
Lesson 5

Probably Approximately Correct

1



Learnability – September 18, 2025 © Jeffrey Heinz

5.1 Probably Approximately Correct
What follows below is taken verbatim fromKearns and Vazirani (1994, §1.2). I mostly just omitted
sentences which referred to previous examples.

5.1.1 Definition of the PAC Model
LetX be a set called the instance space. We think ofX as being a set of encodings of instances or
objects in the learner’s world. In our rectangle game, the instance space X was simply the set of
all points in the Euclidean plane R2. As another example, in a character recognition application,
the instance space might consist of all 2-dimensional arrays of binary pixels of a given width and
height.

A concept over X is just a subset c ⊆ X of the instance space. In the rectangle game, the
concepts were axis-aligned rectangular regions.

A concept c can thus be thought of as the set of all instances that positively exemplify some
simple or interesting rule. We can equivalently define a concept to be a boolean mapping c :
X—0, 1, with c(x) = 1 indicating that x is a positive example of c and c(x) = 0 indicating that x
is a negative example. For this reason, we also sometimes call X the input space.

A concept class C over X is a collection of concepts over X .
In our model, a learning algorithm will have access to positive and negative examples of an

unknown target concept c, chosen from a known concept class C. The learning algorithm will
be judged by its ability to identify a hypothesis concept that can accurately classify instances as
positive or negative examples of c. Before specifying the learning protocol further, it is important
to note that in our model, learning algorithms ”know” the target class C, in the sense that the
designer of the learning algorithm is guaranteed that the target concept will be chosen from C
(but must design the algorithm to work for any c ∈ C). LetD be any fixed probability distribution
over the instance space X .

Figure 5.1: Figure 1.4 Venn diagram of two concepts, with symmetric difference shaded.

Wewill refer toD as the target distribution. If h is any concept overX , then the distribution
D provides a natural measure of error between h and the target concept c: namely, we define

error(h) = Pr
x∈D

[c(x) 6= h(x)].

Here we regard the concepts c and h as boolean functions, and we have introduced a nota-
tional convention that we shall use frequently: the subscript x ∈ D to Pr[·] indicates that the

2



Learnability – September 18, 2025 © Jeffrey Heinz

probability is taken with respect to the random draw of x according toD. Note that error(h) has
an implicit dependence on c and D that we will usually omit for brevity when no confusion will
result.

A useful alternative way to view error(h) is represented in Figure 1.4. Here we view the
concepts c and h as sets rather than as functions, and we have drawn an abstract Venn diagram
showing the positive examples of c and h, which of course lie within the entire instance space
X . Then error(h) is simply the probability with respect toD that an instance is drawn falling in
the shaded region.

Let EX(c,D) be a procedure (we will sometimes call it an oracle) that runs in unit time, and
on each call returns a labeled example (x, c(x)) where x is drawn randomly and independently
according to D. A learning algorithm will have access to this oracle when learning the target
concept c ∈ C . Ideally, the learning algorithm will satisfy three properties:

1. The number of calls to EX(c,V) is small, in the sense that it is bounded by a fixed polynomial
in some parameters to be specified shortly.

2. The amount of computation performed is small.
3. The algorithm outputs a hypothesis concept h such that error (h) is small.

Note that the number of calls made by a learning algorithm to EX(c, V) is bounded by the running
time of the learning algorithm.

We are now ready to give the definition of Probably Approximately Correct learning. We
designate it as our preliminary definition, since we shall soon make some important additions to
it.

Definition 1 (The PAC Model, Preliminary Definition) Let C le a concept class over X. We
say that C is PAC learnable if there exists an algorithm L with the following property: for every
concept ceC, for every distribution V on X, and for all 0 < c < 1/2 and 0 < 6 < 1/2, ifL is given
access to EX(c1-6, L outputs a hypothesis concept h € C satisfying error(h) < e. This probability
is taken over the random examples drawn by calls to EX(c,V), and any internal randomization of
L.

If L runs in time polynomial in 1/e and 1/6, we say that C is efficiently PAC learnable. We will
sometimes refer to the input e as the error parameter, and the input 6 as the confidence parameter.

3



Learnability – September 18, 2025 © Jeffrey Heinz

5.2 Working PAC definition
Consider a concept class C ⊆ P (X). C is PAC learnable iff there exists a learning algorithm L
with the following property:

• for all c ∈ C ,
• for all D over X ,
• for all 0 < ε, δ,
• there exists m = f(1

ε
, 1
δ
) such that

• f is a polynomial function, and
• after drawing m samples from EX(c,D), the probability that L outputs a hypothesis h
with errorc,D(h) < ε is at least 1− δ.

(Later this definition is modified so that m = f(size(h), 1
ε
, 1
δ
) where size(h) is a measure of the

size of the representation of the concept h.)

5.3 PAC analysis of Axis-Aligned Rectangles
Here we prove that the axis-aligned rectangles is PAC learnable by the rectangle learning strategy
discussed by Kearns and Vazirani (1994, chapter 1).

Recall that error(h) = Prx∈D[c(x) 6= h(x)]. We want to bound this error by εwith probability
δ. How do we keep the error smaller than ε? The only area that contributes to the error is the
region between the target R and the hypothesized rectangle R′, which is R\R′. So we want the
probability associated with R\R′ to be less than ε.

We divideR\R′ into four overlapping strips and consider one strip T ′. We want to bound the
error associated with T ′ to be less than ε/4 so we can ultimately be sure the whole area will have
error less than ε.

Consider the strip T whose error under the distributionD equals ε/4. If T ′ properly includes
T then the error associated with T ′ exceeds ε/4. If this happens, Pr[error(h)] could be greater
than ε. So we want to show that the error of T ′ is bounded by the error associated with T , which
equals ε/4.

Note that if any point in T appears in S then in fact T includes T ′. This is because if a point
in T occurs in S then T ′ only extends as deep as that point since R′ includes all positive points.
And if T includes T ′ then the error associated with T ′ is bounded by ε/4.

What is the probability that a point in S is in T (from which it would ultimately follow
that Pr[error(h) < ε])? The region T is defined to be the probability that a random draw from
EX(c,D) lies in T is ε/4. Therefore the probability that a random draw from EX(c,D) does
not lie in T is 1 − ε/4. It follows that the probability that none of m random draws lie in T
is (1 − ε/4)m. (From which it will ultimately follow that Pr[error(h) > ε] is bounded by that
number.)

Since there are 4 overlapping strips like T , the probability that none of m random draws lies
in any of the 4 strips is less than 4(1− ε/4)m. Formally, we have established

Pr[error(h) > ε] < 4(1− ε/4)m .

We want this probability to be less than δ:

Pr[error(h) > ε] < 4(1− ε/4)m < δ .

4



Learnability – September 18, 2025 © Jeffrey Heinz

In the region [0,1], it is a fact that

1− x ≤ e−x .

It follows that

(1− x)m ≤ e−mx

in the same region.

Consequently we have shown the following.

Pr[error(h) > ε] < 4(1− ε/4)m ≤ 4e−mε/4

Thus any value of m which satisfies

4e−mε/4 < δ

will also satisfy

Pr[error(h) > ε] < δ ,

which is equivalent to

Pr[error(h) < ε] > 1− δ .

5



Learnability – September 18, 2025 © Jeffrey Heinz

Here is a complete derivation for finding such m.

4e−mε/4 < δ

e−mε/4 < δ/4

−mε/4 < ln(δ/4)

−mε/4 < ln(δ)− ln(4)

mε/4 > ln(4)− ln(δ)

mε/4 > ln(4/δ)

m > (4/ε) ln(4/δ)

Kearns and Vazirani (1994, p. 6) write “In summary, provided our tightest-fit algorithm takes a
sample of at least (4/ε) ln(4/δ) examples to form its hypothesis rectangle R′, we can assert that
with probability at least 1 − δ, R′ will misclassify a new point (drawn according to the same
distribution from which the sample was chosen) with probability at most ε.”

5.4 Monomials
Monomials is another term for the conjunctions of literals. The elimination algorithm Valiant
(2013) discusses in Chapter 5 PAC-learns monomials and in this section we see mathematically
why that is the case. But first let’s review what the concept class is, and how the elimination
algorithm proceeds.

5.4.1 Variables and Literals
A literal is either positive (x) or negative (x̄, also sometimes written ¬x) variable. If there are n
variables then there are 2n literals. The variables can refer to any property such “has eyes,” “more
than 100 pounds,” or “contains a stressed syllable”. The instance space X contains elements a
which can be evaluated according to these variables. If a has property x then the positive literal
x is true of a otherwise it is false. Conversely, if a does not have the property x then the positive
literal x is false of a otherwise it is true.

Suppose we have n variables: x1, x2, . . . xn. The conjunction of literals then is a formula like
the following:

x1 ∧ x̄2 ∧ x4 .

This means “Elements inX satisfying the formula have property x1, do not have property x2 and
have property x4.” So each possible formula defines a concept, and every finite set of variables
defines a concept class by considering all possible conjunctions of positive and negative literals.

An example familiar to students from computational linguistics 2 would be the Strictly 2-
Local languages. These are formal languages that can be described by forbidding finitely many
substrings of size 2. For example, if Σ = {a, b} then the “baba” language {ba, baba, bababa, . . .}
is given by forbidding the substrings oa, bb, aa, bn, on.

6



Learnability – September 18, 2025 © Jeffrey Heinz

The variables are all the substrings of length 2 drawn from {o}Σ∗{n}. Each positive literal
x is interpreted as “contains the substring x” and negative literal x̄ is interpreted as “does not
contain the substring x.” Thus a monomial describing the “baba” language is shown below.

oa ∧ bb ∧ aa ∧ bn ∧on .

5.4.2 The Elimination Algorithm
1. Set h = x1 ∧ x̄1 ∧ x2 ∧ x̄2 ∧ . . . ∧ xn ∧ x̄n

2. Receive (a, c(a)) from EX(c,D). If a is a negative example (so c(a) = 0) repeat this step;
otherwise move on.

3. For each 1 ≤ i ≤ n: if xi is true of a then remove x̄i from h and if x̄i is true of a then
remove xi from h. Return to step 2.

Note this process never ends!
Here is an example using the “baba” language. Below is a list of all possible literals of length

2 from {o}Σ∗{n}.

oa ob an bn aa ab ba bb on
oa ob an bn aa ab ba bb on

If the first positive example returned by EX(c,D) is “ba” (so with word boundariesoban), then
the following literals would be removed from h:

oa,ob, an, bn, aa, ab, ba, bb,on

5.4.3 PAC analysis
Like the axis-aligned rectangles, the elimination algorithm only ever considers hypotheses h that
cover all the observed positive examples. Furthermore, the literals in h always include the lit-
erals in the target c because all the literals are in h at the beginning and they are only removed
when they contradict c. Because h includes the literals in c, any negative example will always be
classified as negative by h. In other words, h never errs on negative examples.

So a literal (positive or negative) z in h only causes h to err on positive examples awhere z is
not true of a. The total probability of z not being true of a positive example a is denoted by p(z)
defined below.

p(z) = Pr
a∈D

[c(a) = 1, z is not true of a]

It follows that
error(h) ≤

∑
z∈h

p(z) .

Wewould like to bound error(h) by ε. Since there are at most 2n literals z in h, we can achieve
this if, for all z, p(z) ≤ ε/2n.

Call z a bad literal if p(z) ≥ ε/2n. Consider some bad literal z. The probability that z is
removed from h after m calls to EX(c,D) is (1 − p(z))m. Since p(z) is at least ε/2n then this
probability is at most (1 − ε/2n)m. Since there are at most 2n bad literals, the probability that
some bad literal is not removed from h is at most 2n(1− ε/2n)m.

7



Learnability – September 18, 2025 © Jeffrey Heinz

In other words, Pr[error(h) > ε] is bounded by 2n(1− ε/2n)m. So if we can find values of m
that bound this latter value by δ, then we can conclude that Pr[error(h) < ε] > 1− δ.

Here is a complete derivation for finding such m.

2ne−mε/2n < δ

e−mε/2n < δ/2n

−mε/2n < ln(δ/2n)

−mε/2n < ln(δ)− ln(2n)

mε/2n > ln(2n)− ln(δ)

mε/2n > ln(2n/δ)

m > (2n/ε) ln(2n/δ)

Since m is a polynomial function in terms of n, δ, and ε, we see that the elimination algorithm
PAC-learns the concepts expressible as the conjunction of positive and negative literals.

In the case of our example, n = 9. So if we want to be 99% confident that the probability of
the error is less than 1% then

m = 18/.01 ln(18/.01) = 1800× 7.496 ≈ 13492

examples suffice for any concept c ∈ C , and for any distribution D over X .

Exercise 1. What if Σ = {a, b, c}?

8



Bibliography

Kearns, Michael, and Umesh Vazirani. 1994. An Introduction to Computational Learning Theory .
MIT Press.

Valiant, Leslie. 2013. Probably Approximately Correct: Nature’s Algorithms for Learning and Pros-
pering in a Complex World . Basic Books.

9


	Probably Approximately Correct
	Probably Approximately Correct
	Definition of the PAC Model

	Working PAC definition
	PAC analysis of Axis-Aligned Rectangles
	Monomials
	Variables and Literals
	The Elimination Algorithm
	PAC analysis



