer analogy 

goes beyond the fact that the computer is another complicated mechanism. 

What makes it diff erent this time is the widely agreed universality of com-

putation over all pro cesses that we regard as mechanistic.
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Turing and von Neumann both shared a second crucial insight: that 

mathematical logic, from which computation theory had emerged, was not 

the right grounding for a computational description of either thinking or 

life. In par tic u lar, Turing has the following memorable conclusion to his 

paper describing noncomputability results in logic: “Th e results which have 

been described in this article are mainly of a negative character, setting cer-

tain bounds to what we can hope to achieve purely by reasoning. Th ese, and 

some other results of mathematical logic, may be regarded as going some 

way toward a demonstration, within mathematics itself, of the inadequacy 

of ‘reason’ unsupported by common sense.” Th is passage may be the fi rst 

occurrence in science of the idea that common sense is somehow superior to 

reason. It foreshadows ample computational experience in the years that fol-

lowed. While computers are extremely good at reasoning using mathemati-

cal logic, they fi nd common sense much more challenging.

We are faced with two issues as a result: identifying what it is about com-

mon sense that logic fails to capture, and whether there is a scientifi c road 

to the problem of common sense. Th e fi rst issue, I argue, is a result of math-

ematical logic requiring a theoryful world in which to function well. Com-

mon sense corresponds to a capability of making good predictive decisions 

in the realm of the theoryless. To address the second issue we need therefore 

a theory of the general nature of the theoryless. As I shall argue, the road 

we must take in that direction is paved with ecorithms.

Th e algorithms studied most widely in computer science aim to solve 

 instances of some specifi c problem, such as integer multiplication or the 

Traveling Salesman Problem. Th ese algorithms, by design, already incorpo-

rate the expertise needed for solving them. Ecorithms are also algorithms, 

but they have an important additional nature. Th ey use generic learning 

techniques to acquire knowledge from their environment so that they can 

perform eff ectively in the environment from which they have learned. Th ey 

achieve this eff ectiveness not by intensive design, but by making use of 

knowledge they have learned. Th e designed- in expertise is limited to generic 

learning capabilities, and their use. Understanding ecorithms requires de-

velopments beyond basic algorithmic theory. One now needs to analyze 

not only the algorithm itself but also the algorithm’s relationship with its 

environment.

Th e theory of probably approximately correct, or PAC, learning deals with 

this relationship between the algorithm and its environment. It addresses the 
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fundamental question of how a limited entity can cope in a world that in 

comparison is limitless, and does so while keeping to an absolute minimum 

any assumptions about that limitless world.

5.2 The Problem of Induction

Living organisms from the lowliest have some capability to adapt. Th ey 

learn to avoid doing actions that are detrimental to themselves in favor of 

those that are benefi cial.

In real- world environments an almost limitless number of distinct 

 possible situations may occur. A useful learning capability therefore always 

needs to provide a signifi cant component of generalization; a learned behav-

ior has to be eff ective not only in situations that are identical to ones pre-

viously experienced but also in any number of novel ones. For this reason I 

identify generalization as the core of the learning phenomenon. Remember-

ing a list of a hundred words shown once may be a challenge for us humans, 

but this is best regarded as a bug of our neurobiology, the legacy hardware 

architecture our species inherited. Because our brains lack the means of 

manipulating memory addresses in the way computers are able to do, and 

because each neuron is connected to only a small fraction of the others, 

memorization is unnecessarily diffi  cult. However, we humans are excellent 

at generalizing, a skill that is both philosophically fraught and diffi  cult to 

endow in our computers.

Th ere is a diffi  culty in placing generalization at the core of learning, at 

least for phi los o phers, who have argued for millennia that it is diffi  cult to 

make a logical argument for rationally inferring anything from one situa-

tion to another that one has never before experienced. Th is is known as the 

problem of induction. Aristotle said that there are two forms of argument, 

syllogistic and inductive.  Here I interpret these words to mean that if one 

has a certain belief, then the belief was arrived at either by logical deduction 

(syllogism) from things already believed, or by induction (generalization) 

from par tic u lar experiences. In this formulation it is induction that is 

the more basic since it enables primary beliefs, whereas logical deduction 

requires some previous beliefs.

Th e main paradox of induction is the apparent contradiction between 

the following two of its facets. On the one hand, if no assumptions are made 

about the world, then clearly induction cannot be justifi ed, because the 

world could conceivably be adversarial enough to ensure that the future is 
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exactly the opposite of what ever prediction has just been made. Th is skepti-

cal position is ancient. For example, the phi los o pher Sextus Empiricus wrote 

some 1,800 years ago:

[Th e dogmatists] claim that the universal is established from the particu-

lars by means of induction. If this is so, they will eff ect it by reviewing 

 either all the particulars or only some of them. But if they review only 

some, their induction will be unreliable, since it is possible that some of 

the particulars omitted in the induction may contradict the universal. If, 

on the other hand, their review is to include all the particulars, theirs will 

be an impossible task, because particulars are infi nite and indefi nite. 

Th us it turns out, I think, that induction, viewed from both ways, rests on 

a shaky foundation.

On the other hand, and in apparent contradiction to this argument, suc-

cessful induction abounds all around us. Generation aft er generation, mil-

lions of children learn everyday concepts, such as dogs and cats, chairs and 

tables, aft er seeing examples of them, rather than precise defi nitions. Each 

child will typically see few examples of each concept, and the examples dif-

ferent children see will in general be diff erent. Nevertheless, when asked 

to categorize a new example as to whether it is a cat or a dog, children will 

agree with each other on a high percentage of occasions, perhaps surpris-

ingly high given the paucity and variability of the information they have 

been provided. From this we have to conclude that generalization or induc-

tion is a pervasive phenomenon exhibited by children. It is as routine and 

reproducible a phenomenon as objects falling under gravity. It is reasonable 

to expect a quantitative scientifi c explanation of this highly reproducible 

phenomenon.

While these two facets, the diffi  culty of justifying induction without 

 assumptions, on the one hand, and the pervasiveness of induction, on the 

other, are on the surface contradictory, they are not implacably inconsis-

tent. Th ere may exist some acceptable assumptions that hold for the repro-

ducible, naturally occurring form of induction, and under which induction 

is rigorously justifi able. I argue that this is exactly the case, and that just 

two assumptions are suffi  cient to give a quantitatively compelling account 

of induction. Further, these two par tic u lar assumptions are also necessary 

and unavoidable.
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Th e fi rst assumption is the Invariance Assumption: Th e context in which 

the generalization is to be applied cannot be fundamentally diff erent from 

that in which it was made. If I move from one city to another, then I can 

benefi t from my previous experience only on the assumption that things are 

not too diff erent in the two cities. To put it a bit more mathematically, this 

assumption requires that the functional relationships and the probability 

distribution D that characterizes how frequently diff erent situations arise 

remain somehow constant over time. It is important to note that the In-

variance Assumption does not require that the world not change at all. It 

requires only that there are some regularities that remain true. Th ese regu-

larities may even specify how the world tends to change with time: If we 

observe the Sun going down toward the horizon in an interval of an hour, 

we expect that in the next hour the sun will go down even closer to the 

 horizon, rather than that it will repeat the previous positions in a zig- zag 

fashion. Or, as the Wall Street fi nancier J. P. Morgan, on being asked by a 

questioner for a prediction about the future course of the stock market, said: 

“It will fl uctuate.”

Th e second assumption is the Learnable Regularity Assumption. We are 

quite good, but possibly not perfect, at categorizing. If we look into an 

aquarium, we can fairly reliably distinguish between plants and animals, 

even species we have not seen before. We must be doing this by applying 

some criterion that distinguishes animals from plants. Th ese criteria can be 

viewed as regularities in the world. Such regularities have been discussed as 

such by phi los o phers, notably by David Hume in the eigh teenth century. 

Computer science adds at least two further levels to this discussion. First, it 

is essential to require that any useful criterion or regularity be detectable: 

Whether the criterion applies to an instance should be resolvable by a fea-

sible computation. For example, the number of mea sure ments we need to 

make on the object in question, and the number of operations we need 

to perform on the mea sure ments to test whether the criterion of being an 

animal holds or not, should be polynomially bounded. A criterion that can-

not be applied in practice is not useful.

However, the induction phenomenon has a second, even more severe, 

further constraint on it. It is not suffi  cient that the regularity or criterion 

just exist or even that it is detectable. To explain induction it is also neces-

sary to explain how an individual can acquire the detection algorithm for 

the regularity in the fi rst place. In par tic u lar, this acquisition must be feasible, 
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requiring only realistic resources and only a modest number of interactions 

with the world. Of course, diff erent kinds of regularity may require diff erent 

levels of learning eff ort. Th ink about the night sky. Data about the positions of 

the visible objects has been available to our ancestors from the beginning, 

there for anyone to see. A little systematic observation revealed the easy- to- 

learn regularity that all the objects are in fi xed positions relative to each other, 

except the few we call planets. It took thousands of years before someone, 

namely Kepler, discovered the much- more- diffi  cult- to- discover regularity 

that the planets move in ellipses.

Th e Invariance and Learnable Regularity assumptions may seem restrict-

ing, but in fact they are liberating: Th ey free the learner from certain re-

sponsibilities that are impossible to realize. Th e Invariance Assumption 

requires only that predictions hold for examples drawn from the same 

source as the examples  were drawn during learning. If we learn from natu-

rally occurring examples, then we only need to make good predictions about 

other natural examples. In the case of learning to distinguish animals from 

plants, this would imply, for example, that accurate predictions on artifi cial 

or mythical cases are not required. Computer- generated images of fi ctitious 

hybrids, designed to split human opinion exactly fi ft y- fi  fty as to whether 

they are plant or animal, will not be relevant to our interpretation of the 

induction phenomenon.

Th e Learnable Regularity Assumption also imposes some liberating 

 limitations. It requires that some regularity exists, and that this regularity 

be eff ectively detectable for any example. It goes further in insisting that this 

regularity be learnable with moderate eff ort. A case that therefore need not 

be encompassed is where the examples are natural but then encrypted by 

some method that cannot be effi  ciently reversed. Th us the pictures of the 

animals or plants can be encoded so that they cannot be deciphered by any 

effi  cient computational pro cess. Th is does not remove the regularity from 

the data if the original data is still recoverable in principle, even if only by an 

infeasibly laborious computational pro cess. But if it is not practical at all to 

discover the regularity, then the regularity is no longer a learnable regularity, 

and it need not be addressed.

5.3 Induction in an Urn

I will show that these two minimal assumptions— the Invariance and 

 Learnable Regularity assumptions— enable us to explain the possibility of 
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induction rigorously. PAC learning is based on these two assumptions of 

invariance and learnable regularity. Th e next several sections will develop 

this idea in more depth.

Suppose you are presented with an urn containing millions of marbles, 

each one with a number written on it. You can reach in and draw a marble 

at random from the urn. You are allowed to draw 100 marbles. Your task is 

to determine which numbers occur at least once among all the millions of 

marbles in the urn. Is this possible?

Th e answer is clearly “no” if no assumptions are made at all, since it is 

 possible that all the marbles have diff erent numbers written on them. Any 100 

draws will then fail to identify the numbers on the remaining millions of 

marbles. On the other hand, the answer is clearly “yes” under certain extreme 

assumptions. For example, if it is known that all the marbles are identical, 

then a single draw would give complete knowledge about all the marbles.

9

4
5

7

3

2

1
2

2

22

2

1

1
1

1

3
3 3

3 3

7

7

1

1

1

17

7

73

3

3 1
1

1

9
9

33

347

41

17

Figure 5.1 Given a large urn containing millions of marbles, can one induce 

which marble types are in the urn from a small sample drawn at random?
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What is a little more striking is that there is a qualifi ed positive answer 

under some more interesting intermediate conditions. In par tic u lar, if the 

number of diff erent kinds of marble in the urn is not one but a small num-

ber, such as fi ve, then one can still achieve a useful level of generalization.

Th e reason why having a fi xed number of marble types makes some level 

of induction possible is simply the following. Any marble that occurs 

 frequently enough will be among the 100 drawn with high probability, and 

hence the 100 marbles drawn will be representative of the most frequently 

occurring marbles, unless, of course, you had particularly bad luck with 

the draw.

To argue this more precisely, fi rst consider the specifi c case that as many 

as 50 percent of the marbles are of one type. Suppose this 50 percent all have 

a 3 written on them. Th en the probability that all 100 random draws miss 

a 3 is (1 ⁄2) = 0.00000000000000000000000000000078886. . . .  Th is is the 

same as the probability that 100 tosses of a fair coin all come up tails. Th e 

likelihood of this occurring is, of course, extremely small— so small, in fact, 

that if an experiment of tossing 100 coins had been repeated every nanosec-

ond since the currently estimated date of the Big Bang, then the probability 

that this eventuality would have ever happened is still less than 1 in 2,000. 

Th erefore, for the urn in which 50 percent of the marbles are 3s, we are safe 

to conclude that aft er 100 draws, with overwhelming probability, we will 

have seen at least one 3, and hence a representative of at least 50 percent of 

the contents of the urn.

Such a very specifi c assumption, that 50 percent of the marbles are the 

same, is not essential either. Th e knowledge that the number of diff erent 

marble types is small also gives a suffi  cient principled basis for induction. 

Suppose that we know that there are at most fi ve diff erent marble types, but 

have no idea of their relative frequency. It turns out that aft er 100 picks we 

should have high confi dence that we have seen representatives of over 80 per-

cent of the contents of the urn. Th e argument goes like this. If any of the fi ve 

marble types occurs with frequency more than 5 percent, then the probability 

that that type was missed all 100 times is less than (1 − 0.05) = (0.95) < 0.6 

percent. Since there are at most fi ve such types, the probability that any one 

of these frequent ones has been missed is less than fi ve times this quantity, 

namely 3 percent. Th ere can be at most four types that occur with frequency 

less than 5 percent each, and hence the rare types account for less than 

20 percent of all the marbles between them. Combining the two sources of 
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error, we conclude that with probability at least 97 percent no marble type 

that occurs with probability greater than 5 percent has been missed, in 

which case the missing marble types can account for at most 20 percent of 

the contents of the urn. Hence you will have drawn representatives of at 

least 80 percent of the marbles, unless you are unlucky and miss some com-

mon types. But you are unlucky in this way less than 3 percent of the time.

In other words, you can predict with 97 percent confi dence that aft er 100 

picks you will have seen representatives of at least 80 percent of the contents 

of the urn. Th is is in spite of the fact that the distribution of the various 

types of marbles is arbitrary and unknown to you. It may be that each of the 

fi ve occurs with equal 20 percent probability. Or it may be that 92 percent 

are of one kind and the other four kinds occur with frequency 2 percent 

each. Or it may be that three of the marble types are extremely rare, each 

occurring 0.1 percent of the time, and the remaining two each occurs 49.85 

percent of the time. Th e claim is equally valid for these three cases, as for 

any other.

All we need to make this claim are our two assumptions: that the con-

tents of the urn do not change (invariance), and that there are a fi xed num-

ber of marble types represented in the urn (which provides a suffi  cient 

learnable regularity). From this it was possible to deduce totally rigorously 

that from a small sample one can make meaningful predictions about fu-

ture draws from the urn.

5.4 Error Control

Clearly, then, induction with our minimal assumptions is powerful. Equally 

clear is that we cannot avoid errors, which can come from two sources. Th e 

fi rst source is that of rarity errors. Th ere may exist in the urn some rare 

types of marbles that are unlikely to be drawn in any small sample. Th eir 

existence therefore will be predicted with correspondingly small probabil-

ity. Th e second source is that of misfortune errors. With some small proba-

bility the sample drawn will be unrepresentative of the contents of the urn 

because it missed some common marble types. In extreme enough cases 

of such misfortune, as when all the common marble types are missed, the 

sample will not support any useful claims about what is in the urn.

Th e interesting thing is that while neither of these two sources of error 

can be totally eliminated, both can be controlled. By this I mean that the 

probability of both sources of error can be driven down to arbitrarily small 
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(but nonzero) quantities by increasing the number of marbles drawn. Most 

signifi cantly, controlling error is aff ordable: Th e cost in increased sample 

size that needs to be paid will depend only modestly, in fact polynomially, 

on the predictive error that is to be tolerated. Th at aff ordability is crucial— if 

good predictions could be achieved only in an idealistic limit requiring ex-

ponentially much eff ort, then explanations of real- world phenomena would 

not follow.

In this urn model the only action is to pick marbles and there is no other 

computation. Hence the computational cost may be regarded as the number 

of marbles picked from the urn. I shall call this number S. By feasible I have 

a concrete quantitative notion in mind. I want S to increase only polyno-

mially both with n, the number of diff erent marble types in the urn, and with 

1/error, the inverse of the maximum error one is choosing to tolerate.  Here 

error will be either the rarity error or the misfortune error, whichever is 

smaller. An instance of a polynomial bound for the error is the quadratic 

bound (1/error). Th en if one is willing to tolerate 10 percent errors (i.e., er-

ror = 0. 1), then the number of examples and total number of steps needed to 

achieve that level of accuracy should be proportional to (1/error) = 10 = 100.

We can fi nd out just how aff ordable our predictions can be. If we assume, 

for example, that all n types occur in the urn with the same probability, to 

draw a set representing half the available types, we will need to choose at 

least n/2. In this case the cost of a good induction will be proportional to the 

number of available types. It can also be shown that for some distributions 

the dependence on the inverse error can be similarly linear. Th is shows that 

some minimum price may have to be paid for good generalization. Fortu-

nately, it can be shown that for no distribution is the actual price ever much 

higher than these bounds, which are linear in n and in 1/error. Th e argu-

ment needed to prove this is a generalization of the one just given for the 

par tic u lar case of fi ve marble types, where it was shown that a sample of 100 

marbles was suffi  cient to get a confi dence of 97 percent of having a predic-

tion error less than 20 percent.

5.5 Toward PAC Learnability

Th e urn example establishes the feasibility of induction in that setting, but 

it is only a restricted setting; the number of distinguishable objects is small, 

in fact small enough that it is practicable for the learner to witness a big 

fraction of them. We have already seen Sextus Empiricus’s objections to 
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such an assumption. In the real world the number of distinguishable objects 

is so large that no learner can expect to see more than a minute fraction, 

even in a lifetime. A child will have seen only a small fraction of the millions 

of distinguishable individual animals and yet be able to classify examples 

according to species. Th e onerous requirement on human induction, which 

the urn example does not satisfy, is therefore that aft er seeing S examples, it 

has to be able to generalize over sets that have far more than S distinguish-

able individuals.

Hence the question we have to ask is this: What kind of induction is 

feasible that matches the urn example in rigor and practical feasibility, but 

can induce over sets of as many as, say, 2S distinguishable types, rather than 

merely S, but with a cost that is polynomial in S, and not exponential?

Fortunately we can adapt the urn example for learning in such a more 

expressive and exacting setting. Suppose, for simplicity, that the features we 

detect when trying to distinguish an animal from a plant on a certain planet 

all have just yes/no values. Suppose also that there are just twenty such fea-

tures, including the following: is grey, is red, is green, is brown, is small, is 

big, has eyes, has legs, has leaves, has long ears, can move, can breathe, and 

so on. Assuming a criterion in terms of these par tic u lar features exists, then 

for each possible combination of yes/no values of the twenty features that 

applies to some creature it is completely determined whether that creature is 

an animal or a plant.

Th e problem is that twenty features, each being present or absent, can be 

combined in 2 = 1,048,576 ways. Now if we have the opportunity to ob-

serve many millions of creatures, each identifi ed as animal or plant, we are 

essentially back to the urn model. We will see all commonly occurring com-

binations of features, view each diff erent combination as a type of marble, 

and will then be able to classify future confi gurations with the same confi -

dence that the calculation for the urn model justifi es. However, a scenario 

where it is necessary to see exponentially many examples in terms of the 

natural pa ram e ter,  here the number of features, is simply unrealistic. Even if 

not all the 2 diff erent combinations of features occur in nature, a large 

number may, perhaps in the thousands. Humans can learn from far fewer 

examples even in cases such as this where the number of distinguishable 

individuals is really enormous. Our algorithm should be able to, as well.

Th is brings me to the defi nition of learnability, or the requirement that we 

can reasonably impose on a learning algorithm before we declare it to be 
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successful. In this defi nition we shall demand that an algorithm should learn 

from a number of examples that is polynomial in the number of the features 

n. Th e need for n or n or even n examples may be acceptable, but exponen-

tially many, such as 2n, would not. (Th e number of distinguishable types, 

however, may be as many as 2n.) We also want to control the error, and insist 

that this control be again polynomial. In order to achieve all this, we there-

fore insist that the computational cost of the pro cess of deriving the induced 

generalization from the examples is polynomial not only in n and but also 

in 1/error. Note that this computational complexity criterion already implies 

the polynomial limitation on the number of examples drawn, or the sample 

complexity, since it takes at least one operation to pro cess each example.

Th e next question to ask is whether this notion of induction is not so 

onerous that it is unachievable. We can show that this is not the case— 

induction in the sense of this defi nition can be attained for certain useful 

classes of concepts. One such class is that of conjunctions. A conjunction is 

an expression that specifi es for each feature whether it must hold, it must 

not hold, or it does not matter whether it holds. An example of a conjunc-

tion in the present case is

(can move = true) and (has eyes = true) and (is green = false).

Th is expresses the criterion that “can move” and “has eyes” must hold, “is 

green” must not hold, and the remaining seventeen feature values do not 

matter. Such a conjunction, in turn, defi nes the concept of an animal on a 

certain planet if and only if every animal there satisfi es the conjunction (i.e., 

satisfi es all three components) and every nonanimal fails to satisfy it (i.e., 

fails to satisfy at least one of the three components.)

Now let us assume, for the sake of argument, that the concept we are try-

ing to learn can be expressed by exactly this conjunction. In other words, 

we are assuming that everything on that planet that can move and has eyes 

and is not green is an animal, while anything that fails to have at least one of 

these three properties is not. How would we learn the conjunction effi  ciently 

from a modest number of examples? It turns out that the marbles and urn 

analysis of the previous section can be adapted to apply  here also, but with 

the polynomial bound now in terms of the number of features n, rather than 

only in terms of the number of distinguishable types, which may be 2n or 

exponential in that quantity.
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To see this, we can treat each example of an animal or nonanimal as 

a marble that has written on it for each of the twenty features whether the 

feature holds for the example or not. We only put marbles corresponding to 

positive examples of animals in the urn. Th e marbles representing animals 

will all be labeled by the statement: can move = true, has eyes = true, is 

green = false, while the other seventeen features between them can take on 

any of the 2 diff erent combinations of the remaining feature values in any 

arbitrary ratios of relative frequency.

Our learning algorithm works like this. It forms a list of the 2n possible 

properties, for each feature one property asserts that the feature is true and 

the other that it is false. We call this list L. Th e list L initially contains all 2n 

properties, or forty in our running example. Marbles are then drawn one by 

one. If a marble is drawn that misses some properties that are in L, those 

properties will be deleted from L, because they are properties that not all 

animals share. For example, if one animal is not grey, then greyness cannot 

be a necessary property for all animals, and this property should not be in 

the conjunction. Aft er 100 marbles have been drawn, the conjunction of the 

properties remaining in L is declared to be the hypothesis or criterion for 

animals.

Th is procedure, known as the elimination algorithm, induces an accurate 

criterion for recognizing whether something is an animal. Th e reason is the 

following. First, all the properties in the correct conjunction for animals 

must be present in the fi nal L since every marble in the urn had all the prop-

erties that all animals share, and the only properties deleted from L  were 

those that  were missing in at least one animal. So the only possible source of 

error is that some property, such as “has long ears,” remained in this fi nal L, 

while it should not have. Th is would mean that in 100 trials every animal 

drawn had long ears. If this property is not essential to animals, then the 

ones that lack this property must be truly rare (rarity error) or we  were un-

lucky in our pick of 100 animals (misfortune error). Exactly as in the urn 

argument, we can argue  here also that, with high probability, the properties 

that falsely remain in L (e.g., having long ears) must be those that between 

them exclude no more than a small percentage of animals. In fact, essen-

tially the same polynomial bound can be proved in terms of n (the number 

of features, not animals) and 1/error as for the urn problem.

Th at correctly classifying animals via conjunctions is no more diffi  cult 

than the urn problem is perhaps surprising, since there  were just n diff erent 
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marble types in the fi rst scenario, while now there are 2n diff erent types of 

animals. Let us therefore reexamine our assumptions.

First, we made the Invariance Assumption that the examples encoun-

tered in the testing phase come from the same source as in the learning 

phase. Examples rarely seen during learning will be equally rare during 

testing, and therefore less important for the learner to know about.

Second, we made the Learnable Regularity Assumption. In this case we 

assumed that for the given features a criterion for distinguishing animals 

from plants could be expressed as a conjunction. Th is was suffi  cient because 

conjunctions can be shown to be learnable, as we have just seen.

As we shall see later, many function classes, because they seem not to 

have learnable regularity, appear not to be learnable even when the Invari-

ance Assumption holds. In other words, the Learnable Regularity Assump-

tion substantively constrains what learning algorithms can do. Th at may 

seem a problem, but in fact such constraints are needed to make learning 

possible. Th e fact that the elimination algorithm for conjunctions used only 

positive examples can help us see why! It may seem impossible to learn to 

classify animals and plants by looking at only animals. Nevertheless, as we 

have seen, it is both possible and even rigorously justifi able. Th e reason is 

that the constraint that there exists a conjunction that distinguishes one 

type from another is in itself highly informative. In this case it permits 

learning from positive examples alone. (As a very loose analogy for how in-

formation can be conveyed by constraints, suppose I challenged you to solve 

a puzzle that I claim to have solved myself. In your search for a solution you 

would fi nd it helpful to know whether it had taken me ten seconds, ten 

hours, or ten days, even though this information sheds little light specifi c to 

the problem.)

Equally learnable are disjunctions, which are expressions of exactly the 

same form as conjunctions, except that each and is replaced by an or, re-

quiring only that at least one of the listed set of the properties holds, rather 

than that every one of them holds. We would then assume that the concept 

of an animal is expressible as a disjunction such as x or x or x', where x' 

denotes not x. Like conjunctions, disjunctions are learnable, albeit by re-

lying entirely on negative examples, and again using the elimination algo-

rithm. So, if the algorithm encounters a brown plant, “is brown” gets 

removed from the list of traits that each guarantee something being an 

animal.
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Eliminating what has to be eliminated, as we do  here, is, of course, a long- 

recognized principle of reasoning. Francis Bacon, in the early seventeenth 

century, and John Stuart Mill, in the nineteenth, both emphasized its 

 importance. Sherlock Holmes was even more categorical: “When you have 

eliminated the impossible, what ever remains, however improbable, must be 

the truth. ” Unfortunately for Mr. Holmes, exploiting the elimination method 

in a foolproof way is rarely practicable. Some cases will remain on the list 

that are not true. Th e PAC framework off ers the needed analysis of the error 

that will result.

It is natural to ask whether conjunctions and disjunctions are expressive 

enough to account for human concepts. One way of phrasing this is to let 

the features be words in a certain dictionary, and ask whether each word 

in the dictionary can be expressed in terms of, say, a conjunction of the others. 

Th e phi los o pher Ludwig Wittgenstein argued that the notion of a game has 

no feature that is common to all instances of it. For example, not every game 

is won or lost, or played by two people, and so on. Th is implies that conjunc-

tions are not enough for expressing everyday words in terms of each other, 

since such conjunctions would have to contain exactly the features that are 

essential to all instances. A similar argument can be made for disjunctions.

Circuits that consist of and and or statements, composed in an arbitrary 

way, rather than in a single layer as in conjunctions or disjunctions, are 

much more expressive. If one has to learn such a circuit, and intermediate 

nodes in it do not correspond to natural concepts for which labeled exam-

ples are available, then the ability to learn conjunctions and disjunctions is 

not enough. Indeed, as we shall see later, it is widely believed that some func-

tion classes that are more expressive than conjunctions or disjunctions are 

not learnable. Th e questions of determining the most expressive classes of 

functions for which learning is still possible are the most fundamental ques-

tions of learning theory.

5.6 PAC Learnability

What we have been describing is a notion of probably approximately correct 

(PAC) learning. When fi rst introduced, the corresponding class was simply 

called learnable, in analogy with Turing’s notion of computable, to indicate 

that what was being sought was a robust characterization of what was prac-

tically learnable by explicit computational means. Th e “probably” acknowl-

edges misfortune errors, and the “approximately” rarity errors.
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Many of the concept classes we have seen so far are PAC learnable: con-

junctions and disjunctions are, as well as the class of linear separators dis-

cussed in Chapter 3. Th e perceptron algorithm described there is not quite 

suffi  cient to establish this. One impediment is that the number of iterations of 

the perceptron algorithm will be exponential if some examples are exponen-

tially close to the separator. Fortunately, this impediment can be overcome by 

using a diff erent algorithm, one based on linear programming.

Th e critical idea in PAC learning is that both statistical as well as compu-

tational phenomena are acknowledged, and both are quantifi ed. Th ere have 

been earlier attempts to model induction using purely computational or 

purely statistical notions. However, I believe that combining the computa-

tional and the statistical provides the key to understanding the rich variety 

of learning phenomena that exist. Th e notion of PAC learning is concerned 

with describing what needs to be achieved in order to constitute induction. 

It is neutral on both which concept class should be learned and which al-

gorithm is to be used to learn it. What it does do is to off er a quantitative 

analysis of learning. Which algorithms the human ner vous system uses and 

which classes are being learned are not currently known. But at least we 

have a way of making these questions concrete.

By now it may have occurred to the reader that the model described is 

undoubtedly a simplifi cation of the broad range of phenomena that humans 

manifest in relation to learning. In itself the model addresses the core phe-

nomenon of computationally feasible induction from examples. Th e model 

can be and has been extended in numerous directions so as to capture many 

additional aspects of learning. Th ese directions include allowing for some 

kind of noise in the data, the concepts changing slowly rather than staying 

invariant, the learner asking certain questions, or the algorithm working 

only for specifi c distributions. Having a defi nite mathematical model of the 

inductive pro cess gives a vantage point for investigating these important 

facets of learning.

5.7 Occam: When to Trust a Hypothesis

Th e great advantage of a hypothesis generated by a PAC learning algorithm 

is that it comes with a reliability guarantee. However, it is oft en the case that 

we are confronted with a hypothesis about the provenance of which we 

know nothing. A hedge fund manager, for example, might be told that some 

specifi c pattern of price fl uctuation has been present in market activity for 
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some time. He must decide if he should start using this pattern to make 

 investment decisions, even if no information is available about how the pat-

tern was identifi ed or who had identifi ed it. Th is kind of question also arises 

routinely in the practice of machine learning, where many algorithms are 

employed that have not been proved to be PAC learning algorithms but are 

useful nevertheless. Happily there are some entirely rigorous criteria to 

 apply to such situations also.

Th e answer lies with Occam algorithms: Th ey provide a rigorous ap-

proach, even in such cases of total ignorance about the origins of a hypoth-

esis, and exemplify the role of purely statistical arguments in machine 

learning. What this approach provides are some conditions under which 

an unfamiliar hypothesis can be trusted. Th ese conditions make concrete 

and rigorous the intuition sometimes attributed to the fourteenth- century 

logician William of Ockham that all things being equal, simpler hypotheses 

are more likely to be valid than complex ones.

Suppose that you are trying to predict  horse races, and that someone 

gives you data from a hundred past races in which every time the heaviest 

 horse won. Discerning whether the heaviest  horse is the sure thing it might 

appear to be requires several steps. First, you will need to be convinced that 

the 100 races you are shown  were not maliciously selected from among 

many that overall showed no such clear pattern. Second, you would need 

further reassurance that the data was not from a diff erent planet. Th ese two 

requirements are roughly equivalent to the Invariance Assumption of the 

defi nition of learnability, that future events will be drawn in de pen dently 

from the same probability distribution as the 100 events in the dataset. 

Th ird, you would need to assess the complexity of the hypothesis. It is tempt-

ing to bet on the heaviest  horse because of the simplicity of the rule “the heavi-

est will win.” It seems unlikely that 100 races would all satisfy such a simple 

rule just by accident. If the rule  were much more complex, for example that 

the  horse’s height, the own er’s weight, and the trainer’s age (all in appropriate 

units) added up to a prime number, then you would be a little more skeptical, 

and justifi ably so. Even if the winners  were totally unpredictable and arbi-

trary, some prediction rule could always be engineered to match them aft er 

the fact, if the rule is allowed to be complicated enough.

Th is intuition can be made rigorous as follows. Suppose that you have a 

well- defi ned language for expressing hypotheses, and suppose that at most 

N distinct hypotheses can be expressed in this language. Suppose also that 
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someone gives you a dataset of S examples that all agree with h, one of the 

N permitted hypotheses. To decide whether to accept this hypothesis h, we 

need only the Invariance Assumption. Suppose that a fi xed rule h* is bad, in 

the sense that it predicts correctly only a fraction p of the examples from the 

distribution. Th en the probability that it will be accurate on every one of the 

S in de pen dently drawn examples will be pS. Th is will be an extremely small 

fraction if S is large and p is substantially less than 1. For example, if S = 100, 

and p is less than 0.8, then the probability that this bad rule will predict cor-

rectly every one of 100 random examples is about 0.0000000002, or 2 × 10−. 

Th is is smaller than the probability that thirty- two successive tosses of a fair 

coin will all come up heads, an extremely unlikely event.

Th is argument applies to any one fi xed rule. But what if an adversary 

tried to trick us by choosing the rule to fi t the data aft er having looked at 

the data set? We know there are certain limits to what the trickster can do. 

Th ere are a limited number N of hypotheses from which he can choose; for 

example, if the hypotheses are conjunctions over n variables then N = 3n, 

since each of the variables has three options, present in the conjunction, 

present in negated form, or absent. In par tic u lar, if the probability that any 

one bad hypothesis looks good is no more than 2 × 10−, then the probabil-

ity that at least one of the up to N bad hypotheses looks good is no more 

than N times this, or N × 2 × 10−. Even if the trickster had a million diff er-

ent rules to choose from, the odds of him fi nding one that would be both 

bad and an eff ective trick is only 1 in 5,000. In fact, as long as N is much 

smaller than 5 billion, we can be confi dent that there will be no rule among 

the N that classifi es all the 100 examples correctly but is in fact less than 

80 percent accurate on the distribution D in general.

So, as an example, imagine race  horses are coded according to a list of 

1,000 traits, and that each hypothesis is a conjunction of three traits, such as 

“largest and darkest and oldest.” Th ere will be about 166 million distinct 

hypotheses. (Th is is because if one makes a sequence of three choices, each 

with a thousand outcomes, there will be 1 billion outcomes overall. Because 

the order of the traits, if distinct,  doesn’t matter, only about one in six such 

hypotheses is unique.) Hence the probability that even one bad hypothesis 

among them agrees with all the 100 examples will be slightly more than .03. 

So if “largest and darkest and oldest” correctly predicted the winner of 100 

randomly chosen races, you would have to be irrational not to bet that way 
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on the next one. We can make similar calculations, and determine what level 

of confi dence in a given rule is justifi ed, even with fewer than 100 examples, 

and even when the rule predicts not all but only most examples correctly.

What we have shown is that we can depend on the predictive power of a 

rule someone has given us if we are sure of three conditions. First, we need 

to be given a data set of past examples that have high agreement with the 

rule. Second, we need to know that the rule is from some small class of rules 

that was fi xed before the examples  were selected. And third, we must have 

convinced ourselves that the examples presented to us  were chosen ran-

domly and in de pen dently from the same distribution from which we will 

wish to make future predictions— that is, only rules trained on thorough-

breds should be used to bet on thoroughbreds.

Now, what is the relationship between PAC learning and these Occam 

algorithms? In the case of PAC learning we have a guarantee, ahead of see-

ing any examples, that the learning algorithm we have in hand, such as the 

elimination algorithm for conjunctions, will yield a good predictor when-

ever the hidden function to be learned lies in a certain class of concepts. In 

the case of Occam algorithms, the PAC- like guarantee of predictive accu-

racy does not depend on the pro cess by which the hypothesis was generated; 

it is provided only for one specifi c hypothesis at a time. But that can be lib-

erating, as the Occam argument then gives us a rational justifi cation for 

trying learning algorithms that do not always work. If we are lucky, and fi nd 

a hypothesis that explains the data and is short enough to have predictive 

power, then we can go ahead and use that hypothesis for making predic-

tions. If we are unlucky, and the hypothesis obtained is too long or does not 

fi t the data suffi  ciently, then we will recognize this failure immediately and 

not use it to predict, so that no harm will have been done.

One might say that the most reliable way of testing a hypothesis is to do a 

test on new data— that is, data that has not been used in deriving the hy-

pothesis. While this is true, it is not free of cost, since it requires that we re-

tain some data that does not inform the hypothesis. Using that extra data, 

we might be able to produce a better hypothesis. When one does go live with 

a hypothesis— whether betting on a  horse or recommending an investment 

or a medical treatment— one inevitably has to make an Occam- like deci-

sion: Given all the available data what exactly is the best hypothesis that can 

be deployed?
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5.8 Are There Limits to Learnability?

We have seen a variety of learning algorithms. Th e perceptron algorithm is 

one; the elimination algorithm is another. Obtaining a succinct hypothesis 

and appealing to an Occam argument is a third approach. As we shall see in 

Chapter 9, many learning algorithms are now known and some are already 

widely deployed. Also, there are no doubt many more algorithms that no one 

has yet conceived. But where do we look to for ultimate limits? As pointed 

out earlier, learning is based on a deep interplay of computational and statis-

tical phenomena. If there are limits to learning, then these are the directions 

in which they will be found.

First consider statistical limits, which, though weak, are signifi cant. Th ese 

impose a condition on the minimum number of training examples needed 

in order to learn reliably. Th is number does depend on the distribution. For 

easy distributions high accuracy can be reached with few examples. An ex-

treme case of an easy distribution is one that has only one positive example 

that ever occurs, in which case seeing that once will give all the information 

that is available or needed. Th e bounds obtained for worst- case distributions 

oft en provide useful guidance on how many examples to use in practice. One 

can show that, for certain distributions of examples, the minimum number 

of examples required is proportional to the ratio of the number of variables n 

and the error to be tolerated.

Computational limits are more severe. Th e defi nition of PAC learning 

requires that the learning pro cess be a polynomial time computation— 

learning must be achievable with realistic computational resources. It turns 

out that only certain simple polynomial time computable classes, such as 

conjunctions and linear separators, are known to be learnable, and it is 

 currently widely conjectured that most of the rest is not.

Th is intuition can be expressed more precisely with an Occam- style ar-

gument. Suppose that a function of n variables that describes some regular-

ity is detectable or computable in, say, n steps. (Note that conjunctions can 

be detected in about n steps, but some useful regularities may be more com-

plex.) Th en the behavior of the function on a little more than n randomly 

chosen inputs will determine the behavior on most of the exponentially 

many possible inputs in a PAC sense. In other words, the hidden function 

will be largely determined, for any distribution D in question, by its values 

at a polynomial number of inputs. Th e reason that most such functions do 

not appear to be learnable with polynomial eff ort is not that in a polynomial 
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amount of data the function is not already implicit, but that this implicit 

information cannot be extracted from that data with polynomial eff ort.

I believe that the primary stumbling block that prevents humans from 

being able to learn more complex concepts at a time than they can, is the 

computational diffi  culty of extracting regularities from moderate amounts 

of data, rather than the need for inordinate amounts of data. For example, 

the diffi  culty of discovering the elliptical nature of the orbits of the planets 

was not that the amount of data needed took hundreds of generations to 

compile, but that elliptical orbits as seen from Earth did not constitute a 

regularity that humans found easy to extract.

Yet another way of stating the relative roles in learning of computation 

and statistics is to observe that if the assertion that P = NP (or equivalently, 

that the NP- complete problems are computable in polynomial time) is true, 

then all of P would be PAC learnable. Recall that NP is the class correspond-

ing to mental searches. If P is equal to NP, then one can take a polynomial 

number of random, labeled examples and then simulate in P a machine that 

realizes the necessary mental search for a hypothesis that agrees with these 

labeled examples. Th is would give a hypothesis with an Occam guarantee of 

good predictive accuracy on future examples. In other words, the truth of 

the computational assertion that P = NP would imply that all polynomial 

computable functions would be learnable.

We conclude from this that if we are to understand the limitations of 

learning, we need to look at computational limitations. Unless it turns out 

that P = NP, or some other unexpectedly strong enough positive result is 

true, the notion of knowledge being implicit in data is not suffi  cient to mark 

the boundaries of what is learnable.

So what are the computational limitations on learning?

We get a fi rst clue from the study of cryptography. Th is fi eld is concerned 

with designing algorithms for encoding a message so that an intended re-

cipient can decode it, but any unwelcome eavesdropper who intercepts the 

message cannot. To make this decoding possible for the intended recipient, 

but not for the eavesdropper, the intended recipient must have as a key 

 information that is not available to the eavesdropper.

In traditional cryptography the key is conveyed to the recipient by some 

secure pro cess, such as inside an actual physically locked box or by a whis-

per in the ear from a trusted emissary. In public- key cryptography no such 

secure physical pro cess is needed for transferring the key. Instead, the 
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recipient generates a “public key” and transfers it to the sender through pub-

lic means, but the recipient privately retains some information, the “private 

key.” In the RSA system the public key is the product of two large prime 

numbers p and q, and the private key consists of the prime numbers p and q 

themselves. Anyone can encrypt a message intended for the recipient with 

the public key, but only the recipient with the aid of the retained secret 

 private key will be able to decode it in polynomial time. To ensure that the 

number of potential private keys is so large that it is not practicable for 

the eavesdropper to simply try them all in turn, the key should be, say, a 

thousand- digit number, of which there are too many to enumerate.

Th e conjectured infeasibility of computing p and q is believed to make 

RSA cryptography immune to attack. Th is conjectured immunity sheds 

light on why not all hypotheses in class P are learnable. One type of attack 

on any cryptographic scheme is known as chosen- plaintext attack. In this a 

would- be eavesdropper— perhaps an insider— is assumed to have access to 

the encryption device, and can feed the encryption device with many, pos-

sibly carefully chosen, pieces of text and then observe their encodings. From 

this information the eavesdropper extracts a decryption algorithm (equiva-

lent to the key) that will decrypt any encoded message. In essence, then, a 

chosen- plaintext attack is similar to our learning scenario: the encoded mes-

sages are the examples, the bits of the original raw messages are their labels, 

and the decryption algorithm encapsulated by the private key is the concept 

to be learned. Assuming that RSA, or some other encryption scheme, is 

in fact resistant to chosen- plaintext attack, it follows that the class P is not 

Message X 
Encoded 

Message f(X)   
Decoded 

Message XEncryption 

Algorithm

Decryption 
Algorithm

Figure 5.2 Th e existence of strong encryption methods implies the existence of 

functions that are computationally intractable to learn. Th e reason is that if all 

decryption algorithms  were learnable from examples, then one could break 

any scheme by collecting enough pairs (X, f (X)) by feeding the encryption 

device with enough known messages X and intercepting their encodings f(X). 

Th e pairs (f (X), X) are then labeled examples for the decryption algorithm. 

Learning this algorithm amounts to breaking the code.
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learnable, since if it  were then we could learn all decryption functions and 

hence break all such cryptographic schemes.

We do not need to look to just cryptography to fi nd apparent impedi-

ments to learnability. Language gives us another domain.

In the 1950s the linguist Noam Chomsky considered various alternative 

classes of formal languages as the possible grammatical bases of natural 

languages, such as En glish. Th e simplest in this so- called Chomsky hier-

archy of formal languages are the regular languages. Th e mechanisms that 

generate them are fi nite- state automata, which are also among the simplest 

interesting computing mechanisms. An instance is illustrated in Figure 5.3.

Each such automaton can be represented as a diagram with a start node 

and a number of fi nish nodes. Each link in the diagram is labeled from a 

fi xed set of symbols, such as a and b. Th e language accepted by the automa-

ton is the set of all sequences that label paths in the diagram from the start 

node to some fi nish node.

Consider the fi nite automaton depicted in Figure 5.3. Th e language this 

 accepts consists of all the sequences of a’s and b’s of length 5 that begin at the 

start node on the left  and follow paths from left  to right and terminate at 

the fi nish node. Th is automaton was generated by fi rst drawing the lattice dia-

gram shown, and then randomly labeling one of the two outgoing edges from 

each node with an a and the other with a b. Now, as you might observe, there 

are thirty- two possible sequences of fi ve letters made from the set of a and b, 

but only sixteen distinct paths one can take from start to fi nish. Hence the 

language generated by this automaton only accepts one- half of the possible 

sequences as valid. Th is construction can be generalized so that if there are 

l letters (or other symbols, such as punctuation or numerals) in an alphabet, 

a

b

a

a

a

a

b

b

b

bb

a

a b

b

a
start finish

Figure 5.3 An example of a fi nite automaton of width 2 and depth 5. It accepts 

half of the sequences of a’s and b’s of length 5. For example, bbbab is accepted, 

but aaaab is not.
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and if sentences are of length s, then there are ls possible sequences and ls− of 

these, or a fraction 1/l, would be accepted by the corresponding automaton.

If we could see all the ls possible sequences and be told which ones are in 

the language and which are not, then we could predict new examples, sim-

ply because we have all the facts. Th is is just the urn model again. But this, 

of course, would be of exponential complexity in terms of the length of 

sentences.

Th e task of learning a regular language is that of taking a polynomial 

number (in terms of sentence length and alphabet size) of training se-

quences, each labeled according to whether it belongs to the language or 

not, and on that basis predicting for unseen sequences whether or not they 

are in the language. Inducing the hidden automaton or an approximation 

to it would be one possible approach. In principle, it is also possible that a 

learning algorithm would yield a hypothesis that can label new examples 

probably approximately correctly, but does not reveal an explicit description 

of the automaton. Several de cades of research following Chomsky, however, 

failed to uncover such a learning algorithm. Th is failure was explained in 

the 1980s by a proof that any algorithm for PAC learning regular languages 

would imply a method for breaking the RSA cryptosystem. Unless such 

systems are breakable, no computational learning algorithm for regular 

languages can exist.

Th e problem can be understood through the frame of the Occam argu-

ment. A random set of polynomially many examples is suffi  cient to essen-

tially determine the hidden automaton. Th e diffi  culty, however, is that this 

determination is only in the implicit sense that automata that are very 

diff erent will be most likely inconsistent with the sample. It is in extracting 

the automaton from this sample by a feasible computation where the diffi  -

culty lies— no way is known of doing this extraction in polynomial time. 

Language learning is of some consequence. We cannot hope to understand 

what human languages are without understanding how they are learned. A 

formal language that cannot be learned, cannot be the basis of human 

language.

All known algorithms for learning regular languages appear to work in 

exponential time as a function of the length of the sequences of symbols. 

Whether this can be improved, even for the special class of automata gener-

ated uniformly at random using the lattice diagrams as illustrated, is 

 currently an open problem. Any reader not convinced that there are real 
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computational impediments to generalization should take as a challenge 

this simpler goal of fi nding a PAC learning algorithm to categorize the out-

put of a lattice automaton as words or not- words in polynomial time.

Finally, we note that there remain many natural classes of functions 

whose learnability is currently totally unresolved. For these it is not proven 

that they are PAC learnable, but equally there is no evidence that they are 

not. Th e prime example is the class of functions known as disjunctive nor-

mal form, oft en abbreviated as DNF. Th ese are functions that can be ex-

pressed as polynomial- size expressions in terms of the number of variables, 

where the general form of the expression is an or statement joining sub-

expressions consisting of and statements of the variables, for example, (X 

and Y) or (Z and T). Th is can be viewed as a two- level repre sen ta tion, com-

posed of conjunctions and disjunctions (which are themselves one- level 

repre sen ta tions). DNF is clearly more expressive than disjunctions and con-

junctions separately. Th e best algorithm currently known for learning DNF 

has complexity exponential in the cube root of the expression size, which is 

still exponential but not of the worst kind and curiously similar to the best 

bound known for factoring integers. DNF is an archetypal two- level repre-

sen ta tion, perhaps close to the boundaries of learnability. Resolving whether 

or not it can be PAC learned is a major open problem in learning theory.

5.9 Teaching and Learning

Learning a single concept from examples is already a striking natural phe-

nomenon. But even more impressive is how humans can acquire expertise 

involving many complex interrelated concepts. Of course, humans oft en 

take many years to accomplish such feats. Our species invests up to two 

de cades to educate its young, and there is no evidence that this is unne-

cessarily ineffi  cient. But what view should we take of these more complex 

accomplishments?

In a college course one expects to learn more than just a set of concepts 

that could be learned equally well in any order. Rather, one expects to see 

a  sequence of concepts, such that the later ones become accessible to the 

learner only aft er the earlier ones have been mastered. Th is is the paradigm 

of learning that we adopt  here. To put it more mathematically, at any instant 

we are in a position to learn a new concept that is a member of a learnable 

concept class C with the set X of concepts that are already recognized as 

features. Once we have learned a new concept in this way, it becomes an 
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added recognizable feature for the purposes of learning additional concepts 

in subsequent phases of learning. Each such new concept becomes in one’s 

brain an equal citizen with all the features X that  were available as features 

in previous phases, and gets added to X for the next phase. For example, the 

term “data” has a certain meaning in any time and place. Once we have some 

familiarity with that meaning, we can learn to recognize derivative concepts, 

such as that of “big data,” that may have been out of reach before “data” had 

been learned and became a feature. A basic PAC learning algorithm oper-

ates up to the level of complexity that is expressible by members of C. At 

higher levels we can think of the teacher as fulfi lling a part of the role of a 

programmer in defi ning a sequence of concepts that can be PAC learned in 

that sequence, but perhaps in no other.

Th is analogy between a teacher and a programmer also highlights some 

essential diff erences between the two. When programming a computer, the 

programmer needs to understand what exactly the existing programs al-

ready implemented on the machine do. Th is is not the case for a teacher, 

who does not know exactly the meaning to the learner of each word the 

teacher is uttering. It is possible for a teacher to get across the notion of 

“dog” by showing examples without knowing precisely which features of 

dogs are recognized by the learner, and how exactly these are interpreted. 

Much more specifi c knowledge is required of a computer programmer.

Th is disconnection between the teacher and learner is not entirely delete-

rious. It off ers unique advantages to learning systems that programmed 

systems lack. A teacher can convey information by suggestions and exam-

ples, without knowing the exact state of the learner. In contrast, the pro-

grammer has to know the exact state of the system, including the exact 

functionality of the previously programmed features, if the new program is 

to work as intended. One can go further and say that the inherent strength 

of the teacher- learner relationship is that it works even when the exact state of 

the learner is not known explicitly by anyone, including the learner. Th is 

incompleteness in both mutual knowledge and self- knowledge is inevitable 

among humans and may become increasingly relevant for machines also. It 

also, I believe, accounts for the diffi  culty of identifying any general panacea 

for improving human education. A second clear advantage of learning over 

being programmed is that it off ers a limitless potential to recover from 

 errors. A student who seriously misinterprets some concept is likely, at some 
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later time, to discover the inconsistency and recover from it. No omniscient 

external agent is needed to help.

In this formulation the most important role of a teacher is to point out 

the next good thing to learn. A second role is that of providing labeled ex-

amples. Th e actual labeling is less fundamental since many natural situa-

tions can be considered to be self- labeled. If a cat comes along we may 

recognize it as a cat from previous knowledge, and hence learn more about 

cats, without a teacher needing to label it as a cat.

A computational theory of learning also provides the following further 

wrinkle on the role of a teacher. PAC learning guarantees that a concept 

class is learnable from random examples for any distribution that the envi-

ronment may provide. Th e learner will, however, have a specifi c learning 

algorithm. A teacher with knowledge of the learner’s algorithm will be in 

a position to accelerate learning. In par tic u lar, the teacher may be able to 

present a short sequence of well- designed examples that drive the learner’s 

algorithm to the correct concept, aft er many fewer examples than would be 

needed if they had been random. For example, if we know that conjunctions 

are being learned, and the elimination algorithm described in Section 5.5 is 

being used, then a single stylized example that has only the essential fea-

tures of the concept, and is devoid of any distracting features, would be 

 eff ective. Th is is somewhat like bare bones illustrations in books for very 

young children. An elephant would be shown with prominent tusks and a 

trunk, but lacking any other detail. Such illustrations would then have the 

eff ect of driving the child’s learning algorithm to the correct hypothesis 

 aft er just the one example.

5.10 Learnable Target Pursuit

Th e ability of humans to acquire knowledge on a large scale is remarkable. 

At the basic level this must be based, I believe, on the execution of learning 

algorithms of the same nature as I have described. Supporting this there 

needs to be an additional capability that I call learnable target pursuit. At 

any instant any student, or any entity with a learning ability, has available 

all those features for which recognition algorithms have been previously 

acquired. Th e concepts that can be learned by the learning algorithm in 

terms of the available features are the accessible targets. Th ey are the tar-

gets that will be learned by the learning algorithm, provided that labeled 
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examples of them present themselves. (For this discussion the question of 

how the recognition algorithms for the currently available features had 

been previously acquired is not relevant. In biology it would be a combina-

tion of evolution and learning. For computers it would be programming and 

learning.)

I suggest that humans are wired so as to be always ready to pursue any 

and all accessible targets. Th is provides a mechanism for continuous learn-

ing in any rich environment even in the absence of any teacher. It enables 

not only previously learned concepts to be fi ne tuned to higher accuracy, but 

also entirely new concepts to be learned.

How are examples labeled in the absence of a teacher? As already 

 mentioned, many situations are self- labeled. If I can already recognize both 

swans and the color black, then I can start learning about black swans if I 

see one without needing a teacher to identify it. Similarly, if I meet a person 

I have not seen before, I can start learning about them without a teacher 

 being necessary to identify them or their characteristics.

Th is capability for learnable target pursuit can operate in the absence 

of any teacher, but it also provides extra opportunities to be exploited by a 

teacher. Th ese opportunities include the pre sen ta tion of examples of concepts 

for which the student is ready. As already pointed out, progress can also be 

made without a teacher, but that is dependent more on the serendipity that 

examples of accessible concepts will somehow appear. Individuals can be 

smart and seek out experiences that enable them to pursue some useful tar-

gets that are accessible given their current knowledge. Th ey can also make 

the mistake of devoting time to material for which they have insuffi  cient 

preparation, in which case they may learn little.

5.11 PAC Learning as a Basis of Cognition

I have presented PAC learning as a mathematically rigorous and philosophi-

cally satisfactory notion of induction. But I think it is more than that: Its 

basic features are essential and unavoidable in any attempt to build a theory 

of cognition.

Humans presumably have some shared learning algorithm. I shall call 

this algorithm A, and the concept class it learns C. Th is observation already 

provides an account of how we can have shared concepts: What ever I can 

learn from examples, I can pass on to you by pointing out examples to you, 

provided we have the same set of previously acquired features. Th is may also 
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work if our feature sets are diff erent, as long as the target concept is accessi-

ble from both. To date, the algorithm A and concept class C used by humans 

have not been identifi ed. But what ever they are, their very existence pro-

vides an assumption- free rigorous theory of induction for cognition. It 

makes no assumptions at all about the world or the distribution of objects in 

it. Th e frequencies with which objects have their exponentially many vari-

ants with diff erent combinations of properties may be arbitrarily complex 

and need not be known to the learner. A human having algorithm A will 

manage to learn certain regularities in this complex world, and will miss 

some others. Other humans will have essentially the same capabilities. Any-

thing you can learn I can learn too, at least in principle.

One much discussed issue in human learning is how some of it seems to 

occur from positive examples alone. In human behavior it is diffi  cult to es-

tablish exactly when this phenomenon can be considered to have occurred. 

Th e fact that humans appear to be able to learn to identify members of an 

animal species from just examples of that species is not conclusive. We may 

have somehow fi gured out that each animal belongs to just one species and 

hence implicitly use positive examples of dogs as negative examples of cats 

when we are learning the latter. It is therefore not clear to what extent hu-

mans do really learn from positive examples alone. But even if we do, there 

is no inherent mystery in that. As we have seen there do exist learning algo-

rithms, such as the elimination algorithm for conjunctions, that provably do 

exactly that.

Another issue is that of one- trial learning, or learning from very few ex-

amples. As I have previously mentioned, for a fi xed algorithm there may be 

single examples that drive it to the correct hypothesis, and these may be the 

ones that good teachers provide. Th ere also exist explanations of why a small 

number of examples may sometimes suffi  ce even without a teacher. In cases 

where the true concept depends on only a few features among a much larger 

number of distracting features, so- called attribute- effi  cient learning is some-

times possible even without a teacher. Th is means that the number of ex-

amples needed for PAC learning is proportional only to the small number of 

critical features, such as tusks, a trunk, and big ears, and depends only much 

more weakly on the possibly numerous irrelevant distracting ones. Another 

possibility is that some concepts may be easy to learn because instances of 

the category are separable by wide margins from noninstances, in the sense 

already discussed in the context of perceptrons.
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Everything in this chapter requires the Invariance Assumption. In 

practice, we can never be certain that the world will not change on us in 

an unexpected way, so that future examples will be from a very diff erent 

distribution from those in the past. Past per for mance is not necessarily in-

dicative of future results. Living organisms, however, need to make deci-

sions all the time and take a view on what will happen next. Th e only course 

available is to learn as many of the world’s regularities as we can, and allow 

them to guide our decision making. Th ere is simply no alternative.
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Chapter Six

The Evolvable

How can complex mechanisms evolve 

from simpler ones?

If it could be demonstrated that any complex organ existed, 

which could not possibly have been formed by numerous, 

successive, slight modifi cations, my theory would absolutely 

break down. But I can fi nd out no such case.
Charles Darwin

6.1 Is There a Gap?

Darwin’s Origins is a work of breathtaking insight. From observations of 

plants and animals he deduced a century and a half ago a theory of evolu-

tion that has become the central theory of biology. In it, Darwin accepts that 

the existence of a single organ in biology that could not have been formed by 

successive small modifi cations would contradict his theory of evolution. 

Th e knowledge gained in the century and a half since confi rms his theory in 

qualitative terms. Th e proposition that current life forms on Earth are re-

lated is fully supported by evident similarities among their DNA, as well 

as by the rich fossil record. Th e evidence for Darwin’s general schema for 

evolution being essentially correct is convincing to the great majority of 

biologists. Th is author has been to enough natural history museums to be 

convinced himself. All this, however, does not mean that the current theory 

of evolution is adequately explanatory. At present the theory of evolution 

can off er no account of the rate at which evolution progresses to develop 

complex mechanisms or to maintain them in changing environments. It 



   |   probably approximately correct

does not explain how evolution on Earth, as suggested by the fossil record, 

could have occurred within the timescale generally attributed to that re-

cord and with the physical resources of the Earth or, for that matter, of 

this universe. We are faced with a quantitative corollary of Darwin’s ob-

servation: Th e existence of an organ that would require too many such 

modifi cations to have evolved in the time available would equally contra-

dict his theory.

Th e theory of evolution through natural selection, as it currently stands, 

is not of the same nature as some other great theories of science, such as 

Newton’s laws of gravitation or Einstein’s general relativity. Th e latter make 

quantitative predictions that are subject to verifi cation. In contrast, evolu-

tionary theory at present off ers no comparable quantitative predictions, or 

even quantitative explanations of the past. Perhaps this is why, among the 

great theories of science, it is the theory of evolution that arouses the most 

skepticism and or ga nized opposition. Sizable fractions of the population in 

countries around the world reject it. Th ere is no evidence for any such level 

of rejection for a spherical Earth, or for the strangest among the successful 

theories, quantum mechanics. One has to entertain the possibility that evo-

lution’s unique position in this regard may be due to the shortcomings of its 

existing theory. If a quantitative account  were available, it seems less likely 

that signifi cant opposition to it could be maintained.

As we have seen, we do not know in detail how the DNA controls the 

physiology or behavior of an organism. And if we do not understand how 

the DNA infl uences physiology or behavior, we should not expect to under-

stand how changes in the DNA can lead to fi tter physiology or behavior. 

Unfortunately, this gap is not the only problem. As we have discussed earlier 

in connection with the age of the Earth, Darwin himself was much troubled 

by the problem of how his proposed evolutionary mechanism could func-

tion on the limited available resources. Some others since have also ex-

pressed serious concern about the absence of convincing quantitative detail 

in the theory. Future generations will wonder why these questions have not 

been asked with greater urgency.

Quantitative theories of population dynamics have existed for a century. 

Th ese theories are concerned with analyzing competition among static enti-

ties, and predicting how their relative population sizes will change as a re-

sult of competition. Th ey have relevance to evolution, but do not address 

the question of how quickly organisms of increasing complexity can evolve. 
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Th ere is no theory known that explains quantitatively how competition by 

itself leads to greater functionality and complexity. Yet living things are highly 

complex mechanisms by any mea sure. On the part of Darwin, or his suc-

cessors, of course, there is the excuse that they did not know— indeed, could 

not have known— what we now know regarding biochemistry and computa-

tion. For us, with the bounty of extra knowledge that our pre de ces sors lacked, 

there are both more opportunities, and more responsibilities, to build a more 

complete theory of evolution.

Most computational work associated with evolution, namely that involv-

ing so- called ge ne tic algorithms, has attempted to invoke ideas suggested 

by evolution, to obtain better computer methods for tasks such as optimiza-

tion. Th is work generally has not been targeted at understanding how evolu-

tion works in biology, and in general, these attempts have not produced 

results that are suggestive of how complex biological systems might have 

evolved. Darwinian evolution as a panacea for the creation of complex func-

tioning mechanisms remains to be demonstrated. Th e theory of computa-

tional learning, however, rather than simply trying to mimic evolution, can, 

I argue, help us understand it.

6.2 How Can the Gap Be Filled?

Th e main question is this: How could complex biological mechanisms have 

evolved given the time and population sizes that are believed to have been 

available? Fortunately, much is now known about the nature of biological 

mechanisms that was not known to Darwin, or to the later formulators of 

the so- called Modern Synthesis like Ronald Fisher. Human biology we now 

know is based on more than 20,000 proteins encoded in the human genome. 

Th e genome further encodes a network, one that describes the conditions, 

in terms of the concentrations of proteins present in a cell at one time, that 

are necessary for a par tic u lar other protein to be expressed. It is believed 

that the regulatory regions in the DNA encode these conditions. Slight 

faults in the description of either the proteins or the regulatory mecha-

nisms can make an organism nonviable. It is at present quantitatively un-

explained how such complex mechanisms with so many interlocking parts 

can maintain themselves under changing environments and evolve into 

more complex forms. Of course, Darwin was not in a position to ask this 

question quite so explicitly. It is quite possible that the reason why no 

 provably eff ective specifi c Darwinian mechanism has been identifi ed in the 
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years since his time is simply that insuffi  cient eff ort has been put into the 

search.

In order to specify more completely the mechanism responsible for evo-

lution on Earth, one would need to understand how exactly the genomes of 

each generation are derived from those of the previous one. A simple hy-

pothesis, at least for asexual species, would be that each base pair in the 

DNA sequence will randomly fl ip to one of the other three possibilities, 

with the same fi xed small probability. Th ere is no evidence, however, that 

this simple derivation mechanism is what occurs. Equally importantly, 

there is no evidence that this simple mechanism can lead to evolution at the 

pace at which it has occurred in biology. Treating Darwinian evolution as 

a learning mechanism provides a way forward. Th is approach enables us to 

consider not just one possible variation mechanism, such as this one, but 

many, and to explore the ultimate limitations on all possible such mecha-

nisms. Th ere is every reason to believe that such a more systematic analysis 

is necessary if we are to understand how evolution can give rise to forms of 

increasing complexity as fast as it is believed to have on Earth.

Computational learning, as described in the previous chapter, is nothing 

other than the quantitative study of how computational mechanisms can be 

acquired without a designer. Life is full of computational mechanisms. If we 

are to understand how those mechanisms, and life itself, could have arisen 

without a designer, then computational learning is exactly where we need to 

look. On the one hand this approach may be disappointing to those who are 

hoping for biological evolution to derive magical powers from a yet un-

suspected source. On the other hand it has the positive aspect that it off ers 

an existing theory on which to build.

Mammalian evolution provides a setting for the kind of understanding 

this approach might gain us in the foreseeable future. Mammals, which rep-

resent more than 200 million years of evolution on Earth, have many pro-

teins that are similar in the diff erent species, and it is likely that many of the 

important diff erences among the species result from how regulation of these 

proteins diff ers across species, rather than by diff erences in the proteins 

themselves. A reasonable fi rst step, then, is to try to understand how species 

with a fi xed set of proteins can maintain themselves and evolve under chang-

ing environmental and ecological conditions, under the simplifying assump-

tion that only the protein regulatory mechanisms can change.
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In this thought experiment, there are, say, 20,000 variables, x, . . .  , x,, 

which represent whether or not (or at what concentration) each of the pro-

teins p, . . .  , p, is present. For each protein pi there is a so- called input 

function fi of the 20,000 variables that specifi es whether or not (or at what 

level) that protein would be expressed. Th ese input functions must belong 

to some class of the kind we saw in the previous chapters, such as conjunc-

tions or disjunctions.

We can describe these functions mathematically as a set from some class 

C where, for example, the member f describes the expression level of the 

seventh protein. How f depends on the 20,000 variables is the question. It 

may depend on just the three concentration levels x, x, and x, say. But 

what is the de pen den cy? It could be

f(x , . . .  , x,) = 3.2x + 0.42x + 1.03x,

or it could be a similar function with the same three variables but with other 

pa ram e ters. Or it could be a nonlinear function involving quadratic terms, 

or something completely diff erent. Choosing the class of functions with 

which to explore these questions presents a stark dilemma, the predicament 

between Scylla and Charybdis. If the class is too limited, then the biological 

mechanisms implied will be so restrictive as to be inadequate to express the 

complex mechanisms needed for life. On the other hand, if C is too exten-

sive, then there may not be any Darwinian evolution algorithm that can 

navigate that complex space of possible functions quickly enough to permit 

adaptation in the limited time that has been available. In other words, for a 

class of functions that is too extensive there will be no evolution algorithm, 

and for one too restrictive there will be no biology. Th ese are the kinds of 

questions that Darwin and Fisher  were not in a position to ask.

Th e example we use  here of input functions for a fi xed set of proteins is 

just a concrete subproblem. Th e real problem is harder because for that we 

need to understand other kinds of circuits also, such as those that model 

evolving proteins. I believe, however, that the more general problem will 

also be governed by similar impediments, and approachable using the same 

methodology.

No theory of evolution can be considered complete unless it details the 

class of functions as well as an actual evolution algorithm that can navigate 
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it. At a very minimum, we need to demonstrate that some plausible candi-

dates for the algorithm and the function class exist. Aft er such a demonstra-

tion has been accomplished, the Darwinian theory will have progressed to 

being more than a meta phor.

Some may question this emphasis on Darwinian mechanisms, citing, 

for example, Lamarck’s theory of evolution, which predates Darwin and 

entertained the possibility of broad classes of behavior infl uencing not 

only the next generation but also later generations. Th ere do indeed exist 

inheritance mechanisms that function in this way. For example, a preg-

nant female may infl uence the fi tness of her off spring by eating a poor diet. 

Th e sperm and the egg contain more physical material than an abstract 

DNA string description. At least in principle, there are many avenues for 

inheritance from parents that depend on information not contained in 

the DNA.

Such avenues are called epige ne tic. Whether epige ne tic mechanisms 

signifi cantly speed up the rate of functional change in evolution is an open 

question. Fortunately, we can proceed  here without needing to resolve it. 

Th is is not simply because there appears to be little evidence that these have 

had a signifi cant positive impact on the long- term rate of evolution on Earth, 

although that may be justifi cation enough to follow a purely Darwininan 

model. Rather, this course is justifi ed because any epige ne tic inheritance 

mechanisms that cannot be viewed as Darwinian can also be formulated as 

learning, though perhaps of a less constrained kind. Th erefore, if one hoped 

to demonstrate that some plausible epige ne tic mechanism would yield more 

powerful evolution than the Darwinian, and would better explain biology on 

Earth, then computational learning would remain the framework in which 

to work.

6.3 Does Evolution Have a Target?

I am now getting to the main point about evolution, that it is a form of 

learning. In order to get there a fi rst immediate obstacle needs to be faced. 

Most evolutionary theorists deny that evolution has any kind of goal, in-

stead arguing that it is simply a fact that results from competition. Unfortu-

nately, competition itself is insuffi  cient to explain how protein circuits 

become either more complicated or better fi tted to solving objective prob-

lems, such as how to see or run. However, learning as we have formulated it 

does have a target function, such as recognizing a species of fl ower. If evolu-
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tion is an instance of PAC learning, it, too, must have at least a target, even 

if not a goal. So what is the target of evolution?

As a meta phor, consider a manufacturing corporation competing with 

other such corporations. Th e fact of competition alone does not go far in 

explaining the corporation’s actions. Rather, the insight that the corpora-

tion has the target or goal of making a profi t, and is not in existence merely 

for competitive sport, is far more explanatory.

Evolution, as Darwin described it, has a feature analogous to corporate 

profi t: fi tness. Fitness in Darwinian evolution is a mea sure of the benefi ts 

that an entity enjoys in some environment. Selection then directs evolution 

to favor entities with higher fi tness. In other words, just as the goal of a cor-

poration is to make a profi t, the target of evolution is to maintain or increase 

fi tness.

Fitness has had several defi nitions over the past 150 years. Many, fol-

lowing the population ge ne ticist J.B.S. Haldane, use it to mean the aver-

age contribution to the gene pool of the next generation that is made 

by an average individual of a specifi c kind. Th is notion is appropriate for 

analyzing the results of competition among static entities, but it does not 

get at the substance of fi tness itself via the factors that infl uence it. I use 

the word fi tness in the general sense of the phrase “survival of the fi ttest” 

as coined by Herbert Spencer in 1864 to describe natural selection, and as 

adopted by Darwin in later editions of On the Origin of Species. One in-

novation of the approach to be described  here is that fi tness will be defi ned 

in terms of the factors on which it obviously depends, namely the behavior 

of the evolving entity and the environment. To avoid any confusion with 

Haldane’s description, I call the new mea sure per for mance, rather than 

fi tness, although it is intended to correspond to Spencer and Darwin’s no-

tion of fi tness.

Making the assumption already implicit in Darwin’s work— that diff erent 

choices of action have various levels of benefi t for the evolving entity— we 

can defi ne the per for mance and the target in terms of the notion I call an 

ideal function. For any species (or other evolving entity), at any instant, in 

any specifi c environment, this ideal function will specify in every possible 

situation the most benefi cial course of action. For example, in the protein 

expression context, the ideal function will specify, for every combination of 

concentrations of all the proteins, the most benefi cial expression level for 

each protein to go to next.
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Th is ideal function need only exist as an abstract function, and it need 

not be known to anyone. In the real world this function may be extremely 

complex. Th e ideal function in our protein circuit example will refer to the 

totality of the more than 20,000 functions, each one of which describes the 

production of a specifi c protein. (Th at is, the ideal function would be a set of 

functions rather than a single function. We shall return to this point later.) 

As a result, although the evolving entity will have a tendency to evolve to-

ward the ideal function, it will succeed only for ideal functions that come 

from a simple enough class, just as learning succeeds only for simple enough 

classes. Th is formulation entirely fi nesses our lack of knowledge of how each 

protein interacts chemically with the cell, as well as what ecological factors 

bring benefi t to the organism in its environment. All this knowledge is sum-

marized in the ideal function.

Th e target of evolution therefore is simply higher per for mance. Th is at 

once makes the pro cess amenable to treatment as a form of PAC learning. 

Further, exactly as a machine learning algorithm, or ecorithm in general, 

the evolution algorithm will succeed without needing any expertise in, for 

example, ecol ogy. Th e responses of the learned circuits that realize these 

behaviors will be theoryless.

Th e term “ideal” should not be misinterpreted  here. Th ere is no implica-

tion what ever that the resulting creature is optimal in any sense. Th ere is no 

suggestion that humans, as we are or could be, or any other extant or possi-

ble organism,  were the goal of evolution. Ideal is meant only in a very local 

sense, one evolving entity and one environment at a time. For example, for 

the human species in the present environment, some behaviors are more 

benefi cial than others. Th ere are better and worse expression functions for 

our seventh protein, and better or worse amounts of chocolate to eat per day. 

Since the actions we take in one circumstance may infl uence what is the 

most benefi cial action in another, it is the combination of all the action 

functions that is evaluated. Th e ideal one is that which produces most ben-

efi t in that snapshot of an environment.

6.4 Evolvable Target Pursuit

Before continuing with the main issue of how evolution can be formulated 

as learning, I need to sidetrack to explain the broader perspective within 

which all this is set. Th is viewpoint is that of evolvable target pursuit, the 
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exact analog of learnable target pursuit, and it suggests that evolution needs 

to be thought of as having two components.

First, for any one species (or gene, or what ever we think of as the unit 

evolving) in its specifi c current environment there will be a number of 

 accessible target functions that are evolvable by the evolution algorithm in 

question. If such an accessible target has higher per for mance than the one 

realized by the current genome, then evolution will progress inexorably to-

ward that target in a way that requires no unlikely events to occur. Th is is 

because the new target function belongs to a simple enough class that its 

evolution is guaranteed— at least with high probability, as with the accessi-

ble targets of general learning algorithms— by an identifi able evolution al-

gorithm that requires only realistic population sizes and realistic numbers 

of generations. I will leave a technical defi nition of evolvable, as well as ex-

amples of function classes that are provably evolvable, and some others that 

are provably not, for later.

Second, the questions of whether a specifi c function, say for the expres-

sion level of a protein, has higher per for mance than another function is 

determined by complex factors relating to both the current state of the 

species as well as the current environment. Th e state of a species can 

change at any time, if, for example, the input function for a protein changes 

as a consequence of a mutation in the DNA. Th e per for mance of a function 

can suddenly change also because the environment changes. For example, 

changes in the relative frequency of the experiences that arise in daily life 

may change what is best to do, as will also more cataclysmic events in the 

environment.

Evolvable target pursuit posits that the course of evolution is guided by 

the succession of opportunities that arise as the species and the environ-

ment change. Th e pursuit of each target is carried out by an explicit evolu-

tion algorithm just like the pursuit of a target in learning is carried out by a 

specifi c learning algorithm. Hence the course and the speed of an evolution 

algorithm pursuing its target is predictable in the same sense that this was 

true for learning algorithms. In contrast, the emergence of a new benefi cial 

target function, through a specifi c function that was previously deleterious 

becoming benefi cial, has to be regarded as serendipitous, since that may be 

the consequence of the arrival of a large meteorite or of a volcanic eruption, 

or something more mundane but still unpredictable.
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Th is two- component view of evolution is consistent with the theory that 

the rate of evolution of biological forms is variable. Th e punctuated equilib-

rium theory asserts that signifi cant changes oft en occur within short peri-

ods, which may be separated by longer periods of relative stasis. Evolvable 

target pursuit suggests that when a target is accessible and benefi cial, con-

vergence toward it will occur at a predictable, perhaps rapid, rate deter-

mined by the pace of the evolutionary algorithm. In contrast, changes in the 

environment that make an accessible target benefi cial occur with serendip-

ity at no set pace. For example, convergence to one target may immediately 

make a second target function accessible, and if that second target is benefi -

cial, then convergence toward that will immediately follow. Or it may be 

that no second target will become benefi cial until a change of climate or the 

appearance or disappearance of some other species from the environment 

has occurred.

Th e idea that the rate of evolution is driven by the rate at which major 

environmental changes occur is an old one, and was discussed by Alfred 

Russel Wallace. He raised the question of whether frequent climate changes 

in the past due to frequent changes in the Earth’s orbit might have been 

 responsible for more rapid evolution in earlier times. Th is question of how 

frequently targets will become newly accessible or newly benefi cial we re-

gard, however, as being outside the scope of evolutionary theory, being de-

termined by extraneous factors. Evolutionary theory may set an upper 

bound on the rate of evolution, but in an impoverished environment that 

rate may not be achieved.

Th e divide between the two components, of convergence to benefi cial 

 accessible targets on the one hand, and the appearance of newly benefi cial 

targets, on the other, is made sharp by the apparent hard limits on the 

classes of functions that are evolvable. Th ese hard limits are analogous to 

the various limits we have discussed earlier on the classes of functions that 

are computable, effi  ciently computable, or learnable.

Th e evolvable class needs to have some substantial level of combinatorial 

complexity itself if evolution is to be eff ective, even if its scope seems re-

stricted when compared with the complexity of the overall structures that 

occur in nature. If evolvability  were possible only for very simple function 

classes, such as and and or functions of just two arguments, then we would 

need many more stages of target pursuit, and with successive targets much 
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more similar to each other, for a complex function to result. Th e overall re-

quirement is analogous to that found in machine learning, where algorithms 

are known that can effi  ciently learn functions, such as linear separators or 

conjunctions, over many variables. In practice, machine learning algorithms 

for such moderately simple function classes are already eff ective, because 

they can automatically discover the relevant variables from among a possi-

bly large number. Th e challenge that evolution algorithms need to overcome 

is the same, that of coping with functions of a large number of variables.

In learnable target pursuit the overall course of learning is determined 

by a succession of small learnable augmentations to what is already known, 

maintaining the mass of previous knowledge essentially unchanged. Th is 

must be the same for evolution, and the evidence for this is direct: Many 

parts of the genome are preserved essentially unchanged across broad 

classes of species. Presumably these encode important complex discoveries 

that are better left  untouched, such as the biochemical basis common to life 

on Earth. Small changes in these encodings would render the organism not 

viable at all. Other parts of the genome evolve apparently quite rapidly. Pre-

serving rather than discarding well- functioning, useful mechanisms is an 

essential ingredient of evolution, as it is of learning.

Th e role of a teacher in a student’s pursuit of a learnable target also has 

parallels in evolution. Students learn from a lecture that has been prepared 

for their level of knowledge, as target pursuit. Learning an accessible target 

is a predictable biological phenomenon of their brains that will occur in the 

heads of diff erent learners in a roughly similar manner if the learners have 

similar background knowledge. From the student’s point of view, what is 

available to learn is entirely serendipitous. What the teacher chooses to 

teach is precisely like what ever the environment puts forward. As the pre-

pared student will inexorably (if probabilistically) pursue a learnable target, 

so will the prepared organism pursue an evolvable one.

Th is viewpoint also takes us naturally to the issue of modules. In engi-

neering or computer programming it is natural to design complex systems 

from a number of modules, each of which performs a distinguishable func-

tion and interfaces with the others in a clear and simple way. For artifi cial 

products modularity is an important design principle, one that off ers many 

clear advantages, such as ease of design, ease of understanding by humans, 

and ease of maintenance.
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Biological systems are also believed to be highly modular. Indeed, that 

would seem to off er the only chance for us to ever understand them. How-

ever, it is not quite as obvious what advantages modularity off ers in the 

case of biology. I suggest that the apparent severe limitations on evolvabil-

ity may explain it. Th ese limitations allow simple systems, such as those 

with fewer controlling pa ram e ters, to evolve more easily than those that 

depend on more pa ram e ters. Modularity means that a complex system 

is decomposable into a number of simpler ones that act largely in de pen-

dently. Such simpler subsystems, each evolving separately, would be hin-

dered less by the inherent limitations on evolvability than would a single 

complex system.

6.5 Evolution Versus Learning

Th e idea that evolution is a form of learning sounds implausible to many 

when they fi rst hear it. I will therefore start by recognizing a sense in which 

the two phenomena are indeed diff erent— albeit in a sense in which evolu-

tion is actually weaker than PAC learning. I will go on to argue later that 

Darwinian evolution can be formulated as a special form of PAC learning.

Consider the following parable. Suppose a species of monkey living in 

a forest eats any one of bananas, berries, oranges, and apples. Th is can be 

viewed as a disjunction x or x or x or x, where x, x, x, x represent ba-

nanas, berries, oranges, and apples, respectively. Suppose now that a species 

of berries that tastes bad invades the area. Th en a monkey can learn the 

 optimal new disjunction, namely x or x or x, by eliminating the berries 

variable x from its disjunction aft er the fi rst experience of a bad- tasting 

berry. Th is corresponds to executing the elimination algorithm for learning 

disjunctions we discussed earlier.

Suppose now, instead, that the new berries are in fact lethal. Can evolu-

tion learn to avoid the lethal berries just like learning could avoid the bad- 

tasting ones? Darwin says not exactly. If a monkey dies from eating a 

poisonous berry, then from that one event the genomes of its off spring will 

not be immediately corrected to eliminate x from their disjunctions. Th e 

monkey’s children do not just reach in and update their own genomes. Th e 

mechanism, proposed by Darwin, is that by means of mutations a variety of 

disjunctions, similar to but diff erent from the parent’s x or x or x or x, 

will have been generated also in the various off spring. Some will contain x 

or x or x and others x or x or x, for example. It is only individuals with 
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the fortunate DNA—x or x or x— which omits the lethal x from its dis-

junction, who will survive.

Of course, while this Darwinian mechanism may ultimately achieve the 

same result of having a population of monkeys in later generations who all 

avoid berries just as the elimination algorithm would, it is less direct, and 

less effi  cient, with more individuals being born who die prematurely. Th e 

Darwinian feedback mechanism from the bad experiences to the good 

 genome is, at least, more circuitous than is the direct elimination that is 

permitted to learning algorithms. Whether the Darwinian mechanism is 

intolerably ineffi  cient compared to the direct learning method is the basic 

question that needs to be answered. It is perhaps obvious that in some infi -

nite limit the Darwinian mechanism surely achieves the same result. Th e 

real world, as always, is another story.

Th is Darwinian feedback constraint can be rephrased as follows. In the 

perceptron algorithm the updates to the hypotheses, as for example in Fig-

ure 3.7, can depend critically on the par tic u lar examples seen, and even the 

order in which they  were seen. In evolutionary contexts, this would mean 

that if the last two foods eaten by a monkey  were bananas and berries, the 

order in which they  were eaten may infl uence the resulting genomes of the 

off spring. Th at is to say, the perceptron algorithm is Lamarckian. However, 

in Darwinian evolution, unlike Lamarck’s earlier theory, the ge ne tic vari-

ants are generated in de pen dently of current experiences. Th e only role of 

experience is to compare the fi tness of the various off spring hypotheses, 

 aft er they have been generated. In contrast, in general learning a single ex-

ample can immediately infl uence all aspects of the subsequent course of the 

learning pro cess. It turns out that this distinction does make for a demon-

strable diff erence in computational power: Th ere exist concept classes that 

are PAC learnable, but not when subject additionally to this Darwinian 

constraint. Th e resulting substantive question is this: Is Darwinian evolu-

tion almost as powerful as PAC learning, or is it substantially weaker in the 

range of mechanisms that it can learn?

Th ere is a further aspect in which evolution is more onerous than learn-

ing. In learning, or at least in machine learning, it is legitimate to insist on 

being allowed to start the pro cess from any initial hypothesis. We may want 

to choose the initial hypothesis that is computationally the most eff ective. In 

the elimination algorithm for learning conjunctions we always start the 

same way, with the conjunction of all the variables and their negations. Since 
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the algorithm only eliminates variables on the way, it needs to start with all 

of them available if it is to have the ability to learn any conjunction.

Evolution cannot aff ord this luxury. It needs to be able to succeed 

 starting from what ever genome it has. Th e possibility of reinitializing to a 

starting point that is algorithmically con ve nient is not realistic. Th e prob-

lem with moving to such a new starting point is that it may make the species 

less fi t than it currently is by an arbitrarily large amount, and hence not 

competitive with any cousins who have not made such a move. Biological 

entities cannot in general aff ord such arbitrarily large decreases in fi tness. 

Indeed, it is believed that the mutations in biology that have lasted  were 

mostly benefi cial or at least close to neutral when adopted. Happily, this re-

quirement of an arbitrary starting point is not totally exotic for learning 

 algorithms in general, and is met by some par tic u lar ones. For example, the 

perceptron algorithm is known to work correctly starting from any initial 

hypothesis.

6.6 Evolution as a Form of Learning

To see evolution as a form of learning we view the genome in evolution as 

corresponding to the hypothesis in learning. Th e per for mance of the ge-

nome corresponds to its expected closeness to ideal behavior, where the 

expectation is taken over the distribution of experiences the world off ers. 

Th e goal is to show that if ideal behavior can be represented by a function 

in an appropriate class, then evolution toward that ideal behavior will 

 occur by means of an evolution algorithm. Th e course of evolution corre-

sponds to the course of a learning algorithm converging toward a target 

function.

Returning to the example of the evolution of input functions for a fi xed 

set of proteins, let x, . . .  , xn be the concentrations of the proteins p, . . .  , pn, 

and, for simplicity, let each take only the values +1 or −1, to represent re-

spectively whether they are present or not. For the seventh protein p , for 

example, some function g (x, . . .  , xn) will regulate its production. Whether 

any will be produced will depend on which one of the 2n combinations of 

−1, +1 values of the x, . . .  , xn holds.

Th is kind of function, which takes and returns yes/no values, is called a 

Boolean function. Boolean functions, even for moderate numbers of vari-

ables, may be very complex, and only a very small fraction of them, those 

with short descriptions, can be represented in practice in this world, let 
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alone learned or evolved. For the sake of argument let us suppose that it is 

the class of disjunctions, of which an instance is

g(x, . . .  , xn) = x or x or x,

that are evolving. Some disjunctions in this class may be more benefi cial 

to the own ers than others in that environment. Th e target of a par tic u lar 

evolutionary pursuit would be the disjunction that defi nes ideal behavior.

Th e central question then is whether for some useful class of ideal func-

tions, such as disjunctions, there is a resource- effi  cient Darwinian mecha-

nism that, when started from an arbitrary member of the class will evolve 

toward the ideal function. To formulate this question more precisely a 

computational model along the lines of the PAC model with the ideal func-

tion as target, and constrained additionally by the limitation of Darwinian 

feedback, is needed.

6.7 Definition of Evolvability

Discovering the ideal function is like discovering a secret. Th e evolution 

mechanism can obtain information about this secret only via the following 

quantitatively feasible Darwinian pro cess. It will take a polynomial number 

of genome variants of the current genome and, for each one, take a sample 

of polynomially many experiences, or inputs to the function. Th ese inputs 

could specify some aspects of internal chemistry, such as protein concen-

trations, or external circumstance such as temperature, with the environment 

dictating their frequency of occurrence. Th e organism does what ever its 

 genome dictates for the circumstance specifi ed by that input— say, move from 

shade into sunlight— and the organism will then enjoy the consequent benefi t 

or harm. Th e average benefi t or harm to each genome over the sample of poly-

nomially many experiences is our estimate of the genome’s per for mance.

All this corresponds simply to the own ers of the diff erent genome variants 

going through life, having experiences, and enjoying benefi ts in relation to 

how oft en their life choices correspond to the more benefi cial behaviors. Th e 

higher the aggregate per for mance of any one genome variant, the closer it 

will match the per for mance of the ideal function, and the more likely that 

that variant will survive natural selection.

We can defi ne mathematically the per for mance of a current genome 

function g with respect to the ideal function f for a given distribution of 
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conditions D. We denote this per for mance by Perff (g, D). Under each diff er-

ent condition x the ideal action of the evolving entity will be assumed to be 

either −1 or 1. Mathematically speaking, a genome g has high per for mance 

when its output is highly correlated with the ideal function’s output over the 

arbitrary natural distribution D over the set X of all possible conditions or 

experiences. Th e mathematical defi nition of per for mance then is

Perff (g, D) = ∑x∈X f(x)g(x)D(x).

Here ∑x∈X denotes summation over all possible experiences x. Th e quantity 

summed is the product of f(x), g(x), and the probability D(x) that experience 

x actually occurs in reality. (Each D(x) has a numeric value between 0 and 1, 

and the sum of all those values is equal to 1.) Since g and f take values either 

−1 or +1, their product f(x)g(x) will have value 1 if f and g agree and value −1 

if f and g disagree.

If for every x in X it is the case that f and g agree, then the product f (x)g(x) 

will always equal 1 and hence Perff (g, D) will equal 1. Th is is the case when 

g is the ideal function f. In the extreme opposite case, for every x, f and g 

disagree so that f (x)g(x) = −1, and then Perff (g, D) = −1. Th is is the case of the 

genome doing exactly the opposite of the ideal action in every possible situ-

ation. It is easy to see that in all cases Perff (g, D) will take a numerical value 

between −1 and +1. For example, a value of Perff (g, D) = 0.9 is a possibility 

and would correspond to g well approximating f. Th e higher this number, 

the more frequently will the genome be taking the ideal action, where by 

frequently we mean as determined by the real- world distribution D. Th e 

choice of action in the most commonly occurring situations will carry the 

most weight.

Th e per for mance function mathematically formalizes Darwin’s notion of 

fi tness. Surely, if the notion of fi tness has more than poetical or meta-

phorical meaning, then we should be able to defi ne how it is related to the 

factors that determine it. Clearly the actions of an evolving entity as deter-

mined by its genome g contribute to the fi tness. Clearly also the fi tness is 

determined by the environment. Th e relevant aspects of the environment 

are captured both in the distribution D, which characterizes the relative 

frequencies with which various experiences occur, and also in f, which char-

acterizes the most benefi cial behavior of the evolving entity in that environ-

ment. Previous theories have not attempted such a relationship. In a later 
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section we shall generalize the per for mance function to allow behaviors 

with more than just two outcomes in any situation.

Th e per for mance function enables us to more rigorously consider what 

biologists call the genome fi tness landscape. Genomes with higher fi tness 

would be at higher elevations in this analogy. Previous theories have relied 

on this analogy, and it is a natural setting for discussing how genomes can 

evolve so as to become more eff ective, or, in this visual image, reach higher 

ground. Previous theories, however, have not defi ned fi tness in terms of the 

factors on which it depends, the genome actions and the environment. Th e 

per for mance function does. To make this theory complete, we will need also 

to specify how genomes mutate, and how they successfully navigate this land-

scape in terms of concrete computational pro cesses.

What we have now is a defi nition of evolution as a form of PAC learning, 

in which the ideal function f is approached via a sequence of genome func-

tions g, each one of which is selected on the basis of its superior per for mance 

among a set of variants generated from the previous genome function in 

the sequence.

As discussed earlier in Section 6.5, Darwinian evolution does not use 

the full power available to PAC learning, because of the restrictedness of 

the feedback. As compared with the PAC model, where hypothesis updates 

can depend arbitrarily on a single example, evolution selects a new muta-

tion on the basis of its per for mance, from among several tried. A mutation 

to a gene may be replicated many times through the descendents of the in-

dividual in which the mutation occurred. Individuals with the same gene 

will compete against individuals with a diff erent gene, and the gene whose 

aggregate per for mance averaged over numerous life experiences is superior 

will eventually outlive the others. Hence, while in a learning algorithm a 

hypothesis can change because of a single example, in Darwinian evolution 

it will change— which  here means it will be adopted by a population be-

cause it is superior— only because of aggregate statistical superiority over 

many life experiences.

Th is kind of learning, whereby aggregate mea sures, rather than individ-

ual examples, determine the hypothesis, has been defi ned by Michael  Kearns 

as the Statistical Query, or SQ, model. In the SQ model, when attempting 

to learn to distinguish species of fl owers, one would ask, for example, ap-

proximately what fraction of fl owers of species A have petals of length more 

than 1 unit, rather than ask for the descriptions of individual fl owers. Th ese 
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questions may be answered, of course, by taking enough examples of that 

species and asking what fraction of the sample satisfi es the criterion. Hence, 

PAC learning is at least as powerful as SQ learning. Indeed, it turns out that 

some PAC learnable classes are not SQ learnable, and hence that SQ is more 

constrained than PAC.

Th e evolution model above also asks only aggregate statistical questions, 

just as the SQ model does, but it cannot ask arbitrary statistical ques-

tions, such as about the length of petals. It can only ask questions about one 

thing— performance, which is the correlation of a given genome function g 

with the secret, ideal function f. Furthermore, the only way a genome can 

obtain information about this secret is by having individuals with copies of 

that genome live. Th e information about the secret will be revealed only by 

the survival of those individuals in competition with others.

To summarize, in this model of Darwinian evolution, given a certain 

 genome, a distribution of variants will be generated depending only on the 

genome and not on any experiences. Th e selection among these variants will 

be made by a pro cess that depends on experiences, but only via estimates of 

their per for mance Perff (g, D) on natural examples that can be obtained 

from polynomial- size samples. Th e model does not require that the exact 

value of the per for mance Perff (g, D) be accessible. It only assumes approxi-

mations to the per for mance that can be obtained from polynomially many 

experiences.

As previously discussed, we want the pursuit of an accessible target to 

succeed from any starting genome function g in the allowed class. We can-

not expect to be able to “reset” it to something having a form con ve nient for 

long- term evolution. Th e problem with such a fi xed reset is that the result 

may have per for mance so much lower than that of the current genome that 

it cannot compete at the start.

Starting from an arbitrary starting point, we want convergence toward 

f to take place with only a modest- size population and within a modest 

number of generations, where by modest I mean that they are polynomially, 

rather than exponentially, bounded in terms of the relevant numerical pa-

ram e ters, such as the number of variables (e.g., proteins). Further, we want 

the computational cost of the algorithm A that computes the variants from the 

current genome to be polynomial also. Th e former refl ects the limited time and 

space available in the universe for the organisms. Th e latter models the biologi-
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cal mechanism for producing the variants of each generation from the pre-

vious one.

Given this model, the main algorithmic design choice lies in how the 

variants of the next generation are generated. In biology single base substi-

tutions (i.e., changes at a single point in the DNA sequence) certainly occur, 

but they are not the only source of variation.  Whole segments of the DNA 

sequence are sometimes copied and inserted into another position in the 

sequence. Indeed, entire chromosomes can be duplicated. Deletions can 

also occur on a similar scale. In the model  here we shall permit all these 

mechanisms, and much more. We shall allow any polynomial time random-

ized computation to generate the variants. Th is may sound overly generous, 

but as we shall see, even with this allowance, the Darwinian constraint of 

producing variation in de pen dent of experience appears to impose severe 

constraints on what is evolvable. Computational generosity in the produc-

tion of the variants is not enough to easily explain away evolution. Note that 

this generosity is only in the direction of ultimate fl exibility in computation, 

and does not compromise quantitative feasibility. It is defi ned like this so as 

to allow for all mechanisms that nature might use, even those we have not 

yet detected, as long as they use only feasible resources. Th e goal is to un-

cover any algorithm that nature might be using anywhere in the universe. 

Aft er all, the problem is that no algorithm is currently known that fi ts the 

bill. Preconceptions about what is “natural” would be a hindrance, and need 

to be resisted.

One cannot guess what conclusions this line of work will lead to regard-

ing evolution on Earth. Biology may be using very simple algorithms for 

producing variants. It may be that certain simple algorithms are more power-

ful than we currently understand. It is also conceivable that the functions 

that biology has evolved on Earth are somehow simpler to evolve than they 

seem. Alternately, the algorithms nature uses to produce the variants are 

indeed highly sophisticated, and we don’t yet have even a glimpse of what 

they are.

Another way of stating the extreme possibilities is the following. One 

view of the variation pro cess behind evolution is that it is simply the result 

of errors occurring in the basic ge ne tic pro cesses. Th us errors in copying the 

DNA during reproduction could be the main mechanism for producing 

the variant genomes of the next generation. An opposite viewpoint is that 
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the pro cess of producing the variants is highly complex and clever, as it may 

well be if it has undergone extensive evolution itself.

6.8 Extent and Limits

It turns out that just as some functions are provably not computable by any 

Turing machine, some functions are provably not evolvable in the model we 

have just described. Furthermore, the divide is quite subtle; pairs of similar- 

looking classes of functions can fall on opposite sides. One such pair, which 

we will look at in some detail, comprises a special kind of disjunction, called 

a monotone disjunction, and a class of functions called parity functions.

A monotone disjunction is a disjunction in which no variable can be 

 negated. Th e disjunction x or x or x, for example, is monotone. It can 

be specifi ed simply by the set, in this case {x, x, x}, of variables that occur 

in it. Given n variables, we can defi ne 2n monotone disjunctions, as for each 

variable there is the choice to include it or not. Th e function’s output is 

“true” or “yes” so long as at least one of the variables is true. For example, a 

tree might fl ower if it gets more than four hours of sunlight per day, or re-

ceives more than a liter of water per week, or detects a related plant nearby; 

likewise, a protein might be produced if at least one of three other proteins 

is already present in a cell.

A parity function is likewise defi ned with a subset of the variables, such 

as {x, x, x}, chosen from the set of size n. Again, there are 2n possible func-

tions. Unlike the monotone disjunctions, parity functions return “true” or 

“yes” or “1” if and only if an odd number of the variables in the set are true 

(or have value 1). (It does not matter whether we call the other possible value 

0 or −1  here.)

Th e problem in either case for an evolution algorithm is to converge to 

the unknown hidden ideal function, if there is one, from among the 2n pos-

sibilities, with only polynomial resources. Th e target function in both cases 

is specifi ed by a hidden subset, for example, {x, x, x}, that is not known to 

the algorithm. For both problems there is no chance of testing exhaustively 

all the 2n possibilities if n is large, such as 20,000. Assuming that the distri-

bution of inputs is uniform— that all 2n possible input values occur with 

the same probability 1/2n— we can prove that monotone disjunctions are 

evolvable. Making the same assumption, we can prove that parity func-

tions are not.
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A simple algorithm for producing variants can be used to show that 

monotone disjunctions are evolvable. Variants of an existing disjunction 

are produced by swapping an existing variable from the disjunction for a new 

one, deleting a variable, or adding one. Th ese variants are compared as to 

their per for mance. It can be shown that convergence toward the ideal func-

tion will occur as fast as is required by the defi nition of evolvability, if the 

examples are drawn from the uniform distribution. Th is is not true in gen-

eral. Vitaly Feldman has shown that there is no evolutionary algorithm for 

monotone disjunctions (or conjunctions) that works for all distributions.

In contrast to this positive result for disjunctions, parity functions are 

not evolvable in our Darwinian model even for the uniform distribution of 

examples. To search the set of 2n possible functions takes exponential eff ort, 

and it can be shown that there is no alternative method that is substantially 

more effi  cient. As discussed in Section 3.5, proving negative computational 

results such as P ≠ NP is beyond our current capabilities. Th e evolvability 

model described  here incorporates computation, and yet we have a striking 

negative result for it. Th e reason is that the negative result is proved using 

only statistical or information theoretic arguments. It follows directly from 

a corresponding negative result of Michael Kearns for the Statistical Query 

model. Parities are not evolvable, because the statistical constraints on Dar-

winian evolution, namely that only aggregate behavior on the distribution can 

be exploited (and not the nature of individual examples), exclude the evolv-

ability of parities. (For comparison we note that, in stark contrast, this same 

problem is PAC learnable, using an algorithm based on linear algebra that 

does examine the details of individual examples.)

Of course, any evidence in biology that a parity function on a large subset 

of variables has been discovered in the course of evolution on Earth would 

contradict the validity of our model  here. However, there seems to be no 

such evidence, an absence that is consistent and would be predicted by our 

theory. In fact, any suggestion that the parity function is biologically un-

natural only supports the theory.

Th e fact that we humans have evolved, and can compute the parity of any 

fi xed, known set of 1s and 0s— say, a hundred of them— is no contradiction. 

For this we need only an ability to count, which is enough to compute 

whether the number of 1s among these 100 par tic u lar numbers is odd or 

even. Counting is easy. Discovering a subset of variables on which the parity 
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of the number of values that are true is a benefi cial criterion of action is 

much harder.

Th is claim that parity functions are not evolvable may seem somewhat 

speculative. Am I really saying that there is no way that these things can 

evolve on Darwinian principles? Th e answer is yes— there is no polynomial 

time evolutionary algorithm that will discover an arbitrary hidden parity 

function with any signifi cant probability of success, if the examples are from 

the uniform distribution. Of course, when saying evolutionary algorithm 

 here, I have something defi nite in mind, namely pro cesses that are captured 

by the defi nition of evolution I have described. As emphasized earlier, a 

critical question is whether it is a robust computational model, in the sense 

that variants of it that attempt to capture the same phenomenon are prov-

ably of no greater expressive power. We want some assurance that the re-

sults for the model do correspond to properties of a robust phenomenon. 

Fortunately, there exist some results now that confi rm this robustness under 

variation for Boolean function evolution. Furthermore, even if we consider 

real- valued functions, as we do in the following section, we still are not able 

to bypass the impossibility proof.

One can ask whether the assertion that parity functions are not evolvable 

by any Darwinian pro cess is of a similar nature to Turing’s assertion that 

the Halting Problem is not computable. Both statements are proven mathe-

matical facts about certain computational models. As we have mentioned 

earlier, Gödel regarded proven statements about the computable as “abso-

lute” statements in the sense that they are in de pen dent of the formalism 

used. Will our assertion about the nonevolvability of parities ever attain a 

similarly absolute status? Th e answer to this hangs on the question, I believe, 

of whether the models of evolvability for which this negative statement can 

be proved will be ever accepted as robust models of Darwinian evolution, as 

has been the Turing machine for computation. We shall see in the coming 

section that robustness for evolution is not quite so simple.

6.9 Real- Valued Evolution

One limitation of the formulation so far given is that it refers only to func-

tions that are Boolean, or have just two possible values, whether true/false, 

yes/no, or 1/0. Whether protein networks are Boolean rather than real valued 

is not yet well understood, but a tentative answer would be yes and no. For 

some proteins the message may be simply whether or not they are being ex-
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pressed, but for others the amount being expressed seems important. Th is 

latter case provides strong motivation for extending the evolutionary model 

to allow for numerical or real- number quantities, rather than just Boolean 

true and false.

Th ere is also a second reason, which springs from the fact that there has 

been little success in fi nding Boolean classes that are evolvable for all distri-

butions, and not just for par tic u lar ones such as the uniform distribution. 

As we have seen, even conjunctions are not so evolvable. Th e eff ectiveness of 

machine learning in practice depends heavily on the use of algorithms that 

are resilient to variations in distributions, and are not overly specialized 

to one. Learning would not be a powerful natural phenomenon if each real- 

world distribution would require a separate algorithm. Th is resilience to 

diff erent distributions is surely equally essential for any plausible account of 

evolution.

Going beyond Booleans, however, introduces some new complications. If 

your protein is being expressed at level 3.7, say, it is one thing for the envi-

ronment to penalize you a fi xed amount according to whether 3.7 is sub-

optimal. It is quite another for the penalty to depend on how far the 3.7 is 

from the optimum, which may be 1.8, for example. A world in which the 

penalties can take on general numerical values in this way may be able to 

provide more detailed and nuanced feedback to the evolving entity. It may 

therefore support more powerful evolutionary mechanisms. However, for 

such a more general model the per for mance function needs to be redefi ned.

Th at is an interesting task. For each situation x the penalty or loss for 

having the genome give a value g(x) rather than the ideal value f(x) will be 

Loss(g (x), f (x)), where Loss is some function. Unfortunately, that Loss func-

tion could take on many forms. Perhaps it is the diff erence of the values— in 

the above example, 1.9. Perhaps it should be the square of the diff erence, 

namely 3.61, or perhaps something  else again. If f and g can take only two 

values (such as −1 and 1), then the diff erence is either 0 or a fi xed nonzero 

value (2 in this case). With real- valued functions the question of what loss is 

suff ered by not taking the optimal action is determined on a case- by- case 

basis by the environment and the evolving entity. Th e loss function may 

vary for diff erent genes, and it is not clear what loss functions are reason-

able. It is in the essence of PAC learning theory to make minimal assump-

tions about the world. To obtain such a minimal- assumption theory, it 

would seem that we would need to show that evolutionary algorithms are 
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robust in an additional new sense also— of being convergent for very gen-

eral classes of loss functions. As we shall see soon, this is indeed possible.

Suppose now that we have some loss function. How are we to defi ne per-

for mance? We shall again take the sum of the losses for the diff erent values 

of x (e.g., protein concentration combinations), each weighted by the pro-

bability of that combination occurring. Th is can be stated equivalently as a 

probabilistic expected value of the loss if the combination x is chosen ran-

domly from the distribution D of all possible events:

Perff (g,D) = ExpectedValuex∈D(Loss(g(x), f(x))).

Note that in this real- valued defi nition of the per for mance function, with 

the loss function taking the place of the correlation function, per for mance 

goes down as the g gets closer to f, while it goes up in the fi rst defi nition. Th is 

diff erence is for the sake of con ve nience.

Th e fi rst steps in investigating the power of real- valued feedback  were 

taken by Loizos Michael in the context of learning Boolean functions. His 

intermediate hypotheses took numerical values, but the goal at the end was 

to compute an approximation to the target Boolean function. Th is approach 

was further developed extensively by Vitaly Feldman, who showed that for a 

wide class of loss functions all of SQ could be evolved for all distributions. 

Th is is a strong result regarding the power of evolution since it shows that 

evolution is comparable to a signifi cant learning class. It assumes, however, 

that the organism evaluates and gets feedback on the function class of its 

real- valued hypotheses, which may be very diff erent from the fi nal Boolean 

target class.

Paul Valiant has given a defi nition for a model that is entirely real valued 

and that has the important further feature that it applies to a set of genomes 

g = g, . . .  , gn and a set f = f, . . .  , fn of ideal functions. Th is is needed if we 

are to model many functions simultaneously, such as the 20,000 or so 

expression- level functions of our proteins. Aft er all, it does not make sense 

to talk about the ideal function of a single protein in isolation, since as ex-

pression levels of the other proteins change, the ideal behavior for the fi rst 

protein may change as well. To take a more everyday example, if one wants 

to reduce one’s calorie intake to a certain level, then reducing the number of 

meals and reducing the amount of food per meal are both relevant actions, 

but neither can be optimized without knowledge of the other.



The Evolvable   |   

For both the protein and the eating examples, it is meaningful to discuss 

the ideal function set f for the set of all the functions in their entirety. Fur-

thermore, in the real- valued setting it is natural to discuss the loss function 

in this multidimensional setting, as illustrated in Figure 6.1.  Here the values 

of the function sets f and g will be points in the high- (perhaps 20,000-) di-

mensional space determined by the values of all their constituent functions. 

Th e loss for an entity in acting according to the values determined by its 

genome rather than the ideal values will then depend on some mea sure of 

how far apart these two points are. As when dealing with individual genes 

or functions, this loss may be the distance between the two points, the square 

of the distance, or some other mea sure.

Within this model Paul Valiant has shown some positive results of con-

siderable generality. In par tic u lar he showed that natural classes of real- 

valued functions, including linear functions, such as f = ax+ . . .  + anxn (and 

more generally, multivariable polynomials of constant degree), are provably 

evolvable for all distributions in which examples occur in a bounded region, 

and for a very general class of loss functions, namely all convex loss func-

tions. (Both the distance and the square of the distance functions are ex-

amples of convex functions.) Further, these results apply not only to single 

.

g(x)
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x

Multidimensional
Distribution

D of Conditions
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Figure 6.1 Th e diagram illustrates the defi nition of evolvability when both the 

variables and target function take real number values. Besides being more 

general than the Boolean model, a conceptual advantage is that it becomes 

natural to consider a set of functions acting simultaneously on an input x and 

to evaluate the loss that that combination suff ers as compared with the ideal 

combination of actions. For example, the set of input functions specifying the 

expression levels of some 20,000 proteins can be evaluated for their combined 

fi tness. For the combination one can quantify the loss as some mea sure of the 

distance between the ideal combination f(x) and the actual one g(x) in this 

high- dimensional space.



   |   probably approximately correct

functions, but to sets of functions evolving simultaneously, say one for each 

gene, in the sense we have described. Th e existence of positive evolvability 

results of this generality lends credence to Darwinian evolution being in-

deed viable in the concrete computational formulation given for it  here.

Many questions remain unresolved, in par tic u lar the following tension. 

On the one hand some evolutionary algorithms are simple and effi  cient but 

only limited generality can be proved for them, as far as distributions or loss 

functions, for example. On the other hand there are algorithms that are less 

effi  cient, having larger polynomial bounds, but are provably eff ective in 

greater generality. Some very simple algorithms can be proved to be eff ec-

tive for the par tic u lar case of the quadratic loss function, while only more 

intricate algorithms are known for more general cases. A better under-

standing of the power of evolutionary mechanisms remains an important 

goal for the future.

6.10 Why Is This Theory So Different?

In his On the Origin of Species, Darwin sought to marshal all the arguments 

and evidence that could be found in support of his theory of evolution. Th e 

titles of his chapters describe the material he used: “Variation under Domes-

tication”; “Variation under Nature”; “Struggle for Existence”; “Natural Selec-

tion”; “Laws of Variation”; “Instinct”; “Hybridism”; “On the Imperfection of 

the Geological Record”; “On the Geological Succession of Organic Beings”; 

“Geo graph i cal Distribution”; “Mutual Affi  nities of Organic Beings: Mor-

phology: Embryology: Rudimentary Organs.” He also has a chapter called 

“Diffi  culties on Th eory,” which discusses issues such as speciation: Why do 

organisms cluster into distinct species, rather than there being a continuum 

of varieties? In later work he studied the role of sexual selection. He used all 

these angles to argue that natural selection is consistent with all the evi-

dence, and is the simplest explanation of the evidence.

But remember Paley’s objection, cited in Chapter 2, that life forms are 

just too complex to have evolved. Darwin avoided confronting this issue di-

rectly, as have also his successors. It is one thing to demonstrate that natural 

selection is qualitatively consistent with the evidence; it is quite another to 

show that some concrete realization of it is consistent with the evidence in 

quantitative terms.

A weakness of the current conventional wisdom in evolutionary theory 

is that it gives centrality to competition per se without proving that that 
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mechanism is suffi  cient. Competition may be essential, but saying that does 

not explain everything. One needs a theory that explains why competition 

increases functionality. We need to explain how evolution is possible at all, 

how we got from no life, or from very simple life, to life as complex as we 

fi nd it on Earth today. Th is is the BIG question. One also needs a theory for 

the related question of accounting for the rate at which a circuit can adapt 

to changing environments. Our formulation of evolution addresses the lat-

ter question directly by giving bounds on the resources needed to evolve 

from one function to a better one. It also partially addresses the BIG ques-

tion by giving bounds on the evolution of a new added circuit. Clearly vari-

ous diff erent circuit types play a role in biology, and it is not clear how all of 

these should be formulated for evolution. For example, we do not know 

how the evolution of new proteins should be formulated in circuit terms.

Th ere are many diff erences between the model of evolution described 

 here and previously studied models. Most previous models emphasize that 

evolution takes place in populations containing a broad diversity of ge-

nomes.  Here I have one genome that generates a number of variants, and 

aft er some competition, one genome emerges as the sole winner, and then 

the cycle repeats.

It is reasonable to ask why diverse populations are not mentioned in this 

model. Th e answer is that it can be added, and should be if some extra power 

for it can be demonstrated. If one could prove that such population eff ects 

give a richer class of functions that are evolvable, then that would be a sig-

nifi cant result. At the moment the indications are that, while this is not the 

case in general, diversity in populations with sexual reproduction may allow 

the number of generations to be reduced at the expense of a larger popula-

tion size.

Th e one- genome model may nevertheless be suffi  cient. We can simply 

interpret the one genome not as the genome of one organism, but as the sum 

total of all the genomes of the many individual organisms in a population. 

Th e advantage of this is that there are many diff erent ways that the genomes 

of individuals in a population can interact, and these can all be described as 

appropriate mechanisms within such a population. For example, both asexual 

and sexual reproduction have been successful on Earth, even though the lat-

ter is considered to be the more successful. A third form of interaction is 

lateral or horizontal gene transfer, where information is exchanged between 

individuals who are not descendents of each other. Transfer of genes between 
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diff erent bacteria is believed to be common, and to be a factor in the spread 

of re sis tance to drugs. Some consider horizontal gene transfer to have been 

important in the evolution of single- celled organisms. All these forms of 

gene transfer can be regarded as computations on the sum total of the 

 genomes of a population, as can also the mutations of individual genes. Th e 

one- genome model can embrace all of these by having diff erent internal 

mechanisms for producing variation.

Th ere are many aspects of evolution that we do not address at all. Diver-

sity in the gene pool may be a good defense mechanism against the un-

expected and hence be critically important for survival. Survival is no doubt 

indispensable, but by itself it does not explain increasing complexity— not 

all mechanisms that are needed for survival are necessarily useful for 

 enabling increasing complexity. Th e analysis  here can be viewed as one that 

isolates the imperatives of complexity in evolution from the many other 

facets of biology.

Another aspect of our theory is that it presupposes a static world. It con-

siders how a phase of target pursuit can be accomplished while the world 

is kept fi xed. Th is is consistent with the notion that once a target becomes 

accessible and benefi cial, evolution toward it will proceed quite predictably 

and rapidly. However, the theory can be adapted also to slowly changing 

worlds.

I have sought a solution from the study of learning. Th is in retrospect is an 

obvious place to look. Aft er all, machine learning is the general fi eld that 

studies how complex mechanisms can be created without a designer. Darwin 

and Wallace  were investigating a very important but special case of this.

Darwinian theory now pervades biology as well as many other disciplines. 

In biology evolution is identifi ed not just with the Darwinian mechanism, but 

also with its apparent by- product, the history of life on Earth. Th is history has 

been fi lled with much drama, from the Cambrian Explosion and the Perm-

ian Extinction, to the appearance of creatures that can launch themselves 

into orbit around the planet. My concern  here has not been with chronicling 

the history of these events. It has been only to understand one question: 

How can any mechanism account for this remarkable unfolding drama?
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Chapter Seven

The Deducible

How can one reason with imprecise concepts?

True genius resides in the capacity for evaluation of

uncertain, hazardous, and confl icting information.
Winston Churchill

7.1 Reasoning

Th e tension between reasoning and learning has a long history, reaching 

back at least as far as Aristotle, who, as already mentioned, contrasted the 

“syllogistic and inductive” in his Posterior Analytics. In his treatise, how-

ever, Aristotle dealt almost entirely with the syllogistic, which may have 

triggered the high regard Western civilization has had for reason ever 

since. More recently, logical reasoning has fallen from the pedestal of 

highest repute. As has been pointed out oft en, humans are bad at logic. But 

that is not the only problem. Computers are very good at logic, yet we do not 

typically trust them for evaluating uncertain, hazardous, and confl icting 

information— and even when we do, the computer systems that succeed in 

this are usually based not on logical reasoning but on learning from large 

amounts of data.

Th is chapter adopts Aristotle’s dictum that beliefs come from two fun-

damental sources: syllogism and induction, or reasoning and learning. 

Despite the beating that logic has taken in recent years, my goal is to 

 describe how these two sources can be unifi ed into a consistent  whole. In 

doing this, primacy will be given to learning, but reasoning will still remain 

essential.
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In previous chapters, I have distinguished subject matter that is theoryful 

(in the sense that an explanatory theory of it is known) from that which is 

theoryless, and I have argued that beliefs about the theoryless have the se-

mantics of PAC learning because they are acquired, in the fi rst instance, in-

ductively by learning. (Once one individual has learned such a belief, it may 

be transferred to another, but even then the semantics remains that of learn-

ing.) I shall now address the question of how reasoning with such theoryless 

information can be justifi ed at all. Th is is of some relevance since, more 

 oft en than not, humans reason about theoryless subject matter.

Th at reasoning makes sense and is theoryful for theoryful content has 

been long established by mathematical logicians. Following the work of 

George Boole and Gottlob Frege in the nineteenth century, much progress 

was made in understanding the forms that a mathematically rigorous view 

of reasoning can take. We can now ask questions about the nature and power 

of reasoning mechanisms within mathematics itself. Notions of truth and 

provability have been defi ned and distinguished, and questions have been 

asked as to whether, in a given system of logic, everything true is provable, 

and everything provable is true.

Th e mathematical logic that developed from this work has proven to be 

applicable to formal subject matter, particularly mathematics itself, and to 

have something signifi cant to say about such subjects. By the beginning of 

the twentieth century the concerns of this fi eld had moved center stage in 

the intellectual arena. Can all mathematical questions be translated into 

one unifi ed formal language? Can any true mathematical statement so ex-

pressed, but no false ones, be deduced from a common set of axioms whose 

truth is self- evident? Some notable fi gures, including the phi los o pher Ber-

trand Russell and the mathematician David Hilbert, had believed that 

such a program could be carried through. To widespread astonishment, in 

1930, twenty- four- year- old Kurt Gödel showed otherwise. In par tic u lar, he 

proved that in any rich enough logical system there  were true statements 

that  were not provable. Th is development, negative as it may have seemed, 

had profound intellectual impact. It was perhaps the fi rst result that gave a 

glimpse of some ultimate limitations of what could be achieved by reason-

ing, even in a completely theoryful arena. Perhaps most importantly it led 

within a few years to the investigations of Turing and others into computa-

tion and its limitations.
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Th ese discoveries in mathematical logic, however signifi cant they may 

have been in their own right, did not address directly the problem of reason-

ing about the theoryless. It was left  to researchers in artifi cial intelligence, 

from the 1950s onward, to attack that problem.

Th e logical approach to artifi cial intelligence, pioneered by John Mc-

Carthy, treated the theoryless essentially as if it  were theoryful. Axioms 

 were to be constructed for any concept for which a word could be found in 

the dictionary. Th is included everyday concepts that  were well outside the 

domain of any known science, and for which such axiomatization had never 

been attempted before. Rules of inference  were then applied that  were sound 

in the sense that they never yielded false conclusions when used within ap-

propriate formal systems. Th is approach and its equivalents became the 

conceptual basis for much of the early work in the newly established fi eld 

of artifi cial intelligence. More recently, analogous approaches have been 

pursued in probabilistic formalisms, where the rules of inference are those 

that apply in probability theory. Th ese approaches treat the subject matter 

also as being theoryful, making them broadly equivalent to the logical 

approach.

While both logical and probabilistic modeling are mathematically 

 principled when applied to the theoryful, they off er no principled guaran-

tees when it is not clear how the models relate to the underlying reality, 

which is the case when the subject matter is theoryless. From a learning 

viewpoint, however, as we shall show, one can salvage some guarantees on 

the results of reasoning, even in this unpromising setting. Th e guarantees 

that can be achieved through learning are in the qualifi ed PAC sense that, 

while errors are inevitable, their level can be controlled by putting in an ef-

fort commensurate with the quality of the guarantees that one is seeking.

It is important, I believe, to make a clear distinction between the two 

approaches— mathematical modeling using some kind of logic or probabi-

listic model, as opposed to learning. In practice it is easy to blur the diff er-

ence by mixing the two. For example, consider a model, intended for use in 

a speech recognition system, of how people pronounce the words “yes” and 

“no.” Such a model will be typically probabilistic. Th e question is whether 

the model is to be entirely programmed. If it is, then this would be treat-

ing the phenomenon as theoryful since one is attempting to have a model 

or theory of the outside reality. However, more oft en than not, aft er such a 
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model has been designed its numerical pa ram e ters are tuned by learning. If 

the resulting model turns out to be useful, the question arises as to whether 

that success was due to the learning or to the initial programmed model. As 

another example, we may start with a model for medical diagnosis that fi rst 

incorporates some beliefs derived from interviews with physicians about the 

relationships among various physical conditions and symptoms. When tested 

against real data, the pa ram e ters that represent these relationships may have 

to be revised.

Regardless of the starting point, once we embark on learning from data 

we have to acknowledge that we are seeking the benefi ts of the learning phe-

nomenon. It is then most appropriate to evaluate success by the criteria of 

accurate and effi  cient learning as described at length in Chapter 5. What is 

less clear, if success is to be mea sured by the criteria of learning, is why we 

need reasoning at all. Th ere may be a portfolio of tasks, such as recognizing 

dangerous animals, walking up steps, or uttering appropriate greetings, that 

is suffi  cient for life. And perhaps these tasks can all be learned.

7.2 The Need for Reasoning Even with the Theoryless

For simple creatures it may well be that a repertoire of learned responses is 

suffi  cient. Th e application of a single learned circuit, which I shall call a re-

fl ex response, approximates the best behavior for a specifi c situation in life. 

(Here, the word circuit is used in the same general sense in which I intro-

duced it in Chapter 4.) Certainly, even for humans, such a repertoire of re-

fl exes is oft en suffi  cient. In driving a car, experienced drivers are believed 

to cope by invoking refl ex responses learned from similar previously seen 

situations. Th ey do not need to go through an explicit reasoning pro cess 

that considers the possible alternative sequences of events that would follow 

from alternative actions. Nevertheless, these refl ex responses are not suffi  -

cient to explain all of intelligent behavior. Th ere is a place for something 

more, and that something is reasoning. If, unlike mathematical logic or 

probabilistic reasoning, this reasoning is to be compatible with theoryless 

knowledge, it will need to be able to manipulate uncertain and unreliable 

knowledge in a principled way, so that some guarantees are provided on the 

accuracy of predictions.

Th e simplest form of reasoning that meets these demands is the appli-

cation of two learned circuits, each having the semantics of PAC learning, in 
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succession. Chaining two or more circuits may be eff ective in a range of sit-

uations in which it is unreasonable to believe that a single circuit might have 

been learned.

Consider the following example. If you are asked whether Aristotle ever 

climbed a tree, or whether he had a cell phone, you probably can answer 

both these questions with some confi dence, despite not having previously 

had an opportunity to gain much statistical evidence for either question di-

rectly. It is implausible that in answering either of these questions you are 

invoking a single circuit that has been learned to recognize instances of 

some single concept such as cell phone own ership or tree climbing. Having 

a refl exive response to such a question would require a specially trained cir-

cuit in your brain that takes a name as input and outputs whether that 

person owns a cell phone or ever climbed trees. Implausible, indeed. It 

seems more plausible that you rather apply a sequence of circuits, each en-

capsulating a common sense rule. In this way you successively add more 

and more information to a picture in your mind. You would start by identi-

fying Aristotle as a par tic u lar human who lived in a certain era. You would 

then apply some common sense rules in succession to make some deduc-

tions in order to build up a more complete picture. Ideas about children 

liking to climb trees and the era in which cell phones  were invented would 

be expressed in these rules. Some of these rules may express facts, while 

many have theoryless content and will have been learned inductively.

A possible criticism of this example is that humans do not learn any such 

rule about tree climbing and cell- phone own ership simply because the issue 

is not of vital value to us. If making such decisions instantly  were important, 

then perhaps we would learn refl ex responses for them. Hence the possibil-

ity remains that reasoning is only useful for contrived questions of little 

importance. If animals survive in the main by performing tasks that are all 

refl ex acts, then perhaps human reason is useful only for arcane puzzle solv-

ing and is not so fundamental aft er all.

However, more basic arguments can be put in favor of the extra power of 

reasoning. Th e chaining of learned circuits may enable capabilities unattain-

able by the application of a single learned circuit. For example, the needed 

single circuit may be of a form that falls outside the class that is learnable, 

but it may be equivalent to a pair of circuits that each can be learned sepa-

rately. So, to continue with Aristotle, once we have recognized him as being 
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human, there may be a simple condition to decide whether he ever climbed 

trees. However, without fi rst identifying the species of the individual in 

question, a general criterion for what can climb trees may be too complex to 

be within the learnable class.

As with PAC learning itself, the conclusions derived through reasoning 

will be permitted to be wrong sometimes, simply because the learned rules 

are permitted to be wrong sometimes. We can never be absolutely certain 

of our conclusions; Aristotle may just have aroused enough curiosity in the 

cosmos to have attracted extraterrestrial visitors bearing cell phones. Nev-

ertheless, even in the presence of all these uncertainties, principled reason-

ing with some guarantees of accuracy is still possible. Furthermore, both 

the strengths and weaknesses of the guarantees are important.

7.3 The Challenge of Complexity

Several challenges to the endeavor of understanding reasoning have been 

encountered in the course of a half- century of research in artifi cial intelli-

gence. I regard four— computational complexity, brittleness, semantics, and 

grounding— as the most pertinent to the approach presented  here. My ap-

proach to addressing all these challenges is that of ensuring that there is 

some unambiguous relationship between the information represented in 

the reasoning system and what this repre sen ta tion refers to outside of itself. 

Th e relationship for this will be the same as for PAC learning, and will be 

called PAC semantics.

Th e fi rst challenge is the impediment of noncomputability and computa-

tional complexity. In Section 5.1 I quoted Turing’s reference to this, in the 

context when reasoning is equated with mathematical logic. Similar issues 

of complexity have been found to arise in other formulations as well. Indeed, 

Turing’s proof that the Halting Problem is not computable can be viewed as 

an early warning of what has been called the doom of formalism. Express-

ing what we wish for in a formal framework is oft en futile if that framework 

is too broad to permit effi  cient computation. I do not accept that formalism 

itself is doomed. Th e challenge is to identify a formalism that works— one 

that is extensive enough for the task at hand, without being so extensive 

as to be computationally intractable. Just as for learning and evolution, we 

have to sail again between Scylla and Charybdis. Given the extent of our 

discussion of the issue of computational complexity already, I will leave this 

without further discussion  here.
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7.4 The Challenge of Brittleness

Over the de cades extensive eff orts have been made to imbue computers with 

knowledge so as to enable them to answer common sense questions. In the 

main the knowledge has been programmed by humans, and a formal logical 

system has been used to reason about this knowledge. Overall, these eff orts 

have had only limited success to date, and in situations not foreseen by the 

programmer computers regularly fail, giving responses that have oft en been 

unreasonable or even absurd. Th e impediment of computational complexity 

by itself does not account for this failure. Even when the intended, mathe-

matically principled deductive pro cesses have reached a conclusion in the 

time allowed, the computer’s conclusions oft en fall short.

Th e reason for such failures must be that the programmed statements, 

as interpreted by the reasoning system, do not capture the targeted reality. 

Th ough each programmed statement may seem reasonable to the program-

mer, the result of combining these statements in ways not planned for by the 

programmer may be unreasonable.

Th is failure is oft en called brittleness. Regardless of whether a logical or 

probabilistic reasoning system is implemented, brittleness is inevitable in 

any system for the theoryless that is programmed. If the represented infor-

mation is not consistent within itself and in exact correspondence with the 

domain being modeled, then no claims can be made about the accuracy of 

the deductions. While these systems are mathematically principled for 

theoryful content, they off er no useful guarantees for the theoryless.

Th e only way of avoiding this brittleness and achieving robustness is to 

have the systems learn. Th e predicate calculus and Bayesian probability are 

both well- founded mathematical systems. However, within these systems 

the issue of robustness in controlling errors in the face of limited data and 

limited computation is not addressed. Learning theory does address these 

very issues and is therefore a more appropriate basis for this enterprise. 

Indeed, the advantages are two- fold, at least. First, PAC learning, by defi ni-

tion, is concerned with robustness to computation and data. It quantifi es 

how the accuracy guarantees of the learned rules get stronger and stronger 

with more and more data and computation. Without some such guarantees 

little can be said about any system that is less than perfect. Second, a learn-

ing system has the fundamental advantage that it can check its predictions 

against the world. If it fi nds that it is making false predictions, it can adapt 

itself so that it will be more likely to be accurate in the future. With such 
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feedback the system can recover from almost any gaps or inconsistencies in 

its knowledge.

A closely related issue is that of resilience to noise. Humans can cope 

even in situations when some of the information provided is false, perhaps 

corrupted by noise during transmission. Happily, the basic PAC model, 

which does not discuss noise, is easily extended to accommodate it. Further, 

it has been shown that learning algorithms can be made resilient to certain 

kinds of noise in some generality. For example, if one introduces noise by 

randomly changing the label of the examples with some probability, then 

classes that are PAC learnable in the absence of noise oft en (and SQ learn-

able classes always) remain PAC learnable in its presence.

Empirical eff orts toward endowing machines with common sense knowl-

edge have shown that the amount of knowledge needed is much higher than 

was ever expected. Th is is a yet further source of diffi  culty, but its sheer scale 

points even more forcefully to the need for principled automation, and 

hence learning, in the knowledge- acquisition pro cess.

I do not claim that the learning- based approach I advocate  here is with-

out its challenges. Studies of learning and reasoning have shown that unless 

these problems are formulated very carefully, the computational complexity 

of each may become too large to be tractable. I shall come to a suggested 

resolution to this question, but not before discussing the remaining two 

challenges.

7.5 The Challenge of Semantics

I believe that no system that reasons with large- scale general knowledge can 

eff ectively work without there being a clear correspondence between the 

information represented in the system and the outside reality to which it 

refers. To understand or construct such systems one needs a principled view 

of this correspondence. It seems unreasonably optimistic to adopt an un-

principled view, and expect to meet this most basic requirement by pure 

chance.

If one programs a machine in terms of everyday concepts expressed in 

En glish, then one needs to be sure that each word is used in a consistent way 

throughout. Almost any word in a natural language has some range of 

meanings, and some words have several distinct meanings. If in a pro-

grammed rule words such as port, green, or conservative are used, then one 

has to be sure that every rule uses these concepts in exactly the same sense. 
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If several meanings of “port” are to be distinguished— a drink versus a 

mooring place, for example— then the variants have to be named (e.g., port1, 

port2) and used consistently. Th e diffi  culty of doing this consistently enough 

accounts for a signifi cant aspect of brittleness.

PAC learning off ers an approach to addressing this problem. At each 

instant for each concept, such as port2, the system will have a hypothesis 

or program for it that recognizes it, in the sense of saying, “Yes, this is an 

example of port2,” or “No, it is not.” Th is program will have been learned 

in terms of features that  were already recognized. Some of these features 

may have been themselves learned previously. Others will have been 

 preprogrammed, or, as is the case for living organisms, learned through 

evolution. Examples of this latter category are light detectors in the ret i na 

or pixels in a camera input device for a computer. But, what ever these 

features are, the end product in the overall system will be a recognizer for 

the concept of “port2.” Inputs presented to the system can be  labeled by 

this recognizer to indicate which are examples of “port2” and which are 

not.

If all the recognizers in a system are largely consistent in the sense that in 

most natural situations the labels attached to the inputs do not contradict 

what the recognizers say, then we can consider the system to be consistent in 

the PAC sense. If, however, contradictions are oft en encountered in natural 

situations, then the system can detect this for itself and seek to reach a more 

consistent state by modifying its recognizers. An important goal of learning 

is to reach PAC consistency in this sense.

For such PAC consistent systems the meaning of a concept is simply what-

ever the circuit labeled by that concept recognizes. Th us, aft er training to 

PAC consistency, the meaning of the concept port2 in such a system is noth-

ing other than the function computed by the circuit that has port2 as its 

target. Th is circuit may involve other learned concepts but ultimately will 

depend on preprogrammed features that take external sensory inputs. Th e 

relationship between the function this circuit computes and the outside re-

ality is one of PAC semantics.

7.6 The Challenge of Grounding

Finally we arrive at the fourth challenge, which I call grounding. It is inti-

mately related to both semantics and brittleness, and it deals, to put it sim-

ply, with two primary issues: the scope of the knowledge that is claimed to 
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be represented, and the constraints of time, space, or other limitations 

within which the PAC semantics are to be accurate.

Th ese concerns arise even for the simplest of logical statements. Consider 

the assertion, “All humans are mortal.” A logician might phrase it, “For all t, 

if t is human then t is mortal,” and abbreviate it as

∀t human(t) → mortal(t),

where the inverted A, the ∀ operator, denotes “for all.” Even with this sim-

ple example there are some obvious diffi  culties. What exactly is the range of 

t that this statement applies to? If it is to apply everywhere in the universe, 

how can we be so sure that the assertion is true? Does it apply to humans 

described in fi ction? Th is last question is not irrelevant if we wish, for ex-

ample, to learn about the world from written text, since much text refers to 

fi ctitious individuals. Th e fact that Superman is fi ctitious is good to know if 

we want to learn only about real people.

We can always add some preconditions to statements that specify in more 

detail what scope is being asserted. For example,

∀t nonfi ctitious(t) → (human(t) → mortal(t)).

Th is would ensure that human mortality is asserted only for nonfi ctitious 

humans. However, we have an infi nite regress  here. Are we sure this is a 

complete defi nition? More to the point, how do we defi ne the terms nonfi cti-

tious, human, and mortal? Will not these have the same problem? Note that 

the complementary existential quantifi er ∃, the mirror image of “E,” which 

denotes “there exists,” raises all the same issues.

Th e severity of this challenge can be appreciated even more if we recog-

nize that human intelligence is applied eff ectively every day to issues with 

much less universality and permanence than this example. We interact with 

diff erent people with diff erent personalities and desires. We need to predict 

their behavior without having axioms that describe what they will do and 

under what circumstances.

We need a principled basis from which to approach this problem of ground-

ing. PAC learning addresses this by identifying a specifi c distribution D 

with respect to which it learns and performs. Without some such notion of 
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grounding there cannot be a theory of learning. But how are we to specify 

this distribution D of typical situations from which a human individual 

learns? How is it ensured that in frequently occurring situations we will do 

the right thing, and how are we protected from making rash decisions that are 

not supported by our experience? What ever the mechanism is, we need the 

same kind of protection in artifi cial systems. If we create a system to perform 

a task, but have no target distribution in mind on which we expect it to be-

have well, then we really have no idea what we are trying to accomplish.

To press the point in a diff erent way, we conclude  here with a paradox 

that illustrates the fallacy of discussing probabilistic events without defi ning 

what distributions they refer to. Consider the following proposal, and decide 

whether it would be profi table for you. You are to go up to a random person 

in the street and off er to compare the amount of cash you each have on you 

and agree that whoever has more gives it to the other. You convince yourself 

by the following (false) argument that this will be profi table. You argue as 

follows: “I have x amount of money. Th e other either has more, say y, or less, 

say z. (Ignore the case that they are equal, when there is no gain or loss.) Th e 

two possibilities occur with the same probability 0.5. If the other has more 

then I win y, otherwise I lose my x. Hence my expected gain is 0.5y − 0.5x, 

which is greater than zero since y is greater than x.” Would you get rich by 

repeating this? Since the other person could argue the same as you, and it is 

not possible for both players to have an expected win, the argument just 

given must be fallacious. But which one is the fallacious step in the above 

argument? Common sense gives a clue. In practice you would not play the 

game if you had just taken money out of the bank, but might if you  were on 

your way to do that.

7.7 The Mind’s Eye: A Pinhole to the World

In this section and the next I shall describe robust logic. It is an approach to 

the reasoning problem that addresses all four of the obstacles. It formulates 

learning and reasoning with a common semantics, maintains computational 

feasibility, and provides a principled approach to the problems of brittleness 

and grounding. Th e device that enables all these issues to be addressed 

 simultaneously is a quantitative formulation of working memory, a notion 

originally proposed in less computational terms by cognitive scientists. I 

shall call this computational version the mind’s eye.
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Th e notion that in the pro cess of thinking we employ some special 

mechanism, other than our general long- term memory, for bringing to-

gether the diff erent threads of the subject we are thinking about is a central 

idea in cognitive science. Th e mechanism is called working memory, and 

it is closely related to other notions such as short- term memory, imagery, 

attention, and consciousness. It has been researched from numerous per-

spectives, and one of the most striking fi ndings is how limited it is. Its re-

strictedness was memorably demonstrated by the cognitive psychologist 

George Miller, who in his celebrated paper “Th e Magical Number Seven 

Plus or Minus Two” showed that we could hold only about seven objects 

 simultaneously in this working memory. Th e mind’s eye, as colloquially 

used, is this same notion. When we are thinking, we are usually aware of 

very few things at a time. For our discussions it will suffi  ce to recall the fol-

lowing earlier piece of introspection off ered by the nineteenth- century 

polymath Francis Galton:

When I am engaged in thinking anything out, the pro cess of doing so 

 appears to me to be this: Th e ideas that lie at any moment within my full 

consciousness seem to attract of their own accord the most appropriate 

out of a number of other ideas that are lying close at hand, but imperfectly 

within the range of my consciousness. Th ere seems to be a presence- 

chamber in my mind where full consciousness holds court, and where 

two or three ideas are at the same time in audience, and an ante- chamber 

full of more or less allied ideas, which is situated just beyond the full ken 

of consciousness. Out of this ante- chamber the ideas most allied to those 

in the presence- chamber appear to be summoned in a mechanically logi-

cal way, and to have their turn of audience.

Such a restricted “presence chamber” or mind’s eye might seem limiting, 

but instead, I argue, it has a critical role in keeping within feasible bounds 

the complexity of the learning tasks that our cognitive system needs to 

solve.

In a conventional computer we have a very small fraction of the overall 

hardware investment devoted to the registers, where information is placed 

that is to be operated on and changed. Th e remaining much larger fraction 

of the hardware either stores information or moves it around. In a parallel 

computer there will be replication of pro cessors and registers, but the 
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fraction of investment in registers, as compared with communication and 

memory capabilities, is still small.

In biological brains the working memory is probably not as localized 

physically as are the registers in present- day computers. However, it is be-

lieved that working memory at any one time contains much less infor-

mation than the total contents of the long- term memory. Th e number of 

visual concepts that a human may be capable of recognizing has been esti-

mated, by counting the relevant words in a dictionary, to be around 30,000. 

Total human long- term memory capacity is presumably much larger than 

this since not all concepts are visual, and since we can recall specifi c facts 

and events as well as concepts. Expert knowledge has been estimated to be 

much larger, perhaps by a factor of ten or more. In contrast, recall that 

George Miller estimated the maximum number of distinct entities that can 

be represented in short- term memory as being seven, plus or minus two.

Th e computational reasons for the amount of information that can be 

stored in computer registers being small are of two kinds. First, the circuitry 

needed to perform operations on the registers may be complicated, more 

complicated than needed for storage and communication. Second, if opera-

tions are performed on many registers at the same time, then some system-

atic way is needed for or ga niz ing the cacophony of results that emerge— which 

is the problem of parallel computation.

Both registers in computers and working memory in brains bring to-

gether pieces of information in new combinations, to get results that may 

never have been computed before. In a computer we may wish to multiply 

two numbers retrieved from the computer’s memory. In the working mem-

ory of a brain we may wish to predict the consequences of a novel combina-

tion of actions, to see, for example, whether that combination has a promising 

enough outcome for us to justify doing those actions the next day. In order 

to predict these consequences a variety of related pieces of knowledge may 

have to be retrieved from long- term memory.

Th e computational challenges that arise for registers in computers arise 

equally in biology. Th e circuits needed to maintain the working memory 

may be complicated, as may be also the task of coordinating all that is 

 happening. All this puts a ceiling on how much information the mind’s eye 

can reasonably handle at any time.

I believe that these computational imperatives for having a small working 

memory, however constraining they may be, are by no means the ultimately 
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limiting ones. Even more severe constraints are imposed by the fact that the 

brain does not merely have to compute, but also needs to learn. Th e small-

ness of the fi eld of view of the mind’s eye is essential to make the world 

learnable. Th e more information we attend to at a time, the more complex is 

the task of abstracting regularities from it. Apparently seven (plus or minus 

two) strikes a useful balance between scope and effi  ciency. Having our con-

sciousness streamed through such a small aperture serves the function of 

permitting learning.

Having a small mind’s eye forces us to look at the world eff ectively through 

no more than a pinhole. Between the world and its enormous complexities 

and our memories with their highly complex contents is placed this very 

limited fi eld of attention. As a result, we are forced to manipulate this lim-

ited fi eld with some care. We make choices about where to cast our gaze 

next, what to think of next, and what knowledge from our long- term memo-

ries to bring to bear on our thoughts. Making these choices is challenging 

since, as we have to presume, they will also be based on the restricted amount 

of information available in our mind’s eye.

WORLDLONG-TERM
MEMORY

Figure 7.1 Th e mind’s eye is shown occupying a meta phorical pinhole between 

two funnels, one facing the world, the other the individual’s long- term mem-

ory. We regard the mind’s eye as a computational device that contains the in-

formation of which an individual is conscious at any time. Th e basis of learning 

is the data that streams through the mind’s eye.
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Th e mind’s eye therefore can be viewed as the focus of an information 

funnel between the world and the thinker. It is a two- way funnel that re-

stricts information fl ow from the outside world as well as from the long- 

term memory. It corresponds roughly to information we are conscious of, 

but may include more. It summarizes each experience succinctly enough so 

as to make both computation on it and learning from it tractable. Th is suc-

cinct summary is informed by both the external input and the internal 

long- term memory. Th e succinctness of the description is important for 

addressing complexity. By permitting learning, it also addresses brittleness.

But most crucially, the mind’s eye addresses both semantics and ground-

ing by defi ning the arena to which all learned knowledge refers: our learned 

knowledge is derived from real- world experience, but only aft er fi ltering, 

and only to the extent that it is ever represented in the mind’s eye. Our 

learned generalizations have validity (in the PAC sense) for the distribu-

tion of the contents of our mind’s eye that is generated as we go through 

our experiences. Th is then is the semantics and grounding we ascribe to 

cognition.

7.8 Robust Logic: Reasoning in an Unknowable World

We are approaching the goal of describing the system of robust logic that 

addresses the four challenges to reasoning. To review, any such system that 

is to model cognition needs to satisfy two requirements:

 (i)  All the learning and reasoning pro cesses need to be computationally 

feasible, in the sense of being polynomial time in the appropriate pa-

ram e ters. Th e learning pro cess needs to be robust in the PAC sense, 

as opposed to being brittle, so that any errors in the knowledge can 

be reduced aft er suffi  cient further exposure to the environment to 

which the knowledge refers. Th e learned knowledge needs to have 

clear semantics and grounding.

(ii)  Reasoning needs to have a principled basis, in the sense that if two 

pieces of knowledge each having some PAC accuracy guarantees are 

applied in succession, then any conclusion so derived should inherit 

some accuracy guarantees also.

To address these requirements, we have the mind’s eye, which we shall 

now discuss a little more formally than we have so far. Let us call the contents 
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of the mind’s eye at an instant a scene. A scene contains a fi xed number, say 

twenty, of undiff erentiated tokens, denoted by t, . . .  , t, and there is a fi xed 

set of relations that may hold for various subsets of the tokens in a scene.

Each token can be associated temporarily with anything that our mind’s 

eye is then contemplating. Th e relations come from a fi xed set that the sys-

tem knows about at the time. Suppose that in a par tic u lar scene the relation 

“elephant” is true for t, the relation “peanuts” is true for t, and the relation 

“likes” is true for the pair t, t, in that order, meaning that the elephant rep-

resented likes peanuts. Th ese three relations applied to these tokens would 

represent the contents of the mind’s eye at one instant, as illustrated on the 

left - hand side of Figure 7.2.

Robust logic has mechanisms for learning and reasoning. Th e novelty is 

that learning and reasoning will be based on the same semantics, in par tic-

u lar PAC semantics. Th at is the key.

In classical logic a rule would be written as

∀t ∀t elephant(t) and likes(t, t) → peanuts(t).

Th e ∀ symbol again means “for all.” Th e statement would be interpreted to 

mean that for any two things t and t, if the fi rst is an elephant, and the fi rst 

likes the second, then it follows that the second is peanuts. In other words, if 

an elephant likes something then that thing is peanuts.

sells

gives

money

elephant
likes

peanuts

t2

t4

t3

t1

t2

t1

Figure 7.2 Two scenes. Th e left - hand panel is discussed in the text. Th e right- 

hand panel is a little more complicated, and shows a transaction where a 

 person t sells an object t to another person t and is given money t by t in 

return.
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Unfortunately, this kind of semantics is somewhat alien to PAC learning. 

One reason is that this logical statement is only a one- way implication. It 

does not intend to imply that being a peanut necessitates that all elephants 

like it. However, when learning a concept, we want a two- way implication— 

the learned concept should be a good approximation of the target concepts 

both when the concept is true and also when it is false. For this reason we 

shall need to learn rules of the form

“complicated condition” ≡ peanuts(t),

where the ≡ symbol denotes such an equivalence, or two- way implication. 

Note that these equivalences can be used for reasoning in exactly the same 

way as the logical implications. Whenever the left - hand side is satisfi ed, we 

can deduce that the right- hand- side assertion peanuts(t) also holds, at least 

probably.

Now one advantage that machine learning off ers is that the “complicated 

condition” in rules like the one above can be arbitrarily intricate, as long as 

it can be acquired by learning. In that spirit, we shall allow rules of the gen-

eral form

F([∃t elephant(t) and likes(t, t)], . . .  . ) ≡ peanuts(t),

where the function F is from a class C of functions that is PAC learnable and 

its arguments are certain restricted expressions to be described later. In this 

instance the fi rst argument of F asserts that there exists (∃) something (t) 

that is an elephant and likes (t). Th e intention of such a rule is to predict for 

any par tic u lar scene whether the set of tokens named on the right- hand side 

( just t in this example) has certain properties, such as that of being peanuts.

For each word variant in the dictionary, for example peanuts, we can 

imagine having a rule with that word variant on the right- hand side. Th e 

left - hand side will amount to an approximate defi nition in terms of other 

words. More concretely, the left - hand side of each rule will express a crite-

rion on scenes for the concept on the right- hand side to hold. Th e left - hand 

side may be very complicated and would typically enumerate all common 

conditions to each of which the answer “peanuts” is a reliable one. In this 

example one of the many such conditions may be “What to say if asked what 

elephants like to eat.”
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In rules of this general form, the left - hand side will be learned from ex-

amples in the PAC sense. Th e learned function F may be complicated— the 

conditions that provide evidence for something being a peanut may be mul-

titudinous and complex. No human needs to be consciously able to describe 

it. All that matters is that the function F be from a learnable class C, in 

which case even large ugly expressions that capture all common forms of 

evidence of peanuts can be learned, both by computers and brains. It is not 

implausible that our brains are full of such circuits. Aft er all, it is important 

for humans to take a position very fast, in a few hundred milliseconds, on 

whether what we are seeing is a peanut or a tiger.

Robust logic is defi ned so that rules can be learned and reasoned with in 

polynomial time. A persuasive candidate for the learnable class C appears to 

be the following. Th e left - hand sides are defi ned to be the class of functions 

that can be expressed as linear separators, so as to be learnable, but where 

the variables now are in de pen dently quantifi ed expressions (IQEs) such as 

“∃t elephant(t) and likes(t, t).” Th is last example is an instance of a schema 

that consists of one ∃ (“there exists”) symbol and is the conjunction of two 

relations, one with one argument and the other with two, with one token 

shared between the two and the other quantifi ed. Put a diff erent way, we 

obtain other members of the same schema from this instance by substitut-

ing any other relations for elephant( ) and likes( , ), provided they have the 

right number of arguments.

IQEs have the following two contradictory aspects. On the one hand, 

they are quite powerful in being able to express complex relationships 

among objects in a scene. On the other hand, they are simple in that given a 

specifi c scene, such an IQE will be either true or false for that scene, and it is 

easy to determine which one is the case. For that reason we can treat each 

IQE as a Boolean variable that for any example scene takes value either 0 

or 1. In this way we can treat IQEs as features in a standard PAC learning 

setting and use what ever learning algorithm we like. For example, we can 

interpret the Boolean values 0 and 1 as numbers and use the perceptron 

algorithm with these IQEs as features.

We can have IQEs based on more general schemas than the one illus-

trated, with, say, three or four relations rather than two. However, that could 

incur much higher computational costs in learning and reasoning. In 

 par tic u lar, if we use a schema but have no information about which of the 
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IQEs defi ned by it are relevant, then we have to entertain them all during 

learning. Th is consideration limits the size of the schemas that are useful in 

practice.

Where we are heading  here is the following. Learning will be done by a 

conventional learning algorithm, such as the perceptron algorithm, but the 

variables will now be these IQEs. Reasoning on any one scene will be done 

by invoking any rules whose left - hand sides are satisfi ed by the scene, updat-

ing the scene with the relations in the right- hand sides of those rules, and 

repeating this pro cess as appropriate.

Th e reader might be asking by now: But what does this notation mean? 

What is the quantifi cation over? Does the ∃ mean “there exists somewhere 

in the universe?” Does the ∀ mean “for every object on Earth?” No. Either 

would violate our desire for grounding. Th e symbol ∃ means simply exis-

tence in the one scene in question, and ∀ means universal for every object 

in  that one scene. In other words, to make the IQE “∃t elephant(t) and 

likes(t, t)” true for token t in a par tic u lar scene, there must exist some token 

t in that scene such that the relations elephant(t) and likes(t, t) hold in the 

scene. Similarly, the ∀ symbol denotes all objects in the scene, not the 

universe.

In general, several variables can be quantifi ed, some existentially (∃), and 

some universally (∀). However, the quantifi ers in the diff erent IQEs have to be 

interpreted in de pen dently of each other. Th is means that one cannot assert di-

rectly that there exists one token that satisfi es two IQEs simultaneously. If one 

wants to assert that, then one has to extend the allowed schema to allow the 

needed combination of the original two IQEs as a single IQE of possibly double 

the size, and to accept the greater computational costs that would follow.

Th ese defi nitions are construed so that, given the left - hand side of a rule 

and a par tic u lar scene, one can evaluate which IQEs are true and which are 

false for that scene, and hence determine whether the left - hand side holds 

for that scene. In other words, one can determine whether a rule applies to 

a scene from information in that scene. No other knowledge is required.

Once we are in this position, we can use any conventional learning algo-

rithm for the chosen learnable class. If it is the class of linear separators, 

then we may use the perceptron algorithm. Our method of generating all 

possible IQEs for a fi xed schema (i.e., by replacing elephant with any of the 

other words allowed) creates large but still polynomial numbers of IQEs.
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It is important that the number of examples needed be not excessively de-

pendent on the number of such IQEs, most of which can be expected to be ir-

relevant for any one natural concept. Fortunately, as mentioned in Section 5.11, 

there exist learning algorithms that are attribute- effi  cient in the sense that 

the presence of large numbers of features that are irrelevant does not incur 

inordinate costs. In par tic u lar, the Winnow algorithm can learn disjunctions, 

using a number of examples that grows only logarithmically, rather than lin-

early, with the number of irrelevant features.

We must not lose sight of the fact that the purpose of the rules is to make 

predictions on examples not previously seen. Given a scene that specifi es 

some relations on the tokens, we would like to be able to predict what other 

relations hold also. In robust logic we shall do this by applying those rules 

whose left - hand sides hold for that scene. We deduce that the relations on 

the right- hand side will then also hold for par tic u lar tokens in the scene, 

at least with high probability. We can invoke several rules in sequence in a 

chain in order to successively fi ll out the picture of what is implied by the 

given information. If one is told simply that it is raining outside, one can 

make several deductions about what  else is probably implied using one’s 

database of common sense knowledge. Robust logic is formulated so as to 

make such predictions have some guarantees on their accuracy.

Th e technical content of the robust logic system can be summarized as 

follows. Scenes, which formalize the contents of the mind’s eye, occur ac-

cording to a natural probability distribution that refl ects all the complexi-

ties of the world, as perceived by the individual to whom that mind’s eye 

belongs. Th is distribution can be arbitrarily complex, and the individual 

need not know anything about it. Nevertheless, rules can be learned from 

examples drawn from that distribution that will be reliable on new exam-

ples from the same distribution. (Th e possibility of this kind of learning is 

the main content of computational learning theory, which we have described 

in Chapter 5. Even in a world too complex to fully describe, rules that express 

learnable regularities can be acquired.) Th e added content of robust logic 

over pure learning theory is that it provides a way of reasoning by chaining 

the learned rules, so that whenever the constituent rules have some guaran-

tee of accuracy, so will also the predictions made. All this is achieved with 

computationally feasible resources and with controlled error.

As compared to the standard machine learning framework, extra com-

plexity burdens are imposed by the fact that robust logic manipulates multi- 
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object scenes (i.e., the mind’s eye contains multiple tokens— for instance, 

one for an elephant and a second for peanuts). It is this complication that 

 necessitates the use of IQEs for keeping the computations feasible.

7.9 Thinking

Whether we use robust logic as a basis for a computer implementation of 

a  “thinking machine” or as a basis of thinking about human cognition, 

we need to ask more concretely how the information in the mind’s eye— 

corresponding to Galton’s notion of “ideas . . .  within my full conscious-

ness,” as we quoted him earlier— are to be manipulated.

First, how are the contents of working memory examined and acted on in 

any such system? In the fi rst instance the answer is simply the following. 

Given a par tic u lar scene, the learned rules in long- term memory are exam-

ined, and those whose left - hand sides satisfy the scene and therefore apply 

to it are selected. Th e scene is then modifi ed so that the predictions made by 

the right- hand sides are added to the scene.

Second, how are new contents brought into working memory chosen? For 

example, when making a purchasing decision, it may be useful to assign a to-

ken for “price,” if there is not one already, so that in reasoning about whether 

to make the purchase that notion could enter into the judgment. For this 

we may extend the syntax of the rules to allow a new kind of operator on the 

right- hand side for co- opting tokens not currently employed in the scene 

and imposing the newly desired relations on them.

Th ese are just two components of how such a mind’s eye might be man-

aged. Th ere are several other aspects that may also be critical to its eff ective-

ness. For example, we also need mechanisms for deciding which tokens to 

reassign to new roles as the system moves on with its thoughts. Any system 

that incorporates robust logic will need some management architecture that 

encapsulates some such policies.

For learning and evolution I claimed in previous chapters that there  were 

computational models that are robust under variation. I do not have a basis 

for making this claim for the phenomenon of intelligence as we generally 

understand it. Rather, I claim that any understanding of intelligence will 

need to take a principled view of the criteria I enumerated for robust logic, 

and that robust logic suggests a principled and feasible way of realizing them. 

While there may be many kinds of intelligence, some minimum ability to 

reason from learned information, with all the uncertainties that that entails, 
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has to have a role. Furthermore, any reasoning system for the theoryless, 

including the human system, will suff er from the same frailties as does 

our  robust logic. Chaining together beliefs that we believe to be probably 

approximately correct can be justifi ed, but the conclusions will also be only 

probably approximately correct, and the longer the chain of reasoning the 

larger the errors that we shall have to accept.

Th is concludes our formulation of the three phenomena of learning, evo-

lution, and reasoning from learned data, in terms of ecorithms. Ecorithms 

comprise only a subset of the computations that Turing universal machines 

can execute. But up to Turing’s time it was this subset that had domination 

on Earth.





Chapter Eight

Humans as Ecorithms

No, I’m not interested in developing a powerful brain. All I’m 

aft er is just a mediocre brain, something like the President of 

the American Telephone and Telegraph Company.
Attributed to Alan Turing

8.1 Introduction

Science, whether of nuclear reactions or the impact on health of smoking, 

does not dictate how it should be applied. Its relevance needs a separate, if 

theoryless, discussion. Scientists are justifi ed and perhaps obligated to spec-

ulate on the broader relevance of their work. Th is is the excuse that justifi es 

what follows  here.

Th e previous chapters have expounded the thesis that a decisive determi-

nant of life is the ecorithmic relationship between living organisms and 

their environment— life coping with its environment by means of learning 

mechanisms. In the remaining chapters I shall try to provide a personal, 

and alas theoryless, answer to two questions: Can all the complexities of life, 

intelligence, and culture that we witness on Earth be explained by this hy-

pothesis, and do any consequences of general interest follow from it? Neces-

sarily the discussion will be much more speculative than before.

One diffi  culty with making this discussion more theoryful is that the 

fundamental ecorithms used in biology have not yet been identifi ed. A 

major motivation of our study, of course, is exactly to encourage further 

work toward fi lling those gaps. Once these ecorithms are better understood, 

the topics we are about to discuss will become more amenable to scientifi c 

analysis.
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In the meantime there is a predicament. Until now I have been discussing 

theories of computation and learning, which I regard as scientifi c. As I move 

on I get into more dangerous territory because I will also be making state-

ments about what is currently theoryless. One of my strongest conclusions 

will be that one should be extremely skeptical of discussions that are en-

tirely about the theoryless, because little justifi ed meaning can be ascribed 

to them. I need to be careful not to fall into that intellectual tar pit myself. If 

I manage to perform this feat, it will be by keeping some science always in 

sight, in the sense that I try to relate important but theoryless questions to 

the theory of learning.

8.2 Nature Versus Nurture

A widely debated but still unresolved question is how much of human be-

havior is determined at conception or birth, and how much by life experi-

ence; whether it is that ge ne tic diff erences among individuals or groups are 

decisive, or that humans are so adaptable that life experience aft er birth is 

all determining.

Defi nitive answers have proved elusive. Humans are remarkably train-

able and educable aft er birth. Stark diff erences in per for mance among indi-

viduals and groups on mea sur able tasks such as math tests are easy enough 

to fi nd. Experiments or surveys that detect such diff erences are sometimes 

highly reproducible. However, it is usually open to interpretation whether 

the diff erences found are relevant to this debate.

Th e nature versus nurture issue would seem an unlikely diffi  culty for a 

computational theory. Surely, in an electronic computer there is no such 

problem. It is clear what your new computer’s capabilities are at the moment 

it is delivered to you. Th ese capabilities ought to be easy to separate from 

subsequent enhancements, such as added soft ware or hardware, or from 

running a learning algorithm that learns to recognize your voice.

An ecorithmic viewpoint is diff erent, however, from the caricatured 

computer just described. Instead, it corresponds to the case in which your 

computer was itself created with the aid of a learning pro cess before you 

purchased it, and it learned more and more knowledge during your sub-

sequent own ership. If the learning pro cesses used before and aft er your 

purchase  were essentially of the same nature, then it may be truly problem-

atic, aft er the fact, to reconstruct what the machine’s capabilities had been at 

the moment of purchase. What if you had bought a used computer that had 
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been trained by its previous own er in a similar way as you train yours? 

What if you buy a dog and try to diff erentiate between the infl uence of the 

previous own er and you?

I suggest that the source of diffi  culty of the nature- versus- nurture prob-

lem for humans is exactly this. Th e evolution pro cess before conception and 

the learning pro cess aft erward are just too similar to necessitate or impose a 

simple interface at which they can be diff erentiated. Consider the absurdity 

of trying to distinguish which parts of a person’s character can be attributed 

to experiences before their 51 ⁄2th birthday, and which aft erward. Similarly, 

the moments of conception or birth are not overarching watersheds. When 

we are conceived or are born, we already have many important things half- 

learned. Th e question of nature versus nurture fails because it imposes an 

almost arbitrary instant into a continuum of change.

8.3 Naïveté

Earlier I described the notion of learnable target pursuit, an aggressive strat-

egy for pursuing every possible opportunity for learning that the environ-

ment provides. Whichever concepts are computationally learnable with 

respect to the concepts that are already recognized as features will be learned 

if the environment provides appropriate examples. I suggested that our cog-

nitive system is wired for doing this.

A system so wired is not without its shortcomings. A creature constantly 

on the lookout to assimilate any and all learnable regularities is highly fal-

lible. Th e pitfalls are the same as when interpreting statistical information 

generally— the data may be unrepresentative or insuffi  cient, or statistical cor-

relation may encourage us to assume unwarranted causation. Th e adage that 

“there are three kinds of lies: lies, damned lies, and statistics” expresses a 

fundamental trap into which such a cognitive system may easily fall. In par-

tic u lar, our aggressive algorithms for learnable target pursuit will be a little 

naïve when dealing with unnatural or adversarial sources of data.

To put this in more technical terms, in PAC learning the environment 

is regarded as neutral. It is neither trying to help us learn faster, as a be-

nevolent teacher would, nor is it adversarial in seeking to confuse or delay 

our learning. Th e physical world seems to be essentially neutral in this 

sense. It is therefore plausible that such a neutral setting for learning is the 

appropriate one in which to consider how evolution has solved basic phys-

ical problems, such as locomotion and vision. No benevolent source was 
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apparently available to speed up learning, and no adversarial one to im-

pede it.

Our primary learning instincts will then have evolved to respond to the 

world as if it  were neutral, and to take at face value and as typical all the 

 information found therein. As we have seen, a benevolent person, such as a 

parent or teacher, can take advantage of this situation by presenting us with 

information that drives our hard- wired learning algorithms to the desired 

generalization especially quickly. On the other hand, an adversarial entity 

can mislead us, by presenting information that will quickly lead our algo-

rithm to a false generalization.

When we meet a new person, we are inclined to believe that the behavior 

we see is typical of their behavior and not a deceitful act. When we go to a 

restaurant, we are inclined to believe that we are getting a meal typical of 

that restaurant. Th e unrelenting pursuit of learnable targets and the predis-

position to view the masses of information we pro cess as neutral make us 

easy victims of misleading coincidences or deceit.

Th is phenomenon is pushed to the extreme when we learn from a single 

example. It is reasonable for a child to be trusting when learning concepts 

from books and not to be constantly on guard that the examples shown, of 

elephants or what ever, are unrepresentative. Yet with this over- eagerness to 

take data as representative, we may easily be driven to wrong conclusions with 

the smallest of manipulations. One negative word dropped about a person we 

little know may infl uence our view of that individual permanently.

8.4 Prejudice and Rush to Judgment

A related pitfall arises from the fact that we sometimes have to make deci-

sions fast. Having a circuit that in any situation tells us instantly whether or 

not to run away is vital. Although the output of such a circuit could provide 

information for further extended deliberation at some moment of ease, its 

primary function will be a yes/no recommendation as to whether to run in 

some stressful situation. Unfortunately, the need to quickly decide whether 

or not to act may give our circuits a tendency to rush to judgment on scant 

information. By scant information I mean that it would be insuffi  cient to 

provide a confi dent prediction of the future even in a neutral world. Th is 

is not to say that scant information never warrants action, however; it cer-

tainly does if the alternative would have grave consequences. When walking 

in grizzly country, one should take note of growling in the undergrowth.
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Th ere may be additional reasons why learning algorithms may take a 

position long before there is overwhelming evidence. Th e perceptron algo-

rithm we described earlier was fi rst proposed because its step- by- step pro-

cesses appear well suited to neural systems. It has some additional properties 

that are relevant  here. In current terminology we would call it an online 

 algorithm in the sense that aft er any number of examples, as few as one or 

even none, it takes a position on the next unlabeled example, classifying it as 

positive or negative. If our brains have such online algorithms wired in, 

which I believe they have, then at any instant they will have a tendency to 

take positions on every question. In other words, they are wired to rush to 

judgment.

Rushing to judgment may be to our overall benefi t in a neutral world. We 

no doubt make strong judgments of individuals aft er one meeting, and of 

restaurants aft er one visit. Th is eagerness to prejudge based on scant evi-

dence is, I believe, a fundamental aspect of our nature, a consequence of 

having a decision- making system capable of responding to even the least 

information. We are better at making decisions than in evaluating the prob-

ability of their correctness or in justifying our actions in terms of the evi-

dence. Th is would refl ect the relative ease of PAC learning yes/no questions, 

as opposed to these more complex tasks.

We may, in fact, carry this trust even further. Besides making judgments 

based on our own experience, we may also be unreasonably receptive to 

adopting the beliefs and prejudices of others, perhaps assuming that they, or 

perhaps a third party, had acquired the beliefs in question from data just as 

we would have. Th is behavior may be an eff ective strategy in a world that 

allows facts and statistics to be taken at face value, but it is a severe weakness 

in the presence of adversaries and entities with agendas.

Recently I got into a taxi in Philadelphia and within a minute the driver 

asked: “Are you a mathematician?” I said: “Why?” He explained: “Mathema-

ticians either have no hair or their hair sticks up.” Apparently he had stud-

ied some mathematics at university. At least his prejudice on this matter did 

have some basis in personal experience.

8.5 Personalized Truth

I have emphasized that PAC learning off ers a theory of how people all over 

the world can arrive at similar notions from diff erent personal experiences. 

Th e explanation is that as long as humans have a shared learning algorithm, 
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and as long as the examples they see are of the same concept, then each per-

son can learn from examples labeled by others who had learned that concept 

previously. It is not necessary that the actual examples seen by individuals 

around the world be the same. However, PAC learning has some character-

istics that impose some evident limitations also. In diff erent parts of the 

world the same word may have diff erent meanings, or the distribution of 

examples may be diff erent. In these cases the Invariance Assumption would 

be violated, and shared meaning would not be achieved. Misunderstandings 

would result.

Th ere are pernicious obstacles to shared meaning even beyond those 

 inherent in diff erences in meaning and distributions. Th ese further impedi-

ments are imposed by the constraint of a limited mind’s eye interacting with 

an internal memory full of beliefs. We may all be looking at the same world 

through our mind’s eyes, but since we have much control of what informa-

tion to allow in, dependent on our beliefs, we may not all see the same world.

In the mind’s eye we pro cess not only the information coming from the 

outside, but also information internally retrieved from our long- term mem-

ory. When we listen to a po liti cal debate, we can each bring diff erent internal 

information to bear to our mind’s eye that will color the way we interpret the 

external input, and even choose diff erent sentences from the input to acknowl-

edge or ignore. Diff erences in our past experiences are not necessarily ironed 

out by a common present. Th e choice of which experiences to pro cess, and 

how, are personalized according to the contents of long- term memory.

Th e observation that diff erent individuals see the world diff erently is no 

more than a truism. What is off ered  here is a view of why it has to be this 

way: We must view the world through a limited mind’s eye— no more than 

a pinhole between the large world of our long- term memory, and the even 

vaster world outside— if the world is to be computationally learnable. Th at 

requirement has resulted in our having control of what information from 

the outside world we allow to impinge on our mind’s eye— through our de-

cisions of where to go, whom to believe, and what to look at— as well as what 

constructions and beliefs from our internal experience we project onto it.

Our long- term memory is fi lled with material fi ltered through our mind’s 

eye. Th e generalizations we have learned work well in making useful predic-

tions only for scenes typically encountered by our own mind’s eye. A cogni-

tive system that uses PAC semantics does need to achieve approximate 

internal consistency, and no doubt does so. Hence consistency of concepts 
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within one person is to be expected as a norm, and this may be viewed as 

personalized truth for that person. But this does not imply that there will be 

consistency of judgment among diff erent individuals.

8.6 Personal Feelings

Humans use words such as love, hate, pride, and guilt to describe feelings. 

Th ese words evoke understanding and responses from others. Words writ-

ten by one generation speak to another. Th ere is much shared meaning.

Personal feelings and opinions have reality, both in the brain circuits and 

in the actions of individuals. Talking about our opinions and feelings might 

be pleas ur able experiences and may be so justifi ed. But what other status 

can we ascribe to them besides the fact that they are real? Th e ecorithmic 

position on this is simply that, however real or strongly felt personal feelings 

and opinions may be, they have no status beyond merely being the outputs 

of circuits that compute the theoryless.

Given that humans are biologically almost identical, it is only to be ex-

pected that we have similar experiences of plea sure and pain. If the circuits 

in our brains are similar, then it is not surprising that if we report plea sure 

or pain given an experience, then other individuals will understand us sim-

ply because their circuits are similar. It is not surprising then that there 

would be widely shared notions regarding basic ethics. Of course we are not 

exactly identical, and hence these notions may not be quite the same for dif-

ferent individuals. But the idea that we have some shared notions of plea-

sure, pain, and ethics is only to be expected. Both the reality of personal 

feelings as well as the possibility of communicating about them with others 

are entirely consistent with the ecorithmic viewpoint.

Whether we can reason about our opinions and feelings, shared or other-

wise, is another matter entirely. I know of no basis on which we might jus-

tify applying any such pro cess and reaching certainty in any such theoryless 

area. Individually, we may be as justifi ed in fi ghting for our opinions and 

feelings, and acting on them, as anyone  else. But we should do both with 

caution and humility, since there seems no way of justifying the superiority 

of our feelings and opinions over those of others.

8.7 Delusions of Reason

A further consequence of one of the arguments in this book— namely, that 

when reasoning about theoryless concepts, the semantics of PAC learning is 
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the one that is appropriate— is that reason has its own limitations that are 

ignored at one’s peril.

Words in natural languages are applied in practice to naturally arising 

situations. Th ey owe their usefulness to their being understood consistently 

enough when used in their conventional senses. For example, words such as 

“conscious” refer, in the fi rst instance, to personal experience and feelings. 

One has to be struck that the level of consensus in how such words are 

 understood is as high as it is.

If we try to apply these words to thought experiments or artifi cial situa-

tions divorced from the natural contexts in which they had been learned, we 

enter the realm of the meaningless. Is a table glued to two chairs a table or a 

chair? Is a termite conscious? Can a computer have free will? Such questions 

are meaningless because the concepts the words describe have meanings 

only for the distribution of examples from which they have been PAC 

learned. No standing can be ascribed to them beyond that. Th us, the widely 

discussed question of whether a computer has consciousness if it faithfully 

simulates the changes in the brain of a human is of the same status as the 

question of whether an animal with two wings and a tusk is an elephant or 

a bird. Th ere is no reason why we should pay any attention to it. It is simply 

fallacious to apply PAC learned concepts, such as consciousness, to artifi cial 

situations that do not occur in the domain from which the concepts  were 

learned.

Unfortunately, standard logic, when applied to propositions expressed in 

En glish or any other natural language, off ers no end of opportunities for 

committing such a fallacy. Th is is particularly the case in philosophical dis-

course in which one attempts to gain insight by discussing thought experi-

ments that invoke unusual or marginal situations. For example, some 

counterarguments to the possibility of artifi cial intelligence have the follow-

ing form. A computer program with one instruction cannot possibly be con-

sidered conscious. But if we suppose that humans are each equivalent to a 

million- line program, say, and are conscious, then there must exist a mini-

mum number of lines that qualifi es for consciousness. Any specifi c such 

number is then argued to imply an absurdity.

As long as the notion of consciousness is used in the conventional infor-

mal sense, this argument is again meaningless. It may be true that, with re-

spect to the experiences that a human associates with consciousness, no 

one- line program is conscious. It may also be true that human brains can be 
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faithfully simulated by a million- line program. However, it does not follow 

that the human experience of consciousness can be used to classify any pro-

gram of intermediate length as being one or the other. For that reason we 

would consider this  whole line of argument to be fallacious— it wrongly as-

sumes that the notion of consciousness is theoryful in a sense in which it is 

not. (Of course, this is not the only way in which one might fi nd fault with 

the argument.)

An analogy in the realm of character recognition would be the problem 

of distinguishing between handwritten examples of the numerals 2 and 3. 

We may be highly confi dent in natural situations when classifying whether 

someone has written a numeral 2 versus a numeral 3. But it is easy enough 

to write a deliberately ambiguous fi gure intermediate between those numer-

als, designed to split the opinion of reasonable people equally. For such fi g-

ures it does not make sense even to ask the question.

Figure 8.1 Are these 2s or 3s?

Th e misplaced illusion of having reason on one’s side can arise not only 

in philosophical discussions of hypothetical situations. In all areas that are 

theoryless, including many of substantial everyday human concern, such as 

politics and religion, we are faced with the same dangers. We may be on safe 

ground when reporting on observable facts, and when interpreting statisti-

cal evidence. We are also individually competent in handling a wide range 

of learned theoryless generalizations in an internally consistent way. Th e 

problem arises when we go beyond this. If we attempt to apply reason by 

putting together two theoryless ideas, the robust logic described in the pre-

vious chapter off ers only a probably approximate justifi cation. I do not know 

of any more certain source of justifi cation. Treating as certain any predic-

tions about the theoryless, whether made via robust logic or any other 

known system, would be fallacious.

There are dangers in believing that something is theoryful when it is 

no more than an expression of personal feelings. Po liti cal belief systems 

have transformed nations, but when their time has passed it is diffi  cult to 
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 reconstruct how they could have gripped the imaginations of so many. 

Similar dangers arise in areas that look more quantitative and technical at 

fi rst sight. With hindsight, the various models of risk that dominated in 

the fi nancial industry prior to 2008  were not theoryful, but similarly only 

expressions of personal feelings.

A necessary, but not suffi  cient, criterion for a fi eld being theoryful, and 

appropriate for logical reasoning, is that substantial consensus among in-

formed humans can be reached regarding it. Currently in many fi elds of much 

human signifi cance no such consensus is in sight. Discourse in these areas 

may have value as communication of facts, as exchanges of personal views, 

or even as entertainment. Th e question arises, however, whether attempts at 

reasoning or other discourse in these fi elds have any further value.

Perhaps one of the most extreme expressions of confi dence in reasoning 

is the description of intellectual developments in Eu rope in the seventeenth 

and eigh teenth centuries as the “Age of Reason.” Th is seems curious nomen-

clature, given that in that era, humanity did not appear to increase its ability 

to reason. Th e main development was that some areas, such as mechanics, 

 were brought within the scope of science and the theoryful. Within those 

areas the application of reason proved powerful and eff ective, indeed, and 

those successes in science did inspire phi los o phers and others to attempt to 

apply reason to the areas that had remained theoryless. But whether these 

latter developments can be treated also as triumphs of reason seems open to 

debate.

8.8 Machine- Aided Humans

Th e circumstances that led to the fi nancial disasters of 2008 point us toward 

a second consideration— namely, how to approach the combined activity of 

human and computer. Financial and investment analysis is one area in which 

statistical tools are used extensively to analyze data, and this is also true in 

many areas of the social sciences. Th ese statistical tools, oft en in the form of 

packages of computer programs, act as artifi cial enhancements to the human 

ability to spot patterns in data. While the statistics of the data that the ma-

chine computes may be infl uencing the conclusions drawn, it is still the hu-

man who draws the conclusions. Hence, in such cases the combined activity 

of the human and computer may be viewed still as an ecorithm.

With this view, we can regard the use of statistical algorithms as very 

natural extensions of what our biological circuits do in learning. Such ac-
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tivities are laudable enough, enhancing as they do the powers of our natural 

ecorithms for coping with the theoryless. However, the caution that is ap-

propriate for any theoryless decision making remains even if it is machine 

enhanced. Th e resulting decisions are still likely to be theoryless. Enhanced 

statistical tools do not make a theoryless domain theoryful, as both econo-

mists and fi nanciers have cause to appreciate. Any decisions that come out 

of this pro cess will need to be treated with the same caution. Reasoning about 

any fi ndings that are made will have the same limitations that we have dis-

cussed for any theoryless decisions. Unless there is evidence to the contrary, 

the conclusions drawn from statistical analyses should be viewed simply as 

the opinions of the analyst, augmented as the analyst’s circuits may be by 

artifi cial means.

I am not arguing that the most advanced theoretical methodologies known 

should not be employed, but only that their limits be fully acknowledged. 

In  areas of the theoryless, including the social sciences, human decision 

making, even when augmented by the most elaborate intellectual aids, is 

still subject to the uncertainties that are inherent in PAC learning.

8.9 Is There Something More?

Earlier chapters had presented ecorithms as a mathematical fi eld of enquiry, 

and suggested that it off ered an unevadable key to understanding the phe-

nomena of learning, evolution, and intelligence. In this chapter I have re-

viewed some consequences of this suggestion. Th e fi nal question that remains 

is whether this approach is missing something fundamental with respect to 

the human mind.

Th e view of cognition given  here may be summarized as follows. Cogni-

tive concepts are computational in that they have to be acquired by some 

kind of algorithmic learning pro cess, before or aft er birth. Cognitive con-

cepts are equally statistical in that the learning pro cess draws its basic valid-

ity from statistical evidence— the more evidence we see for something, the 

more confi dent we will be in it. Th ere is an interface— our mind’s eye— 

between the world and our long- term memories. We, as represented by our 

circuits, have some control of the information fl ow through this mind’s eye, 

which therefore cannot be viewed as objective or neutral. Th e circuits in our 

ner vous systems that comprise our database of knowledge are the results 

of many successive acts of evolution and learning. In other words, our 

knowledge is accumulated, to echo Darwin, in a series of successive, slight 
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modifi cations, each one having the semantics of learning. An instance of 

reasoning consists of applying these circuits, within the mind’s eye, to what-

ever situation is at hand. Our neural systems evolved to cope with the theo-

ryless, but we use the same circuits when we make theoryful decisions.

Can the human mind be based on something quite as simple as this pic-

ture suggests? I argue that the answer is yes, that there is little evidence that 

in order to explain human behavior mechanisms of a radically diff erent na-

ture are needed. Th ose who insist otherwise may have an overly optimistic 

view of the capabilities humans actually possess. When new problems arise, 

we are not that impressive at solving them. Any solutions found can usually 

be traced to solutions to similar problems encountered earlier.  Were the re-

sponses to the fi nancial crisis of 2008 impressive as leaps of the human intel-

lect? I, and many others, would argue not. Th e responses implemented  were 

variants of responses used during previous similar episodes. Th ey may have 

been ultimately eff ective, but they do not off er evidence of an out- of- this- 

world quality of mind. Rather, they confi rm that in order to tackle complex 

theoryless problems learning from the past is as good as we know.

Th e reader may choose to look to other human activities to fi nd evidence 

of cognitive mechanisms of an entirely diff erent quality. I am skeptical that 

such evidence can be found. Th is book celebrates science. Th e history of sci-

entifi c discovery reveals many brilliant moments. Can we fi nd evidence there 

of the insuffi  ciency of ecorithms for explaining our intellects? I suspect not. 

As I have pointed out, science has stunning unities within it. Physical scien-

tists have for centuries been exploring mathematical formulae that express 

predictive physical laws. Th ere have been plenty of such formulae to fi nd, and 

they have shared many similarities.  Here I have been suggesting that the 

somewhat diff erent direction taken by Turing will off er the path for under-

standing a  whole host of other currently ill- understood phenomena.

Indeed, as impressive as it may initially seem, the history of science gives 

us only limited cause for self- congratulation. Newton, Darwin, Einstein, 

and Turing posed new questions and pursued them relentlessly. While one 

can only marvel at the insightfulness of their choice of problems and the 

intellect and per sis tence they applied, their success would not have been 

possible without the yet- to- be- explained unities that pervade their science. 

Even as the universe seems a neutral teacher, we benefi t from its unities, 

which make the task of scientifi c discovery more tractable than we in our 

vanity might like to think.
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Chapter Nine

Machines as Ecorithms

Why is artificial intelligence difficult to achieve?

It is customary, in a talk or article on this subject, to off er 

a grain of comfort, in the form of a statement that some 

 particularly human characteristic could never be imitated by 

a machine. It might for instance be said that no machine 

could write good En glish, or that it could not be infl uenced 

by sex- appeal or smoke a pipe. I cannot off er any such 

 comfort, for I believe that no such bounds can be set. But I 

certainly hope and believe that no great eff orts will be put 

into making machines with the most distinctively human, but 

non- intellectual characteristics such as the shape of the 

 human body; it appears to me to be quite futile to make such 

attempts and their results would have something like the 

 unpleasant quality of artifi cial fl owers. Attempts to produce 

a thinking machine seem to me to be in a diff erent category. 

Th e  whole thinking pro cess is still rather mysterious to us, but 

I believe that the attempt to make a thinking machine will 

help us greatly in fi nding out how we think ourselves.
Alan Turing

9.1 Introduction

I have always had some disquiet about the term “artifi cial intelligence” and 

only rarely identifi ed myself as working primarily in that area. However, I 

remember the fi rst time I met Edsger Dijkstra. He was noted not only for his 
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pioneering contributions to computer science, but also for having strong 

opinions and a stinging wit. He asked me what I was working on. Perhaps 

just to provoke a memorable exchange I said, “AI.” To that he immediately 

responded, “Why don’t you work on I?”

He was right, of course, that if “I” is more general than “AI,” one should 

work on the more general problem, especially if it is the one that is the natu-

ral phenomenon, which in this case it is. In fact, that is just what I believed 

I had been doing all along. In this book essentially everything said up to this 

point that applies to artifi cial intelligence also applies to intelligence. But we 

all know that intelligence in its natural and artifi cial forms are not necessar-

ily the same. Th is chapter discusses the diff erence.

Previous chapters have sought a computational view of learning and in-

telligence that is explicit enough that there would be no inherent problem 

in simulating either by computer. So, you probably feel justifi ed asking, 

what has stopped us?

One problem is that, although the practice of machine learning lends 

credence to the notion that learning is central to intelligence, the learning 

algorithms that are hard- wired in the human brain are yet to be identifi ed. 

Nevertheless, machine learning algorithms originally inspired by their nat-

ural counterparts are already in widespread use, and useful regularities are 

being found by existing machine learning algorithms in all kinds of data, 

whether generated artifi cially or by nature. More broadly, although the eco-

rithmic approach sheds light on the problem of emulating human intelli-

gence by machine— it suggests that a learning- centered approach needs to 

be used in the eff ort— it also points to some serious obstacles. One of the 

chief goals of this chapter is to explain how the ecorithmic view gives a per-

suasive explanation of why artifi cial intelligence is proving so much more 

diffi  cult to achieve than expected. Th is may sound like an excuse, but no 

one can deny that a good excuse is badly needed.

9.2 Machine Learning

Faced with any task, a computer can either be programmed to handle it, or 

it can be made to learn how to handle it, or perhaps a combination. As we 

have seen, learning has a statistical aspect and for that reason cannot be 

made error- free. Compared with the possibilities of creating a faultless 

program for a task, the learning solution will always have this essential 

weakness. In applications where we know how to specify the exact out-
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come we want, it may be best to simply program it, assuming that we are 

able to do so.

Of course, we may not be able to program it for a variety of reasons. Learn-

ing becomes more powerful, and indeed indispensable, (i) whenever we can-

not specify explicitly the outcome we want, (ii) whenever we cannot specify 

exactly what the system that is to execute it knows already, or (iii) whenever 

we cannot get direct programming access to the system. When the system 

in question is a human, all three of these conditions hold, and we have no 

alternative to learning. When the device is a computer, conditions (i) and (ii) 

sometimes hold. Learning solutions then become desirable for computers 

also.

Machine learning is now an important and pervasive technology. Impor-

tant applications to date have been mostly of the fi rst category, where we do 

not know how to specify explicitly the desired outcome. One can also fore-

see applications of the second category, in which, as in robust logic, learned 

knowledge is added in successive layers, so that the possibility of specifying 

exactly what the system knows is quickly lost, even if it was there at the 

beginning.

Important application areas of machine learning are presented by the 

World Wide Web, where vast amounts of new information are created every 

day, and there is no hope that any single human, or even a group, can keep 

pace in understanding it. Detecting spam in email is an example. New 

sources of spam can appear every day. Th e labor of following every new 

kind, and manually incorporating ways of detecting it into email systems, 

would be prohibitive. Much more eff ective is the use of machine learning 

algorithms that learn some regularities that distinguish between email that 

users label as spam from email which they do not. Other applications enable 

search engines to rank Web pages, to determine which ones to show at the 

top of the page in response to a user’s search terms. Th e evidence of which 

pages people click on, when off ered alternatives, is invaluable information. 

Similarly, with online advertising, learning from the history of click- through 

rates on diff erent websites provides valuable information about where it is 

most profi table to place advertisements.

Other important applications include natural language pro cessing and 

computer vision, in both of which one is attempting to simulate human ca-

pabilities. In natural language pro cessing a basic problem is spelling correc-

tion. Within a text one may have the words desert or dessert. Humans can 



   |   probably approximately correct

usually determine which one is intended from nearby words, camel being 

suggestive of the former and meal the latter. One can attempt to automate 

this task of spelling correction either by programming it, or by learning. 

Simple machine learning approaches can predict accurately the correct 

choice when trained on correct sentences that contain the target words, and 

this latter approach has been winning in recent years, producing more ac-

curate systems. In the area of computer vision one critical task is to recog-

nize automatically what categories of objects are present in a picture.  Here 

again the current methods of choice involve machine learning algorithms.

Th e pervasive success of machine learning rests in signifi cant part on the 

eff ectiveness of a few recently discovered learning algorithms. One remark-

able innovation has been boosting, a generic technique for improving the 

per for mance of almost any basic learning algorithm. Its discovery arose 

from investigations into the robustness of the PAC learning model. PAC 

learning is defi ned to require the hypothesis to predict with arbitrarily 

small error. In the same spirit, one can also defi ne the notion of weak learn-

ing, which instead has the weaker requirement that the hypothesis predict 

just detectably better than random guessing. Th is would be a useful form 

of learning for gamblers for whom it is suffi  cient to predict a little above 

the odds. One can defi ne what it means for a class of concepts to be weakly 

learnable in this sense, and again one insists that learning succeed for every 

distribution since, as previously noted, learning algorithms that are special-

ized to a narrow range of distributions are not too useful.

Somewhat astonishingly, it can be shown that any such class that can be 

weakly learned for any distribution can also be learned for every distri-

bution in the strong standard sense! In fact, one can automatically translate 

a weak learning algorithm into a strong learning algorithm. Th e idea is to 

use the weak learning method several times to get a succession of hypothe-

ses, each one refocused on the examples that the previous ones found diffi  -

cult and misclassifi ed. Th e fact that the weak learning algorithm works for 

any distribution permits one to modify the distribution at each stage so as to 

achieve this repeated refocusing. Note, however, that it is not obvious at 

all how this can be done, since when we are presented with a new example 

to classify, we have no immediate way of knowing whether the previous 

 hypotheses would have got it right or wrong, let alone whether they would 

have found it diffi  cult. Nevertheless, as Robert Schapire showed in his PhD 

thesis in 1990, this can be done. Further, in subsequent collaboration, he 
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and Yoav Freund found a very simple and effi  cient way of achieving this, 

called Adaboost. Th eir method is widely used with a variety of standard 

learning methods playing the part of the weak learner. Boosting has been 

found to be a practical and generic way of improving the predictive accu-

racy of a wide variety of basic learning methods, oft en even when there is no 

proof that the methods used are true weak learners.

Besides generic methods such as boosting, a variety of more par tic u lar 

machine learning algorithms are also in widespread use. As we have men-

tioned before, PAC learning is a specifi cation of what needs to be achieved 

when learning, and is not ideological about how best to achieve it. An im-

portant empirical fi nding has been that simple algorithms with analyzable 

behavior oft en perform remarkably well.

Th e perceptron algorithm we have described is already a remarkably ef-

fective algorithm. As we observed, the restriction to linear functions can be 

removed by using nonlinear terms as features, but only by incurring corre-

spondingly higher costs in both computation and the number of examples 

needed. One eff ective way to have the power of a larger feature set without 

all the cost, for perceptrons as well as for some related methods, is called the 

method of kernels. Relative to the straightforward method, kernels can 

save substantially on computational costs, but not on the number of exam-

ples needed. Th e widely used support vector machine method follows this 

idea, but it chooses a separator that maximizes the margin (which we dis-

cussed in Section 3.7) rather than one chosen by the perceptron algorithm.

For certain problems even simpler methods can be highly eff ective. An 

example is the nearest- neighbor method, in which the labeled data items are 

simply stored and no hypotheses are ever generated. When a new item to be 

classifi ed arrives, it is compared with the stored items; the one that is nearest 

according to some criterion is identifi ed, and its label is predicted as the 

 label of the new item. Th e recent successes of language- translation soft ware 

can be attributed to the power of this technique. By examining enormous 

datasets of pairs of corresponding sentences in two diff erent languages, valu-

able information can be extracted about how a par tic u lar new sentence in 

one language should be translated in the other.

Orthogonal to the question of the choice of actual learning algorithm is 

the choice of basic features or variables to use. Good choices can yield more 

accurate predictions. For example, for a computer vision application, start-

ing with the brightness or color of individual pixels as features is always 
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possible but oft en does not give the best results. Starting instead with some 

programmed features that depend on a set of neighboring pixels, rather 

than just one, usually gives better results. Th e average brightness of a region, 

for example, may be more informative than the brightness of individual 

pixels. Biological systems are also known to use such higher level features, 

which presumably  were acquired through evolution, being too diffi  cult to 

learn from scratch by an individual. In computers the eff ectiveness of alter-

native sets of programmed features can be compared experimentally by try-

ing them out. As far as the learning algorithms themselves, there is a small 

set of methods that are generally eff ective for the many kinds of data that 

are encountered. Th e per for mance obtained from many of them can be 

 oft en further enhanced by boosting.

Machine learning has had striking successes for data from almost all 

sources. One illustrative example is data from the brain. Even though very 

little is understood about how information is represented or pro cessed in 

the brain, machine learning algorithms can be trained to make predictions 

about what a human is thinking on the basis of data recorded from the 

brain. When a person is viewing a word of text, information about whether 

the word refers to tools, animals, or buildings, for example, can be recovered 

from functional MRI images of the person’s blood fl ow in the brain. Th is 

recovery is achieved by standard learning algorithms applied to the images 

as examples and the categories of words as the labels. Th ese images consti-

tute a theoryless arena since we understand so little about how knowledge is 

represented in the brain. Yet these images apparently abound in regularities 

that can be learned. Th is is an excellent illustration of the fact that learnable 

regularities may be found even in the most complex and theoryless data.

In recent de cades machine learning has benefi ted enormously not only 

from the discovery of better algorithms, but also from much faster comput-

ers and more plentiful data. In fact, the availability of data on scales not before 

seen is a major new development in our civilization. Th e potential rewards 

of data mining on the scales at which it is now possible are im mense, and 

currently largely untapped. Th e success of machine learning technology on 

such a broad variety of tasks is strong evidence of the eff ectiveness of learn-

ing algorithms in areas relevant to human information pro cessing. It pro-

vides indirect support for the centrality of ecorithms for the even broader 

range of phenomena that we are claiming  here, such as for common sense 

reasoning.
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Can one easily tell in which applications one expects machine learning 

to succeed, and in which not? A minimum requirement, I would say, is that 

the distribution on which the system will need to perform well (the D in the 

defi nition of PAC learning) should be identifi able. Th is does not mean that 

one needs to be able to describe it explicitly. Quite to the contrary, it means 

merely that one can identify it unambiguously. One should, for example, be 

able to construct a database of typical examples such that if a system works 

well on that set, then it should work well also “in the fi eld” where success 

will be determined. If you want a system to play the game of Jeopardy!, for 

example, defi ning the general knowledge task in vague philosophical terms 

is not enough. Instead, you will need to identify a distribution of typical 

questions, perhaps from previous actual games. If you want to build a com-

puter system that can grade student essays well, you need to specify a dis-

tribution, say by the language, the topic, and the era in which the essay was 

written. You have to make some choices. If a dataset of typical instances can-

not be created, the prospects of training a computer to do well on the task 

are slim. If such a database of typical instances can be produced, then the 

prospects are much better, but not guaranteed. Failure may occur because 

the needed regularities are inherently hard to learn or beyond current capa-

bilities. Failure may equally occur because the information in the dataset is 

not suffi  cient for the task at hand. In the essay- grading case, for example, we 

may be stymied by the diffi  culty of acquiring all the common sense knowl-

edge that students know but that is nowhere written down.

9.3 Artificial Intelligence— Where Is the Difficulty?

Th e quest for machines that approach human competence in handling com-

mon sense knowledge has met with many disappointments. If humans 

manage to achieve this competence, surely it cannot be impossible to repli-

cate. Th e diffi  culties, however, appear to be at least substantial.

Th e source of the diffi  culty, I believe, is implicit in something we have 

discussed  here already in the context of the nature/nurture debate: the simi-

larities between the two pro cesses of evolution and learning. An individual’s 

cognitive system is the outcome of hundreds of millions of years of evolv-

able target pursuit, followed by several years of learnable target pursuit aft er 

birth. Turing talked about educating a computer as one would educate a 

baby. Th is sounds plausible as long as we can manufacture a computer with 

similar capabilities to a baby. Unfortunately, the state of a baby is the outcome 
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of evolutionary ecorithms and, with respect to our current understanding, 

is theoryless. Th ere is no reason to believe that the states of babies are easy 

to describe. Th e algorithms of evolution may be theoryful, but their results 

remain, from our perspective, theoryless.

If we had a good theory of which primitive features are computed by the 

human ner vous system at birth, then we could program a computer to com-

pute those primitives, and then perhaps educate the computer just like hu-

mans educate babies. If, however, the moment of birth is not a viable starting 

point for any such course of education, it is not clear whether there is any 

good place to start. In the worst case there may be no alternative but to start 

from the beginning of life, billions of years ago, and simulate all of evolution. 

Th is would be unfortunate, since the conditions and par tic u lar inputs that ac-

companied evolution over all those billions of years may be just too diffi  cult to 

determine for us ever to succeed in this.

One can hope for an intermediate solution, where a partial understand-

ing of human functionality at birth, or at some earlier stage of development, 

is suffi  cient. Th is may be our best hope. We would need at least a basic under-

standing of the functioning of the human vision system, for example, at that 

stage. Th ere is a lot of evidence that even this system is very subtle and leaves 

much learning to be done aft er birth. But even if the visual system is ame-

nable to such intermediate treatment, other domains may prove more diffi  -

cult. At the cognitive level, babies are more thoroughly prepared for life 

than was once believed. As indirect evidence, take the diffi  culty AI research-

ers have had in formalizing all the common sense knowledge we need to 

understand everyday life. In order to understand a novel many facts need to 

be known that are not stated in the novel; many are so obvious that they are 

nowhere stated in print. Th is is not merely a feature of complicated adult 

novels; it has been remarked that children’s stories require almost as much 

common sense knowledge as do novels written for grownups. Unfortunately 

for Turing’s dream, babies arrive miraculously well informed and well pre-

pared to be informed even better.

Th e question arises as to how humans acquire what ever they learn aft er 

birth that is nowhere stated explicitly. Of course, there is a range of possible 

modes, including vision, smell, taste, and touch, that bypass language. We 

have previously addressed the issue that such knowledge needs to be treated 

as learned knowledge so that all its uncertainties can be adequately ad-

dressed. Specifying this knowledge in any form, whether in its original 
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mode, or as described in words, is diffi  cult and beyond our current capabili-

ties. Th e more obvious the knowledge, the more diffi  cult it seems to identify 

how a human acquires it.

Turing addressed this question in a discussion of the capabilities of a 

computer that is “a ‘brain’ which is more or less without a body.” He ob-

served that the areas of game playing (such as chess), translation of lan-

guages, cryptography, and mathematics  were well suited to such a brain 

because these tasks require “little contact with the outside world”; it was cryp-

tography, he thought, that might prove “most rewarding.” Th is was highly 

prescient. Our computers encrypt automatically for all of us when com-

municating, and I at least have taken advantage of computers for the other 

three activities also. Th ese four areas Turing contrasted with a fi  fth, language 

learning: “Of the above fi elds the learning of languages would be the most 

impressive, since it is the most human of these activities. Th is fi eld seems 

however to depend too much on sense organs and locomotion to be feasible.” 

In these few words he had summarized an essential feature of the problem 

of acquiring common sense knowledge.

Leaving aside learning pro cesses aft er birth, what can we say about the 

problem of characterizing babies at birth? In order to understand the cir-

cuits of a baby, one could proceed by behavioral experimentation, observing 

babies under many diff erent external stimuli to learn what their response is. 

We would then be hoping to induce what these complex computational sys-

tems do from their behavior on various inputs. However, the negative re-

sults in learning theory reviewed earlier suggest that this avenue has its own 

diffi  culties. Unless the circuits are from a simple enough class, it may be in-

herently infeasible to perform this induction.

A fi nal, most extreme approach would be to use some yet unknown tech-

nology to copy the circuits of a baby cell by cell, or molecule by molecule, 

faithfully replicating all their functionality. As we saw in Section 3.6, it may 

be diffi  cult to deduce what a circuit does from its description. So even if this 

approach becomes feasible one day, it would not necessarily enhance our 

understanding.

Th e artifi cial intelligence challenge has always looked enticing as a scien-

tifi c problem because of the argument that it attempts only to emulate sys-

tems that already exist in nature. It is made diffi  cult, I believe, by the fact 

that the systems that exist are the results of learning over billions of years 

from experiences all explicit trace of which may have vanished. Th is is a 
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serious impediment as long as no fundamentally diff erent approach is dis-

covered for creating the same end result.

9.4 The Artificial in Artificial Intelligence

Th is brings us naturally to the question of what is diff erent or artifi cial 

about AI. Artifi cial intelligence is not artifi cial because the material basis of 

the realization is an artifact, like a computer, as opposed to biological. Th at 

cannot be so fundamental a characteristic— computation is indiff erent to 

the substrate on which it takes place. Also, AI is not artifi cial because its 

computational pro cesses are diff erent from nature. Th at also cannot be fun-

damental, since there is no impediment to emulating natural pro cesses arti-

fi cially. If there is a fundamental diff erence, then it must be in the way 

knowledge is learned from the environment. As I have argued, in nature the 

only way that knowledge is extracted from the world is through some kind 

of learning pro cess, and in this pro cess evolution over billions of years has 

had a dominating role. Th e diffi  culty of recreating the natural environments 

responsible for natural evolution may therefore be the most fundamental 

impediment to emulating natural intelligence. We may understand and be 

able to emulate all the algorithmic pro cesses involved and still not be able to 

emulate in technology the outcome of these pro cesses because the environ-

ments from which those algorithms learned are not reproducible.

Hence the variety of techniques currently under investigation in artifi cial 

intelligence may be viewed as attempts to replicate the outcome of the natu-

ral knowledge acquisition pro cess by other means. In some domains these 

techniques will be more eff ective than their natural counterparts. For exam-

ple, for playing chess and other games, computers conduct massive searches 

of game trees exploring millions of times more possible paths through a game 

than a human could. It is an artifi cial technique that happens to be more 

 eff ective for chess than its natural, very diff erent counterpart.

In Section 9.6 I will give some thoughts about how we might proceed in 

AI in light of what has been said. But fi rst I will consider a diff erent view of 

some central problems, and what ever insight they might hold for us.

9.5 Unsupervised Learning

An interesting task that I have not discussed so far is so- called unsupervised 

learning, learning where the examples come with no labels. Th is has been 

oft en presented symmetrically with supervised learning as a complemen-
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tary phenomenon. Superfi cially there is something persuasive about such a 

complementarity. At the beginning of life on Earth surely no one was label-

ing examples. Consider the vision systems found in biology. Th ey are be-

lieved to be well tuned to the natural scenes found on Earth. For example, 

natural objects usually have sharp boundaries and do not smoothly meld 

into each other. Th e human vision system is good at detecting these bound-

aries. Was this knowledge about natural scenes acquired by supervised or 

unsupervised means?

PAC learning as we have described it is a model of supervised learning. 

One of its strengths is that it is essentially assumption free. Attempts to for-

mulate analogous theories for unsupervised learning have not been success-

ful. In unsupervised learning the learner appears to have to make specifi c 

assumptions about what similarity means. If externally provided labels are 

not available, the learner has to decide which groups of objects are to be cat-

egorized as being of one kind, and which of another kind.

I hold the view that supervised learning is a powerful natural phenome-

non, while unsupervised learning is not. So how do I explain all the learned 

knowledge in our biological circuits that cannot have been obtained by ex-

plicit labeling? My answer is evolution. Evolution in my formulation is just 

a form of supervised learning, where the labeling is all of one kind— fi tness. 

To develop a vision system to distinguish friend from foe in the twilight, 

supervised learning was available— the target simply being vision systems of 

greatest utility to the evolving entity.

One can also ask about the role of unsupervised learning, not in the course 

of evolution, but in our brains aft er birth. As I have previously observed, 

many natural situations are self- labeled so that supervised learning applies 

even if there is no teacher to label the examples. A scene where we can al-

ready identify the participants as a cat and a mouse is self- labeled in that we 

can learn more about both cats and mice without anyone needing to label 

them as such. Also, our store of rules in our long- term memories imposes 

some metric of similarity on things we see. If we see a person on the street 

we may be reminded of a par tic u lar friend, not because there is some abso-

lute metric of similarity among people, but simply because among all the 

circuits we happen to have, the recognition circuit for that par tic u lar friend 

was the one triggered. Th is metric is, however, ad hoc, in being totally deter-

mined by the experiences we have had and the knowledge we have acquired 

from them.
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Th ese arguments suggest that unsupervised learning may not be the right 

perspective from which to view natural phenomena. While this is the posi-

tion I hold, I cannot deduce from this that unsupervised learning is a bad 

concept to pursue for artifi cial intelligence. As I have argued, there are good 

reasons for exploring the potential of artifi cial pro cesses for knowledge 

acquisition that might serve in place of the natural ones.

One way we might formulate unsupervised learning for use in terms of ar-

tifi cial intelligence is in terms of correlation detection. We want to be able to 

detect which pairs of features occur together with frequencies that would be 

unlikely if the features  were unrelated. If two par tic u lar features co- occur 

very frequently, then perhaps we will notice it without someone needing to 

point it out. If you see crowds every time you go to New York, you will prob-

ably notice this coincidence. But that is probably because the presence of 

crowds has a signifi cant impact on your activities, slowing your travel or mak-

ing you wait in line longer. Some other correlations we notice with greater 

diffi  culty. We handle coins all the time, but have diffi  culty recollecting which 

way the head faces, even on those we look at and use every day. In the absence 

of motivating factors humans oft en fail to notice co- occurrences even when 

they are glaring. Detecting correlations in general can be formulated as a 

computational problem, and it appears that there may be inherent computa-

tional impediments to computing correlations. If we are not good at it, then 

we may have a valid excuse, and if we are good then our brains are doing com-

putations that are better than the best algorithms we can currently imagine.

Th e so- called light bulb problem is a formulation of the challenges inher-

ent in detecting correlations. In this problem, there is a large number N of 

light bulbs, each controlled by the toss of a fair coin. In each period of one 

second each light bulb is either on or off  according to whether the coin 

comes up heads or tails. All the N controlling coins are in de pen dent of each 

other, except for just one pair. Th is exceptional pair is correlated so that the 

two light bulbs they control will be in the same state not with probability 1 ⁄2, 

as they would be if they  were in de pen dent, but with some greater probabil-

ity, such as 3⁄4 or 0.51. Th e problem is to identify which among the N(N − 1)/2 

pairs is the correlated pair aft er observing the N light bulbs for a long enough 

period.

Detecting general correlations as formulated by the light bulb problem 

meets with apparent computational impediments. If one suspected that the 
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fi rst two light bulbs  were correlated to p = 3 ⁄4 say, or even p = 1 ⁄2 + ε (for any ε, 

however small, but greater than zero), then one could easily confi rm or re-

fute this by observing those two bulbs for long enough and seeing whether 

the fraction of times they agreed was closer to 1 ⁄2 or to p. It can be shown 

that if p is any constant greater than 1 ⁄2 and the light bulbs are observed for 

only O(log N) seconds, the pair that agree the most will, with high probabil-

ity, be the correlated pair.

In general, the ith light bulb will produce an OFF/ON sequence si such as 

00101 . . .  011. Th e question is whether, in order to fi nd the correlated pair 

among the N(N − 1)/2 possible pairs (i, j) of light bulbs, one has to compare 

every pair (si, sj ) of sequences and thus do order N  work, or whether it can 

be done with substantially less eff ort, such as O(N .) or even O(N log N).

If the correlated pair is perfectly correlated, so that p = 1, then at every 

instant those two light bulbs would be always either both OFF or both ON. 

In that case the correlated pair can be detected in close to linear time as 

Figure 9.1 Th e light bulb problem is concerned with effi  ciently identifying which 

pair among a large number of fl ashing light bulbs is correlated. Each bulb is on 

half the time and off  half the time, on the average. Each pair of light bulbs fl ash 

in de pen dently, except for the one correlated pair that are both on or both off  

with probability higher than the normal 1⁄2. Th e correlated pair can be identifi ed 

by comparing each of the pairs of bulbs in turn. Th e question is whether there 

are methods that are more effi  cient than this quadratic time method.
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follows. One regards the sequences si as binary numbers and puts them in 

ascending order in a list. Th e two perfectly correlated ones will be identical 

and therefore fi nish up next to each other in the ordered list. Th is ordering 

or sorting can be carried out in N log N comparison operations on pairs of 

such sequences.

Th e computational diffi  culty of this correlation task, for the general case 

that 1 ⁄2 < p < 1, is not too clear. Soon aft er the problem was initially posed, an 

interesting solution was found in 1989 by Ramamohan Paturi, Sanguthevar 

Rajasekaran, and John Reif. Th eir algorithm takes N x operations, where the 

x decreases from 2 to 1 as p increases from 1⁄2 to 1. For p = 0.51, near the most 

challenging end of the range, this method still takes close to N  steps, in fact 

N ., while there is no proof known that this task inherently needs even N . 

steps. Subsequent algorithms of Piotr Indyk and Rajeev Motwani, and later 

of Moshe Dubiner, improved on this, the latter giving N . for p = 0.51. Only 

in 2012 was a subquadratic algorithm discovered in which the exponent 

does not depend on p. In that year Gregory Valiant found an algorithm that 

works in O(N .) steps for any fi xed p > 1 ⁄2.

Th ese algorithms are somewhat complicated, advantageous only for very 

large numbers of light bulbs, and apparently ill suited to neural computation. 

It would therefore be surprising if evolution would have discovered some 

eff ective version of any of them for our brains. Hence, according to current 

knowledge, one would have to guess that biological systems are bad at the 

light bulb problem or any equivalent correlation- detection task. Humans 

can recognize tens of thousands of diff erent concepts. A general capability 

for identifying arbitrary correlations among the millions of potential pairs 

of these concepts would require the brain to have a solution to the light bulb 

problem on a large scale. With current knowledge, it is diffi  cult to imagine 

how the brain would do this. A human who could demonstrate impressive 

light bulb detection capabilities would be executing an algorithm that we 

cannot currently envision.

Of course some related problems are much easier. If one only needs to 

detect correlated light bulbs that are physically next to each other in a line or 

a square array, then there is no great computational impediment. But we are 

asking a more general problem  here. Ultimately it is conceivable, of course, 

that there exist near linear time algorithms for the general problem. It is 

equally conceivable that there are substantial inherent computational limi-

tations that cannot be circumvented.
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9.6 Artificial Intelligence— Where Next?

I repeat my belief that learning has to be at the center of the artifi cial intel-

ligence enterprise. While I do not regard intelligence as a unitary phenom-

enon, I do believe that the problem of reasoning from learned data is a 

central aspect of it. Further, there are good prospects for making useful en-

gineered systems based on combining learning and reasoning in a princi-

pled way.

I have extolled the importance of robust computational models and have 

claimed that for learning and evolution there is strong evidence for the exis-

tence of such models. I now emphasize that for intelligence there is no basis 

at present for a corresponding claim. Th is is consistent with thinking in 

other disciplines. Researchers who study intelligence tests have long recog-

nized that the various existing tests do not all mea sure the same thing. Gard-

ner has famously referred to “multiple intelligences.”

At a more anecdotal level, a person usually needs to be interested in what 

another has to say to view that other as intelligent. We fi nd it diffi  cult to as-

cribe high intelligence to people who disagree with us. Th is is about what 

one would expect if one takes robust logic as a fundamental aspect of intel-

ligence. Intelligence is then fundamentally about how one draws conclu-

sions from experience. If from the same set of experiences I draw a diff erent 

conclusion from you, you may suspect the quality of my basic learning and 

reasoning algorithms. Of course, in practice, it is more likely that diff er-

ences in experiences and beliefs account for our diff erent opinions, rather 

than diff erences in the algorithms we apply.

Th e fi eld of artifi cial intelligence traces its history back to the Turing Test, 

which was designed as a criterion for whether a machine could be con-

sidered to be thinking. Turing’s criterion of a machine passing his test 

was whether it could successfully impersonate a human when interacting 

remotely with a human. Th e timelessness of the Turing Test is owed, I be-

lieve, to two of its fundamental aspects. First, he proposed to have some 

mea sure of per for mance, by seeing how oft en a human subject would suc-

ceed in distinguishing the computer from what it was impersonating. Sec-

ond, he was proposing a task involving unrestricted theoryless knowledge, 

rather than a specialized skill like chess or knowledge of chemistry.

PAC learning brings one additional idea to the table. It is that, in any 

 par tic u lar incarnation of a Turing Test, per for mance is inevitably mea sured 

with respect to a par tic u lar distribution of inputs. Any par tic u lar example of 
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the test must be conducted in a par tic u lar century in a par tic u lar place, and 

test for a par tic u lar task. It is not clear that if a system did pass one such in-

stance of this test, then any more generality could be claimed for the method 

used, beyond success for that par tic u lar task and input distribution.

I believe that tests having the main characteristics of the Turing Test are 

exactly what are needed as tests for intelligent systems. But the challenge, 

I believe, is that of building a series of systems, for a broad variety of tasks 

rather than just one, all involving mea sur able per for mance on tasks that 

involve unconstrained theoryless knowledge. Th ese Generalized Turing 

Tests would vary according to the task and distribution.

Th e formulation I gave of robust logic is along these lines. It encompasses 

the two aspects of the Turing Test that I highlighted— of having some mea-

sure by which to gauge per for mance, namely the accuracy of predictions, 

and of being applicable to general theoryless knowledge. It gives a concrete 

framework for reasoning in the common sense context where knowledge is 

theoryless and learned. Th e behavior of any system built along these prin-

ciples will depend on the environment in which it is trained. In that sense 

intelligent behavior is indeed relative, and in the eye of the beholder. Of 

course, one would hope that the functionality of the basic learning and rea-

soning algorithms is more absolute. Th at would imply that there is some-

thing theoryful in intelligence.

Turing discussed the dilemma between having machines programmed 

and having them learn. He recognized the importance of the latter. Aft er 

his death, however, the argument gained ascendency that a machine that 

learned will, aft er it has learned, be executing some fi xed program, and 

therefore that learned program could have been equally created by a pro-

grammer. Th is argument is best regarded as spurious. In most instances 

where machine learning algorithms are already used successfully, it would 

not be practicable to replace the fi nal product by one explicitly programmed. 

Th is is because there is no alternative way known for obtaining the program 

learned, with all the associated pa ram e ter values, other than by a learning 

pro cess.

Why exactly are the results of human learning so diffi  cult to replicate 

otherwise? I believe that there is essentially one reason, one already men-

tioned. When explicitly programming a machine or teaching a person, one 

is not starting from a blank slate, but building on features for which the 

machine or human already has programs. To be able to write an explicit 

program a programmer needs to understand exactly what the features al-
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ready realized in the system do. Otherwise there is the risk of creating un-

desirable new consequences or side eff ects.

Learning has the important advantage that the pro cess operates relative 

to what ever functions are already being realized in the system. Each exam-

ple presented by an instructor in a course will, for each student, and for each 

concept that that student already recognizes, either be recognized as an 

 example of that concept, or not. Th e example will be related to the student’s 

previous knowledge in this way, even if the teacher does not know exactly 

what that relationship is. In this sense teaching is a much more robust activ-

ity than programming, since the learner’s previous knowledge will be ap-

plied automatically to the interaction. A programmer has to go much further 

in adapting to the system being programmed than a teacher has to the learner. 

Th is is particularly important when the only available teacher is a passive 

environment.

An advantage of learning therefore is that it interfaces directly between 

the possibly complex current state of knowledge of the learner and the in-

variably complex outside world. Learning can be accomplished without need-

ing anyone to explicitly understand either the state of the learner or the 

complexities of the world. A programmer would need to understand both 

to be successful.

Taking the centrality of learning now as given, I believe that the task of 

constructing intelligent systems can be divided into three parts. Th e fi rst 

consists of providing generic learning and reasoning algorithms along the 

lines we have described in previous chapters. Th e second is some architec-

ture that describes how to use these algorithms in combination, for example 

to manipulate a mind’s eye. Th e third part is that of producing appropriate 

teaching materials, the examples from which to learn.

Th is last issue is rarely discussed in artifi cial intelligence, though it domi-

nates in human education. Educational institutions invest much eff ort on 

curricula, in selecting and or ga niz ing the material to be taught. A random 

pre sen ta tion of relevant material is not considered adequate. It is only rea-

sonable to expect that once artifi cial intelligence becomes more learning 

centered, as no doubt one day it will be, it will become obvious that a com-

puter’s curriculum should be prepared with no less care than a child’s.

9.7 Need We Fear Artificial Intelligence?

Th ere may be some good news for humans in the fact that one can be intel-

ligent in many diff erent ways. It gives us hope that we may endow robots 
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with intelligence superior to ours but only in directions that are useful and 

not threatening to us. Also, it makes it clear that there is no good reason to 

want to make robots that are exactly like humans.

Th e most singular capability of living organisms on Earth must be that of 

survival. Anything that survives for billions of years, and many millions of 

generations, must be good at it. Fortunately, there is no reason for us to en-

dow robots with this same capability. Even if their intelligence becomes su-

perior to ours in a wide range of mea sures, there is no reason to believe that 

they would deploy this in the interests of their survival over ours unless we 

go out of our way to make them do just that. We have limited fear of domes-

ticated animals. We do not necessarily have to fear intelligent robots either. 

Th ey will not resist being switched off , unless we provide them with the same 

heritage of extreme survival training that our own ancestors had been sub-

ject to on Earth.
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Chapter Ten

Questions

Computers are boring. Th ey only give answers.
Pablo Picasso

10.1 Science

It was a spring day. I was a mathematics student in Cambridge in En gland. 

As on most mornings, I went to the Arts School where lectures  were held. 

Instruction was well or ga nized though a little predictable. One could tell 

what topic each lecture was on from whether the day of the week was even 

or odd, and whether the hour was even or odd. Otherwise these mornings 

 were largely uneventful.

Th at day, however, was a little diff erent. An older man whom I did not 

recognize was standing at the front. As we soon found out, it was Paul Dirac 

about to give his retirement lecture. Even undergraduates in the audience 

like me would have known that Dirac had discovered a signifi cant fraction 

of the theory of quantum mechanics, and hence was a major fi gure in 

twentieth- century physics. Th ey would also have known that he had written 

a revered textbook, was occupying the Lucasian chair once held by Newton, 

and perhaps also that he had received a Nobel Prize many de cades earlier. 

However, anyone expecting any element of satisfaction or triumph in this 

retirement lecture was to be disappointed. His theme was regret.

He explained how in his work on quantum mechanics whenever he dis-

covered something he published it and waited for the discovery to receive 

some ac cep tance from others. Th is validation would be in the form of others 

following up his work to make further discoveries. His regret was that he 

was not able to take his own work seriously enough that he could build on it 
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and take the next steps himself without waiting for others to do so. Had he 

not had this psychological impediment, he would have been able to achieve 

more.

I have always believed that science is totally impersonal. If it matters who 

discovered it, or who said it, or how it is said, then it is not science. However, 

as I learned that day, the pursuit of science can be a highly personal matter. 

I have wondered ever since how such personal pursuits can come together to 

build the overall edifi ce that science is.

10.2 A More Strongly Ecorithmic Future

Much has changed since we humans fi rst arrived on the scene. We now 

grow food communally and cook it. Many of us live in highly or ga nized 

communities of millions of individuals, with water and electric power piped 

into our homes, and waste piped out. Most recently, we have also had infor-

mation piped both in and out at alarming speed.

Until the emergence of humans there was an equilibrium on Earth be-

tween Darwinian evolution, on the one hand, and the more general learning 

algorithms of individual organisms, on the other. Life forms evolved. Th e 

result of evolution was to give living organisms certain learning capabilities 

that enabled them as individuals to adapt to the world during their life. 

Some material, such as birdsong, was handed down, with each generation 

learning from the previous one. However, Darwinian evolution remained 

the mechanism responsible for essentially all signifi cant new adaptations 

that outlasted the lives of individuals. Th e learning and reasoning carried 

out by an organism during its life had limited impact that outlived the 

individual.

With human civilization this equilibrium tilted signifi cantly toward 

more general ecorithms and away from the limited ones that characterize 

Darwinian evolution. Being the more powerful, these general ecorithms 

hastened the pace of change. Individuals already could teach their children 

and pass on knowledge that they had learned, but with the advent of civili-

zation, they could create songs, poems, paintings, and books capable of 

outlasting the lives of their individual creators. Th ey could be used widely 

and indefi nitely as teaching materials for later generations. In this way the 

knowledge inherent in the intellectual work of individuals became a shared 

resource and part of culture. An individual could for the fi rst time acquire 

circuits that represented the knowledge gained from experience by thou-
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sands of diff erent people, without having to go through their experiences. 

One can regard the massive accumulation of collective knowledge that this 

made possible through many generations as learnable target pursuit on 

a  scale that had not been previously possible when it had been limited to 

single individuals learning.

Culture also undergoes change or evolution, but this change is no longer 

limited by Darwinian principles. Among some remarkable accompani-

ments of this cultural evolution have been the discovery and exploitation of 

science, and the resulting changes in how we live.

Th e breeding of plants and animals of greater and greater value to hu-

mans has been important for thousands of years, and it now enables a far 

larger human population to be maintained than would otherwise be possi-

ble. As Darwin emphasized, such artifi cial selection is essentially the same 

pro cess as natural selection, except the choice of fi tness is made artifi cially. 

In our terms, they are both subject to the same evolutionary ecorithms, 

 except that the former is driven by a teacher or environment that redefi nes 

the target at will.

It is one thing to tap the power of ecorithms in such an inadvertent fash-

ion. Now that we better understand their potential and might more fully 

exploit it through technology, ecorithms stand to reshape our civilization 

more dramatically than they have heretofore. A small hint of that power can 

be gleaned from our current experience with Web search engines. Th e least 

educated person today has immeasurably more knowledge on tap than the 

most educated had a mere twenty years ago. Th e basic algorithms used in 

search engines, of sift ing out Web pages that contain certain words and pre-

senting those fi rst that are most likely to be of interest, are no more than al-

gorithms. Th e awesome power of the Web is due entirely to the scale on 

which it operates— billions of Web pages. Th e same algorithms run on a 

small, specialized dataset would arouse little fascination.

Our intuitions about enormous datasets, and the information that may 

be extracted from them, are still in their infancy. But there is little doubt 

that the existence of such datasets, and the possibility of mining them by 

learning algorithms, is a major new facet of our world. Once more sophisti-

cated learning algorithms are let loose on all the information available in 

the world, we may glean knowledge that is not obtainable any other way. 

Th ere seems little doubt, for example, that if detailed medical histories and 

personal habits on billions of people  were to become available in consistent 
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electronic form, then signifi cant new discoveries regarding medicine and 

health care could be made. But the opportunity seems greater still. As, aided 

by computer technology, we use ecorithms in artifi cial systems to their 

fuller potential, we can hope for and pursue results as astonishing as the 

previous two phases of evolution, the biological and the cultural, have them-

selves produced.

10.3 How to Act?

When we talk and write, we are reporting on the output of our brain cir-

cuits. Th ese circuits generally do not compute anything theoryful or pre-

ordained. Th ey are the results of learning pro cesses prompted by events 

over billions of years and tuned to perform some theoryless task. Th e exact 

nature of the input/output functions that these circuits realize is beyond our 

current understanding.

Nevertheless, there are some generalizations we can make about these 

circuits. In the area of science, for example, the outputs of the brain circuits 

of experts are usually in high agreement with each other. Also, they oft en 

predict with great accuracy the outcomes of future experiments. Techno-

logical products based on these predictions generally work as expected. In 

areas of such high agreement and high predictive accuracy, it is natural to 

take seriously the outputs of these brain circuits as having some reality be-

yond being just expressions of personal feelings. One is certainly ill advised 

to bet against them given the overwhelming empirical evidence of their 

accuracy.

More broadly we have to take seriously the utterances of experts about 

situations in which they have made accurate predictions in the past. As we 

know, our plumber, doctor, and car mechanic should be taken as seriously 

as their respective predictive rec ords warrant. Even when no such rec ords 

are available, we may be well advised to follow the advice of those who have 

experience. Predictions that fi t past data even for short periods and only in 

one place may be the best kind of advice that we can get, whether or not 

those predictions have a theoryful basis. In acknowledging this, we are 

 accepting that the PAC sense of learning is the best that we can generally 

expect to achieve given that the world is as complex and uncertain as it is.

Such generalizations only take us so far, however, and they tell us very 

little about what we should make of the many areas of human concern 
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where no consensus opinion is in sight and where there is little evidence that 

anyone’s brain circuits are highly predictive. We do not need any reminders 

of the lack of permanent standing of the many beliefs that have been enter-

tained over the centuries. Attitudes to politics, race, gender, religion, art, 

economics, and health have gyrated wildly, and few would, or even could, 

subscribe to more than a small fraction of the many contradictory opinions 

that are currently being maintained around the world. We can always take 

an individual’s pronouncement on a question in such areas as an expression 

of personal feelings and give it the respect that it deserves on that basis. 

However, we need to be cautious. We should not adapt our views too eagerly 

to conform to that of others. We know that our circuits can rush to judg-

ment on scant evidence. We must remember that theirs can do the same.

In the opposite direction, we should also be cautious in taking on the re-

sponsibility of infl uencing others. It is diffi  cult to imagine what justifi cation 

we could have for exerting infl uence if no validity can be ascribed to our 

views beyond that of personal feelings. So, too, would it do well for po liti cal 

or policy- oriented organizations, whose main goal is to promote par tic u lar 

personal opinions, to exercise restraint, especially as we live in an age when 

information can be disseminated cheaply on an unpre ce dented scale. As 

Churchill put it, “Th e empires of the future are the empires of the mind.” 

Can society permit any or ga ni za tion that promotes the theoryless to grow 

to have imperial infl uence?

10.4 Mysteries

An important aspect of human personal experience is that of the mysteri-

ous— of things we do not understand and know we do not. Scientifi c theo-

ries have mysteries too, namely those aspects that are fundamental to the 

theories but not explained by them. Such mysteries, more oft en than not, are 

known to the theory’s originators. One celebrated example is the identity of 

inertial and gravitational mass at the heart of Newtonian physics. Newton 

had equated the former, the re sis tance of a body to being accelerated by a 

force, to the latter, the gravitational pull exerted on it by another object. Th is 

seeming coincidence is a central part of his theory of mechanics, but one for 

which he knew he had no explanation. Not until Einstein’s general theory 

of  relativity was this removed from the realm of the mysterious. Earlier I 

quoted Eugene Wigner’s comments on the eff ectiveness of mathematics in 
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the physical sciences. Even as we have exploited mathematics to gain an ever 

more accurately predictive understanding of the physical world, the question 

of why this approach works— of why abstract mathematical thought should 

illuminate the physical world— has, if anything, become a greater and greater 

mystery.

I have argued that ecorithms off er an avenue toward a greater under-

standing of the phenomena of evolution and cognition, but ecorithms have 

their mysteries too. In concluding, it is fi tting to be more explicit about some 

of these.

First, the  whole theory is based on the notion that there are mathematical 

theories of computation that explain the limits of computing, learning, and 

evolving. Th is is in turn based on the separate notion that there are robust 

models of computation that capture these phenomena. Th ere is much evi-

dence for both of these notions being true. However, as with analogous 

statements in the physical sciences, why these notions should hold is totally 

mysterious, and there is no indication that we have a viable approach toward 

understanding them.

Second, though I have framed both evolution and cognition as manifes-

tations of ecorithms, it is currently unknown what the major ecorithms that 

operate in biology are. Th ese par tic u lar current mysteries I regard as poten-

tially more tractable than the fi rst set. I am confi dent that, as the inertial 

versus gravitational issue was eventually resolved, these will be also in the 

course of future enquiry. All the sciences will need to contribute.

One may ask why human progress has been so much more successful in 

science than in other areas. In my view credit goes entirely to the nature of 

science itself rather than to anything special about the humans who pursue 

it. Science does make progress, and this ultimate outcome is not endangered 

by any vagaries in the pro cess. Science is supported by robust scaff olding 

that we can ascend one step at a time. While each step holds surprises and 

may be diffi  cult to take, it is the overall unity found when looking back that 

is breathtaking.

Th e science of learning mechanisms explores how a computationally 

limited entity can succeed in a world that is too complex for it to model. 

It  focuses on three things: computationally bounded entities, successful 

action in a complex world, and, most importantly, the relationship be-

tween the two.
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Darwin observed that there is grandeur in the view that life is the result 

of a simple evolutionary mechanism. Th e ecorithmic formulation aims to 

 understand more explicitly the mechanisms of evolution, as well as of its 

child, cognition. Further progress  here will surely enhance rather than di-

minish this view of grandeur. It will contribute to bringing an account of 

our intimate natures within the scope of science, and to explaining why 

such an account can be discovered by humble creatures of its laws.
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Glossary

An accessible target is a function that can be learned or evolved because it is 

within a learnable or evolvable class with respect to the available features.

A Boolean function is a function whose inputs and outputs take just true or false 

values. Th ese values may be represented by 1 and 0, or by 1 and −1. An example of 

a Boolean function of two arguments is the or function, written as or(x, y) and 

 defi ned to have value true if and only if at least one of the two arguments x, y has 

value true.

BPP (bounded probabilistic polynomial) computations are those that can be per-

formed in polynomial time by a randomized Turing machine.

BQP (bounded quantum polynomial) computations are those that can be per-

formed in polynomial time by a quantum Turing machine.

A circuit is a computation where the dependencies among various input, output, or 

intermediate values can be made explicit.

A complexity class is a set of problems characterized by the computations that can 

solve them. For example, P and NP are complexity classes.

A function is computable if it can be computed by some Turing machine, in the 

sense that for every input the Turing machine produces the answer within some 

fi nite number of steps.

Concept is a term used  here to denote a function in the context of learning.

A conjunction is a Boolean function that has value true if all of its arguments have 

value true.

A disjunction is a Boolean function that has value true if at least one of its argu-

ments has value true.

Ecorithm is a term introduced  here to denote an algorithm that takes information 

from its environment so as to perform better in that environment. Algorithms for 

machine learning, evolution, and for learning for the purpose of reasoning are all 

instances of ecorithms.
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A class of functions is evolvable if there is an evolution algorithm that can evolve 

every member of it using only polynomial resources and achieving polynomial 

 error control.

Th e expression level of a protein in a cell is a mea sure of how much of the protein 

is being produced.

Feasible computation is identifi ed  here with computations in which the number of 

steps is bounded by a polynomial in terms of the number of bits required to write 

down the input.

A function is a mathematical assertion of a specifi c dependence of a value on 

some variables, pa ram e ters, conditions, or arguments. For example, the function 

f (x, y) = 2x + 3y is the dependence that f is the sum of twice the fi rst argument and 

thrice the second.

Th e ideal function specifi es for a par tic u lar evolving entity in a par tic u lar environ-

ment the best possible action for every possible combination of conditions.

Th e input function of a protein is the function that determines the expression level 

of the protein in terms of all the relevant conditions in the cell.

Intelligence is generally used in the text in the colloquial sense of human intelli-

gence, but the aspect of it that is addressed more technically is that of reasoning on 

uncertain, learned knowledge.

A linear in e qual ity is an assertion that the value of some linear combination of 

variables is greater or less than some value (e.g., 3x + 6y − 8z < 7).

A linear separator for a set of labeled examples is a linear in e qual ity that satisfi es 

all the positive examples and none of the negative examples.

Nondeterministic computations are those that perform an exponential search for 

a solution in parallel.

NP (nondeterministic polynomial) is the class of problems for which there are 

nondeterministic computations where each of the parallel branches of the search 

uses at most a polynomial number of steps in terms of the number of bits of the 

input.

A problem is NP- complete if its polynomial time solution would imply polynomial 

time solutions for every problem in NP.

P is the class of problems to which solutions can be found by deterministic compu-

tations taking a polynomial number of steps in terms of the number of bits of the 

input.

#P (“sharp” P) is the class of problems that count the number of solutions found in 

an NP computation.
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PAC (probably approximately correct) learning is the pro cess of learning from 

examples, where the number of computational steps is polynomially bounded and  

the errors are polynomially controlled.

A class of problems is PAC learnable if there is a learning algorithm that can learn 

every member of the class, using only polynomial resources and achieving polyno-

mial error control.

PAC semantics is the sense in which the defi nition of PAC learning guarantees 

accuracy.

A parity function is a Boolean function that has value true if and only if an odd 

number of its arguments have value true.

Th e Perceptron algorithm is a specifi c method for learning linear inequalities.

Polynomially bounded for a function f(n) is used  here to mean that for some fi xed 

numbers c and k, for every positive integer value of n , f(n) < cnk.

A computational problem is a function that is to be evaluated. For example, deter-

mining how many factors a number has is a computational problem. A solution to 

such a problem is an algorithm that evaluates that function.

Th e protein expression network represents how the expression levels of all the 

proteins in a cell are regulated in terms of each other and other relevant factors. 

It is sometimes referred to as the gene expression network.

A randomized Turing machine is a Turing machine that at any step may choose 

one among a set of possible transitions by making a random decision according to 

the toss of a coin.

Resilience to diff erent distributions is the desirable property of a learning algo-

rithm to give reliable answers for wide ranges of distributions of the examples.

Resilience to noise is the desirable property of a learning algorithm to give answers 

that are degraded only a little by any noise in the data from which it is learning.

A robust computational model for a phenomenon is one that is provably equiva-

lent to a wide range of alternative defi nitions of computational models for that 

phenomenon. Turing machines for the phenomenon of computation off er the ex-

emplary paradigm.

Robust logic is a system in which learning and reasoning have a common seman-

tics and both can be accomplished feasibly in the PAC sense.

Robustness to computation and data is a way of phrasing what PAC learning 

 accomplishes, namely the requirement that it should be practicable to drive down 

errors arbitrarily by increasing the amounts of training data and computation 

appropriately.
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A statistical query algorithm is a learning algorithm that can receive information 

about examples only by asking statistical questions about them, rather than by pro-

cessing individual examples.

Target pursuit is the capability in both learning and evolution to pursue a large 

number of accessible targets simultaneously.

Th eoryful is a term defi ned  here to denote decisions for which there is a good 

 explanatory and predictive theory, such as a scientifi c theory.

Th eoryless is a term defi ned  here to denote decisions that are not known to be 

theoryful.

A Turing machine is a model of computation that is widely believed to encompass 

all information pro cessing that one would think of as mechanistic.
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