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Language Identification in the Limit 

E MARK GOLD* 

The RAND Curporation 

Language learnability has been investigated. This refers to the fol­
lowing situatio11: A class of possible languages is specified, together 
with a method of presenting information to the learner about an Llll­

known language, which is to be chosen from the class. The question 
is now asked, "Is the information sullicient to determine which of the 
possible languages is the unknown language?" Many definitions of 
learnabili ty are possible, but only the following is considered here: 
Time is quantized and has a finite starting time. At each time the 
learner receives a unit of information and is to make a guess as to the 
identity of the unknown language on the basis of the information 
received so far. This process continues forever. The class of languages 
will be considered learnable with respect. to the specified method of 
information preseEtation if there is an algorithm that the learner can 
use to make his guesses, the algorithm having the following property: 
Given any language of the class, there is some finite time after which 
the guesses will all be the same and they will be correct. 

In this preliminary investigation, a language is taken to be a set of 
strings on some fi11ite alphabet. The alphabet is the same for all lan­
guages of the class. Several variations of each of the following two 
basic methods of information presentation are investigated: A text for 
a language generates the strings of the language in any order such that 
every string of the langimge occurs at least once. An informant for a 
language tells whet her a string is in the language, and chooses the 
strings in some order such that every string occnrs at least once. 

It was found that the class of context-sensitive languages is learn­
able from an informant, but that not even the class of regular lan­
guages is learnable from a text. 

1. MOTIYATION: TO SPEAK A LANGUAGE 

The study of language identification described here derives its motiva­
tion from artificial intelligence. The results and the methods used also 
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have implications in computational linguistics, in particular the con­
struction of discovery procedures, and in psycholinguistics, in particular 
the study of child learning. These implications are discussed in Section 4. 

I wish to construct a precise model for the intuitive notion "able to 
speak a language" in order to be able to investigate theoretically how it 
can be achieved artificially. Since we cannot explicitly write down the 
rules of English which we require one to know before we say he can 
"speak English," an artificial intelligence which is designed to speak 
English will have to learn its rules from implicit information. That is , 
its information will consist of examples of the use of English and/or of 
an informant who can state whether a given usage satisfies certain rules 
of English, but cannot state these rules explicitly. 

For the purpose of artificial intelligence, a model of the rulei'l of utiage 
of natural languages must be general enough to include the rule" which 
do occur in existing natural languages. This is a lower bound on the 
generality of an acceptable linguistic theory. On the other hand, the con­
siderations of the last paragraph impose an upper bound on generality: 
For any language which can be defined within the model there must 
be a training program, consisting of implicit information, such that it 
it possible to determine which of the definable languages is being pre­
sented. 

Therefore this research program consists of the study of two subjects: 
Linguistic structure and the learnability of these structures. This re­
port describes the first step of this program. A very naive model of 
language is assumed, namely, a language is taken to be a dil'ltinguished 
set of strings. Such a language is too simple to do anything with (for 
instance, to give information or to pose problems), but it has enough 
structure to allow its learnability to be investigated as follows: .Models 
of information presentation arc defined, and for each I ask "For which 
classes of languages does a learning algorithm exist?" 

In the second step of this program (Gold, 1966), which will not be 
discussed here, nontrivial models of the usages of language are con· 
structed. The next step will be to return to learnahility theory and de­
termine whether reasonable training programs exist for linguistic struc· 
tures of this type. 

2. LANGUAGE IDENTIFICATION MODELS 

Appendix II lists intuitive definitions of some of the terminology of 
recursive theory used herein. 

Let A be a finite set (the alphabet of the languages to be considered) 



LANGUAGE IDENTIFICATION IN THE LIMIT 449 

and 2:A represent the set of all finite strings of elements from A. A is 
to be considered fixed throughout this paper. The results presented in 
the next chapter are independent of the cardinality of A so long as it 
is not void. A language L will signify any subset of ~A. In an actual 
language this may represent, for instance, the set of meaningful strings 
of words. 

A language learnability model will signify the following triple: 
1. A rh:finition of learnability. 
2. A method of information presentation. 
3. A naming relation which assigns names (perhaps more than one) to 
languages. The "learner" identifies a language by stating one of its 
nameR. The names could be called grammars. 

Only one definition of learnability, which will be called identifiability 
in the limit, will be considered here. Six alternative methods of informa­
tion presentation and two altert1ative naming relations will be considered, 
making a total of twelve models of language learnability. The definitions 
will now be given, and the results are stated in Section 3. The proofs 
are in Appendix I. The basic ideas behind the proofs are described in 
Sections 7 and 9. 

Time will be taken to be quantized and start at a finite time: 

t = 1, 2, ... 

At each time t the learner is presented with a unit of information i1 

concerning the unknown language L. In any language learnability 
model, the method of information presentation consists of assigning to 
each L a set of allowable training sequences, i 1 , i 2 , • • • • 

LEAHNABILITY. At each time t the learner is to make a guess g1 of a 
name of L based on the information it has received through time t. 
Thus the learner is a function G which takes strings of units of informa­
tion into names: 

g1 = G(i1, ··· ,i1). 

L will be said to be identified in the limit if, after some finite time, the 
guesses are all the same and are a name of L. A class of languages will 
be called identifiable in the limit with respect to a given language learn­
ability model if there is an effective learner, i.e., an algorithm for making 
guesses, with the following property: Given any language of the class and 
given any allowable training sequence for this language, the language will 
be identified in the limit. 

For each of the 12 models of language learnability the following ques-
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tion has been investigated (the results arc in the next Section): Which 
classes of languages are identifiable in the limit? Note that identifiabil­
ity (learnability) is a property of classes of languages, not of individual 
languages. 

In the case of identifiability in the limit the learner does not neces­
sarily knmv when his guess is correct. He must go on processing informa­
tion forever because there is always the possibility that information 
will appear which will force him to change his gness. If the learner were 
required to know when his answer is correct (this is equivalent to "finite 
identifiability" defined in Section 6), then none of the classes of lan­
guages investigated in the next chapter would be learnahlc in any of the 
learnability models. l\Iy justification for studying identifiability in the 
limit is this: A person does not know when he is speaking a language 
correctly; there is always the possibility that he will find that his gram­

mar contains an error. But we can guarantee that a child will eventually 
learn a natural language, even if it will not know \Vhen it is correct. 

INFORMATION PRESENTATION. Two basic methods of information 
presentation will be considered, "text" and "informant." Three varia­
tions of each will be defined. 

A text for L is a sequence of strings x1 , x2 , • • • from L such that every 
string of L occurs at least once in the text. At time t the learner is 
presented Xt • Note that for any given language many texts are possible. 
The three variations of this method of information presentation to be 
considered are obtained by putting different restrictions on the class of 
allowed texts: 
1. Arbi'trary Text: Xi may be any function oft. 
2. Recursive Text: Xi may be any recursive function oft. 
3. Primitive Recursive Text: Xi may be any primitive recursive function 

of t. 
An informant for L can tell the learner whether any string is an ele­

ment of L, and does so at each time t for some string y1 • Three types of 
informant will be considered; these differ in how the Yi are chosen: 
1. Arbitrary Informant: y 1 may be any function of t so long as every 

string of ~A occurs at least once. 
2. JlJ ethodical Informant: An enumeration is assigned a priori to the 

strings of ~A, and Yi is taken to be the tth string of the enumeration. 
3. Request Informant: At time t the learner chooses Yi on the ba~is of 

information received so far. 
NAMING RELATION. Two naming relations will be considered, "tester" 
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and "generator." In both cases a n'ame of a language, i.e., a grammar, 
will be a Turing machine: A tester for L is a Turing machine which is a 
deeision procedure for L, that is, the Turing machine defines the func­
tion from strings to natural numbers which has the value 1 for stringti 
in L and 0 for strings not in L. A generator for L is a Turing machine 
which generates L, that is, it defines a function from positive integers to 
strings such that the range of this function is exactly L. A tester exists 
iff L is recursive and a generator exists iff L is recursively enumerable. 

Two language learnability models will be called eqU?·valent if exactly 
the :-;ame classes of languages are identifiable in the limit >vith respect 
to either model. Two naming relations will be called equivalent if, for 
every method of information presentation, the t>vo language learnability 
models obtained by using these naming relations are equivalent. Simi­
larly, two methods of information presentation will be called equivalent 
if every naming relation yields two equivalent language learnability 
models. 

Suppose two naming relations are effectively intertranslatable. That 
is, suppose there is an algorithm for each of the naming relations which, 
given a name of a language in this naming relation, would yield a name 
of the language in the other. Then these are equivalent naming relations. 

It is well known that it is possible to effectively translate from testers 
to generators. Therefore, given any method of information presentation, 
any class of languages ;vhich is tester-identifiable in the limit must also 
be generator-identifiable in the limit. However, it is not possible to 
effectively translate from generators to testers, even if we restrict our­
selves to recursive languages for which both are defined. Therefore, 
it is possible for a method of information presentation to exist such that 
a class of languages is generator identifiable in the limit but not tester 
identifiable in the limit. An example of this is given in the next Section. 
This subject is discussed further in Section 11. 

The three variations of information presentation by informant are 
equivalent. They are defined separately only in order to make this point. 

3. LANGUAGE IDENTIFICATION RESULTS 

For every pair consisting of one of the 12 learnability models together 
with one of the language classes listed in Table I it has been determined 
whether the class of languages is identifiable in the limit. The language 
~lasses are listed in descending order, i.e., each class is properly contained 
in the class above it. The dividing lines between identifiable in the limit 
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TABLE I 

DIVIDING LINES BETWEEN LEARN.\BILITY AND 

NoNLEARNABILITY OF LANGUAGES 

Learnability model Class of languages 

Anomalous text"--------> 
Recursively enumerable 
recursive 

Informant.----------> 

Text 

Primitive recursive 
Context-sensitive 
Context-free 
Regular 
Superfinite 

Finite cardinality languages 

a Anomalous text refers to the use of the generator-naming 
relation and information presentation by means of primitive 
recursive text. 

and nonidentifiable in the limit are shown in the table. The cla8ses of 
languages below the dividing line shown for a given model of language 
learnability are identifiable in the limit with respect to this model; 
those above the dividing line are not. It is possible to repre8ent the 
results by means of dividing lines in this way because of the following 
obvious facts: If a class of languages is identifiable in the limit with 
respect to a given language learnability model, then the same holds 
for any subclass; if a class is not identifiable in the limit, then the same 
holds for any superclass. 

In the table, "informant" refers to any of the three variations ot in­
formant together with either the generator- or tester-naming relation. 
That is, the same results have been obtained, so far, for each of the six 
language learnability models which utilize an informant. Of the six 
language learnability moaels which utilize a text for information presen­
tation, five of them have given the same results, shown as "text" in the 
table. The remaining model, shown as "anomalous text," is primitive 
recursive text with the generator-naming relation. 

A super-finite class of languages denotes any class which contains all 
languages of finite cardinality and at least one of infinite cardinality. 

The anomalous model using a text is of no practical interest, but 
three noteworthy conclusions can be drawn from it: (1) It shows that 
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restrictions on the order of presentation of elements of the text can 
greatly increase the learnability power of this method of information 
presentation. (2) Note that the difference between a text and an in­
formant is that a text only presents the learner with positive instances, 
namely, elements of the language, whereas an informant presents both 
positive and negative instances. Therefore, one would expect the in­
formant to be more powerful. However, "anomalous text" is more 
powerful than any of the "informant" models, which shows that one 
must carefully consider the details of the learnability model. (3) "Anom­
alous text" shows that the choice of naming relation can make a dif­
ference since, in this case, the generator-naming relation is far more 
powerful than tester. 

4. IMPLICATIONS OF LANGUAGE LEARNABILITY RESULTS 

To THE STUDY OF CHILD LEARNING OF LANGUAGE. Recently, psycho­
linguists have begun to study the acquisition of grammar by children 
(e.g., McNeill, 1966). Those working in the field generally agree that 
most children are rarely informed when they make grammatical errors, 
and those that are informed take little heed. In other words, it is be­
lieved that it is possible to learn the synta~ of a natural language solely 
from positive instances, i.e., a "text." However, the results presented 
in the last Section show that only the most trivial class of languages 
considered is learnable (in the sense of identification in the limit) from 
text, neglecting "anomalous text." If one accepts identification in the 
limit as a model of learnability, then this conflict must lead to at least 
one of the following conclusions: 

1. The class of possible natural languages is much smaller than one 
would expect from our present models of syntax. That is, even if Eng­
lish is context-sensitive, it is not true that any context-sensitive lan­
guage can occur naturally. Equivalently, we may say that the child 
starts out with more information than that the language it will be pre­
sented is context-sensitive. In particular, the results on learnability 
from text imply the following: The ~lass of possible natural languages, 
if it contains languages of infinite cardinality, cannot contain all lan­
guages of finite cardinality. 

2. The child receives negative instances by being corrected in a way 
\Ye do not recognize. If we can assume that the child receives both posi­
tive and negative instances, then it is being presented information by an 
"informant." The class of primitive recursive languages, which includes 
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the class of context-sern,itive languages, is identifiable in the limit from 
an informant. The child may receive the equivalent of negative in-
1-'tances for the purpose of grammar acquisition when it does not get 
the desired response to an utterance. It is difficult to interpret the actual 
training program of a child in terms of the naive model of a language 
assumed here. 

:3. There is an a priori restriction on the class of texts which can occur 
such as a restriction on the order of text presentation. The child ma; 
learn that a certain string is not acceptable by the fact that it never 
occurs in a certain context. This would constitute a negative instance. 

To ARTIFICIAL INTELLIGENCE. The training program of an artificial 
intelligence can certainly include an informant, whether or not children 
receive negative instances. Therefore, the results of Table I show that a 
learning algorithm can be constructed for the identification of primitive 
recursive predicates on strings, which probably include all the predi­
cates children learn. However, for the purpose of efficiency it is ::;till of 
significance to determine what additional information may be available 
to children, either in the form of an a priori restriction on the class of 
predicates which can occur in natural languages, or in the form of in­
formation which can be obtained from the order of presentation of 
naturally occurring texts. 

To 'l'HE CoNS'IRUCTION OF, DISCOVERY PROCEDURES. Attemphi have 
been made to construct an algorithm for automatically generating a 
phrase structure grammar for a language solely by analyzing a text of 
the language. One approach (Lamb, 1961) uses the "di:-tributional 
analysis" of Harris (1951, 1964) and Hockett (1958). Namely, one asso­
ciates phrases which are found to occur in the same context, thereby 
defining phrase categories and simultaneously enlarging the set of con­
texts which can be considered equivalent; then one records how phrase 
categorie::; are constructed by concatenation of phrase categories. 
Another approach which has been proposed (Solomonoff, 191i4) uses 
"identification by enumeration," which is defined in Section 7. 

These attempts suggest the question, "Is there enough information in 
a text, even one of unlimited length, to allow the identification of a con­
text-free language?" The results presented in Section 3 show that it is 
impossible to construct a learning algorithm for the entire class of 
context-free languages if the only information is an arbitrary text. If 
Ollc wishes to assume restrictions on the order of presentation of the 
text, then a successful learning algorithm must be sensitive to the order 
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of the text. Thus, statistical approaches such as distributional analysis 
arr not suitable for this purpose. However, it would be useful to deter­
mine if there are interesting subclasses of the class of context-free lan­
guages which can be identified in the limit by either of these approache,;. 

5. IDENTIFICATION OF FUNCTIONS AND BLACK BOXES 

Thi,.; Section is a summary of the results of a previou,; paper (Gold, 
19fi;i) which is devoted to the learnability of two types of objects other 
than languages: 

TIJ\IE FUNCTION. At each time t, a time function produces an output, a 
positive integer, which depends only on t. Formally, a time function is a 
function of one variable which takes positive integers (time) into posi­
tive integers (outputs). 

BLACK Box. A black box has provision for an input at each time, as 
well as an output. Each output is determined by the inputs that have 
previously been applied to the black box. More precisely, let an alphabet 
here signify either a finite set with at least two elements, or else the set 
of positive integers. Then a black box consists of the following triple: 
An input alphabet I; an output alphabet 0; a black box function b 
whieh takes input strings into the output alphabet, thereby determin­
ing the output at time t: Ot = b( ii, · · · , i1). 

Thus, a time function is a special case of a black box. In the case of a 
time function, Ot depends only on t and not on a previous input string. 
A time function can be described as a black box with a degenerate input 
alphabet consisting of one element. 

Throughout the study of black box learnability, I and 0 arc to he 
considered as fixed alphabets, i.e., I and 0 are chosen a priori, and all 
black boxes are to use these two alphabets. 

In the case of time function learnability the following situation is 
studied. The learner observes the successive outputs of a time function 
and is to guess what function it is observing; that is, the learner consists 
of an identity guessing algorithm G which yields, a guess g1 at each time 
t as to the identity of the time function, gt being determined by the out­
puts which the time function has produced so far: gt= G(o1, · · ·, 0 1 ). 

In the case of black box identification, the learner consists of an ex­
perimenting algorithm E as well as an identity guessing algorithm G. 
E determines the input which the learner will apply to the unknown 
black box at any time as a function of the previous outputs of the black 
box: i1 = E( o1 , • · · , o1_ 1 ). The identity guessing algorithm makes a 
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TABLE II 
DIVIDING LINES BETWEEN LEARNABILITY AND 

NoNLEARNABILITY FOR TIME FUNCTIONS AND 

BLACK BOXES 

Type of object Class of objects 

Recursive 
Time functions---------> 

Primitive recursive 
Black boxes--------~ 

Finite automata 

guess, at each time t, as to the identity of the black box: g1 = 
G(o1, ·· ·, Ot). 

It is too much to require the learner to identify a black box in the 
sense of finding its identity at the beginning of the experiment, t = 1. 
This is because, for instance, the black box may be such that the first 
input which the learner applies to it may trap the black box in a subset 
of its possible states, so that the learner will never be able to determine 
what the behavior of the black box would have been if its first input had 
been different. Therefore, only weak learnability will be considered; 
namely, the learner will be asked to predict, at each time, the future 
behavior of the black box. That is, the learner is to guess the present 
black box function, rather than that at t = 1. 

Only one model of time function learnability and one of black box 
learnability will be considered. The method of information presentation 
for each model was described above. As in the models of language learn­
ability, in both of these models "learnability" will signify "identifica­
tion in the limit." The naming relation will be the following: The names 
of a time function, or of a black box (actually, its black box function), 
will be taken to be those Turing machines which compute it. 

Three classes each of time functions and of black boxes have been 
considered. Table II shows which of these are identifiable in the limit. 
As in Table I, the classes are listed in descending order in Table II. 
Finite automata time functions denote ultimately periodic functions. 

6. ABSTRACT MODEL OF IDENTIFICATION 

An identification situation consists of the following three items: 
1. A class n of objects. One of the objects will be chosen, the learner 

will be presented information about it, and the learner is to figure out 
which one it is. 



r 
LANGUAGE IDENTIFICATION IN THE LIMIT 457 

2. A method of information pre8entation. At each time t the learner 
receives a unit of information it which is chosen from a set I. The method 
of information presentation consists of specifying, for each w E Q, which 
sequences of units of information, ii , i2 , · · · , are allowable. Let the set 
of allowable sequences be designated r ( w). 

3. A naming relation. The learner is to identify the unknown object 
by finding one of its names. A naming relation consists of a set N of 
names and a function f which assigns an object to each name, f: N-;:. Q. 

The identification problem is to determine whether there is a rule the 
learner can use to accomplish the following: For any object w E Q 

and for any information sequence from I'°(w), on the basis of that in­
formation sequence the rule will yield a name n of w, that is, f( n) = w. 

Three variations of the identification problem are the following, of 
which only the first is considered in this paper. 

Identification in the limit has made some appearances previously in 
the pattern recognition literature (e.g., Aizerman et al., 1964). In this 
case the learner is to guess a name of the unknown object at each time. 
It is required that there be a finite time after which the guesses arc all 
the same and are correct. 

Finite ,identification is the type of identification problem usually 
considered. It is best known in automata theory (e.g., Gill, 19fil). In 
finite identification, the learner is to stop the presentation of information 
at some finite time when it thinks it has received enough, and state the 
identity of the unknown object. This is not possible unless there is some 
finite time at which the information distinguishes the unknown object. 
That is, no other object satisfies the information. 

Fixed-time identification. In this case the information sequence stops 
after some finite time which is specified a priori and which is independ­
ent of the object being described. The learner is to then state the identity 
of the unknown object. 

Saying that a class of objects is identifiable in the limit implie::; not 
only that a suitable guessing function G exists, but that it is effective; 
that is, there exists an algorithm which computes it. The class of objects 
will be called ineffectively identifiable in the limit if a suitable G exists, 
regardless of whether it is effective. Note that whether a class of objects 
is ineffectively identifiable in the limit does not depend on the naming 
relation so long as every object has at least one name. This is because any 
two naming relations are intertranslatable if we do not require translation 
to be effective. 

An identification situation will be said to satisfy the distinguishability 
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condition if the re w) are disjoint; that is, if there is no information 
sequence which describes two different objects. 

An identification situation will be said to satisfy the collapsing un­
certainty condition if the following holds: For any information string 
ii , · · · , it , let Qt denote the set of those objects which agree with the 
information received so far, i.e., those w such that I"'( w) contains an 
information sequence which begins ii , · · · , it . For any information 
sequence, the Qt will be a descending sequence. The collapsing uncer­
tainty condition requires that, for any object w and any information 
sequence of r( w), the limit set of the Qt contains only w. That is, for 
any w' different from w there is a time after which the information will 
eliminate w', namely w' EE Qt. 

7. METHODS OF IDENTIFICATION IN THE LIMIT 

Identification by enumeration refers to the following guessing rule: 
Enumerate the class of objects in any way, perhaps with repetitions. 
That is, choose a function from the positive integers to the class of ob­
jects such that the range of the function is the entire class. At time t 
guess the unknown object to be the first object of the enumeration which 
agrees with the information received so far, i.e., \vhich is in Qt . This 
guessing rule will be effective if the following two conditions hold: ( 1) 
Given any information string ii , · · · , it and any positive integer n, 
there is an effective method for determining whether the nth object of 
the enumeration is in Qt. (2) There is an effective method for finding a 
name of the nth object of the enumeration. 

To be precise, "identification by enumeration" refers to a class of 
guessing rules, since there are many possible enumerations. 

If we assume that I is countable, then any class of objects \vhich is 
ineffectively identifiable in the limit must be countable. This is because 
the domain of the guessing function G, namely, finite strings of elements 
of I, is countable. 

Henceforth, it \Vill be assumed that I and Q are countable, and that 
every object has at least one name. 

THEOIUJM 7.1. For ineffective identifiability in the limit, the clist1:nguish· 
abildy condition is necessary and the collapsing uncertainty condition is 
sufficient. Indeed, the collapsing uncertainty condition implies that 
identification by enumeration gives ineffective identification in the limit 
for any enumeration. If r ( w) 1:s countable for every w, then the distinguish· 
ability condition is sufficient for ine.ffective identifiability in the limit. 

PrwoF. Ineffective identifi~bility m the limit =? distinguishabilitY 
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If the distinguishability condition does not hold, then there is an allow­
able information sequence which describes two different objects, so that 
it is impossible to know >vhich is the unknown object. 

Collapsing uncertainty =? identification by enumeration gives ineffec­
tive identification in the limit for any enumeration: The object to be 
identified must occur somewhere in the e1rnmeration. Let its first occur­
rence be at position n, There are at most n - 1 different objects before 
this position in the enumeration. The collapsing uncertainty condition 
implies that there is some finite time after which none of these prior 
objects will agree with the information presented to the learner. After 
that time the unknown object will be the first object of the enumeration 
which satisfies the information received, and will therefore be correctly 
guessed by the learner. 

I"'( w) is countable for every w, together with distinguishability =? in­
effective identifiability in the limit. If we wish to identify the information 
sequence, then the collapsing uncertainty condition alway8 holds. Say­
ing that r'( w) is countable for every w is equivalent to saying that the 
set of allowable information sequences i8 countable. In thi8 case, iden­
tification by enumeration may be used to _identify in the limit the in­
formation sequence being presented to the learner. The distingui8hability 
condition implie8 that one can translate (not necessarily effectively) 
from information sequences to objects, and therefore to names of ob­
jects. Q.E.D. 

Returning to the specific case of language identification, note that in­
formation presentation by informant satisfies the collapsing uncertainty 
condition no matter what class of languages is considered. That is why 
the class of primitive recursive languages is identifiable in the limit from 
an informant; namely, an effective enumeration of the characteristic 
functions of this class of languages exists thereby giving an effective 
identification-by-enumeration guessing rule (see Theorem I.4, Ap­
pendix I). 

Information presentation by text satisfies the distinguishability con­
dition for any class of languages, but it does not satisfy collapsing un­
certainty for any class of languages which contains two languages 8Uch 
that one is a subset of the other. 

The following guessing algorithm shows that the class of languages of 
finite cardinality is identifiable in the limit from an arbitrary text: 
Guess the unknown language to consist solely of the strings generated so 
far by the text (see Theorem I.6). 

To see that the entire class of recursively enumerable languages is 
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identifiable in the limit from primitive recursive text using; the generator. 
naming relation (see Theorem I. 7), note that the class of primitive re. 
cursive texts is effectively enumerable. Therefore, the text can be effec­
tively identified in the limit using identification by enumeration. Since 
the text is a generator for the language, this is all that is needed. This is 
an example of the method of identification described at the end of the 
proof of Theorem 7 .1. 

8. INEFFECTIVE IDENTIFIABILITY IN THE LIMIT RESULTS 

LANGUAGE IDENTIFIABILITY. If information presentation is by inform­
ant, then the collapsing uncertainty condition is satisfied, so that any 
countable class of languages is ineffectively identifiable in the limit using 
identification by enumeration. Of course, all the languages must have 
names. 

If information presentation is by recursive or primitive recursive text, 
then, again, any countable class of languages is ineffectively identifiable 
in the limit. This is because there are only a countable number of pos­
sible texts, so that the text can be identified in the limit by meant: of 
identification by enumeration. 

If information presentation is by arbitrary text, then the results for 
ineffective identifiability in the limit are the same as for effective identi­
fiability in the limit; namely, the class of languages of finite cardinality 
is ineffectively identifiablC in the limit, but every proper superclass is 
not. This can be proved by the same methods used to prove Theorems 
I.6 and I.8. 

TIME FUNCTION IDENTIFIABILITY. The method of information presen­
tation in the model of time function learnability satisfies the collapsing 
uncertainty condition. Therefore, any countable class of time functions 
is ineffectively identifiable in the limit. 

BLACK Box lnENTIFIABILITY. Any countable class of black boxes is 
ineffectively (weak) identifiable in the limit. This can be proved by the 
same method used to prove Theorems 9 and 10 in Gold (196fi). 

9. THE WEAKNESS OF TEXT 

It is of great interest to find why information presentation by text is 
so weak and under what circumstances it becomes stronger. Therefore, 
it is worthwhile to understand the method used in Theorems I.8 and 
I.9 to prove that any class of languages containing all finite languages 
and at least one infinite language is not identifiable in the limit from a 
text in five out of six of the models using text. 
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The basic idea is proof by contradiction. Consider any proposed guess­
ing algorithm. It must identify any finite language correctly after a 
finite amount of text. This makes it possible to construct a text for the 
infinite language which will fool the learner into making a wrong guess 
an infinite number of times as follows. The text ranges over successively 
larger, finite subsets of the infinite language. At each stage it repeats 
the elements of the current subset long enough to fool the learner. 

Thus, the method of proof of the negative results concerning text 
depends on the possibility of there being a huge amount of repetition 
in the text. Perhaps this can be prevented by some reasonable probabil­
istic assumption concerning the generation of the text. In this case one 
would only require identification in the limit with probability one, 
rather than for every allowed text. 

I have been asked, "If information presentation is by means of text, 
why not guess the unknown language to be the simplest one which ac­
cepts the text available?" This is identification by enumeration. It is 
instructive to see why it will not work for most interesting classes of 
languages: The universal language (if it is in the class) will have some 
finite complexity. If the unknown language is more complex, then the 
guessing procedure being considered will always guess wrong, since the 
universal language is consistent with any finite text. This follows from 
the fact that, if L is the unknown language and if L' :::::> L, then L' is con­
sistent with any finite segment of any text for L. The problem with text 
is that, if you guess too large a language, the text will never tell you that 
you are wrong. 

10. LEARNING TIME 

Consider an identification situation which satisfies the collapsing un­
certainty condition. Choose an enumeration of the class of objects and 
let G0 be the identification-by-enumeration guessing rule which uses this 
enumeration. At first sight, identification by enumeration appears to be 
a naive approach to learning. However, it will be shown that Go is the 
most efficient possible guessing rule with respect 'to learning time. This 
holds even if ineffective guessing rules are allowed and if the enumeration 
has duplications. This result is somewhat surprising in view of the fact 
that there are many different identification-by-enumeration guessing 
rules, obtained by using different enumerations. This means that none of 
them is uniformly better than any other, in the sense defined below, for 
the purpose of minimizing learning time. 
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Let G be any guessing rule, w be any element of the class n of objects 
and i any information 8equence allowed for w. Define the learning tim~ 
r( G, w, i) to be the first time such that at that time and all following times 
all the guesses of G as to the identity of w \Vill be the ;,:ame and correct. 
Define the learning time to be er, if no such time exists. 

Let G and G' be any two guessing rules. G will be said to be uniformly 
faster than G' if the following two conditions hold: ( 1) Given any w and 
any allowable 'i for w, then G will identify w at least as soon as G' will 
identify w, that is, 

r(G, w, 'i) ~ r(G', w, n. 
( 2) There is some wo and an allowable 'lo for wo such that G will identify 
wo sooner that G': 

r(G, wo, io) < r(G', wo, Io) 

THEOREM 10.1. If Go is an identification-by-enumeration guessing rule, 
then there is no guessing rule uniformly faster than Go. 

PROOF. This is what has to be proved: Let G be any guessing rule. If 
there is an w and an allowable 'i for w such that G is faster than G0 , i.e., 
r( G, w, i) < r( Go, w, 'i), then there is an w' and an allowable i' for w' 
such that Go is faster than G, i.e., r(Go, w', :i') < r(G, w', '£'). 

G0 is constructed in such a way that, once it guesses correctly, its 
guesses never change. Therefore, if G0 is presented with the object w to 
identify, by being given information sequence i, then r( G0 , w, i) is the first 
time that Go guesses the identity of the unknown object to be w. At the 
earlier time, r(G, w, i), G0 must guess the name of some other object, say 
w'. At any time that Go guesses the name of an object, that object must 
agree with the information received so far. That is, at the time that Go 
guesses w' there must be an allowable r' for w' such that :i' is the same as 
i up to this time. Thus, if w' were the unknown object and i

1 
the informa­

tion sequence, then at that time, namely r( G, w, 'i), G and Go would make 
• I 

the same guesses as they would if presented w and I: G0 would guess w 
and G would guess w. That is, if presented with w' and i', Go would be 
correct before G. Q.E.D. 

Note that the proof of Theorem 9.1 remains valid even if Go does not 
identify every object of the class in the limit and G does. It is only neces­
sary that, for every finite initial subsequence of every allowable informa· 
tion sequence, there exist an object in the enumeration which is consistent 
with it. 
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11. TRANSLATION FROM GENERATORS TO TESTERS 

The purpose of this Section is to use the results on language identifica­
tion in the limit presented in Section 3 to solve a problem in recursive 
t hcory. In addition to the generator- and tester-naming relations, a third 
method of assigning names to recursive sets, called domain generators. 
is defined below. Suzuki ( 1959) has shown that there is no effective 
method for going from recuniive sets, described by domain generators, 
to their complements, described in the same \Vay. This result will here be 
strengthened in two ways: It will be shtnvn that there is no 2-recursive 
(defined below) translation of this type, and that, rather than the entire 
dass of recursive sets, one can restrict one's consideration to any class of 
sets which contains all finite sets and at least one infinite set without 
drnnging this result. It has been pointed out to me by X orman Shapiro 
that one can easily construct a 3-recursive translation from recursive 
:-;cts to their complements, using the domain generator-namiug relation, 
thus completely establishing the difficulty, in the Kleene hierarchy, of 
this type of translation. 

For the purpose of this Section it is desirable to think of languages as 
sets of positive integers, rather than sets of strings. This may be accum­
pfo,hed by means of any recursive one-to-one correspondence between 
the strings of l:A and the positive integers. 

Let Zn( x) be the number-theoretic function of one variable defined 
by the Turing machine whose Godel number is n. The two naming rela­
tions for languages are defined formally as follows. 

Generator. A generator for L is a positive integer n sueh that L is the 
range of Zn( x). 

Tester. A tester for Lis a positive integer n such that Zn(x) = XL(x), 
where XL is the characteristic function of L. 

It will be assumed in this Section that in aU naming relations the 
names are numbers. 

Tmnslation. Given two naming relations, N 1 and Nz, a translation from 
Ni to N 2 is a partial, number-theoretic function f( n) sueh that, if n is a 
name of an object in N 1 , then f (n) is defined ;tnd is a name of that object 
in N2 • 

Limiting recursive function. A partial, number-theoretic function f( n) 
will be called limiting recursive if there is a total recursive "guessing 
function" g( n, t) such that 

f(n) lim1 g( n, t), (IO.I) 
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where the limit of a sequence of positive integers is taken to be undefined 
if the sequence is not constant after some finite point; otherwise the 
limit is defined to be the value at which the sequence ultimately becomes 
constant. 

THEOREM 10.1. If a class of objects is identifiable in limit using some 
method of information presentation and using naming relation Ni , and if 
there is a limiting recursive translation from Ni to naming relation N2 , 

then the class of objects is identifiable in the limit using the same method of 
information presentation and N2. 

PROOF. Let f ( n) be a limiting recursive translation from Ni to N 2 , 

and g( n, t) be a total recursive function such that Eq. ( 10. l) holds, and 
let Gibe a suitable guessing rule using Ni . Then a suitable guessing rule 
using N 2 is the following: 

For a given information sequence, suppose that at time t the guess made 
by Gi is gt. Then, when using N2, let the guess be g(gt, t). Call this 
guessing rule G2 . 

To see that G2 is suitable note that, using Ni , there is a time ti after 
which all the g1 will equal a fixed value g0 , which is correct in Ni . By 
Eq. ( 10.1), there is a t2 such that, for all t ~ t2 , 

f(go) = g(go, t). ( 10.2) 

Therefore, for all times greater than ti and t2 , the guess of G2 will be 
f(g0 ), which is correct in N 2 • Q.E.D. 

Consider language learnability with information presentation by 
means of primitive recursive text. The results shown in Table I differ for 
the two naming relations, generator and tester. This leads to the follow­
ing conclusion: 

COROLLARY 10.1. If C is a class of languages which contains all finite 
languages and at least one infi.nite recursive language, then there is no limit­
ing recurs1'.ve translation from testers for C to generators. 

In order to compare this result with that of Suzuki, it is necessary to 
define two more naming relations for recursive languages: 

Domain generator. A domain generator for Lis a positive integer n such 
that Lis the domain of Zn(x). 

Anti-domain generator. n is an anti-domain generator for L if it is a 
domain generator for the complement of L. 

Representing predicate. For any partial number-theoretic function 
f ( n), its representing predicate P( n, m) will be defined to be true for just 
those pairs ( n, m) such that f ( n) is defined and f( n) = m. 
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k-Recursivefunction. A partial, number-theoretic function will be called 
k-recursive if its representing predicate is k-r.e. (recursively enumerable) 
in the Kleene hierarchy. 

Note that the I-recursive functions are just the partial recursive 
functions. 

It is shown elsewhere (Gold, 1965) that the limiting recursive func­
tions are the same as the 2-recursive functions. 

The strengthening of Suzuki's result described at the beginning of this 
chapter can now be stated formally: 

THEOREM 10.2. If C is a class of languages which contains all finite 
languages and at least one infinite recursive language, then there is no 2-re­
cursive translation from domain generators for C to anti-domain generators. 

PROOF. Theorem 10.2 follows from Corollary 10.l together with the 
following facts which can be proved by standard methods: 

There is a partial recursive translation from testers to domain gener­
ators. 

Given both a domain generator and an anti-domain generator for a 
recursive set, there is an effective procedure for finding a generator for it. 

Composition of 2-recursive and recursive functions yields 2-recursive 
funetiuns. Q.E.D. 

12. INDUCTIVE INFERENCE 

Concerning inductive inference, philosophers often occupy themselves 
with the following type of question: Suppose we are given a body of 
information and a set of possible conclusions, from which we are to 
choose one. Some of the conclusions are eliminated by the information. 
The question is, of the conclusions which are consistent with the in­
formation, which is "correct"? 

If some sort of probability distribution is imposed on the set of con­
clusions, then the problem is meaningful. But if no basis for choosing 
between the consistent conclusions is postulated a priori, then inductive 
inference can do no more than state the set of consistent conclusions. 

The difficulty with the inductive inference problem, when it is stated 
this way, is that it asks, ''What is the correct guess at a specific time 
with a fixed amount of information?" There is no basis for choosing 
between possible guesses at a specific time. However, it is interesting 
to study a guessing strategy. Now one can investigate the limiting be­
havior of the guesses as successively larger bodies of information are 
considered. This report is an example of such a study. Kamely, in in-
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teresting identification problems, a learner cannot help but make errors 
due to incomplete knowledge. But, using an "identification in the limit" 
guessing rule, a learner can guarantee that he will be wrong only a 
finite number of times. 

RECEIVED: February 20, 1967 
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APPENDIX I 

PROOFS OF LANGUAGE lnENTIFICATION RESULTS 

It can be shown by standard methods that there is a recursive trarn;la­
tion from testers to generators. Thus, Theorem 10.l gives 

THEOREM l.1. Given any method of information presentation, if a class 
of languages is identifiable in the limit using the tester-naming relation, 
then it is identifiable in the liniit using the generator-naming relation. 

COROLLARY I.2. Given any method of information prese"Ltation, if a 
class of languages is not identifiable in the limit using the generator-naming 
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relation, then it is not identifiable in the limit using the tester-naming rela­
tion. 

THEOREM I.3. Arbitrary informant, methodical informant, and request 
informant are equivalent methods of information presentation. 

PROOF. Identifiability from arbitrary informant==} identifiability from 
methodical informant==} identifiability from request informant: The first 
implication follows from the fact that an identity guessing algorithm 
which will work for any informant will obviously work for the special 
case of a methodical informant. The second follows from the fact that the 
learner can ask a request informant for methodical information. 

Identifiability from request informant ==} identifiability from arbitrary 
informant: Suppose we have an identity guessing algorithm suitable for a 
request informant and we are faced with an arbitrary informant. What­
ever information our learner wishes to request at some time, an arbitrary 
informant is required to provide it eventually. We can modify our learner 
so that it will wait until it receives the information it currently desires be­
fore it makes its next guess. Q.E.D. 

The previous five theorems and corollaries compare the methods of 
information presentation and the naming _relations for language identifica­
tion. These results, together with the following six theorems, yield the 
language learnability results presented in Table I. 

As in Section 10, it will be desirable to think of languages as sets of 
positive integers, rather than of strings. However, here it will be neces­
sary to achieve this by means of a primitive recursive one-to-one cor­
respondence, so that primitive recursive sets of strings will be taken into 
primitive recursive sets of positive integers and vice-versa. 

THEOREM I.4. Using information presentation by methodical inf orrnant 
and the tester-naming relation, the class of primitive recursive languages IS 
identifiable in the limit. 

PROOF. There is an effective enumeration of the primitive recursive 
functions of one variable, that is, a total recursive function Pn( x) of two 
Variables such that the class of Pn is the class of primitive recursive func­
tions. Define w( x) to be the function which takes 1 into 1 and all other 
values of x into 0. Then wpn ( x) is an effective enumeration of the char­
acteristic functions of the primitive recursive languages. Let Ln be the 
language whose characteristic function is wpn. It willnow be shown that 
identification by enumeration using this enumeration of the primitive 
recursive languages is effective. First it must be shown that, given any 
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information sequence up to time t and any n, it can be effectively deter­
mined whether Ln satisfies this information sequence. The information 
.sequence will tell us, for each x from 1 through t, whether x is an element 
of the unknown language L. The fact that wpn(x) is a recursive 2-place 
function implies that we can effectively determine the desired informa­
tion, namely, whether or not each x from 1 through tis an element of Ln. 
Now it only remains to show that a tester can effectively be found for 
Ln . This follows from the well known result of recursive theory that, for 
any recursive 2-place function wpn( x), there is a total recursive function 
·<P( n) such that 

(I.1) 

that is, <P( n) is a tester for Ln . 
THEOREM I.5. Using inforniation presentation by methodical informant 

and the generator-naming relation, the class of recursive languages IS NOT 
identifiable in the limit. 

PROOF. Let G be an effective identity guessing rule for methodical 
informant which correctly identifies in the limit every finite language and 
the complement of every finite language. A recursive language L will be 
constructed for which the guesses of G will change an infinite number of 
times. 

The information sequence for L will be a semi-infinite sequence of O's 
and l's: ii , it, , · · · , where i 1 = 1 if t E L, it = 0 if t Ef L. An effective 
rule will be given for constructing this sequence. The construction will 
proceed in steps. If at the beginning of a step of the construction the 
construction has so far produced ii , · · · , in , then at the end of the step 
the information sequence will have been extended to be of the form 

( I.2) 

where ab denotes a b-long string of a's. An effective procedure will be 
given for choosing x and y which will guarantee that the guess made by 
G at the end of string I.2 will be different from the guess made earlier, at 
the end of the information string 

( I.3) 

It is only necessary to show that a pair ( x, y) with this property exists, 
because then such a pair can be effectively found as follows: Meth· 
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odically search all pairs of positive integers until such a pair is found. 
That one can effectively determine, for any pair, whether it has the de­
sired property follows from the fact that G is effective. 

Let L1 be the language whose information sequence is 

ii , · · • , in , 000
, ( 1.4) 

where a00 denotes the semi-infinite string a, a, · · · . Since L1 is a finite 
language, if G is presented with this information sequence it must, after 
some finite time, continually guess a generator gi for L1. Let n + x be a 
time at which G guesses gi . 

Let L2 be the language whose information sequence is 

(1..5) 

Since ~ is the complement of a finite language, if G is presented with 
this information sequence, there must be a time n + x + y at which G 
guesses a generator g2 for L 2 • Since g1 and gz must differ, this shows the 
existence of a pair (x, y) with the desired property. Q.E.D. 

THEOREM 1.6. Using information presentation by arbitrary text and the 
tester-naming relation, the class of languages _of finite cardinality IS identi­
fiable in the limit. 

PROOF. The information sequence ii, iz, · · · will be a sequence of posi­
tive integers, the range of which is the unknown language L. A suitable 
identity guessing algorithm is the following: At time t, guess L to consist 
solely of the numbers which have occurred so far in the information 
sequence. Since Lis finite, there will be a finite time after which all ele­
ments of L will have occurred in the information sequence, so that the 
guesses will be correct. It is a straightforward but tedious exercise to 
show that there is an effective method for finding a tester for the language 
which consists of ii , · · · , it . Q.E.D. 

THEOREM 1.7. Using information presentation by primitive recursive 
text and the generator-naming relation, the entire class of r.e. languages IS 
identifiable in the limit. 

PROOF. As in Theorem 1.4, let Pn ( x) be an effective enumeration of the 
primitive recursive functions. The information sequence ii , i 2 , • • • will 
be the same as the sequence Pn( 1), Pn(2), · · · for some n. Such an n can 
be effectively identified in the limit by using identification by enumer­
ation. That is, the text describing the unknown language L can be identi­
fied in the limit. Since Pn( x) is a recursive function of two variables, 
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there is a total recursive function </>( n) such that 

Z<1>cnJ(x) = Pn(x); 

that is, </>( n) is a generator for L. Q.E.D. 

( l.7) 

THEOREM I.8. Using information presentation by recursive text anrl the 
generator-naming relation, any class of languages which contains all finite 
languages and at lease one infinite language L IS NOT identifiable in the 
limit. 

PROOF. We may assume that L is r.e. since, otherwise, it would not 
have a generator and the theorem would follow immediately. It can be 
shown by straightforward methods that there is a recursive sequence of 
positive integers al , az , · · · which ranges over L without repetitions. 
Suppose G is an effective identity guessing rule which identifies generators 
for all finite languages in the limit from recursive text. A recursive text 
for L will now be constructed which will cause G to change its guess an 
infinite number of times. This text will be of the form 

ii , i2 , · • · = af 1, a~2 , • • • ( l.8) 

As in the proof of Theorem I.5, this text will be constructed in steps. Let 

( l.9) 

At the beginning of the nth step, the desired information sequcnee will 
have been constructed through time t2n_2 • During the nth step, X2n-1 

and X2n will be effectively chosen in such a manner that the guess made 
by G at time fzn-l will differ from that at time t2n • As in the proof of 
Theorem I.5, it is sufficient to show that such a pair ( x2n-l , x2,,) exists. 

Let in signify the desired information sequence through time t,, . The 
information sequence 

- "' i1' i2 ' ... = i2n-2' a2n-1 ( I.10) 

is a recursive text for the finite language 

L1 = {a1, · · · , a2n-1}. (I.11) 

Therefore, there is an x2n-l such that at time fzn-l the guess made by G 
Will be a generator for L1 • Similarly, the information sequence 

• • - 00 

'it ' i2 ' . . . = 'lzn-1 ' a2n 
( I.12) 

is a recursive text for the finite language 

Lz = {a1' .•• , azn\, ( I.13) 
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which is different from Li . For a large enough x2n the guess made by G 
at time t2n will be a generator for L2 , which cannot be the same as a 
generator for Li . Q.E.D. 

THEOREM I.9. Using information presentation by primitive recursive 
te.rl and the tester-naming relation, any class of languages which contains 
all finite languages and at least one infinite language LIS NOT identifiable 
in the limit. 

PHOOF BY CONTHADICTION. An information sequence ii ' i2 ' ... is here 
a sequence of positive integers. A guessing rule consists of a computabl~ 
function G which determines the guess gt at time t as a function of the 
information received by the learner through t: 

( I.14) 

In the terminology of Gold ( 19G5), G determines a limiting recursive 
functional whose domain is information sequences. It is shown in 
Theorem 5 of that reference that any limiting recursive functional can 
be defined by means of a primitive recursive guessing function. It will be 
assumed that G is primitive recursive. It will also be assumed that L 
is recursive since, otherwise, L cannot be tester identified and the conclu­
sion of the theorem is immediate. Let f( x) 'be a primitive recursive func­
tion with a range equal to L. 

A primitive recursive text it will be constructed which contradicts the 
assumption that G is a suitable guessing rule. A function Xt will also be 
defined. Let Pt and Q1 signify the following predicates: 

Pt = [f(X1) = ii]v · · · v[f(Xt) = it] (1.1.5) 

Qi= (3y ~ t)fT[gt, f(Xt), y] & [U(y) =OJI, (I.16) 

where T( a, x, y) is the primitive recursive predicate which says that the 
Turing machine with Godel number a, if presented with x as an input, 
will stop after performing the computation with Godel number y; and 
U( y) is a primitive recursive function such that, if y is the Godel number, 
of a Turing machine computation, then U(y) is the number it produces 
at its end. 

i1 and Xt are simultaneously defined by course-of-values recursion as 
follows: 

ii = f( 1) 

(I.17) 

( I.18) 
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Xt+1 = Xt + 1 if Pt (I.19) 

= Xt if -,Pt . ( I.20) 

it+i = f(Xt) if -,Pt and Qt ( I.21) 

= 'lt otherwise. ( I.22) 

The idea behind the construction is this: it is designed to generate L , 
but very slowly. After a finite number of elements of L have been 
generated, x1 , · • · , Xr-l , if it repeats Xr long enough the guessing pro­
cedure will have to guess a decision procedure for the set { X1 , • · · , xr), 
which must reject Xr+i . As soon as gt is known to reject Xr+1 , i1 starts 
producing it. Qt implies Zut (Xr+i) = 0, where Xr+i = f(Xt). The details 
follow. 

Case I. ---, Pt holds for only a finite number oft. It will be shown that this 
implies that Rng(f) is finite. Let Pt hold for all t ~ a. Then, by in­
duction, 

[by (l.19)] 

[by (l.22)] 

[by (l.15)] 

Thus, 

t ~ a :::::} Xt = Xa + (t - a) 

'lt = 'la 

n ~ Xa :::::} f(n) E {i1, · · · , ia). 

Case II. -,Pt holds infinitely often, but Qt holds for only a finite 
number oft. It will be shown that Rng( i 1) is finite, but if gt-o> a, then there 
is an x EE Rng(it) such that Za(x) ~ 0. Choose a large enough so that 
-,Qt holds for all t ~ a. Induction on Eq. (I.22) gives 

it = ia for all t ~ a. 

Thus, 

Rng(it) 

Let (3 be large enough that 

(3 ~ a 

for all t ~ (3 

-,Pf! holds. 

(1.23) 

( 1.24) 

( I.25) 
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Induction on Eqs. (I.20) and (I.15)•gives, using (I.25) and (I.23), 

Xi = X 13 for all t ~ {3 

f(X13) E {i1, ··· ,ia}. 

Let x = f(Xp). Now (I.16). (I.24), and (I.26) give 

-,(3y~t){T(a,x,y) & U(y)=O} forall t~/3. 

Thus, 
Za(x) ~ 0. 

( I.26) 

Case III. Q1 holds infinitely often. It will be shown that Rng( ii) 
Rng(f); but if gi --7 a, then there is an x such that x E Rng(f) and 
Za( :r) = 0. Let a satisfy 

gt = a for all t ~ a. 

Let /3 ~ a such that Qp holds. Set 

x = f(Xp). 

Then Qp gives Za ( x) = 0. 
Rng( ii) = Rng(f) will be shown by -contradiction. We know, by 

(I.18) and (I.21), that 

j(l) E Rng(ii) c Rng(f). 

Let x be the lowest number such that 

f(X) Ef Rng(ii) 

(I.19) and (I.20) show that Xi is monotone increasing and either takes 
on all values, or is ultimately constant. 

Case IIIA. Xi = Xa for all t ~ a. Then (I.19) and (I.20) show that 
-,Pt holds fort ~ a. By the assumption in Case III, there is a {3 > a 
such that -, P 13 and Q13 • ( I.21) shows that i 13+i = f ( X 13 ). Then P f3+l holds, 
since Xf3+i = Xf3 by the assumption of Case IIIA. 

Case IIIB. a is the last t such that X 1 = X. Then, by (I.19), Pa must 
hold, i.e., 

f(Xa) E Rng( it). Q.E.D. 

APPENDIX II 

DEFINITIONS OF SOME OF THE TECHNICAL TERMINOLOGY 

Turing machines are a special class of algorithms which are precisely 
defined, so that they can be investigated mathematically, but are be-
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lieved to be perfectly general in the following sense. Given any compu­
tational rule which we would intuitively accept as an effectively defined 
algorithm, the function defined by this algorithm is also defined by some 
Turing machine. The recursive functions are those functions which can 
be defined by Turing machines. The inputs to a Turing machine may be 
considered to be either strings or positive integers, and the same is true 
of its outputs. 

The primitive recursive algorithms are a special class of algorithms which 
are not general in the sense of Turing machines, but are general enough 
to include all algorithms ordinarily constructed. Primitive recursive 
functions are functions which can be defined by primitive recursive 
algorithms. 

A decision procedure for a language L is an algorithm defined on strings 
::>uch that the result of using the algorithm is 1 or 0, depending on whether 
the string it starts with is an element of L or not. A generator for L is an 
algorithm which takes positive integers into strings such that the range of 
the function it determines is exactly L. 

L is called recursively enumerable ( r.e.) if there is a generator for it, 
recursive if there is a decision procedure for it, primitive recursive if there 
is a primitive recursive decision procedure for it, and regular if there is a 
decision procedure for it which can be computed by a finite state 
automaton. 


