
Lesson 01 - Introduction

What does ‘learning’ mean?

Learning: Data → Grammar

1. What is Data?

2. What is Grammar?

3. What does the arrow do and How does it do it?

4. Does the transformation the arrow represents have any properties we can identify?

5. What does it mean to say that a learning algorithm ‘works’ or ‘is successful’?

Computational Problems

Problem: Question → Answer

Mathematically, one can think of a problem as a function that maps questions (instances

of problems) to correct answers. Here are some examples.

Example: Computing the area of a rectangle

Question Answer

ℓ = 3𝑚, 𝑤 = 4𝑚 12𝑚2

ℓ = 10𝑚, 𝑤 = 5𝑚 50𝑚2

… …

Example: Sorting Lists

Question Answer

[3,4,6,2,1] [1,2,3,4,6]

[100,-99,98,101] [-99,98,100,101]

… …

1

Algorithms

An algorithm is a mechanical, step-by-step procedure that correctly solves a problem.

That is, it can take any instance of the problem (question) as its input and, after going

through the step-by-step procedure, it produces an output which is the correct answer to

the question.

Well known algorithms exist for solving the above examples. For finding the area of the

rectangle, one can multiply the two numbers together, and multiplication of two numbers

is essentially a solved problem. For list sorting, there are all kinds of algorithms which

can do this (bubble sort, merge sort, heap sort, quicksort and many others).

Algorithms for Learning

Question Answer

? ?

Data Grammar

? ?

1. What is the data?

2. What is the grammar?

In the above examples, the problems were parameterized. For finding the area of the

rectangle, there was a range of lengths and widths to be considered. For list sorting, we

implied that any list of integers was a valid ‘question’. For language learning, we might

ask What range of Data ought we consider?

Note that even for something as easy as computing the area of a rectangle, there are some

not-so-innocent assumptions. For example, we may think that the inputs could be any

pair of real numbers instead of any pair of integers. Doing so, however, runs into a real

problem: most real numbers aren’t real in the sense that they cannot be written down or

effectively represented (Chaitin 2004). What we really have is multiplication of rational

numbers, which allows us to approximate real numbers to any desired degree of precision.

Example: Maze Solving

Question Answer

maze 1 a path through maze 1

maze 2 a path through maze 2

… …

2

What kinds of mazes do we want to consider?

• Mazes with one entrance and one exit?

• Mazes with more than one entrance and more than one exit?

• Mazes with one entrance and zero or more exits?

• Mazes where you have a view from above versus mazes where you have 1st person

view?

• Mazes where you can leave breadcrumbs?

• Mazes with minotaurs which must be avoided?

• Mazes on the surface of toruses, or mazes in normal Euclidean space?

• Mazes with wormholes or teleporting portals?

• Mazes whose walls change over time?

There are lots of ways to parameterize mazes! The same is true for Data for learning

problems.

We can also think of what kinds of answers we want. For example, if no path exists, do

we want the algorithm to tell us no path exists? Or is it OK if it just crashes or gives a

wrong answer here?

Finally suppose we have identified a class of mazes and an algorithm that solves this class.

That is, for any maze in the class, it produces a correct solution for how to escape the

maze. We can also ask some other questions of this algorithm. 1. Given a maze M, can we

say anything about how much time it takes to get out of it? 2. Given a maze M, can we

say anything about how far we are from the exit as we move along the path? For instance,

are we always getting closer, or sometimes are we taken farther away?

Answers to these sorts of questions tell us something about the behavior of our maze-

escaping procedure.

Example: Estimating the probability of an unfair coin

We begin with the simplest parametric model I know of: the unfair coin. A fair coin has

equal probability of landing heads or tails when flipped. An unfair coin has probability 𝜃
of landing heads and probability 1 − 𝜃 of landing tails. So a fair coin is the special case

of an unfair coin when 𝜃 = 0.5. This probability 𝜃 is the sole parameter in our model of

unfair coins. The value is fixed and does not change with time.

1. What is Data? One idea is that the data is a sequence of coin flips. For instance, our

data may consist something like: HTHHTTH or TTTHHTHT.

2. What is the Grammar? One idea is that the grammar is just the parameter 𝜃, whose
true (computable) value we want to estimate. Thus, we know 0 ≤ 𝜃 ≤ 1.

Now we ask is there a procedure which can take Data and give us back correct values of 𝜃.
A commonly invoked procedure, which I will call the “OT ratio”, estimates 𝜃 to be the

ratio obtained by dividing the number of Observed head flips by the Total number of

flips.

3

Questions 1. What are some issues with this approach? 2. How can these be resolved?

Limiting behavior of estimators

One way statisticians resolved the issues discussed above is to consider an unending se-

quence of coin flips. Importantly, each flip of the coin is independent and identically
distributed (i.i.d), which means no one flip affects the probability of another (indepen-

dence) and each flip has an identical distribution (so the probability of head is 𝜃 and that

never changes). Then one can investigate the behavior of the estimator “in the limit”.

Imagine a sequence of time steps, one after another. At each moment, the coin is flipped.

At each moment a new estimate is formed based on the sequence of flips up to the current

moment.

time 1 2 … 𝑛 𝑛 + 1 …

flip flip1 flip2 … flip𝑛 flip𝑛+1 …
estimate 𝑆1 𝑆2 … 𝑆𝑛 𝑆𝑛+1 …

In other words, 𝑆𝑛 is not just based on flip𝑛 but on the sequence shown below.

flip1,flip2, … flip𝑛

Now one can ask about the behavior of 𝑆𝑛 as 𝑛 gets larger.

Definition: weak consistency

An estimator 𝑆 for 𝜃 is said to be “weakly consistent” if it converges in probability to the

true value of 𝜃. Formally,

for all 𝜖 > 0, lim
𝑛→∞

𝑃(|𝑆𝑛 − 𝜃| < 𝜖) = 1

Definition: strong consistency

An estimator 𝑆 for 𝜃 is said to be “strongly consistent” if it converges ‘almost surely’ to

the true value of 𝜃. Formally,

𝑃(lim
𝑛→∞

𝑆𝑛 = 𝜃) = 1

Theorems

1. Strong consistency implies weak consistency but not vice versa.

2. The estimator by OT ratio is weakly consistent.

4

3. The estimator by OT ratio is not strongly consistent.

Question: Suppose we flip the a coin 10 times. Is there any guarantee that 𝑆𝑛 is close to

the true value of 𝜃?

Likelihood

The likelihood function 𝐿 is the probability of the data given a value 𝜃. For example,

𝐿(𝐻𝑇 𝐻 ∣ 𝜃 = 1/3) = 1/3 × 2/3 × 1/3 = 2/27.
Theorem: For any data sequence, the estimate 𝑆𝑛 produced by the OT ratio maximizes

the likelihood of the data. In other words, for any data sequence 𝐷 = flip1,flip2, … flip𝑛,

and for any ̂𝜃 between 0 and 1 not equal to 𝑆𝑛, we have 𝐿(𝐷 ∣ 𝑆𝑛) ≥ 𝐿(𝐷 ∣ ̂𝜃).
For this reason, the estimator by OT ratio is commonly called the Maximum Likelihood

Estimator (MLE).

General Lessons

1. It is useful to think about learning behavior over time, as data continually arrives.

2. “Long-term” aspects of behavior are important (what can we say about the limiting

behavior of the learning algorithm).

3. “Short-term” aspects of behavior are important too (given finitely many data points,

what can we say about the quality of the learner’s output).

4. We want both kinds of theoretical results. In future classes we will see how past

researchers have thought about these issues with respect to natural languages.

5

	What does `learning' mean?
	Computational Problems
	Example: Computing the area of a rectangle
	Example: Sorting Lists
	Algorithms

	Algorithms for Learning
	Example: Maze Solving
	Example: Estimating the probability of an unfair coin
	Limiting behavior of estimators
	Definition: weak consistency
	Definition: strong consistency
	Theorems
	Likelihood

	General Lessons

