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1 Programs and Algorithms
A procedure, or a program, is a well-defined set of steps one can follow to produce an answer
to some question. The question is called the input to the program and the answer is called the
output. In colloquiual use, the term “algorithm” is synonmous with procedure or program.
However, I find it useful to think of an algorithm as something more than a procedure. An
algortihm is a procedure which solves a problem.

A problem is a map from instances of the problem to a solution. The problems themselves
could be stated informally as in the following examples.

1. What is the value of x+ y?

2. What is the list obtained by sorting the elements of the list x?

3. Given a maze M , will execution of the strategy S allow one to exit the maze?

4. What grammar generated the finite set of strings D?

An instance of the problem is a specification of the variables. For example an instance of
the first problem is given by letting x = 4 and y = 5. An instance of the second problem
is given by considering x = [2, 9, 3, 5, 3, 1, 7]]. An instance of the third problem is given by
letting M equal the Labyrinth of Versailles and letting the strategy S be “While touching
the wall with your right hand, follow it.” An instance of the last problem is given by
D = {baba, bababa, abba}.

Formalizing the notion of a problem means considering the range of values that the
variables can take. The range of values determines the instance space of the problem.

1. Let x, y be any integers.

2. Let x be any list of integers.

3. Let M be …, let S be …

4. Let D be any finite set of strings.
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What are possible mazes M? What are possible strategies S?
An algorithm is a procedure which provably solves a problem. This means for any

instance ι of the problem, execution of the algorithm on ι leads to the correct answer.
It is relatively easy to come up with procedures and programs that do things. It is more

difficult to come up with algorithms. To come up with an algorithm, one needs to think
about the problem one is trying to solve. This means thinking about the how to formulate
the problem, and the range of values the variables in the problem can take on. One must
then show that the algorithm you are proposing correctly solves any instance of the defined
problem.

With that in mind, what problems do learning algorithms solve?

2 A First Approximation
THe figure illustrates a general conception of learning over time. Suppose there is a language
L describable with grammar G. Let us explain the notation in the figure. The notation

Time t 1 2 3 4 … n …

Evidence at time t t(1) t(2) t(3) t(4) … t(n) …
Input to Learning Algorithm at time t t1 t2 t3 t4 … tn …

Output of Learning Algorithm at time t G1 G2 G3 G4 … Gn …

Figure 1: A schema for learning

t(n) means the evidence presented at time n. This notation suggests that evidence can be
understood as a function with domain N.

The notation tn refers to the sequence of evidence up to the nth one. For example, t3
means the finite sequence t(1), t(2), t(3). In mathematics, angle brackets are sometimes used
to denote sequences so some would write this sequence as 〈t(1), t(2), t(3)〉.

The notation Gn refers to the program output by the algorithm with input tn. If A is
the algorithm and n is any point in time, we can write A(tn) = Gn.

1. What constitutes evidence?

2. What constitutes grammars?

3. Call the sequence t(1), t(2), . . . a data presentation. What constitutes a data presen-
tation?

4. If this process unfolds over time, what constitutes success in the limit?

5. If this process unfolds over time, what relation holds at time n between Gn and the
target G?

6. Is it enough if the algorithm succeeds for the one grammar G?

Answering these questions is important to define learning problems.
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3 Computational Learning Theory
There is not a single definition of “learning”. Rather, there are several, and each provides a
window of insight into any proposed learning system. Despite seminal work and insights from
the past, developing useful learning criteria is ongoing, important endeavor. This document
is informed by much prior research including those discussed by [1, 2, 3, 4, 5, 6, 7, 8].

Generally, learning algorithms can be thought of as functions that relation data presenta-
tions to grammars. Grammars themselves can be thought of as representations of functions
that classify strings, or assign structures to strings. The set of functions represented by these
those output grammatical representations are called the concept class. A formalization will
be offered below, but here I provide a broad view of what computational learning theories
are about and what the main conclusions are.

In general, it is desirable to understand the behavior of learning systems. This includes
being able to ascertain something about the quality of the output, usually in relation to
something about the data presentation it received as input. It also includes something
about the resources, in time and space, that the algorithm consumes in various scenarios,
such as the worst case, the “typical” case, and so on.

Generally, we want algorithms that are feasible (only consume “reasonably” much re-
sources), and that can return outputs across a broad spectrum of possibilities (can learn any
pattern). The main results of computational learning theory are that the broadest criteria
of “what learning means” reveals it is not possible to have both. Algorithms that have been
shown to learn any pattern in principle cannot do so feasibly.

When a computational problem is shown to be intractable, a common approach is to iden-
tify tractable sub-problems or related problems. There are at least two ways of constraining
computational learning problems.

One is to constrain the concept class of targets. Instead of trying to learn “any pattern,”
what if we just tried to learn patterns from a specific class C?

Another approach is to modify the kinds of data presentations that the learning criteria
asks learning algorithms to succeed on. One form of modification is to provide additional
information in the presentation. For example, it is known that, in some in some classification
tasks that allowing both positive and negative examples – as opposed to allowing only positive
examples – facilitates learning. Another kind of modification is to reduce which presentations
algorithms are expected to succeed on. For example, it is known that requiring learners to
succeed on representative data presentations which are computable – as opposed to any
logically possible representative data presentation, also facilitates learning.

Even though there are these two general approaches, to my knowledge the only non-trivial
results which lead to feasible learning of interesting concept classes are ones that constrain the
concept class. Approaches that change the learning problem by adjusting what constitutes
an admissible data presentation have been used to show that any computable language can
be learned, but those learning procedures are not feasible. Apart from some trivial instances
of the learning problem, it remains an open question how to obtain feasible learning of broad
classes by constraining the data presentations.

Regarding the specific problem of humans learning language, these results imply that
constraining the concept class is necessary for feasible learning. In addition, it is an open
question how constraining which data presentations are admissible can facilitate this learning
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problem (and others).
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