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Inductive Inference of Formal Languages from Positive Data* 

DANA ANGLUIN 

Department of Mathematics, University of California, Santa Barbara, California 93106 

We consider inductive inference of formal languages, as defined by Gold 
(1967), in the case of positive data, i.e., when the examples of a given formal 
language are successive elements of some arbitrary enumeration of the elements 
of the language. We prove a theorem characterizing when an indexed family 
of nonempty recursive formal languages is inferrable from positive data. From 
this theorem we obtain other useful conditions for inference from positive 
data, and give several examples of their application. We give counterexamples 
to two variants of the characterizing condition, and investigate conditions for 
inference from positive data that avoids "overgeneralization." 

1. INTRODUCTION 

The  theory of inductive inference may be viewed as an at tempt to use our 
understanding of computat ion and of effective and efficient computabil i ty to 
model  and investigate processes that perform inductive generalizations. One 
example of such a process is a child who, upon hearing and at tempting to 
produce utterances in some natural language, gradually comes to possess 
(implicitly) a complicated and substantially "correct"  grammar for the language. 
Another  less dramatic case is the frequent use in human communication of 
illustrative examples to convey all or part  of the specification of some algorithmic 
procedure.  Solomonoff (1964) and Gold (1967) discuss these and other motiva- 
tions more fully. 

Gold (1967) gives a definition of correct inductive inference in which, infor- 
mally speaking, the inferring process is presented successively with a larger 
and larger corpus of examples, eventually including any particular example, and 
simultaneously makes a sequence of guesses of the underlying rule being 
exemplified. I f  the sequence of guesses eventually converges to a single value 
which is a correct description of the underlying rule, the inference is correct. I f  
the sequence of guesses oscillates indefinitely, or converges to an incorrect 
description, the inference is incorrect. This  definition and variations of it, 
general types of algorithmic processes to perform inference, and characteriza- 
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tions of classes of sets and functions that are inferrable have been studied by 
Barzdin and Freivald (1972), Biermann (1972), Blum and Blum (1975), Case 
and Smith (1978), Feldman (1972), and Kugel (1977), among others. 

This paper is concerned with inductive inference of classes of formal languages. 
A formal language is simply a particular set of strings over some fixed finite 
alphabet of symbols. We distinguish two fundamentally different ways of 
presenting a formal language by examples. One way is to give both examples 
and counterexamples, i.e., a collection of strings that are members of the 
language, and are so marked, together with a collection of strings that are not 
members of the language, so marked. The second way is to give only examples, 
i.e., a collection of strings that are members of the language. The first method of 
presentation we call "by positive and negative data," the second "by positive 
data." 

Intuitively, an added difficulty in trying to do inference from positive rather 
than positive and negative data is the problem of "overgeneralization." If in the 
course of making guesses the inferring process makes a guess that is overly 
general, i.e., specifies a language that is a proper superset of the true answer, 
then with positive and negative data there will eventually be a counterexample 
to the guess, i.e., a string that is contained in the guessed language but is not a 
member of the true language. No such specific conflict with the examples will 
occur in the case of inference from positive data. 

This difficulty in knowing when to generalize means that inference from 
positive data is strictly less powerful than inference from positive and negative 
data. Gold (1967, Theorem 1.8) shows that any class of formal languages over an 
alphabet Z that contains every finite language together with at least one infinite 
language over Z cannot be correctly inferred from positive data. Since this 
applies even to the class of finite-state languages over Z, this theorem has been 
interpreted as showing that inference from positive data is too weak to be of 
much theoretical interest. 

However, the "pattern languages" of Angluin (1979) appear to provide an 
example of a nontrivial and interesting class of languages for which correct 
inference from positive data is possible. In fact, it seems that searching for 
specific classes of languages which are inferrable from positive data may help to 
generate new approaches to concrete problems of inductive inference that 
avoid the difficulties of the apparent computational intractability of some 
previous approaches. (See Gold (1978) and Angluin (1978) on the computational 
complexity of some concrete inference problems.) 

The main result of the present paper is a characterization of those classes of 
nonempty recursive languages for which correct inference from positive data is 
possible. This characterization is used to derive other, more easily applied, 
conditions for the possibility of inference from positive data. We discuss 
several specific examples of the application of these conditions. Counter- 
examples are given to two possible variations of the main characterizing condi- 
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tion. We consider the special case of inference from positive data that avoids 
"overgeneralization," and give sufficient conditions for it. 

2. DEFINITIONS 

Let  27 be a fixed finite alphabet of symbols. The  set of all finite strings of 
symbols from 27 is denoted by Z*. The  length of a string w is denoted by I w [. 
The  concatenation of two strings u and v is denoted by uv or u • v. 

A language is any set of strings over 2:, i.e., any subset of Z*. Let  L be a non- 
empty  language. A positive presentation of L is an infinite sequence a = s l ,  s2, 
s 3 ,..., of strings such that the set {sl, s2, s3,...} is precisely L. An indexed 
family of nonempty languages is an infinite sequence L1, L2, La .... , where each 
L i is a nonempty  language. An indexed family of nonempty recursive languages is 
an indexed family of nonempty  languages L 1 , L 2 , La ,..., such that there exists 
an effective procedure to compute the membership function 

f(i,  w) = 1 if w ~ L  i 

= 0 otherwise. 

An inference machine is defined to be a certain type of Tur ing machine, 
though clearly an equivalent definition may be given for other formal models of 
computation. We consider a deterministic Tur ing machine with input  alphabet 
2:, a finite tape alphabet  A, and several one-way infinite tapes: a read-only 
sample tape, a wri te-only guess tape, and a finite number  of read-wri te  scratch 
tapes. Each tape is equipped with one head, which is initially positioned at the 
first square of the tape. The  machine has a finite number  of states, of which 
there are four distinct distinguished states: the initial state, the request state, the 
answer state, and the guess state. The finite control of the machine consists of a 
finite function that specifies for each tuple consisting of a state of the machine 
(other than the request state) and the symbols currently scanned by the heads 
on the sample and scratch tapes, a move, consisting of a state of the machine, 
symbols from A to write at the currently scanned squares on the scratch and 
guess tapes, and a specification for each of the tapes whether its head should be 
shifted one square to the right, or left, or 'not at all. We stipulate that no move 
of the machine may specify that the guess tape head be shifted left, and any 
move of the machine that writes a nonblank symbol on the guess tape must also 
shift the guess tape head right. 

Let  cr = s 1 , s 2 , s~ ,..., be an infinite sequence of elements of 27*. Let  M be an 
inference machine, as defined above. We define M[c~], the sequence of guesses 
produced by  M on input  ~ as follows. Let  the strings of nonblank symbols 
from A be enumerated effectively and take the ith string in this enumeration 
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to represent the positive integer i. Start M in the initial state, with all tapes blank 
and all tape heads positioned to the first squares of their respective tapes. 
Initialize the sequence ~- to be null. As long as M is not in the request state or the 
guess state, perform the uniquely determined move to transform the present 
configuration to its successor. When M enters the request state for the ith 
time, place si followed by blanks on the sample tape, position the sample tape 
head at the first square, put M in the answer state and continue the computation. 
When M enters the guess state for the ith time, append the positive integer 
represented by the current nonblank initial portion of the guess tape as the ith 
term of the sequence % clear the guess tape to all blanks, position the guess 
tape head to the first square, and then perform whatever move of M applies. Let 
M[a] be the null, finite, or infinite sequence ~- generated by this process carried 
on indefinitely. (Intuitively, of course, we think of M as from time to time 
requesting an input and being given the next element of a, and from time to 
time producing a guess, which is appended to ~-.) 

The sequence M[a] is said to converge to the positive integer i if and only if 
either M[a] is infinite and all but finitely many terms of it are equal to i, or 
M[~] is nonnull and finite, and the last term is equal to i. 

Let L 1 , L2, L 3 ,..., be an indexed family of nonempty languages. An inference 
machine M is said to infer the language L i from positive data if and only if for 
every positive presentation ~ of L i , there exists a positive integer j such that 
M[e] converges to j and Lj = L~. M is said to infer the family L1, L2, L 3 ..... from 
positive data if and only if for every i > /1  M infers the language L i from positive 
data. An indexed family of nonempty languages L1, L2, L a ..... is inferrablefrom 
positive data if and only if there exists an inference machine M that infers 
L 1 , L~, L 3 ,..., from positive data. 

We refer the reader to Rogers (1967) for definitions concerning computability 
and acceptable G6del numberings. 

3. CHARACTERIZING CONDITION FOR POSITIVE INFERENCE 

In  this section we state and prove a condition characterizing when an indexed 
family of nonempty recursive languages is inferrable from positive data. Informal- 
ly, this condition requires that for every language L of the family, there exists a 
"telltale" finite subset T of L such tha t  no language of the family that also 
contains T is a proper subset of L. Moreover, it must be possible to enumerate 
effectively some such telltale finite set from any index for L. The point of the 
telltale subset is that once the strings of that subset have appeared among the 
sample strings, we need not fear "overgeneralization" in guessing L. This is 
because the true answer, even if it is not L, cannot be a proper subset of L. In  
this case, we will eventually see a conflict between the data and L, which will 
force us to change our guess. 
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Condition 1. An indexed family of nonempty languages satisfies Condition 1 
if and only if there exists an effective procedure which on any input  i >~ 1 
enumerates a set of strings Ti such that 

(i) Ti is finite, 

(ii) Ti CC Li , and 

(iii) for a l l j / >  1, if Ti C_Lj t h e n L j  is not a proper  subset of L i .  

THEOREM 1. An indexed family of nonempty recursive languages is inferrable 
from positive data if and only if  it satisfies Condition 1. 

Proof. We first assume that L 1 , L2, L 3 ..... is an indexed family of nonempty  
recursive languages that satisfies Condit ion 1 and describe an inference machine 
that  infer L 1 , L 2 , L a ,..., from positive data. The  machine is defined in stages, 
beginning with stage 1: 

Stage n. Request another sample string. Let  S n denote the set of sample 
strings read in thus far. Let  g be the least positive integer (if any) such that 
g ~ n, S~ _CLg, and T~ ~) C S~ ,  where T~ ") denotes the set of strings produced 
in the first n steps of the enumeration of Tg from g. I f  no such g exists, then go to 
stage n + 1, otherwise output  the guess g and go to stage n + 1. 

This  procedure is effective because Sn is always an explicitly given finite set, 
so S~ C_L i is decidable by the decidabili ty of "sELi?."  I t  should thus be 
evident that the procedure may be implemented by an inference machine. To see 
that this procedure infers L 1 , L 2 , L 3 ,..., from positive data, let k >~ 1 be arbitrary 
and assume that  ~ - -  s 1 , s 2 , s~ ,..., is any positive presentation of L~.  At  each 
stage n, S~ = ( s l ,  s 2 ,..., s.}. Let  m be the least positive integer such that 
L~ = LI~. For  each positive integer i < m either 

(i) L ~ -  Li ~ ~,  in which case we choose ni sufficiently large that 
S~ n (Lm - -Li )  =# ;~ for all n >~ h i ,  or 

(ii) L~, CLi ,  in which case we choose n i sufficiently large that T~ ~) ~ T, i 
for all n ~> n¢. 

Finally, let n~ be sufficiently large that T,, _C S~ for all n >~ n~,. I f  N 
m a x ( n l , n z  ..... n~, ,m} then for all n > ~ N  we have m ~ < n ,  S~_CLm, and 
T~ ") C T~ _C S . .  Further ,  for each positive integer i < m, if L,~ -- L i ~ ~ so 
S~ ~ L~ , and if L~ C L i then T~ f Lm so since T~) ~ Ti , T~') ~ L~ . Thus  m 
will be the guess of the procedure at stage n. Since n >~ N was arbitrary, we see 
that the sequence of guesses converges to m, an index for LT~. Since k and ~ were 
arbitrary, we see that this procedure infers L 1 , L 2 , L~ ,..., fl-om positive data. 

For  the converse, suppose M is an inference machine that infers L 1 , Lz ,  L~ ,... 
from positive data. We construct an effective procedure to enumerate for each i 
a finite set T~ satisfying Condit ion 1. I t  is clear that there exists an effective 
procedure which given i enumerates a positive presentation of i. (Such a proce- 
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dure might effectively enumerate all strings of X* testingeach one for membership 
in L i and outputt ing it if it is a member  of L i . To guarantee that an infinite 
sequence of strings is enumerated, the procedure can output  s~, the first string 
it finds in L i ,  infinitely often, say after a fixed number  of failed membership 
trials. Recall that each L i is nonempty by hypothesis.) Given such a procedure, 
there is another effective procedure to enumerate all finite sequences of elements 
o f L  i (repetitiofis permitted) in an obvious fashion. The  procedure to enumerate 
Ti from i is defined as follows: 

Given i, let s 1 , s 2 , s 8 ,..., be an effective enumeration of a positive presentation 
of L i  • Go to stage 0. 

S t a g e  O. Put s 1 in Ti and let "1 be the finite sequence @1). Go to stage 1. 

S t a g e  n (n > / 1 ) .  Begin enumerating all finite sequences of elements of 

L i , say px, P2, P8 ,.-. • Dovetail  the computations of M on the input  sequences 
%P~, ~-~P2, %~P3 ,..., (where juxtaposit ion denotes concatenation of the finite 
sequences of strings). I f  we find a sequence ~-~pj such that the most recent guess 
of M when it requests the next input  beyond ~-~ differs from the most recent 
guess of M when it requests the next input  beyond ~-np~, then we define T~+ 1 = 
r , p~ ( s~+l )  , add all the elements of r~+ 1 to T,i, and go to stage n q- 1. 

I t  is clear that the elements of T i are (uniformly) effectively enumerable from i. 
We must  see that T i satisfies Condition 1. 

First,  assume that this procedure executes an infinite number  of stages. 
Then  the limit r of r 1 , r2,  ra .... , will be an infinite sequence containing all and 
only the elements o f  L i ,  i.e., is a positive presentation o f L  i . (Note that we add 
s~+l to r when we go from stage n to stage n q- 1.) However, M on input  r must  
change its guess after reading in all of rn and before reading in all of r~+ 1 , for all 
n / >  1. Hence M [ r ]  does not converge to any value, so M fails to infer L i from 
positive data, a contradiction. 

Hence there exists a positive integer n such that this procedure enters stage 
n and never enters stage n + 1. Then  T i  is the finite set of elements in r n ,  

because we only enlarge T i when leaving a stage. Furthermore,  if p is a n y  

infinite sequence of elements o f L  i then M on input  rnp (that is, the finite sequence 
% followed by the infinite sequence p) never changes its guess after reading in all 
of ~-~ (because if it did, the procedure would eventually test a sufficiently long 
initial segment pj of p to detect this, and go on to stage n q- 1), and consequently 
must  converge to a guess of an index o f L  i for any such ~-~p. 

Suppose that there exists a positive integer j such that T i C_L~ and L j  C L  i . 

Let  p be any positive presentation of L~-. Since the elements of % are contained 
in T i , ~-,p is also a positive presentation of L j .  By the argument in the preceding 
paragraph, M[7~p]  converges to an index o f L  i 5/= L 5 , so M fails to infer Lj from 
positive data, a contradiction. 

Thus  T i satisfies Condition 1. | 
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4. OTHER CONDITIONS 

In  this section we derive as corollaries of Theorem 1 other (possibly more 
easily used) conditions for the possibility of correct inference from positive data. 
The  application of these to several examples is given in the next section. Let  
L 1 , L 2 , L 3 ,..., be an indexed family of nonempty  recursive languages. 

CONDITION 2. We say L 1 , L~, L a ,..., satisfies Condit ion 2 provided that, for 
every i >~ 1, there exists a finite set Ti C L i such that for every j >/1, i f  T i C C_ Lj 
then Lj  is not a proper subset of Li . 

Note that Condit ion 2 is simply Condit ion 1 with the requirement of effective 
enumerabil i ty  of T i dropped.  Also note that the satisfaction of Condit ion 2 does 
not depend at all on the indexing of the family of languages, but  simply on the 
set of languages that appear in the sequence. 

COROLLARY 1. I f  L1,  Lz ,  L a ..... is an indexed family of recursive languages 
that is inferrable from positive data, then it satisfies Condition 2. 

Proof. From Theorem 1, since Condit ion 1 is stronger than Condit ion 2. | 

In  Section 6 we give an example to show that Condit ion 2 is not sufficient for 
inferrabili ty of L 1 , L 2 , L a ,..., from positive data. Corollary 1 strengthens the 
related Theorem 1.8 of Gold (1967) in a useful way. 

CONDITION 3. We say L1,  L2,  L a ,..., satisfies Condit ion 3 i f  for each non- 
empty finite set S C 27", the set C(S) = {L: S C_L and L = L  i for some i} is of 
finite cardinality. 

Note that Condit ion 3 also depends only on the set {L1, L2, L 3 ,...} and not on 
the indexing of it. 

COROLLARY 2. I f  L 1 , L2,  L3 .... , is an indexed family of nonempty recursive 
languages such that Condition 3 is satisfied, then it is inferrable from positive data. 

Proof. Let  L1,  L2,  L 3 .... , be an indexed family of nonempty recursive 
languages that  satisfies Condit ion 3. We show that it satisfies Condit ion 1, and 

apply Theorem 1. Let  s 1 , s 2 , s~ ,..., be an effective enumeration of the elements 
of 27*. For  each i and n, L~ ~ will denote the computable finite set 
L i (5 {s 1 , s 2 ..... s~}. We define a procedure to enumerate a set T i from i in 
stages, beginning with stage 0: 

Stage O. Let  t 1 be the least element of t i . Set -/11 ~ {tl}, put  t 1 into T i and 
go to stage 1. 

Stage n (n >~ 1). Search for a pair ( j ,  m) such that d ,  CLj  and L~. ~ CL~ ~). 
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I f  one is found, set An+ 1 = L~ ~), put the elements of A~+ 1 into T i , and go to 
stage n -k 1. 

Clearly Ti may be (uniformly) effectively enumerated from i. Also, each A n 
constructed is an initial segment of L~ and properly contains A,~_ 1 if n > 1. 
There are finitely many distinct languages from the given family that contain 
the string t 1 , by Condition 3. Each stage of the procedure must find and "cancel"  
(by enlarging A~+ 1 so that it is not contained in the language) at least one such 
language containing t l .  Further, no such language need be cancelled more than 
once (by the monotonicity of A1 _C A~ _C--.) so there are only finitely many 
stages in the execution of this procedure. That  is, there exists some positive 
integer n such that this procedure enters stage n and never enters stage n @ 1. 
Thus  T~ = AN is of finite cardinality, and clearly Ti C L i .  Assume that for 
s o m e j  ~ 1, T i C Lj  andLj  ~ L  i . Then for some m, L~. ~) CL~ ~), and the proce- 
dure in stage n must eventually find this (or some other) pair ( j ,  m) such that 
A n C_L~ ~) and LJ. ~) CL~ ~), and go on to stage n q- 1, contradicting our choice of 
n. Thus  Ti satisfies Condition 1. | 

We note that the procedure described above is actually computing in the 
limit whether Lj C L i . We are thus led to formulate a condition directly concern- 
ing the decidability of inclusion. 

COROLLARY 4. An indexed family of nonempty recursive languages L1, L 2 , L 3 .... 
is said to satisfy Condition 4 provided there exists an effective procedure to compute 
the inclusion function: 

h(i , j)  = 1 if  L~ C_Lj 

= 0 otherwise. 

We note that this condition, like Condition l, depends essentially upon the 
indexing of the family. 

COROLLARY 3. Let L1, L2 , L s ,..., be an indexed family of nonempty recursive 
languages that satisfies Conditions 2 and 4. Then L1, L~ , L3 ..... is inferrable from 
positive data. 

Proof. We show that Condition 1 is satisfied, and apply Theorem 1. A 
procedure to enumerate a set T/ on input i ~ 1 is as follows, beginning with 
stage 0. 

StageO. L e t A  1~-  ~ and go to stage 1. 

Stage n (n ~ 1). Search for an in teger j  ~ 1 such that A n _CL 3- andLj  C L  i . 
I f  such a j is found, let m be the least positive integer such that L~ '~) f L ~  '~) 
(where L~ ~) is as in the proof of Corollary 2). Set An~l. =--iL ~m, put the elements 
A~+ 1 into T i ,  and go to stage n + 1. 
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Clearly the elements of Ti = A1 ~ -/12 k3 ... may be (uniformly) effectively 
enumerated from i. Each constructed An is an intial segment of L i and properly 
contains A~_ 1 if n > 1. Thus  Ti C_ Li • Suppose this procedure executes infi- 
nitely many stages. By Condition 2 there exists a finite set R i C L i such that for 
no j >/ 1 do we have R~ CLj  and Lj C L  i . Hence for some sufficiently large n, 
at stage n, R i C A,~, so the search in stage n must fail to find a n y j  ~ 1 such that 
A n C L~ and Lj C L i ,  so the procedure never reaches stage n -}- 1, a contradiction. 
Hence there exists some integer n >/ 1 such that this procedure enters stage n 
and never enters stage n @ 1. Hence Ti = An is finite, and for every j / >  1 such 
that Ti _CLj, it must be the case that Lj is not a proper subset of L i . Thus T i 

satisfies Condition 1. | 

5. EXAMPLES 

In  this section we give several examples of the application of the conditions 
for inference from positive data that were derived above. 

EXAMPLE 1. (This is the example that originally motivated this investigation.) 
Let X = {x 1 , x~., x 3 ,...} be an infinite set of symbols disjoint from 27. By a 
pattern we shall mean a nonnull finite string over the alphabet 27 u X. If  p is a 
pattern, then the language of p, denoted L(p) ,  is the set of elements of Z* that 
can be obtained from p by substituting a nonnull element si ~ S*  for each 
occurrence of the symbol xi inp,  for all i / >  1. For example, i f Z  = {0, 1, 2,..., 9} 
and p is 3x~x642x37 then some elements of L(p)  are 3004213, 31221224255, 
311421. The pattern languages are the sets L(p)  where p is any pattern. We choose 
some straightforward concrete representation/~ of the pattern p as a string of 
symbols over some finite alphabet, choose an effective enumeration of the 
concrete representations: p l ,  P2, ffa ,..', and index the pattern languages as 
L(pl) ,  L(p2), L(pa) ..... I t  is not difficult to see that this will be an indexed 
family of nonempty recursive languages. Furthermore, this family satisfies 
Condition 3 because for any finite nonempty set of strings S _CC Z'*, if l is the 
minimum length of any string in S; then any pattern p such that S _C L(p)  
must have length ~<l, and there are only finitely many distinct pattern languages 
generated by patterns of length ~l .  Hence by Corollary 2, the pattern languages 
(with this indexing) are inferrable from positive data. 

For more details of these and other results concerning the pattern languages, 
see Angluin (1979). 

For the next two examples, we assume that the reader is familiar with the 
definitions and elementary properties of regular expressions; see, for example, 
Aho, Hopcroft, and Ullman (1974). 

EXAMPLE 2. Let el, e2, ea ,..., be an effective enumeration of all regular 
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expressions over the alphabet {0, 1} containing no operators other than - (conca- 
tenation) and • (Kleene star). Then  L(el), L(e2), L(ea),..., is an indexed family of 
nonempty recursive languages that is not inferrable from positive data. To  see 
this, we shall prove that Condition 2 is violated. Consider the language L'  ~- 
L((0*I*)*).  Clearly L '  = X * .  I f  T = { t l ,  t2,... , tk} is any nonempty finite 
subset of L' ,  then consider the language L r =-L((tl)*(t2)* "" (t~)*). Clearly 

]s 
T C L  r . Also, if m = 1 q- Y~i=l I ti ] and s is the string 0~lm0 ~+1 ' "  0~-~1 ~ ,  
then it is not difficult to see that s q~L r , so Lr  ~ L ' .  Thus  no "telltale" finite set 
exists for L',  and Condition 2 fails (We note that Theorem 1.8 of Gold (1967) 
does not apply to this example.) 

EXAMPLE 3. Let e , ,  e 2 , e a ,..., be an effective enumeration regular expressions 
over the alphabet {0, 1} that contain no operators other than • (concatenation) 
and + (Kleene plus, i.e., repetition an arbitrary positive number  of times). Then  
L(el) , L(e2) , L(ea),... , is an indexed family of nonempty recursive languages that 
is inferrable from positive data. We show that this family satisfies Condition 3, 
and apply Corollary 2. For any expression e i from this enumeration let /(el) 
denote the length of e i (as a string of symbols from {0, 1, ", +, (,)}) and let c(ei) 
denote the number  of occurrences of symbols from {0, 1} in e i . For any such ei ,  
if s eL@i ) then l s I >/c(e~), and also there exists another expression ej from the 
enumeration such that l(e~)<~ lOc(ei) and L(ej)=L(ei). (This uses the fact 
that L(((f)+)  +) = L(( f )+)  for any regular expression f.) Let S be an arbitrary 
finite nonempty set of strings over {0, l} and let m be the min imum length of 
any string in S. For any e i such that S C_L(ei), c ( e i ) ~  m and there exists 
some e~ with l(e~)<~ 10c(e~)~ 10m such that L ( e j ) =  L(ei). Since there are 
only finitely many expressions ej from the enumerat ion such that l(ej) <~ lore, 
there are only finitely many distinct languages in the indexed family that 
contain S as a subset, so Condition 3 is satisfied. 

EXAMPLE 4. In  this example we assume some computable encoding of 
positive integers as strings over Z' and discuss sets of positive integers. I f  n is 
any positive integer let I(n) be the set of all positive integral multiples of n. 
Let the collection of all finite nonempty sets of prime positive integers be 
T1, T2, T a ..... indexed, for example, in order of increasing I ' I~T,P.  Let 
R~ = U ~ r ~ I ( P ) .  Then R~, R2, R a,..., is an indexed family of nonempty 
recursive sets. For any i, Ti C_ R i and for any j, if T i C Rj  then R i C Rj  , so the 
sets T i satisfy Condition 2. Also, T~ is recursively enumerable from i, so Condi- 
tion 1 is satisfied, and R1,  R2 ,  R a ,..., is inferrable from positive data by 
Theorem 1. Alternatively we can see that Ri C_ R~ if and only if T~. _C T~-, so 
Condition 4 is satisfied and Corollary 3 applies. We note that Condition 3 does 
not apply; for example, if S = {2} then for any p r imep ,  I(2) u I ( p )  contains S, 
and there are infinitely many distinct such sets in the family R~, R~, R a ,.. . .  
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6. VARIATIONS OF CONDITION 1 

In  this section we show that the requirement  in Condit ion 1 that Ti be 
recursively enumerable from i cannot be dropped entirely or strengthened to 
recursive without losing the sufficiency or necessity of the condition for inference 
from positive data. 

THEOREM 2. There exists an indexed family of nonempty recursive languages 
satisfying Condition 2 that is not inferrable from positive data. 

Proof. Let  M be an arbitrary inference machine. We first show how to 
construct an indexed family of nonempty  recursive languages that  M does not 
infer from positive data. This  will be the basis of a construction that "cancels" 
all inference machines. For  convenience, we will use sets of positive integers; 
we assume some straightforward encoding of positive integers as strings over X 
to obtain the correspondence to languages over 27. 

We describe a procedure to enumerate the elements of sets R 1 , Rz,  R 3 ,..., 
each of which is a subset of the set of powers of 2, {2, 4, 8, 16, 32,..}. The  set R 1 
is special; it consists s imply of the even power of 2, that is, R 1 = {22~: m >~ 1}. 
Each of the other sets is, during the course of the procedure, in one of three 
states: live, terminating, or terminated. Only live or terminating sets may have 
new elements added. 

During the procedure, we maintain three variables: ~ which is a nonempty  
finite sequence of positive integers, b, which is either a positive integer or q- o% 
and s which may take on the values "following 1" and "terminat ing i" for every 
positive integer i. The  instruction to "augment  ~" will mean the following. Let  
x be the current last element of ~; if 4x ~< b then append 4x to the end of ~, 
otherwise append (another) x to the end of ~. The  procedure is defined in stages, 
beginning with stage 0. 

Stage O. Initialize all sets Ri for i / >  2 to be live and contain the element 4. 
Set a = (4) ,  b = q-0% s = "following 1," andg0 = null. Go to stage 1. 

Stage n (n ~ 1). Run M on input  ~ for n steps. I f  M is in the guess state 
after n steps, then set gn = the index on the guess tape at this point. Otherwise, 
set g~ = g~-i  • 

(a) I f  s = "following 1" and g ,  = I then let m be the min imum index of 
any live set, set b = 22~, set the state of R~ to terminating,  add 22~+2 to all 
remaining live sets, augment ~, set s = " terminat ing m," and go to stage n if- 1. 

(b) I f  s ~ "following 1" and g~ @ 1 then if gn is either null or the index 
of a terminated set then add 22~+2 to all live sets, augment ~, and go to stage 
n + 1. However,  if g~ is the index of a live set, then add 22~+1 to the set with 
index gn ,  mark it terminated,  add 22n+2 to all live sets, augment ~, and go to 
stage n q- 1. 
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(c) I f  s = "terminating i "  and g,~ = i then add 22'~+1 to R~ and mark it 
terminated, set b = @ oo, add 22'~+2 to all live sets, augment e, set s = "follow- 
ing 1" and go to stage n @ 1. 

(d) I f  s = "terminating i "  and gn =/= i then add 22~+2 to all live sets, 
augment or, and go to stage ,t @ 1. 

The  underlying idea of this construction is to enumerate elements of R 1 
until  M switches its guess to 1, then to enumerate elements of some finite subset 
R~ of R 1 until M switches its guess to i at which t ime we add an element to Ri 

so that it is not a subset of R,  and go back to enumerating elements of R,  again. 
The  values of s are the states of this process: "following 1" means that we are 
enumerating elements of R 1 waiting for M to switch its guess to 1; " termin-  
ating i "  means that we are enumerating elements of R i ,  waiting for M to 
switch its guess to i. I f  ever M fails to switch its guess to 1, the value of cr will 
be an enumeration of R 1 for which M fails to infer R 1 . I f  M fails to switch its 
guess to the finite subset R i , then ~r will be an enumeration of Ri for which M 
fails to identify R i . 

Clearly Ri ,~ ;g for all i >/ 1. For  each i ~ 2, Ri contains only powers of 2, 
and 22~+1 or 22n+~ is an element of Ri if and only if it is added to R i at stage n of 
this procedure. Thus  there exists an effective procedure to decide whether 
m ~ R i given positive integers m and i. Thus  R1,  R2,  R a .... is an indexed 
family of nonempty recursive sets. To see that Condition 2 is satisfied we 
consider the two possible cases: 

(i) Every set that is marked " terminat ing"  is eventually marked " termi-  
nated."  In  the limit, the family consists of a collection of copies of R1 (those 
sets that are never marked " terminat ing")  and a collection of terminated finite 
sets. When  a set is marked " terminated ,"  an odd power of 2 is added as its 
last element, so it cannot be a proper  subset of - R  1 . I f  for each terminated finite 
set Ri we take Ti = Ri and for each Ri = R 1 we take Ti = {4}, these sets will 
satisfy Condit ion 2 (since no set in the family is a proper  subset of RI). 

(ii) Exactly one set, say R t ,  is marked " terminat ing"  but  never marked 
" terminated ."  In the limit the family consists of a collection of copies of R 1 
(those sets never marked " terminat ing") ,  a collection of terminated finite sets, 
and R t , which is a finite subset of R~. Let  T be a finite subset of R 1 such that  
T -- R t ~ ~ .  For  each finite R i ,  let T i = R i ,  and for those Ri = R1, take 
Ti = T. Then  since no terminated finite set is a subset of R 1 and T ~ R , ,  

these sets T i will satisfy Condition 2. 

To see that M fails to infer R 1 , R 2 , R a ,..., we consider the above two cases 
again. 

(i) Every set marked " terminat ing"  is eventually marked " terminated ."  
Then  it is easy to see that, as the stage number  n tends to infinity, the value of b 
is unbounded and a approaches an infinite sequence ~ that is a positive presenta- 
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tion of L 1 . Also, for infinitely many stages, s = "following 1." Thus Mid]  
cannot converge to 1, for then some R i would be marked " terminat ing"  and 
never marked " te rmina ted" .  I f  MId]  converges to some i =/= 1 then the set R~ 
must  be marked either " terminat ing"  or " te rminated"  at some point  and is 
therefore finite and not equal to R 1 . Thus  M[$] must either fail to converge, 
or else converge to some i such that R~ @ R1, so M does not infer R 1 from 
positive data. 

(ii) Exactly one set, say R~, is marked " terminat ing"  and never marked 
" terminated ."  When  R, is marked " terminat ing" ,  the guess of M is 1. Sub- 
sequently, all remaining live sets are extended to be equal to R 1 in the l imi t .  All  
terminated sets contain an odd power of 2. When  it is marked " terminat ing ,"  R,  
contains a finite initial segment of R 1 ; b is set to the largest element of R, and is 
never subsequently changed, so in the limit a approaches an infinite sequence 
that is a positive presentation of R , .  But M never subsequently guesses t 
(otherwise R,  would be marked " terminated") ,  and no other positive integer is 
an index of R , ,  so M does not infer R, from positive data. 

In  either case, we see that M fails to infer R 1 , R 2 , Ra ,..., from positive data. 
For  the general construction, it is easy to see that there exists an enumeration 
M 1 , M~,  Ma ..... of all inference machines such that  the above construction to 
cancel Ms is uniformly effective given i. Thus  we may simply use this construc- 
tion, with powers of the i th pr ime number  Pi in place of powers of 2 to cancel 
the machine M s ,  for all i >~ 1. I f  (m, n)  is a computable pairing function we 
define R<i,1 > , R<i.2 > , R(i.~ > ,..., to be the sets constructed to cancel M i . (In 
this construction, if the guess of Mi at stage n is g = (s, t ) ,  where s :fi i then we 
set g~ = null.) Tile resulting R 1 , R 2 , R 8 ..... is an indexed family of nonempty  
recursive languages that satisfies Condit ion 2 and is not inferrable from positive 
data. | 

We  next define a version of Condit ion 1 in which the sets T i are required to be 
recursive rather than just  recursively enumerable. 

CONDITION 1'. An indexed family of nonempty recursive sets L1,  L2 , L 3 .... , is 
said to satisfy Condit ion 1' provided there exists an effective procedure which on 
input i outputs the elements of a finite set Ti and then halts, where Ti C_L~ and for 
all j >~ 1, i f  T, C_L~ then L~ is not a proper subset of L i . 

THEOREM 3. There exists an indexed family of nonempty recursive languages 
that is inferrable from positive data but does not satisfy Condition 1'. 

Pro@ As in the proof of Theorem 2 we consider sets of positive integers 
and assume some straightforward correspondence to sets of strings over Z'. Le t  
M1,  M2,  Ma ,..., be an enumeration of Tur ing machines giving an acceptable 
G6del  number ing of the partial recursive functions (see Rogers (1967)). 



130 DANA ANGLUIN 

Define for each i ~> 1 

f ( i )  = n if M i on input i halts in exactly n steps 

---= - / co  if M i  on input i doesn't halt 

R2i_ 1 -~ (pin: n ~ 1} 

R2i = {pin: n ~<f(i)}, 

where Pi denotes the ith prime number. Clearly for each i >/1 ,  either R2~ = 
R2i_ 1 0 f f ( i )  = +oe) ,  or R2i is a finite subset of R2i_ 1 . 

There is an effective procedure to determine whether m ~ R i given m and i, 

as follows. I f i = 2 j - -  1 a n d r e = p i n  for n > / 1 ,  t h e n m ~ R  i .  I f i = 2 j a n d  
m =_pin for some n >~ 1 then run M~. on input j for n - -  1 steps; if M has not 
halted in that time then m E Ri  • In  all other cases, m ~ R i . Thus R 1 , R 2 , R 3 .... , 
is an indexed family of nonempty recursive sets. 

To see that it is inferrable from positive data, we define the following proce- 
dure, beginning with stage 1. 

Stage n. Request another input. Let Sn denote the set of inputs read so far. 
I f  the elements of S~ are powers of Pi and S~ C_ R~i then output the guess 2i; 
otherwise, output the guess 2i - -  1. 

This procedure may be implemented by an inference machine (using the 
decidability of "m ~ Ri  ?" from m and i), and is easily seen to infer R 1 ,  R 2 ,  R 3 .... , 

in the limit from positive data. 
Finally, assume that R 1 ,  R 2 ,  R a ,..., satisfies Condition 1'. Consider the 

following procedure. 
On input i, compute the finite set Tzi-1 and output 0 if T2i_ 1 C_ R21. Output 1 

otherwise. 
Since Condition 1' allows us to compute all of the elements of Tel-1 by a 

procedure that halts, the procedure above is effective. However, for every 
i >/1  T2i_ 1 C R2i if and only if R~i = R2i_ 1 if and only if M i does not halt on 
input i. Hence this procedure solves the halting problem, a contradiction. Thus  
R 1 ,  R2 , R 3 .... , does not satisfy Condition 1'. | 

7. AVOIDING OVERGENERAL INFERENCES 

In  this section we consider a further restriction on an indexed family of 
languages that guarantees that there exists some inference machine that infers 
the family from positive data and, intuitively speaking, never changes its guess 
unless a change is required to maintain consistency with the input data. Thus  
the machine never makes an overgeneralization that cannot be detected by 
conflict with the sample. First we consider certain properties an inference 
machine may have. 
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Let L 1 , L~, La ,..., be an indexed family of nonempty languages. Let M be an 
inference machine. We say M is consistent on L 1 ,  L 2 , L 8 .... , provided that for 
every i ~ 1 and every positive presentation a of L i ,  whenever M on input a 
enters the guess state, the language guessed contains all the input strings read 
in up to that point in the computation. We say M is responsive o n L  1 , L ~ ,  L a ,..., 

provided that for every i ~.~ 1 and every positive presentation a of L~, between 
any two distinct steps of the computation of M on input a in which M is in the 
request state, there exists a step in which M is in the guess state. We say M is 
conservative on L 1 ,  L ~ ,  L a .... , provided that for every i / >  1 and every positive 
presentation a of L~, if M on input cr makes the guess i at some step and then 
makes the guess j v ~ i at some subsequent step, then L i m u s t  fail to contain 
some input string read prior to the later step. 

Intuitively, "consistent" means whenever M makes a guess it is consistent 
with the sample read in so far, "resposive" means that M makes at least one 
guess in response to each input before requesting another input, and "conserva- 
tive" means that M only changes a guess when it conflicts with the sample read 
in so far. 

Remark .  The inference machine M constructed in the proof of Theorem 1 is 
consistent on the given family of languages by construction. We may easily 
modify it to be responsive on the family as well; if M is about to go to stage 
n -[- i without making a guess during stage n, it instead searches for the least i 
such that Sn __C L~ and guesses i. This search can only fail if the input is not a 
positive presentation of any language of the family, and gives a consistent guess 
when it succeeds. Thus  the inference machines of Corollaries 2 and 3 may also 
be taken to be consistent and responsive on the respective families of languages. 

THEOREM 4. There exists an indexed f a m i l y  o f  nonempty  recursive languages 

L 1 , L 2 ,  L a .... , tha t  is inferrable f r o m  posi t ive  data  but  is such that  no inference 

machine M that  infers L 1 , L2 , L 3 ,..., f r o m  posi t ive data  can be conservative on 

L 1 ,  L 2 ,  Lz  ,... • 

Proof.  We first show how to "cancel" a single inference machine M. (As 
in the proofs of Theorems 2 and 3 we use sets of positive integers assuming 
some straightforwar~ correspondence to languages over Z.) 

Define R 1 = {2~: m ~ 1}. Let a be the sequence 2, 4, 8, 16, 32,..., of positive 
powers of 2. Define R i for i > 1 as follows. Run the computation of M on input 
a for i steps. I f  during this computation, M guesses 1, then let Ui be the set of 
input strings read by M up to the first time it guesses 1. I f  M does not guess 1 
during the first i steps of its computation on a then let U~ = C. Define R i 
u~ u {2}. 

Clearly R 1 , R 2 , R a ,..., is an indexed family of nonempty recursive languages. 
Consider the computation of M[a]. There are two cases to consider. I f  M on 
never guesses 1 then R i = {2} for all i > 1 and M fails to infer R, from positive 

643/4s/~-~ 
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data. I f  M on ~ eventually guesses 1, then let i be the first step at which M on a 
guesses 1. Let  $ be the finite initial segment of ~ read by M up to step i, followed 
by  an infinite sequence of 2's. The  sequence ~ is a positive presentation of the 
finite set R i . Consider M on input ¢): at step i we know that it guesses 1. I f  M 
never subsequently changes its guess, it fails to infer Ri from positive data. On 
the other hand, if M subsequently changes its guess, it fails to be conservative on 
R~, R 2 , Ra ,..., because R 1 is consistent with every initial segment of $. 

Thus  in either case M must  either fail to infer R 1 , R 2 , R 3 ,..., from positive 
data or fail to be conservation on R 1 , R2, R8 . . . . .  To cancel all machines, we 
take a standard enumeration M 1 , M 2 , M3 .... , of inference machines and some 
computable pairing function (i,  j), and define R<i.l> , R<i,2>, R<i,3> ,..., as above 
with (i ,  1) in place of 1 and powers of the i th prime Pi in place of powers of 2, 
in order to cancel M i . The resulting R 1 , R 2 , R~ .... , is an indexed family of 
nonempty recursive languages such that no inference machine can both infer 
the family from positive data and be conservative on it. To see that this family is 
inferrable from positive data, we consider the following procedure to enumerate 
a "tel l tale" set T i from i: 

On input i = ( j ,  k) ,  if k > 1 then simply compute and output  all the (finitely 
many) elements of R i . If  h = 1 then initially output pj  and pj2 and begin 

running M 3 on the input  aj = p~, pie, pja,.. . .  If  Mj ever guesses the output  
( j ,  1) then let r be the least positive integer such that M on aj has not read the 
input  p J  when it first guesses ( j ,  1). Output  P7  and halt. 

Clearly Ti will be a finite set, recursively enumerable from i. For  each finite 
R i ,  T i = R i and so satisfies Condition 1. I f  R i is infinite, i.e., i ~ ( j ,  1) for 
some j ,  then T i contains at least two powers o fp j  and so is not contained in any 
R(s.t > with s ~ - j .  There  are two cases. I f  M~- on aj = p ~ ,  pje, pja ..... never 
guesses ( j ,  1), then Ro-,~ > = { p ~ }  for all k > 1, so Ti~R<j.k> for all h > 1. 
I f  Mj  on a t eventually guesses ( j ,  1), then pjr is chosen so that pj* 6 R<j.~> for 
all h > 1, and placed in Ti • Hence in any case the sets Ti satisfy Condition 1, 
and we apply Theorem 1 to conclude that R1, Re ,  Ra ,..., is inferrable from 
positive data. | 

We note that the family R 1 , R 2 , R~ ,..., constructed in the preceding proof 
also satisfies Condition 3. Thus,  without some additional restriction, we cannot 
guarantee correct conservative inference from positive data. Let  L 1 , L 2 , L 3 ,..., 
be an indexed family of nonempty languages. I f  S _C N* and i ~> 1 then we say i 
is descriptive of S provided S C_L i and for a l l j  ~> 1 such that S _CLj, Lj is not a 
proper  subset of L i . 

CONDITION 5. An  indexed family of  nonempty recursive languages L~,  L2,  
L~ ,..., is said to satisfy Condition 5 provided there exists a partial recursive 
function f such that f ( S)  is some i that is descriptive of  S whenever S is a nonempty 
finite set of  strings such that there exists some j that is descriptive of  S. 
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THEOREM 5. Let  L 1 , L 2 ,  L a .... , be an indexed fami ly  of  nonempty recursive 

languages that satisfies Conditions 3 and 5. Then there exists an inference machine M 

that infers L 1 , L 2 , L 3 .... , f rom positive data and is consistent, responsive, and 

conservative on L 1 , L 2 , L 3 , . . . .  

Proof. Let  f be a partial  recursive function as specified in Condition 5 for 
L1,  Lz ,  La , . . . .  We define an inference procedure starting with stage 0. 

Stage O. Set gl ~ "none"  and go to stage 1. 

Stage n (n ~ 1). Request another input. Let  S~ denote the set of inputs 
read so far. I f  for some integer i, g~ =- i and S~ C L,: then set gn+l = g,~, output  
g~+l and go to stage n _u 1. Otherwise, let g~+l - -  f ( S n ) ,  output g~+l and go to 
stage n - /  1. 

This  may be implemented by an inference machine 3/) using a subprocedure 

to compute f ;  if the computat ion of f(S,~) diverges then M simply never gets 
to stage n - ?  1. By construction M is responsive and conservative on 
L 1 , L z , L  a , . . . .  

Let  i / >  1 be arbitrary, and let ~ = s 1 , s 2 , s 3 ,..., be a positive presentation of 
L i .  For  each n let C~ = { L :  {sl ,  s2 ..... s n } C L  and for some j >~ 1, Lj = L } .  
Since L i ~ Cn,  Cn is nonempty,  and by Condit ion 3, Cn has finite cardinality. 
Thus  it must  contain a minimal element (with respect to the set-containment 
ordering), and f ( { s l ,  s 2 ..... s~}) must  be defined and equal to an integer j such 
that Lj  ~ C n . Hence for every n ~ 1, M eventually reaches stage n with S~ = 
{s 1 , s 2 ..... s~}, and guesses g~+l = j, where S~ _C Lj . Thus M is consistent on 
L~ , L 2 , L a . . . . .  

Fur thermore,  for each L c C 1 either 

(i) Li C L, in which case let n(L) = 1, or 

(ii) L i - - L  v~ ;~, in which case let n(L)  be sufficiently large that 
S ~ - - L  @ ~ for a l l n ~ n ( L ) .  

Let  N = max{n(L): L ~ C1}. By construction, once M guesses an index of 
L~ it never subsequently changes its guess. At any stage n / ~  N, if Sn C_ L j  then 
Lj  ~ C1 so by the choice of N either L~ = L i or Li C L j ,  so an index of Li must be 
guessed. Hence M infers L 1 , L 2 , L 3 ,..., from positive data. | 

Referring to Example 3 in Section 5, we saw that Condition 3 is satisfied 
for the class of languages described by regular expressions using only the opera- 
tions of concatenation and Kleene plus. The  argument given there enables us 
to compute expressions representing the finitely many languages from the class 
containing a given finite nonempty  sample set S, and because containment is 
decidable for languages represented by regular expressions, we may effectively 
find a minimal such language. Thus  Condition 5 is also satisfied for this family, 
and Theorem 5 applies. 
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A somewhat more elaborate argument (see Angluin (1979)) is required to see 
that the family of pattern languages (Example 1) satisfies Condition 5, and thus 
Theorem 5 applies in this case as well. 

We note that although the family of sets in Example 4 does not satisfy Condi- 
tion 3, we can directly construct an inference machine that infers the family 
from positive data and is consistent, responsive, and conservative on it. There 
exists a recursive function f that with input S, a nonempty finite set of positive 
integers not containing 1/finds a set of primes Q of minimum cardinality such 
that every element of S is a positive multiple of an element of Q. (We remark 
that this problem is NP-hard  if the integers are encoded in base b > 1, by a 
straightforward reduction from set-covering.) Using this f in the procedure 
described in Theorem 5 gives the desired result. Thus the conditions in Theorem 
5 are sufficient but not necessary. 

8. REMARKS 

We have not investigated the question of when an indexed family of nonempty 
recursively enumerable languages is inferrable from positive data, since the 
motivating applications all seem to be families of recursive languages. I t  is not 
clear how useful the conditions in Corollary 3 will prove in practice. Perhaps as 
in Example 4, Corollary 3 is generally no easier to apply than Theorem 1 itself. 
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