1 Examining Successful Learning Criteria

To make things a bit more concrete, let us consider the problem of learning a representation (grammar) of a set of strings for given alphabet Σ . Consider any $S \subseteq \Sigma^*$. A grammar G is a representation of S provided for any $s \in \Sigma^*$ the grammar correctly identifies whether $s \in S$.

1.1 Definition of identification in the limit from positive data

The box below precisely defines a learning criterion called identification in the limit from positive data [1, 2, 3]. Let us define the "evidence" when learning from positive data more precisely. A **positive presentation** of a stringset S is a function $t : \mathbb{N} \to S$ such that t is *onto*. Recall that a function $f : X \to Y$ is onto provided for every element y in its co-domain Y there is some element x in its domain X such that f(x) = y. Here, this means for every string $s \in S$, there is some $n \in \mathbb{N}$ such that t(n) = s.

Definition 1 (Identification in the limit from positive data).

Algorithm A identifies in the limit from positive data a class of stringsets C provided for all stringsets $S \in C$, for all positive presentations t of S, there is some number $n \in \mathbb{N}$ such that for all m > n, • the grammar output by A on t_m is the same as the the grammar output by A on t_n , and • the language of the grammar output by A on t_m equals S.

This paradigm is also called **learning from text**.

Theorem 1. For given k, the Strictly k-Local languages are identifiable in the limit from positive data.

Theorem 2. The class of finite languages are identifiable in the limit from positive data.

Theorem 3. No class of languages which properly contains the finite languages is identifiable in the limit from positive data.

As a corollary from this last theorem, it follows that the following classes of languages are not identifiable in the limit: FO(<), MSO (<) (regular languages), context free languages, context-sensitive languages.

1.2 Probably Approximately Correct

The PAC paradigm is a different measure of success [4, 5]. As before, consider the problem of learning sets of strings. If S is a set of strings and x a string, let S(x) be true iff $x \in S$.

PAC assumes the data presentation is generated according to a probability distribution over Σ^* . Let S be a set of strings and let EX(S, D) be a procedure (we will sometimes call it an *oracle*) that runs in unit time, and on each call returns a labeled example (x, S(x)) where x is drawn randomly and independently according to D.

If G is a grammar, then the distribution D provides a natural measure of **error** between G and the target stringset S. Letting G(x) be a function which maps strings to True iff $x \in L(G)$, then define

$$error_D(G) = \Pr_{x \in D}[S(x) \neq G(x)].$$

Also, let size(G) be a measure of the size of grammar G.

Finally, we can define the PAC criterion for learning.

Definition 2 (Probably Approximately Correct).

Algorithm A PAC-learns a class of stringsets C provided for all stringsets $S \in C$, for all probability distributions D over X, for all $\epsilon, \delta > 0$, there exists $m = f(\mathtt{size}(G), \frac{1}{\epsilon}, \frac{1}{\delta})$ such that • f is a polynomial function, and • after drawing m samples from EX(S, D), the probability that L outputs a grammar G with $\mathtt{error}_D(G) < \epsilon$ is at least $1 - \delta$.

Theorem 4. For given k, the Strictly k-Local languages are PAC learnable.

Theorem 5. The class of finite languages is not PAC learnable.

As a corollary from this last theorem, it follows that the following classes of languages are not PAC learnable: FO(<), MSO (<) (regular languages), context free languages, context-senstive languages.

References

- E.M. Gold. Language identification in the limit. Information and Control, 10:447–474, 1967.
- [2] Daniel Osherson, Scott Weinstein, and Michael Stob. Systems that Learn. MIT Press, Cambridge, MA, 1986.
- [3] Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems That Learn: An Introduction to Learning Theory (Learning, Development and Conceptual Change). The MIT Press, 2nd edition, 1999.
- [4] L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142, 1984.
- [5] Leslie Valiant. Probably Approximately Correct: Nature's Algorithms for Learning and Prospering in a Complex World. Basic Books, 2013.