
1 Examining Successful Learning Criteria
To make things a bit more concrete, let us consider the problem of learning a representation
(grammar) of a set of strings for given alphabet Σ. Consider any S ⊆ Σ∗. A grammar Gis a
representation of S provided for any s ∈ Σ∗ the grammar correctly identifies whether s ∈ S.

1.1 Definition of identification in the limit from positive data
The box below precisely defines a learning criterion called identification in the limit from
positive data [1, 2, 3]. Let us define the “evidence” when learning from positive data more
precisely. A positive presentation of a stringset S is a function t : N → S such that t is
onto. Recall that a function f : X → Y is onto provided for every element y in its co-domain
Y there is some element x in its domain X such that f(x) = y. Here, this means for every
string s ∈ S, there is some n ∈ N such that t(n) = s.

Definition 1 (Identification in the limit from positive data).

Algorithm A identifies in the limit from positive data a class of stringsets C provided
for all stringsets S ∈ C,

for all positive presentations t of S,
there is some number n ∈ N such that

for all m > n,
• the grammar output by A on tm is the same as the the grammar

output by A on tn, and
• the language of the grammar output by A on tm equals S.

This paradigm is also called learning from text.

Theorem 1. For given k, the Strictly k-Local languages are identifiable in the limit from
positive data.

Theorem 2. The class of finite languages are identifiable in the limit from positive data.

Theorem 3. No class of languages which properely contains the finite languages is identifiable
in the limit from positive data.

As a corollary from this last theorem, it follows that the following classes of languages are
not identifiable in the limit: FO(<), MSO (<) (regular languages), context free languages,
context-senstive languages.

1.2 Probably Approximately Correct
The PAC paradigm is a different measure of success [4, 5]. As before, consider the problem
of learning sets of strings. If S is a set of strings and x a string, let S(x) be true iff x ∈ S.

PAC assumes the data presentation is generated according to a probability distribution
over Σ∗. Let S be a set of strings and let EX(S,D) be a procedure (we will sometimes call it
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an oracle) that runs in unit time, and on each call returns a labeled example (x, S(x) where
x is drawn randomly and independently according to D.

If G is a grammar, then the distribution D provides a natural measure of error between
G and the target stringset S. Letting G(x) be a function which maps strings to True iff
x ∈ L(G), then define

errorD(G) = Pr
x∈D

[S(x) 6= G(x)].

Also, let size(G) be a measure of the size of grammar G.
Finally, we can define the PAC criterion for learning.

Definition 2 (Probably Approximately Correct).

Algorithm A PAC-learns a class of stringsets C provided
for all stringsets S ∈ C,

for all probability distributions D over X,
for all ε, δ > 0,

there exists m = f(size(G), 1
ε
, 1
δ
) such that

• f is a polynomial function, and
• after drawing m samples from EX(S,D), the probability that L

outputs a grammar G with errorD(G) < ε is at least 1− δ.

Theorem 4. For given k, the Strictly k-Local languages are PAC learnable.

Theorem 5. The class of finite languages is not PAC learnable.

As a corollary from this last theorem, it follows that the following classes of languages are
not PAC learnable: FO(<), MSO (<) (regular languages), context free languages, context-
senstive languages.
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