
D
R
A
F
T

Doing Computational Phonology

September 6, 2024

D
R
A
F
T

ii

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Contents

I Foundations 1

1 Intensional and Extensional Descriptions of Phonological Gen-
eralizations 3

1.1 Generative Phonology . 3

1.2 Extensional and Intensional Descriptions 6

1.3 Issues with Familiar Grammars 12

1.4 Computational Theory of Language 16

1.5 Doing Computational Phonology 22

2 Representations, Models, and Constraints 25

2.1 Logic and Constraints in Phonology 25

2.2 Chapter Outline . 27

2.3 The Successor Model . 29

2.4 First Order Logic . 32

2.5 Word Models with Phonological Features 39

2.6 Monadic Second-Order Logic 43

2.7 The Precedence Word Model 51

2.8 Discussion . 55

3 Transformations, Logically 59

3.1 String-to-string Transformations 60

3.2 Word-final obstruent devoicing 61

3.3 Word-final vowel deletion 65

3.4 Getting Bigger . 69

3.4.1 Word-final vowel epenthesis 70

3.4.2 Duplication . 75

3.4.3 Summary . 75

3.5 Power of MSO-definable Transformations 76

iii

D
R
A
F
T

iv CONTENTS

3.5.1 Mirroring . 77

3.5.2 Sorting . 79

3.5.3 Summary . 80

3.6 Discussion . 80

3.6.1 Transforming Representations 82

3.6.2 Order Preservation 84

3.6.3 Logic as a descriptive formalism 86

3.7 Conclusion . 87

4 Weighted Logics 89

4.1 Four Key Points . 89

4.2 Examples . 91

4.3 Conclusion . 96

5 Below First Order Logic 97

5.1 Propositional Logic with Factors 98

5.2 Examples of Propositional Logic with Factors 101

5.3 Conjunctions of Negative Literals 105

5.4 Discussion . 107

5.5 Summary . 109

6 Formal Presentation of Model Theory and Logic 111

6.1 Relational Models and Signatures 111

6.2 MSO Logic for relational models 112

6.2.1 Syntax of MSO logic 113

6.2.2 Semantics of MSO logic 114

6.3 FO Logic . 116

6.4 Courcellian Logical Transformations 116

6.5 Weighted Monadic Second Order Logic 117

6.5.1 Semirings . 117

6.5.2 Syntax of Weighted MSO Logic 118

6.5.3 Semantics of Weighted MSO Logic 119

6.6 Propositional Logic . 121

6.6.1 Syntax of Propositional Logic 122

6.6.2 Semantics of Propositional Logic 123

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

CONTENTS v

II Case Studies 125

III Theoretical Contributions 127

IV Horizons 129

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

vi CONTENTS

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Part I

Foundations

1

D
R
A
F
T

D
R
A
F
T

Chapter 1

Intensional and Extensional
Descriptions of Phonological
Generalizations

Jeffrey Heinz

1.1 Generative Phonology

Within languages, the pronunciation of a morpheme often differs depending

on its morpho-phonological context. While examples like English go/went

indicate that these different pronunciations may have almost nothing in

common, it is much more typical that the pronunciations of the same

morpheme in different contexts are in fact similar, as with common English

plural cat[s]/dog[z]. The main empirical conclusion linguists have drawn

with respect to this phenomena is that the variation in the pronunciation

of morphemes is systematic. It is no accident that the plural form of tip uses

[s] just like cat[s] and that the plural form of dud is [z] just like dog[z].

Explaining this systematic variation is an important goal of linguistic theory.

The central hypothesis of Generative Phonology (GP) is presented below.

(F) The observed systematic variation in the pronunciation of morphemes
is best explained if people hold a single mental representation of the

pronunciation of each morpheme (the underlying representation, UR)

which is lawfully transformed into its pronounced variants (the surface

representation, SR).

3

D
R
A
F
T

4 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

This book assumes this hypothesis is correct, and does not review any

arguments for it.1 Readers interested in arguments for this position are

directed to Odden (2014, chapter 4) and Kenstowicz and Kisseberth (1979,

chapter 6).

If this hypothesis is correct, then there are three questions every theory

of generative phonology must address.

(FF) 1. What is the nature of the underlying representations?

2. What is the nature of the surface representations?

3. What is the nature of the transformations between these repre-

sentations?

These questions are certainly not exhaustive but they are of critical

importance. Another related important question is “How different can the

underlying representations be from the surface representations?” This has

been called the question of abstraction (Kenstowicz and Kisseberth, 1977).

This book provides a general framework which addresses these ques-

tions from a computational perspective. The computational perspective

addresses both the nature of the representations and the nature of the trans-

formations. It is flexible in the sense that different representational schemes

can be studied and compared. This is accomplished through model-theoretic

representations of words and phrases. It is also flexible in the sense that

different types of computational power can be studied and compared. This

is accomplished by studying what can be accomplished with different kinds

of logical expressions. As will be explained, model theory and logic provide

a mathematical foundation for theory construction, theory comparison,

and descriptive linguistics.

The study of phonology from the computational perspective allows one

to construct theories of phonology which provide answers to the above

questions. Representational choices and choices of logical power essentially

determine the theory and its empirical predictions. Theories of phonology

developed under this framework are examples of Computational Generative

Phonology (CGP).

1The words transformed and transformation are used here in their original meaning
simply to signify that the URs become SRs, and that the SR derived from some UR may
not be identical to this UR. If a UR is related to a SR via the transformative component of
a phonological grammar, it is also often said the UR is mapped to the SR. These words
are deliberately neutral with respect to the specific type of grammar being employed.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.1. GENERATIVE PHONOLOGY 5

To begin motivating CGP, I would like to give some examples of how

current phonological theories aim to answer these questions. It is not

possible to comprehensively survey here the range of answers that have

been offered. Therefore, I only highlight some answers and do so only in

very broad strokes.

Rule-based theories, as exemplified by Chomsky and Halle (1968), for

example, have argued that the abstract underlying representations are

subject to language-specific morpheme structure constraints (MSCs). The

transformation from underlying forms to surface forms are due to language-

specific rules, which are applied in a language-specific order. Constraints on

surface representations were, generally speaking, not part of the ontology

of these theories, and therefore were not posited to have any psychologi-

cal reality. Such generalizations—the phonotactic generalizations—were

derivable from the interaction of the MSCs and the rules (Postal, 1968).

On the other hand, in classic Optimality Theory (Prince and Smolensky,

1993, 2004), there are no constraints on underlying representations (rich-

ness of the base), but there are psychologically real, universal constraints

on surface forms (markedness constraints). The transformation from under-

lying forms to surface forms is formulated as a process of global optimization

over these markedness constraints as well as constraints which penalize

differences between surface and underlying forms (faithfulness constraints).

While both the markedness and faithfulness constraints are universal, their

relative importance is language-specific. So in every language the surface

pronunciation of an underlying representation is predicted to be the glob-

ally optimal form (the one that violates the most important constraints

the least). Of course what is optimal varies across languages because the

relative importance of the constraints varies across languages.

These two theories are radically different in what they take to be psy-

chologically real. The ontologies of the theories are very different. Perhaps

this is most clear with respect to the concept of phonemes (Dresher, 2011).

Phonemes exist as a consequence of the ontology of rule-based theories,

but they do not as a consequence of the ontology of OT. This is simply

because phonemes are a kind of MSC; underlying representations of mor-

phemes must be constructed out of them, and nothing else. In OT, there

are no MSCs and hence there are no phonemes. The principle of Lexicon
Optimization guarantees that the URs of pit and spit are /phIt/ and /spIt/,
respectively (Kager, 1999). The underlying, mental representation of the

voiceless labial stops in both words are not the same. Consequently, the

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

complementary distribution of speech sounds (allophonic variation) are

explained in a very different manner in the two theories, and these theories

promote different views of the notion of contrast. Despite these differences

however, there is an important point of agreement: In both theories, com-

plementary distribution of speech sounds in surface forms is the outcome

of a transformation of underlying forms to surface forms.

This is the point I wish to emphasize: neither theory abandons the

fundamental insight stated on page 3 in (F). The theories offer radically
different answers to the questions asked on 4 in (FF), but they agree on

the questions being asked.2

In the remainder of this chapter, I motivate a computational approach

to phonology. I first make an important distinction between extensional

and intensional descriptions of linguistic generalizations and argue that the

former is important for understanding the latter. I then argue that neither

rule-based nor constraint-based formalisms as practiced provide adequate

intensional descriptions of phonological generalizations.

This is then contrasted with automata and logical descriptions of lan-

guage. The chapter concludes that logical descriptions of linguistic gen-

eralizations have some advantages over automata-theoretic descriptions.

This is not to say automata are not useful (they are!) but that logic offers

more immediate rewards to linguists interested in writing and analyzing

grammars. So when we consider the ways in which we spend our time,

logic is a good place to start.

1.2 Extensional and Intensional Descriptions

McCarthy (2008, pp. 33–34) emphasizes the importance of descriptive

generalizations in preparing analyses. “Good descriptive generalizations,”

he writes “are accurate characterizations of the systematic patterns that

can be observed in the data.” They are, as he explains, “the essential

intermediate step between data and analysis.” This is because descriptive

generalizations go beyond the data; they make predictions about things

not yet observed.

2It is true that periodically some work is published which challenges these core ideas,
for example the work on output-to-output correspondence (Benua, 1997, and others) or
the recent work of Archangeli and Pulleyblank (2022).

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 7

Descriptive generalizations are important for computational phonol-

ogy too. They are typically stated in prose. For example, consider the

phonological generalizations below.

Word final vowels are prohibited. (1.1)

Consonant clusters are prohibited word-finally. (1.2)

These generalizations are good ones because they allow the analyst to

recognize that potentially unobserved forms like tapaka is ill-formed but

tanak is well-formed with respect to 1.1. Similarly, we recognize that 1.2

distinguishes between forms like tapakt and tanakta.

The generalizations above divide every possible word of every length

cleanly into two sets: those that obey the description and those that do not.

This is illustrated in the figure below for the generalization in (1.1). The

ap, ab, at, ad,

. . .

patak, patag,

. . .

medinakatap,

. . .

. . .

. . .

. . .

apa, api, ape,

pataka, pataga,

medinakatapa,

Figure 1.1: The generalization that “Word final vowels are prohibited”

partitions the set of all possible forms into two sets.

set of words that are well-formed according to (1.1) is called its extension.

Importantly, this set—the extension—is infinite in size. For instance, it

is not possible to write down every possible word that obeys the general-

ization in (1.1). If a set of words formed from a finite alphabet is infinite

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

8 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

then there is no upper bound on the length of words. Likewise, if there is

no upper bound on the length of words formed from a finite alphabet then

this set is infinite in size. Thus whether the size of a set of words is infinite

or not is intertwined with whether or not there is an upper bound on the

length of words. These issues are so important to get clear that they are

discussed in further detail below.

Extensional descriptions contrast with intensional descriptions of general-

izations. For now, intensional descriptions can be thought of as grammars

that denote the extension. The prose in (1.1) and (1.2) are examples of

intensional descriptions. Rule-based grammars and OT grammars are also

examples of intensional descriptions. A good intensional description is one

where the the extension can be rigorously and precisely defined from the

intensional description. Generally, English prose does not make for good

intensional descriptions. Further below, I will argue that in their current

forms and practice, rule-based grammars and OT grammars are more like

English prose than good intensional descriptions.

Let us now return to the infinitely-sized extensions. Is it reasonable for

descriptive generalizations like (1.1) to denote an infinite set of words?

Yes, it is. One reason is that these generalizations make no reference to

length at all. If the length of words mattered, it ought to be part of the

generalization. Another way of thinking about this is that if there were

a principled upper bound on the length of words, then that would be a

generalization distinct from (1.1) above, and hence ought not be included

within it. Finally, even if for some reason (1.1) ultimately denoted a finite

set, there are reasons to treat its extension as infinite anyway. Savitch

(1993) argues that large finite sets of strings are often best understood if

they are factored into two parts: an infinite set of strings and a separate

finite-length condition. They are, in his words, “essentially infinite.” The

basis of the argument is a demonstration that intensional descriptions of

infinite sets can be smaller in size than the intensional descriptions of finite

sets.

These infinite-sized extensions do not exist in the same way that your

fingernails, your bed, or your brain exists. Instead they exist mathemati-

cally. Each generalization is an infinite object like a circle, which is a set

of infinitely many points each exactly the same distance from a center. But

we can never see the mathematical object in its entirety in the real world.

It is a fact that circles as infinite objects do not exist. The situation with

linguistic generalizations is similar. The extension is there mathematically,

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 9

but we cannot write down every element of the extension in a list for the

same reason all points of a circle cannot be written down in a list since

there are infinitely many. But we can write down a grammar which can be

understood as generating the infinite set, in the same way that a perfect

circle can be generated by specifying a center point and a distance (the

radius).

The same circle can be described in other ways as well. If we employ

the Cartesian plane, we could generate a circle with an equation of the

form (x − a)2 + (y − b)2 = r2 where the r is the radius of the circle and
(a, b) is its center. The equation is interpreted as follows: all and only
points (x, y) which satisfy the equation belong to the circle. The equation
is an intensional description and the set of (x, y) points satisfying this
equation—the circle itself—is its extension.

We can also describe a circle on a plane with polar coordinates instead

of Cartesian ones. Recall that polar coordinates are of the form (r, θ) where
r is the radius and θ is an angle. The equation r = 2a cos(θ) + 2b sin(θ)
provides the general form of the circle with the radius given by

√
a2 + b2

and the center by (a, b) (in Cartesian coordinates). The polar equation is
interpreted like the Cartesian one: all and only points (r, θ) which satisfy
the equation belong to the circle.

There are some interesting differences between these two coordinate

systems. Each point in the Cartesian system has a unique representation,

but each point in the polar system has infinitely many representations

(since the same angle can be described in infinitely many ways, e.g. 0◦ =
360◦ = 720◦ = . . .). If the center of the circle is the origin of the graph,
the polar equation simplifies to r = a whereas the Cartesian equation
remains more complicated x2+ y2 = r2. Thus, the polar equation r = 4 and
the Cartesian equation x2 + y2 = 16 are different equations with different
interpretations, but they describe the same unique circle: one of radius

four centered around the origin. The two equations differ intensionally,

but their extension is the same.

It seems strange to ask which of these two descriptions is the ‘right’

description of this circle. They are different descriptions of the same thing.

Some descriptions might be more useful than others for some purposes. It

also interesting to ask what properties the circles have irrespective of a

particular description. For instance the length of a circle’s perimeter and

the size of a circle’s area are certainly relatable to these descriptions, but

they are also in a sense independent of the particulars. The perimeter and

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

10 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

area depend on the radius but not the center, though both the radius and

the center appear in the equations above. Perhaps this suggests that the

radius is a more fundamental structure to a circle than its center, though

both certainly matter.

The analogy I wish to draw is that rule-based and OT-theoretic for-

malisms are like the Cartesian and polar coordinate systems. The analogy

is far from perfect, but it is instructive. Both rule-based and OT analyses

provide descriptions of platonic, infinitely sized objects. In many cases,

but not all, the two formalisms describe the same object, insofar as the

empirical evidence allows.

What is this object? The transformations from underlying represen-

tations to surface representations can be thought of as a function, in the

mathematical sense of the word. Another word for function prevalent in

the phonological literature is map (Tesar, 2014). For example, consider the

two descriptive generalizations below.

Word final vowels delete. (1.3)

Word final vowels delete except when preceded by a consonant cluster.

(1.4)

These generalizations also have infinite-sized extensions, but the extensions

are better understood as functions. Figure 1.2 illustrates the extension of

the generalization expressed in (1.3).

There are three parts to a function. First, there is its domain, which is

the set of objects the function applies to. Second, there is its co-domain,

which is the set of objects to which the elements of the domain are mapped.

Third, there is the map itself, which says which domain elements are

transformed (mapped) to which co-domain elements. Thus to specify a

function, one needs to provide a description of its domain, its co-domain,

and a description of which domain elements become which co-domain

elements. Following traditional phonological terminology, I use the term

constraint to refer to intensional descriptions of either the domain or
co-domain.

The parts of a function align nearly perfectly with the fundamental

questions of phonological theory given in (FF) on page 4. The underlying
representations correspond to the domain. The surface representations

make up the co-domain. And the transformation from underlying to surface

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 11

apapa

apapi

apape

medinakatapakmedinakatapaka

patagpataga

patakpataka

. . .

. . .

. . .

Figure 1.2: The function corresponding to the generalizations that “Word

final vowels delete.”

forms is the map from domain elements to co-domain elements. From this

perspective, describing the phonology of a language requires identifying

aspects of this function.

Further, in linguistic typology we are actually interested in the class

of such functions that correspond to possible human phonologies. If the

phonologies of languages are circles we would be interested in the universal

properties of circles and the extent of their variation. Circles are pretty

simple, so the answers are straightforward. All circles have a center and a

radius, but their centers can be different points and their radii can have

different lengths. What universal properties do phonological functions

share? What kind of variation does the human animal permit across these

functions?

The point is that when we develop a linguistic generalization, it is impor-

tant to know what its extension is. Ultimately, the intensional description—

the grammar—must generate this extension. The emphasis placed here

on the extensional description as an infinite object should not be taken

to mean intensional descriptions do not matter. Of course they matter:

theories of these intensional descriptions ought to make predictions about

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

12 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

what is psychologically real, predictions that in principle are testable with

the right kinds of psycholinguistic and neurolinguistic experimentation.

They also can make predictions about linguistic typology since the avail-

able intensional descriptions limit the extensions accordingly. In addition

to making correct predictions, phonologists expect that intensional de-

scriptions express the ‘right’ generalizations. Clarity about the extensional

descriptions are an essential, intermediate step between the descriptive

generalizations stated in prose and formal intensional descriptions (the

grammatical analysis).

It is critically important that it is well-understood how the intensional

descriptions relate to the extensional ones. We want to be able to answer

questions like the following:

1. Given a word w and an intensional description of a constraint C, does
w violate C? (We may also be interested in the number of violations
of C and the where within the word the violations occur.)

2. Given a word w in the domain of a transformation f what words in
the co-domain of f does f map w to, if any?

3. Given a word v in the co-domain of a transformation f what words
in the domain of f map to v, if any?

Question 1 is often called the membership problem. Question 2 is often

called the generation problem. Question 3 is often called the recognition

or parsing problem. Good intensional descriptions allow answers to these

questions to be computed correctly and effectively. In the next section, I

argue that rule-based intensional descriptions and OT grammars are not

good intensional descriptions in this narrow sense.

1.3 Issues with Familiar Grammars

Chomsky and Halle (1968) present a formalization based on rewrite rules.

The basic rewrite rule is of the form A −→ B / C D . This notation

is intended to mean that if an input string contains CAD then the output

string will output CBD (so A is rewritten as B in the context C D).

To understand the extension of a rule, we need to know how to apply it.

Originally, Chomsky and Halle (1968, p. 344) intended for the rules to apply

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.3. ISSUES WITH FAMILIAR GRAMMARS 13

simultaneously to all the relevant targets in an input string. They wrote,

“To apply a rule, the entire string is first scanned for segments that satisfy

the environmental constraints of the rule. After all such segments have

been identified in the string, the changes required by the rule are applied

simultaneously.” For many phonological rules, this explanation appears

sufficient to denote the extension. For instance the rule corresponding to

the descriptive generalizations (1.3) is V −→ ∅ / # . Humans have no

difficulty using this rule to answer the generation and parsing problems

above given this intensional description. However, it is much less clear

what the extension of any rule would be. Determining this depends in part

on what A, B, C and D themselves are able to denote, and how rules apply

when application of the rule can create more CAD sequences.

The phonological literature after SPE addressed the question of rule

application (Anderson, 1974), and other types of rule application were

identified such as left-to-right or right-to-left. It was clear that the mode

of application determined the extension of the rule. For example, for the

input string /oana/ and rule V −→ [+nasal] / [+nasal] simultaneous

application yields output [oãna] but right-to-left application yields output

[õãna]. While linguistically-chosen examples served to distinguish one

mode of application from another, general solutions to the generation and

recognition questions by Johnson (1972) and Kaplan and Kay (1994) were

for the most part ignored by generative phonologists.

It is my contention that rule application is still not well-understood by

most students of phonology, despite the careful computational analyses

by Johnson (1972); Kaplan and Kay (1994) and Mohri and Sproat (1996).

In informal surveys of phonologists in-training, many have difficulty of

applying the rule aa −→ b simultaneously to the input /aaa/. People
wonder whether the right output is [ab], [ba], or [bb]. According to Kaplan

and Kay’s analysis, there are two outputs for this input when the rule aa

−→ b is applied simultaneously. They are [ab] and [ba]. Their analysis
translates rewrite rules into finite-state automata, which are grammars

whose extensions are very well defined and understood. These will be

explained in a bit more detail in the next section.

Interestingly, Kaplan and Kay’s analyses of rule application, which has

been implemented in software programs like xfst (Beesley and Kartunnen,
2003), openfst (Allauzen et al., 2007), foma (Hulden, 2009a,b), and pynini
(Gorman, 2016; Gorman and Sproat, 2021) do not exhaust the possible

natural interpretations of the rewrite rule A −→ B / C D . Like Johnson

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

14 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

and Kaplan and Kay’s analyses, Chandlee’s (2014) analysis also uses finite-

state automata to determine an extension of a rule A −→ B / C D ,

provided that CAD is a finite set of strings. Unlike Kaplan and Kay, her

interpretation of the extension of the rule aa −→ b maps input /aaa/ to
[bb]. This result is arguably what Chomsky and Halle in mind when they

described simultaneous application because each aa sequence satisfies “the

environmental constraints of the rule.”

The point of the foregoing discussion is simply this: a rule A −→ B
/ C D underdetermines its extension. The extensions are a critical

part of any rule-based theory and there is more than one way such rules

determine extensions. This point is neither new nor controversial. It is

a well-known chapter in the history of phonological theory. Chandlee’s

(2014) discussion shows that this chapter is not closed. To my knowledge,

Bale and Reiss (2018) is the first textbook on phonology that provides an

adequate interpretation of the application of rewrite rules.

Optimality Theory is an improvement in some sense. Given an OT gram-

mar and an input form, there is a well-defined solution to the generation

problem. This solution follows from the architecture of the OT grammar.

The GEN component generates the set of possible candidates and the EVAL

component uses the grammar of ranked constraints to select the optimal

candidates.

Nonetheless in actual phonological analyses the generation problem

faces two difficulties, each acknowledged in the literature. The first one is

ensuring that all the possible candidates are actually considered by EVAL.

The absence of an overlooked candidate can sink an analysis. The proposed

optimal candidate turns out to be less harmonic than some other candidate

that the analysts failed to consider. How can analysts ensure that every

candidate has been considered?

The second is ensuring that all the relevant constraints are present in

the analysis. The absence of a relevant constraint can also sink an analysis.

(Prince, 2002, p. 276) makes this abundantly clear. He explains that if

a constraint that must be dominated by some other constraint is ignored

then the analysis is “dangerously incomplete.” Similarly, if a constraint

that may dominate some other constraint is omitted then the analysis is

“too strong and may be literally false.”

As a result, any phonological analysis of a language which does not

incorporate the entire set of constraints is not guaranteed to be correct.

This makes studying some aspect of the phonology of the language difficult.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.3. ISSUES WITH FAMILIAR GRAMMARS 15

The constraints deemed irrelevant to the fragment of the phonology under

investigation (and which are therefore excluded) actually need to be shown

to be irrelevant for analysts to establish the validity of their OT analyses.

Both these problems in OT can be overcome. The solution again comes

from the theory of computation, in particular from the theories of finite-

state automata and so-called regular languages (defined and discussed in

the next section). The earliest result is that even if the constraints and GEN

can be defined in these terms, the maps OT produces are not guaranteed

to be definable in these terms — unless the constraints have a finite bound

on the maximum number of violations they can assign (Frank and Satta,

1998). Karttunen (1998) uses this fact to provide a solution and software

for the generation and recognition problems (see also (Gerdemann and

Hulden, 2012)), and so he assumes each constraint has some maximum

number of violations. While some theoretical phonologists have argued

for this position (McCarthy, 2003), most do not adopt it. Riggle (2004)

provides a different solution which does not require bounding the number

of violations constraints assign. His solution is guaranteed to be correct

provided the map the OT grammar is in fact representable as a finite-state

relation (not all of them are). Another solution is present in Albro’s (2005)

dissertation, which provides a comprehensive OT analysis of the phonology

of Malagasy.

Each of these authors make use of finite-state automata to guarantee

the correctness of their solutions. However, none of these approaches have

yet to make its way into the more commonly used software for conducting

OT analyses such as OTSoft (Hayes et al., 2013), OT-Help (Staubs et al.,

2010), and OTWorkplace (Prince et al., 2016). A particular weakness of

this software, unlike Karttunen’s, Riggle’s, and Albro’s is that they can

only work with finite candidate sets, despite the fact that GEN is typically

understood as generating an infinite candidate set. Consequently, the

commonly used software amounts to nothing more than pen-and-paper

approaches with lots of paper and lots of pens, and so the aforementioned

issues remain (Karttunen, 2006).

McCarthy (2008, p. 76) argues the aforementioned computational ap-

proaches are only possible in a “narrowly circumscribed phenomenon.”

However, this ignores Albro’s detailed, thorough analysis of the whole

phonology of Malagasy (Albro, 2005). McCarthy also argues the methods

are only as good as the algorithm that generates the candidates. Of course

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

16 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

that is true, but the alternatives are manual, heuristic methods.3 People

may differ on which is better, but I will place my bets on the algorithm

which is guaranteed not to leave out candidates that GEN produces. Mc-

Carthy’s dismissal of the value of computational approaches is unfortunate,

but it is representative of attitudes in the field.

Regardless of the extent to which different researchers appreciate the

computational treatments of phonological theories, it is noteworthy and

no accident that every attempt to guarantee a solution of the recognition

and generation problems (and the membership problem when constraints

are involved) makes use of finite-state automata and the theory of regular

languages. Even OTWorkplace employs the finite-state calculus by way of

regular expressions to automatically assign constraint violations to candi-

dates. What are these devices? And what makes them so good for denoting

extensions of phonological generalizations?

1.4 Computational Theory of Language

Automata are a cornerstone of the computational theory of language.
Automata are machines that process specific types of data structures like

strings or trees. They form a fundamental chapter of computer science.

There are many kinds of automata. The Turing machine is just one example.

Pushdown automata are another. Readers are referred to texts such as

Kozen (1997), (Hopcroft et al., 2006) and Sipser (2012) for overviews of

the theory of computation.

There are also deep connections between automata and logic. In this

section, I will briefly review finite-state automata for string processing.

Then I will informally introduce logic as another way of providing an

intensional description of phonological generalizations. Their extensions

are also well-defined; and in fact in many cases there are algorithms which

convert a logical description into an automaton that describes exactly the

same extension (Büchi, 1960; Thomas, 1997; Engelfriet and Hoogeboom,

2001).

We begin with a simple automaton, the finite-state acceptor. It is an
intensional description with a well-defined extension. As a matter of fact,

3It is true that the GEN function in the Albro’s, Karttunen’s, and Riggle’s methods is
not exactly the same as the one assumed in Correspondence Theory (McCarthy and Prince,
1995), but it is instructive to understand why.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.4. COMPUTATIONAL THEORY OF LANGUAGE 17

it is a precise, finite description of a potentially infinite set of strings.

A finite-state acceptor contains a finite set of states. We give the states

names so we can talk about them; for instance they are often indexed

with numbers. Some states are designated ‘start’ states. Some states are

designated ‘accepting’ states. (States can be both ‘start’ and ‘accepting’

states.) Transitions lead from one state to another; they are labeled with

letters from some alphabet.

So a finite-state acceptor is a finitely-sized collection of states and

transitions. What is its extension? Well the extension is defined as follows.

Informally, a word w is accepted/generated/recognized by a finite-state
acceptor A if there is a path along the transitions of A which begins in a
start state of A, which ends in a final state of A, and which spells out w
exactly.

As an example, consider Figure 1.3, which shows the finite-state accep-

tor for the generalization in (1.1) that word-final vowels are prohibited.

Per convention, the start state is designated by the unanchored incoming

arrow and final states are marked with a double perimeter. The word nok

0 1a o

n

k

nk

a

o

Figure 1.3: A finite state acceptor for the generalization “Word final vowels

are prohibited.” A simple alphabet {n,k,a,o} is assumed.

is generated by this machine since there is a path beginning in a start state

and ending in a final state which spells it out. This path is shown below.

Input: n o k

States: 0 → 1 → 0 → 1

A minute of inspection reveals that every path for every word which ends

in a vowel ends in state 0, which is not an accepting state. But every path

for every word which does not end in a vowel ends in state 1, which is

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

18 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

accepting. Algorithms which solve membership problems for finite-state

acceptors are well understood (Kozen, 1997; Hopcroft et al., 2006; Sipser,

2012).

Finite-state automata are not limited to acceptors. String-to-string

functions can be described with automata that are called transducers.
These are acceptors whose labels have been augmented with an additional

coordinate. Instead of a single symbol, Labels are now symbols paired with

strings. Figure 1.4 shows the finite-state transducer for the generalization

that word-final vowels delete. As before, valid paths through this machine

(those that begin in start states and end in accepting states) spell out input

words and the output words they map to. In the figure, the colon separates

the left coordinate (input) from the right coordinate (output). The symbol

λ denotes the empty string. To illustrate, consider the path which shows

0 1

a:a
o:o
n:n
k:k

n:n

k:k

a:λ

o:λ

Figure 1.4: A finite state trasnsducer for the generalization “Word final

vowels delete.” A simple alphabet {n,k,a,o} is assumed.

that the output of nako is nak.

Input: n a k o

States: 0 → 0 → 0 → 0 → 1

Output: n a k λ

As with the membership problem and finite-state acceptors, there are

algorithms which solve the generation and recognition problems for finite-

state transducers.

There are some interesting things to observe about the finite-state

transducer in Figure 1.4. The first is that it is non-deterministic. This

means for a given input, there may be more than one path. For instance,

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.4. COMPUTATIONAL THEORY OF LANGUAGE 19

the input /kon/ maps to [kon], and there are two paths that spell it out.

But only one is valid: the one that reads and writes n and moves from state
0 to state 1.4

Another point is that the transducer in Figure 1.4 maps the input word

/nakao/ to [naka]. As such, this machine is a formal description of the

extension of the rule V −→ ∅ / # applying simultaneously. In OT, if

Final-C outranks Max, then the output would be nak with the last two

vowels deleting. With rules, this could be accomplished by applying the

aforementioned rule right-to-left. The finite-state transducer shown in

Figure 1.5 realizes this mapping. For readability, distinct transitions with

the same origin and destination are shown as multiple labels on a single

arrow.

0 1

2

3a:a
o:o

a:λ
o:λ

n:n
k:k

a:λ
o:λ

n:n
k:k

a:a
o:o

n:n
k:k

a:a
o:o

a:λ
o:λ

Figure 1.5: A finite state transducer for the generalization “Strings of

vowels word-finally delete.” A simple alphabet {n,k,a,o} is assumed.

Transducers can also map strings to numbers. The simple one shown in

Figure 1.6 counts the number of os in a word. The idea here is that instead

of combining the outputs of valid paths with concatenation as for strings,

they are combined with addition. Below is an example of the only valid

path for the word naoko which would be mapped to 2.

4Non-determinism is one way optionality can be handled with finite-state transducers.
If state 0 was also an accepting state then there would be two valid paths for the input
/noko/. One path would yield the output [noko] and the other the output [nak].

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

20 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

0

a:0
o:1
n:0
k:0

Figure 1.6: A finite state transducer which counts the number of os in

words. A simple alphabet {n,k,a,o} is assumed.

Input: n a o k o

States: A → A → A → A → A → A

Output: 0 0 1 0 1

This is the approach used by Riggle (2004) to define markedness and

faithfulness constraints in OT. There are many generalizations of this kind

available to transducers made possible by the study of semirings (Roark

and Sproat, 2007; Droste and Kuich, 2009; Goodman, 1999). Semirings

are discussed in more detail in Chapter 4. However the main point I wish

to express is that the extension of the transducers discussed so far are all

precisely defined and the corresponding generation problems solvable.

What of the recognition problem? Another important advantage of

finite-state automata is that they are invertible. Consequently, a solution
to the generation problem entails a solution to the recognition problem.

Given a string nak, the transducer can tell you that it is the output of the

each of the following inputs: nak, naka, nako.

Nonetheless, despite the advantages well-defined extensions bring, there

are some shortcomings to using finite-state automata for phonological

analyses. One is that letters of the alphabet are treated atomically. For

instance, there is no sense in which the symbols [p,t,k] share any properties.

It remains unclear how to incorporate phonological features and natural

classes in a natural way into these machines. The most common way seems

to just group the letters together that behave together as I have done in the

examples above. While this is certainly sufficiently expressive, it may not

be completely satisfying. We want our intensional descriptions to somehow

speak directly to the descriptive ones. In the case of “Word final vowels

are prohibited” we want to be able to express the relevant natural class

directly.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.4. COMPUTATIONAL THEORY OF LANGUAGE 21

Another drawback is that as the generalizations become more complex,

so do the finite-state automata. They become spaghetti-like and difficult

to read. This drawback is mitigated, however, in a couple of ways. The

first is that it is very well understood how to combine different finite-state

automata to produce new ones. This allows the generalizations instantiated

by the ‘primitive’ ones to persist to some degree in the complex ones.

For instance, it is straightforward to construct a finite-state acceptor that

generates exactly the intersection of two infinite sets of strings which are

generated by two acceptors. (Heinz (2014) provides concrete examples in

the domain of stress.) Similarly, it is straightforward to construct a finite-

state transducer that generates the composition of two functions which

are generated by finite-state transducers (Roark and Sproat, 2007; Gorman

and Sproat, 2021). In this way, more complex finite-state automata can

be constructed from simpler parts, much in the same way more complex

phonological grammars are built up from identifying generalizations that

interact in some manner.

A third problem is that even simple machines are not easy to write in text.

They are often pictured as diagrams, and in the same way it can be tiring to

read them, it can be tiring to draw them as well. This problem is mitigated

in a couple of ways. First, there are helpful software packages which can

automatically draw machines, like GraphViz.5 Some researchers use tables

or matrix notation, others use types of regular expressions (Beesley and

Kartunnen, 2003; Hulden, 2009b; Lambert, 2022), and still others use logic.

In this book, we are going to use logic and not automata to represent

linguistic generalizations. There are several reasons for this. Most im-

portantly, like automata, the extensions of logical formula are precisely

defined. Another key reason is that the representations are flexible. We can

represent words exactly as any phonologist would want. As this book will

show, phonological features, syllable structures, autosegmental representa-

tions, hand shapes, phonetic information, and a host of as-yet-unconsidered

possibilities are available and directly representable with logic. Thirdly, as

this book will show, the combination of logical power and representation

provides a natural way to entertain distinct theories of phonology and com-

pare them. Additionally, there is a literature showing how logical formula

can be translated into automata which are equivalent in the sense that

they solve the same membership, generation, and recognition problems.

5https://graphviz.org.

September 6, 2024 © Jeffrey Heinz

https://graphviz.org

D
R
A
F
T

22 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

While this literature does not address every phonological representation

proposed, the basic analytical methods which show how this can be done

for strings and trees are there. As long as the phonological representations

the analyst uses can be encoded as strings, the translations to automata are

possible.

Finally, logic is not going anywhere. This is very important. If a linguist

describes a generalization with logical experessions using the representa-

tions they prefer, they can be guaranteed that people in will be able to

read their description and understand it hundreds of years later.

In short, logical formula have all of the advantages, and none of the

disadvantages, of automata.

1.5 Doing Computational Phonology

How does one do computational generative phonology? This book provides

an answer.

In the first part, logical foundations and model theory are presented

in the context of strings. It is explained how model theory allows one to

precisely formulate different representations of words and phrases. It is

explained how the primitive elements in these representations would have

ontological status in the theory. It is also explained how logical expressions

can be used to define constraints to delimit possible representations in words

and phrases, and how they can also define possible transformations which

map one representation to another. It is explained how weighted logical
expressions allow one to express a variety of linguistic generalizations,

including gradient ones, if desired. These definitions and techniques are

illustrated with examples drawn from phonology, as well as examples

showing the terrific expressivity of the framework. The first part of this

books opens a large window into the techniques and possibilties.

In the second part, these techniques are applied to the kinds of phonol-

ogy problems one finds in standard textbooks on phonology. The focus

here is descriptive in the following sense. Linguists marshall arguments

from a collection of linguistic forms they have before them in favor of par-

ticular linguistic generalizations. These arguments are presented and then

the linguistic generalizations are formalized in terms of model-theoretic

representations and logic. The chapters are short, each dealing with one

relatively small and straightforward phonological problem. These exam-

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

1.5. DOING COMPUTATIONAL PHONOLOGY 23

ples serve as models for how analysis of other small and straightforward

phonological problems can be analyzed within CGP.

In the third part, the chapters address a variety of theoretical issues

addressing both aspects of representation and computional power. Sebas-

tian shows how to incorporate insights from phonetically-based phonology

into CGP representationally. Hwangbo shows how representing vowel

height in terms of degrees of aperture leads to straightforward analysis of

vowel lowering in a language like Danish. Strother-Garcia analyzes syllable

structure and the sonority sequencing principle. Lambert and Rogers show

how the stress patterns in the world’s languages can be understood as a

particular combination of primitive constraints. They further character-

izes the complexity of those constraints. Lindell and Chandlee provide a

logical characterization of Input Strictly Local functions, which Chandlee

showed earlier to well-characterize an important natural class of phonolog-

ical transformations. Dolatian shows that the Raimy-style linearization is

computationally actually very complex. Having identified the source of

complexity, he suggests way to mitigate it. Payne provides similar results

for the comptuational complexity of GEN. Vu shows how transformations

can also be expressed as constraints on correspondence structures. These

chapters are but a small sample of the kinds of research questions and

investigations that can be addressed with the tools introduced in part one.

TODO: update these mentions and add mentions to Rawski’s chapter,
Nelson’s chapter.
Computational generative phonology is simple. It is not hard. We be-

lieve theories of generative phonology developed in this tradition will lead

to advances in our understanding of the nature of phonological grammars

and the minds which know them.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

24 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 2

Representations, Models, and
Constraints

Jeffrey Heinz and James Rogers

2.1 Logic and Constraints in Phonology

In this chapter, we show how to use logic and model-theoretic represen-

tations to define well-formedness condtitions over phonological repre-

sentations (such as markedness constraints). The power in this kind of

computational analysis comes from the framework’s flexibility in both the

kind of logic used and the choice of representation.

As will be explained, these choices provide a “Constraint Definition

Language” (CDL) in the sense of (de Lacy, 2011). A CDL is a language

with a formal syntax and semantics, with which one can precisely define

constraints and with which one can interpret those constraints with respect

to representations. Each CDL has consequences for typology, learnability,

and the psychology of language, which can be carefully studied. Con-

versely, psychological, typological, and learnability considerations provide

evidence for the computational nature of phonological generalizations on

well-formedness; that is for the choices we can make.

This is not the first effort to apply logic to phonological theory. In fact,

there is considerable history. A notable turning point occurred in the early

1990s with the developments of two theories: Declarative Phonology and

Optimality Theory.

25

D
R
A
F
T

26 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Declarative Phonology made explicit use of logical statements in de-

scribing the phonology of a language. For instance (Scobbie et al., 1996,

p. 688) expressed a general principle of theories of syllables which prohibit

ambisyllabicity this way: ∀x¬(onset(x) ∧ coda(x)), which in English reads
“For all segments x, it is not the case that x is both an onset and a coda.”
In Optimality Theory, first-order logic was often used implicitly to

define constraints. For example, the definition of the constraint MAX-IO

in OT given by McCarthy and Prince (1995, p. 16) is “Every segment of

the input has a correspondent in the output.” On page 14, they define the

correspondence relation: “Given two strings S1 and S2, correspondence is a

relation R from the elements of S1 to those of S2. Elements α ∈S1 and β ∈S2
are referred to as correspondents of one another when αRβ.” As will be
clear by the end of this chapter, this definition of MAX-IO is essentially a

statement in First Order Logic: For all α ∈S1 there exists β ∈S2 such that
αRβ.
Unlike Optimality Theory, the CDLs introduced in this chapter are

assumed to provide language-specific, inviolable constraints. For a rep-

resentation to be well-formed it must not violate any constraint. This is

a property the CDLs in this chapter have in common with Declarative

Phonology. Scobbie et al. explain:

The actual model of constraint interaction adopted is maximally

simple: the declarative model. In such a model, all constraints

must be satisfied. The procedural order in which constraints

are checked (or equivalently, in which they apply) is not part

of the grammar, but part of an implementation of the grammar

(as a parser, say) which cannot affect grammaticality. (Scobbie

et al., 1996, p. 692)

What Scobbie et al. are emphasizing is that logical specifications of gram-

mar specify what is being computed as opposed to how it is being computed.

We agree with Scobbie et al. (1996) that this is an attractive property of

logical languages.

While this chapter, and others in this book, assume the constraints are

language-specific and inviolable, it is a mistake to conclude that this line of

work only applies to grammars that make binary distinctions between well-

formed and ill-formed structures. In fact, the model-theoretic and logical

framework advocated here can also describe gradient well-formedness

with weighted logical languages. These allow one to specify what is

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.2. CHAPTER OUTLINE 27

being computed when linguistic representations are assigned numbers

of violations of a constraint, as in the case in Optimality Theory when

evaluating candidates, or real numbers, as in the case of assigning some

probabilities to structures (Droste and Gastin, 2009). This chapter does

not discuss weighted logical languages, but they are reviewed with some

examples in Chapter 4.

2.2 Chapter Outline

In the remainder of this chapter, we informally introduce model-theoretic

representations of strings and different logics. We focus on strings because

they are widely used and well-understood. Most importantly, they are suf-

ficient to illustrate how different CDLs can be defined and how these CDLs

have consequences for psychological and typological aspects of language

as well as learnability. Several chapters later in the book provide concrete

examples of non-string representations motivated by phonological theory.

Add forward references to autosegmental representations (Chapter
XYZ), syllable structure (Chapter XYZ), morphological representations,
gradient phonetic representations, etc.)

A formal, mathematical treatment of the representations and logic is

given in Chapter 6. Concepts and definitions introduced here are presented

there precisely and unambiguously. Some readers may benefit by consulting

this chapter in parallel with that one.

Essentially, this chapter compares several CDLs by varying the repre-

sentation of words (called models) and the logical language (First Order vs

Monadic Second Order). The models we consider vary along two dimen-

sions: the representation of speech sounds (segments vs feature bundles),

and the representation of order (successor vs precedence).

The first model we introduce is the canonical word model, which is

known as the successor model. This is followed by an informal treatment

of First-Order (FO) logic. This yields the first CDL we consider (FO with

successor) and we show how to define a constraint like *NT—voiceless

obstruents are prohibited from occurring immediately after nasals—in this

CDL.

Next we alter the successor model so that the representations make use

of phonological features. This yields another CDL (FO with successor and

features). We comment on some notable points of comparison between the

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

28 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

two CDLs, again using the *NT constraint.

The narrative continues by discussing one typological weakness of the

aforementioned CDLs: they are unable to describe long-distance constraints

which are arguably part of the phonological competence of speakers of

some languages. This provides some motivation for a CDL defined in terms

of a more powerful logic, Monadic Second Order (MSO) logic. This CDL

we call ‘MSO with successor and features,’ and we explain how it is able to

define such long-distance constraints. The key is that with MSO logic it is

possible to deduce that one element in a string precedes another element, no

matter how much later the second element occurs. The availability of the

precedence relation makes it possible to define long-distance constraints.

We continue to evaluate the MSO with successor CDL from a typological

perspective. We argue that there are significant classes of constraints

definable in this CDL that are bizarre from a phonological perspective. An

example is the constraint which forbids words to have evenly many nasals

(*Even-N). In other words, we motivate seeking a more restrictive CDL

which is still capable of describing local and long-distance constraints in

phonology.

One solution we consider is to make the precedence order a primitive

relation of the representation. This model of words is called the precedence

model, which stands in contrast to the successor model. We show how the

CDL “FO with precedence and features” is also able to describe both local

and long-distance constraints of the kind found in the phonologies of the

world’s languages and excludes (some) of the bizarre constraints that the

CDL ‘MSO with successor and features’ is able to describe.

Finally, the chapter concludes with a high-level discussion seeking to

emphasize the following points. First, there is a tradeoff between representa-

tions and logical power. Second, as mentioned, the choice of representation

and the choice of logic has consequences for typology, psychological reality,

memory, and learnability. Third, the representations and logics discussed

in this chapter are only the tip of the iceberg. Readers undoubtedly will

have asked themselves “What about this possible representation?” and

“Why don’t we consider this variety of logic?” Later chapters in this book

address some such questions. Comprehensively answering such questions,

however, is beyond the scope of this book. But it is not beyond the scope

of phonological theory. If some readers of this book pose and answer such

questions, then this book will have succeeded in its goals.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.3. THE SUCCESSOR MODEL 29

2.3 The Successor Model

This section introduces the central ideas of model-theoretic representations

with a concrete example. The concrete example comes from the “successor”

model, which is one of the canonical model-theoretic representations for

strings.

Model-theoretic representations provide a uniform framework for rep-

resenting all kinds of objects. Here the objects under study are strings. We

need to be clear about two things: what the objects are, and what counts

as a successful model-theoretic representation of a set of objects.

Strings are sequences of events. If we are talking about words, the

events could be given as speech sounds from the International Phonetic

Alphabet, or as gestural events in speech or sign, or as perceptual landmarks

in auditory space or visual space. In this chapter, we consider models of

strings over the following alphabet of IPA symbols: a, b, d, e, g, i, k, l, m, n,

o, p, r, s, t, u, z. Limiting this alphabet in this way is pedagogically useful,

and it will be clear that it can be expanded as needed for one’s purpose.

In general, the set of alphabetic symbols is denoted Σ and Σ∗ denotes the

set of all possible sequences of finite length that can be constructed from

symbols in Σ.
A successful model theoretic-representation of a set of objects must

provide a representation for each object and must provide distinct repre-

sentations for distinct objects. It may be strange to ask the question “How

can we represent strings?” After all if we are talking about the string sans,

isn’t sans itself a representation of it? It is, but the information carried in

such representations is implicit. Model-theoretic representations make the

information explicit.

Model-theoretic representations for objects of finite size like strings are

structures which contain two parts. The first is a finite set of elements

called the domain, written D. The second is a finite set of relations
R = {R1, R2, . . . Rn}. The relations provide information about the domain
elements and how those elements relate to each other. These relations

constitute the signature of the model. In this book, a model-theoretic
representation with signature R is called an R-structure, and it is written
like this: 〈D | R1, R2, . . . Rn〉.
We first show a model-theoretic representation of a word and then we

explain it. While this may seem backwards to some, it seems to work better

pedagogically. It can be helpful to refer to the end-product as one goes

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

30 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

about explaining how one got there.

Figure 2.1 shows the successor structure for the word sans in addition

to a graphical diagram of it on its right. The graphical diagram puts

the domain elements in circles. Edges labeled with / indicate the binary
relation called “successor.” Finally, the unary relations, one for each symbol

in the alphabet, are shown in typewriter font above the domain elements

that belong to them. Throughout this book we will often use graphical

diagrams instead of displaying the literal mathematical representation on

the left. The order of the relations in the signature is fixed but it is also

arbitrary.

Mtent

= 〈D | s, a, n, b, d, . . . , z, / 〉
=

〈
{1, 2, 3, 4} | {1, 4}, {2}, {3},
∅,∅, . . .∅,
{(1, 2), (2, 3), (3, 4)}

〉 1 2 3 4

s a n s

/ / /

Figure 2.1: At left, the successor model of the word sans. At right, a

graphical diagram of this model.

In the case of strings, the number of domain elements matches the

length of the string. So a model-theoretic representation of a word like

sans would have a domain with four elements, one for each event in the

sequence. We can represent these domain elements with the suits in a

deck of cards {♥,♦,♣,♠} or we could use numbers {1, 2, 3, 4} as we did in
Figure 2.1. We will usually use numbers because as strings get longer we

can always find new numbers. However, keep in mind that the numbers

are just names of elements in the model in the same way the suits would

have been. They get their meaning from the relationships they stand in,

not from anything inherent in the numbers themselves.

In the signature for successor structures, for each symbol b in the alpha-
bet, there is a unary relation b. In Figure 2.1, the alphabet is the limited
set of IPA symbols mentioned previously. We use the typewriter font to

distinguish the relations from the symbols. We write (b)b∈Σ to mean this
finite set of relations. For each b ∈ Σ, if a domain element belongs to the
unary relation b then it means this element has the property of being b.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.3. THE SUCCESSOR MODEL 31

Regarding the word sans, the relational structure shown in Figure 2.1 in-

dicates that there are four distinct elements. Two of them belong to s; a
different element belongs to a; and the remaining element belongs to n.
For every symbol b ∈ Σ− {s, a, n}, the relation b is empty. For all x ∈ D
and all b ∈ Σ, when we write x ∈ b or b(x) we mean that domain element
x belongs to the unary relation b.
The signature of the successor model also includes a single binary

relation called “successor”. A domain element x indicating some event
stands in the successor relation to y if y corresponds to the event which is
in fact the next event after x. In this book, we use the symbol / to indicate
the successor relation. For the word sans, if 2 ∈ Ra and 3 ∈ Rn then (2, 3)
would be in the successor relation. There are at least three common ways to

write the fact that domain elements 2 and 3 stand in the successor relation:
(2, 3) ∈ / (set notation), /(2, 3) (prefix notation), and 2 / 3 (infix notation).

The signature R for the successor model is thus {(b)b∈Σ, / } and R-
structures would have the form 〈D | (b)b∈Σ, / 〉. It is also customary to use
salient aspects of the signature to refer to the signature itself. In the case

of the successor model, it is the successor relation that plays a critical

role. For this reason, we will refer to structures with the aforementioned

signature R as /-structures.

The successor model is not the only way to represent words. From a

phonological perspective, it is arguably a strange model. After all, there are

no phonological features! We will consider more phonologically natural

models of words below.

It is easy to see that there is a general method for constructing a unique

model for each logically possible string. Given a string w of length n we can
always construct a successor model for it as follows. Since w is a sequence
of n symbols, we let w = b1b2 . . . bn. Then set the domain D = {1, 2, . . . n}.
For each symbol b ∈ Σ and i between 1 and n inclusive, i ∈ b if and only
if bi = b. And finally, for each i between 1 and n − 1 inclusive, let the
only elements of the successor relation be (i, i+ 1).1 This is summarized in
Table 2.1.

This construction guarantees the soundness of the successor model: each

string has one structure and distinct strings will have distinct structures.

It is also important to recognize that removing any one of the unary or

binary relations will result in a signature which does not guarantee that

1Here we are taking advantage of the numeric interpretation of the domain elements.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

32 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

D
def
= {1, 2, . . . n}

b def
= {i ∈ D | bi = b} for each unary relation b

/
def
= {(i, i+ 1) ⊆ D ×D}

Table 2.1: Creating a successor model for any word w = b1b2 . . . bn.

models of distinct strings are distinct.

Model-theoretic representations provide an ontology and a vocabulary

for talking about objects. They provide a primitive set of facts from which

we can reason. For instance in the word random, we know that the m occurs

sometime after the n. However this fact is not immediately available from

the successor model. It can be deduced, but that deduction requires some

computation. Measuring the cost of such computations is but one facet of

what model theory accomplishes. On the other hand, the successor model

makes immediately available the information that d occurs immediately

after the n. As will hopefully be clear by the end of this chapter, this

distinction can shed light on differences between local and long-distance

constraints in phonology.

From a psychological perspective, the primitive set of facts a model-

theoretic representation encodes about a word can be thought of as primi-

tive psychological units. In its strongest form, the model-theoretic repre-

sentation of words as embodied in its signature makes a concrete claim

about the psychological reality of the ways words are represented mentally.

2.4 First Order Logic

Now that the models provide explicit representations, what do we do with

them? Logic provides a language for talking about these representations.

First Order logic is a well-understood logical language which we introduce

informally here. For those already familiar with FO logic, you will see that

we take advantage of things like prenex normal form without discussion.2

In addition to the Boolean connectives such as conjunction, disjunction,

implication, and negation, FO logic also includes existential and universal

2Readers are referred to Keisler and Robbin (1996); Enderton (2001) and Hedman
(2004) for complete treatments of first order logic including prenex normal form.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 33

quantification over variables that range over domain elements. These vari-

ables are called first order variables. Apart from these logical connectives
and quantified variables, the basic vocabulary of FO logic comes from the

relations in the signature. Thus each model-theoretic representation supplies

essential ingredients for the logical language. Table 2.2 summarizes the

vocabulary of FO logic with an arbitrary model 〈D | R1, R2, . . . Rn〉. The
expressions in the category “Model Vocabulary” in Table 2.2 are also called

atomic formulas because they are the primitive terms from which larger
logical expressions are built. In other words, not only can a signature R
give rise to model theoretic representations of a class of objects, but a

signature R also gives rise to a first-order logical language. This language
is made up of the expressions that can be built from the model vocabulary

and the logical connectives and quantifiers in a syntactically valid way.

We call this logical language FO(R).
Since Chapter 6 defines FO logic formally, here we introduce the concept

of valid sentences and formulas of FO logic ostensively. Below we give

examples of three types of expressions: sentences of FO logic, formulas

of FO logic, and syntactically ill-formed expressions. Sentences of FO

logic are complete, syntactically valid sentences that can be interpreted

with respect to a signature. Formulas of FO logic are syntactically valid

expressions, but are not complete in the sense that they contain variables

which are not bound to anything. The sentences and formulas that belong

to a logical language FO(R) will be called R-sentences and R-formulas,
respectively. The syntactically ill-formed expressions demonstrate common

ways expressions are incorrectly stated.

Example 1 (Sentences of FO(/). Below are five /-sentences of FO logic
with English translations below.3

1. Sentences of FO logic.

(a) ∃x, y, z (¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z))
(b) ∃x, y (n(x) ∧ t(y) ∧ x / y)
(c) ¬∃x, y (n(x) ∧ t(y) ∧ x / y)
(d) ∀x, y (¬(n(x) ∧ t(y) ∧ x / y))
(e) ∀x∃y (n(x) → (t(y) ∧ x / y))

3In the examples, we use the word ‘element’ to refer to domain elements. However,
since we are talking about strings, we could have equally well used words like ‘event’ or
‘position’.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

34 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Boolean Values

true true

> true

false false

⊥ false

Boolean Connectives

∧ conjunction

∨ disjunction

¬ negation

→ implication

↔ biconditional

Syntactic Elements

(left parentheses

) right parentheses

, comma for separating variables

Variables, Quantifiers, and Equality

x, y, z variables which range over elements of the domain

∃ existential quantifier

∀ universal quantifier

= equality between variables

Model Vocabulary

R(x) for each unary relation R in {R1, R2, . . . Rn}
R(x, y) for each binary relation R in {R1, R2, . . . Rn}
xRy for each binary relation R in {R1, R2, . . . Rn}
…

R(x1, x2 . . . xm) for each m-ary relation R in {R1, R2, . . . Rm}

Table 2.2: Symbols and their meaning in FO logic. Certain sequences of

these symbols are valid FO sentences and formulas. Note binary relations

are often written in two ways.

2. Literal English translation.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 35

• There exist elements x, y, z such that x is not y, x is not z, and y
is not z.

• There exist elements x, y such that x satisfies property n, y satis-
fies property t, and y is the successor of x.

• There does not exist elements x, y such that x satisfies property
n, y satisfies property t, and y is the successor of x.

• For all elements x, y it is not the case that x satisfies property n,
y satisfies property t, and y is the successor of x.

• For all elements x, there is element y such that if x satisfies
property n then y satisfies property t and y is the successor of x.

3. English translation (in terms of the models).

(a) There are three distinct domain elements.
(b) There are two domain elements in the successor relation; the

former has the property of being n; the latter has the property

of being t.
(c) It is not the case that there exists two domain elements in the

successor relation of which the former has the property of being

n and the latter has the property of being t.
(d) For every pair of domain elements that stand in the successor

relation, it is not the case that the former has the property of

being n and the latter has the property of being t.
(e) For all domain element which have the property of being n, it

is succeeded by a domain element which has the property of

being t.

4. English translation (in terms of the strings the models represent).

(a) There are at least three symbols.
(b) There is a substring nt.
(c) There is no substring nt.
(d) There is no substring nt.
(e) Every n is immediately followed by t.

R-sentences of FO logic are interpreted with respect to R-structures.
A structure for which the sentence is true are said to satisfy the sentence.
If a structure (or model) M of string w satisfies a sentence φ we write

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

36 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Mw |= φ. Consequently, every FO sentence φ divides the objects being
modeled into two classes: those that satisfy φ and those that do not. In
this way, logical sentences define constraints. The strings whose models
satisfy the sentence do not violate the constraint; strings whose models do

not satisfy the constraint do violate it.

Table 2.3 provides examples of strings whose models satisfy the formulas

in Example 1 and examples of strings whose models do not. An important

φ Mw |= φ Mw 6|= φ

(a) too, sans, ttt to, a

(b) sant, rent, ntnt ten, to, phobia

(c) ten, to, phobia sant, rent, ntnt

(d) ten, to, phobia sant, rent, ntnt

(e) rent, antler ten, nantucket

Table 2.3: Some strings whose models satisfy the formulas in Example 1

and some whose models do not.

feature of FO logic is that there are algorithmic solutions to the problem of

deciding whether a given R-structure satisfies a given R-sentence. This
algorithm works because the syntactic rules that build up larger sentences

from smaller ones have clear semantic interpretations with respect to

the structure under consideration. In short, it is an unambiguous and

compositional system. For instance,M |= φ ∧ ψ if and only ifM |= φ and
M |= ψ. The interpretation of quantifiers is discussed after introducing
formulas below.

R-formulas of FO logic are incomplete sentences in the sense that
they contain variables that are not bound. A variable is bound only if
it is has been introduced with a quantifier and is within that quantifier’s

scope. Variables that are not bound are called free. R-formulas are only
interpretable with respect to an R-structureM if the free variables are

assigned some interpretation as elements of the domain ofM.

Example 2 (Formulas of FO(/)). 1. Formulas of FO logic.

(a) n(x) ∨ m(x) ∨ N(x)
(b) ∃y (n(x) ∧ t(y) ∧ x / y)
(c) ¬∃y (x / y)

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 37

(d) ¬∃y (y / x)
(e) ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z)
(f) x / y ∧ y / z

2. English translation.

(a) x has the property of being n, m, or N.
(b) x has the property of being n and coming immediately before
an element which has the property of being t.

(c) There is no element which succeeds x.
(d) There is no element which x succeeds.
(e) x, y and z are distinct.
(f) x is succeeded succeeded by y which is succeeded by z.

The difference between formulas and sentences is that sentences admit

no free variables. Since sentences have no free variables, they must begin

with quantifiers. Because formulas can only be interpreted in terms of

one or more un-instantiated variables, formulas are often used to define

predicates. Predicates are essentially abbreviations for formulas with the
unbound variables serving as parameters. Below we repeat the formulas

from above, but use them to define new predicates. We also write predicates

in typewriter font, but with a very light gray highlight to distinguish

them from atomic formulas.

nasal (x)
def
= n(x) ∨ m(x) ∨ N(x) (2.1)

nt (x)
def
= ∃y (n(x) ∧ t(y) ∧ x / y) (2.2)

last (x)
def
= ¬∃y (x / y) (2.3)

first (x)
def
= ¬∃y (y / x) (2.4)

distinct3 (x, y, z)
def
= ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z) (2.5)

string3 (x, y, z)
def
= x / y ∧ y / z (2.6)

These predicates can then be used to define new expressions. For exam-

ple, the sentence ∀x(¬ nt (x)) is equivalent to (1d) in Example 1 above. In
the same way that programmers write functions which encapsulate snippets

of often-used programming code, predicates generally help writing and

reading complex logical expressions.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

38 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Determining whether a structure satisfies a sentence is compositional.

It also depends on the assignment of variables to elements in the model’s
domain. For instance, to determine whetherM satisfies φ = ∃x(ψ(x)), we
must find an element of the domain ofM, which if assigned to x, has the
consequence that ψ evaluates to true. If no such element exists, thenM
does not satisfy φ. Similarly,M satisfies φ = ∀x(ψ(x)) if and only if every
element of the domainM, when assigned to x, results in ψ evaluating to
true. The formal semantics of FO logic is given in Chapter 6.
Finally we give some examples of syntactically ill-formed sequences.

The following expressions are junk; they are not interpretable at all.

Example 3 (Syntactically ill-formed sequences).

1. Syntactically ill-formed sequences.

(a) x∃)x(
(b) ∀∃ (n ∨ t)
(c) ¬∃(n / t)

2. Comments.

(a) Quantifiers always introduce variables to their left and paren-

theses are used normally.

(b) No quantifier can be introduced without a variable and n-ary
relations from the model vocabulary must always include n
variables.

(c) Many beginning students make this sort of error when trying

to express a logical sentence which forbids nt sequences. This

expression breaks the same rules as the one before it.

We conclude this section by providing an example of a logical sentence

defining a constraint which bans voiceless obstruents after nasals. This is

a constraint in the literature often abbreviated *NT (Pater, 1999). Since

the model signature does not include relations for concepts like nasals and

voiceless consonants, we first define predicates for these notions.

Example 4 (The constraint *NT defined under the FOwith successor model).

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.5. WORD MODELS WITH PHONOLOGICAL FEATURES 39

nasal (x)
def
= n(x) ∨ m(x) (2.7)

voiceless (x)
def
= p(x) ∨ t(x) ∨ k(x) ∨ s(x) (2.8)

*NT def
= ¬∃x, y(x / y ∧ nasal (x) ∧ voiceless (y)) (2.9)

It is easy to see that /-structures of words like sans and lampoon do

not satisfy *NT but /-structures of words like ten and moon do. For ex-

ample, in the /-structure of sans, the expression ∃x, y(x / y ∧ nasal (x) ∧

voiceless (y)) is true when x = 3 and y = 4. Hence, *NT evaluates
to false. On the other hand, in the /-structure of the word moon, every
value assigned x and y results in the sentence ∃x, y(x / y ∧ nasal (x) ∧

voiceless (y)) evaluating to false. Hence the sentence *NT evaluates

to true and soMmoon |= *NT .
This section has presented the first CDL: FO with successor, also written

as FO(/). The FO with successor model has been studied carefully and it
is known precisely what kinds of constraints can and cannot be expressed

with this CDL (Thomas, 1982), as will be discussed further below.

2.5 Word Models with Phonological Features

One way in which the successor model above is strange from a phono-

logical perspective is its absence of phonological features. The properties

associated with the elements of the domain are singular, atomic segments.

However, nothing in model theory itself prohibits domain elements from

having more than one property. It is a consequence of the construction in

Table 2.1 that each domain element will satisfy exactly one of the unary

relations b, no more and no less. We can formalize this statement of the
successor model in Remark 1 as follows.

Remark 1 (The successor model entails disjoint unary relations). For all

/-structuresM = 〈D | (b)b∈Σ, / 〉, and for all a, b ∈ (b)b∈Σ, it is the case
that a ∩ b = ∅.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

40 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

It is possible to design different models of words, where the unary rela-

tions do not represent segments like a, b, or n but phonetic or phonological

features such as vocalic, labial, or nasal. Crucially, these models would not

entail disjoint unary relations: a domain element could be both voiced and

labial for instance.

In this part of the chapter, we give one example of such a model. There

are many others, as many as there are theories of phonological features.

The model we give here is primarily for pedagogical reasons; we are not

stating particular beliefs or arguments regarding the nature of feature

systems. We are only choosing a simple system that illustrates some key

points.

We set up a feature system with privative features for the simple
alphabet Σ discussed earlier a, b, d, e, g, h, i, k, l, m, n, o, p, r, s, t, u,
z. The use of privative features contrasts with the typical assumption in

phonological theory that features are binary (Hayes, 2009; Odden, 2014;
Bale and Reiss, 2018). We choose not to pick a minimal nor maximal set of

features for distinguishing this set. Instead we choose somewhat arbitrarily

a middle ground based on standard descriptive phonetic terms used for

describing the manner, place and laryngeal quality in articulating sounds.

We call this model “the successor model with features.” Its signature, which

we denote as (feat,/), is shown below.

{vocalic, low, high, front, stop, fricative, nasal, lateral,
rhotic, voiced, voiceless, labial, coronal, dorsal, / } (2.10)

This contrasts with the successor model in the previous section, which

we will call “the successor model without features,” or sometimes “the

successor model with letters.” Table 2.4 shows how to construct a (feat,/)-
structure for any string in Σ∗. Again this model ensures that distinct strings

from Σ∗ have different models and that every string has some model.

As an example, Figure 2.2 shows the (feat,/)-structure of the word sans.

The successor model with features contrasts sharply with the successor

model without features in an important way. To see how, first consider the

constraint *NT. Under the successor model with features, this constraint

would be defined as in Equation 2.11

Example 5 (The constraint *NT defined under the FO with successor model

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.5. WORD MODELS WITH PHONOLOGICAL FEATURES 41

D
def
= {1, 2, . . . n}

vocalic def
= {i ∈ D | ai ∈ {a, e, i, o, u}}

low def
= {i ∈ D | ai = a}

high def
= {i ∈ D | ai ∈ {i, u}}

front def
= {i ∈ D | ai ∈ {e, i}}

stop def
= {i ∈ D | ai ∈ {b, d, g, k, p, t}}

fricative def
= {i ∈ D | ai ∈ {h, s, z}}

nasal def
= {i ∈ D | ai ∈ {m,n}}

lateral def
= {i ∈ D | ai = l}

rhotic def
= {i ∈ D | ai = r}

voiced def
= {i ∈ D | ai ∈ {b, d, g, z}}

voiceless def
= {i ∈ D | ai ∈ {k, p, s, t, h}}

labial def
= {i ∈ D | ai ∈ {b, p,m}}

coronal def
= {i ∈ D | ai ∈ {d, s, t, z}}

dorsal def
= {i ∈ D | ai ∈ {g, k}}

/
def
= {(i, i+ 1) | 1 ≤ i < n}

Table 2.4: Creating a successor model with features for any word w =
b1b2 . . . bn.

with features).

*NT def
= ¬∃x, y(x / y ∧ nasal(x) ∧ voiceless(y)) (2.11)

This looks similar to the definition of *NT under the successor model

(Equation 2.7), but there is a critical difference. The predicates above in

Equation 2.11 are atomic formulas and not user-defined predicates as they

are in Equation 2.7.

This is an important ontological difference between these two models.

In the successor model with features there is no primitive representational

concept that corresponds to a sound segment like [t] as there is in the suc-

cessor model without features. Conversely, in the successor model without

features there is no primitive representational concept that corresponds

to a phonological feature like voiceless as there is in the successor model

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

42 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Msans =
〈
{1, 2, 3, 4} |

vocalic = {2},
low = {2},

fricative = {1, 4},
nasal = {3},

voiceless = {1, 4},
coronal = {1, 3, 4},
lateral = ∅

. . .

/ = {(1, 2), (2, 3)

(3, 4)}
〉

1 2 3 4

fricative
coronal

voiceless

vocalic
low

nasal
coronal

fricative
coronal

voiceless
/ / /

Figure 2.2: At left, the successor model with features of the word sans.

Unary relations which equal the empty set are omitted for readability. At

right, a graphical diagram of this model.

with features. Features are derived concepts in the the successor model

without features, and segments are derived concepts in the the successor

model with features.

In the successor model with features we can write user-defined predi-

cates that define properties of domain elements that we can interpret to

mean “being t”.

t (x)
def
= stop(x) ∧ coronal(x) ∧ voiceless(x) (2.12)

Other sound segments would be defined similarly.

One way to put this difference is that in the successor model with

features one can immediately determine whether a domain element is

voiced or not, but in the successor model without features one cannot

immediately determine this fact. Instead one can deduce it by checking the

appropriate user-defined predicate. Likewise, in the successor model with

features one cannot immediately determine whether a domain element is

t or not. With the featural representations, such a fact must be deduced

with a user-defined predicate like the one above.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 43

Also, the fact that such user-defined predicates exist should not be taken

for granted. They exist here because the only logical system discussed so

far is FO. With FO logic, it is possible to define a predicate for any subset of

the alphabet Σ for both successor models with and without features. If the
logical system was restricted in some further way then some user-defined

predicates may not be possible to define. For example, if the logical system

only permitted conjunction and no other Boolean connective then it would

not be possible to define a predicate for voiceless stops in the successor

model without features. This interplay between representations and logical

power with respect to expressivity is an important theme of this chapter.

It will be discussed at length with respect to the successor relation, and

we will return to it in the context of features when restricted logics are

introduced in Chapter 5.

It is a consequence of FO logic that any constraint definable with one of

the successor models discussed so far is definable in the other. This leads to

the conclusion that there are no typological distinctions between a theory

that holds that the right CDL for phonology is one based on First-Order

logic over the successor model with features and a theory that holds the

right CDL for phonology is one based on First-Order logic over the successor

model without features. Both admit exactly the same class of constraints,

with respect to some alphabet Σ.
However, while the two models do not make different typological pre-

dictions, they make different predictions in other ways. This is because

in regard to phonological theory, the model signature is an ontological

commitment to the psychological reality of the model vocabulary. Taken

seriously, the successor model with features says that the mental represen-

tations of words carries only the information shown in Figure 2.2. Thus,

taken seriously, the successor model with features says that the segments

in the word sans are not perceived as such but are instead perceived in

terms of their features. Clever psycholinguistic experiments could bring

evidence to bear on which model more accurately resembles the actual

mental representations of words.

2.6 Monadic Second-Order Logic

This section introduces Monadic Second-Order (MSO) logic. This logic is

strictly more expressive than FO logic. We motivate the discussion of MSO

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

44 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

logic from a linguistic perspective by showing that FO with successor, both

with and without features, is not sufficient to account for long-distance

phonotactic constraints.

What are long-distance phonotactic constraints? Odden (1994) draws

attention to an unbounded nasal assimilation in Kikongo whereby under-

lying /ku-kinis-il-a/ becomes [kukinisina] ‘to make dance for.’ From one

perspective, this assimilation could be said to be driven by a phonotac-

tic constraint that forbids laterals from occurring after nasals. Similar

long-distance constraints have been posited for a variety of long-distance

assimilation and dissimilation processes (Rose and Walker, 2004; Hansson,

2010).

We first show that the phonotactic constraint which bans laterals from

occurring anywhere after nasals cannot be expressed in the FOwith successor

model. We refer to this constraint as *N..L. As we hope to make clear,

the problem is that the notion of precedence is not FO-definable from

successor. To illustrate this problem, consider that the logically possible

word [kukinisila] is ill-formed in Kikongo. The nasal [n] has only one

successor [i], but it precedes many segments including the second and third

[i]s as well as the [s,l] and [a]. It is the fact that [n] precedes [l] which

makes [kukinisila] ill-formed according to the phonotactic constraint *N..L.

Constraint *N..L is not FO definable with successor. To prove this we

use an abstract characterization of the constraints definable with FO(/) due
to Thomas (1982) and reviewed in Rogers and Pullum (2011). Thomas

called the class of formal languages obeying this characterization Locally
Threshold Testable.

Theorem 1 (Characterization of FO(/) definable constraints). A constraint

is FO-definable with successor if and only if there are two natural numbers k and
t such that for any two strings w and v, if w and v contain the same substrings

x of length k the same number of times counting only up to t, then either

both w and v violate the constraint or neither does.

Essentially, this theorem says constraints that are FO-definable with

successor cannot distinguish among strings that are composed of the same

number and type of substrings of some length k, where substrings can be
counted only up to some threshold t.
We can use this theorem to show that *N..L is not FO definable with

successor by presenting two strings which *N..L distinguishes but which

are not distinguishable according to the criteria in Theorem 1. This would

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 45

prove that *N..L is not LTT and thus not FO-definable with successor.

Importantly, we have to present two such strings for any k and t. (These
strings can depend on k and t.)

We use notation bk to mean the string consisting of k consecutive bs.
So b3 = bbb. For any numbers k and t larger than 0, consider the words
w = oknok`ok and v = ok`oknok. Table 2.5 below shows the substrings up
to length k, and their number of occurrences. Each word has the same
substrings and the same number of them. Note the left and right word

boundaries (o and n respectively) are customarily included as part of the
strings.

count w = ooknok`okn Notes

1 ook−1

3 ok

1 oinoj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 oi`oj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 ok−1n

count v = ook`oknokn Notes

1 ook−1

3 ok

1 oinoj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 oi`oj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 ok−1n

Table 2.5: The k-long substrings with their number of occurrences in the
strings w = oknok`ok and v = ok`oknok with word boundaries.

As can be seen from the above table, the two strings have exactly the

same number of occurrences of each k-long substring. Consequently, for
any threshold t, the counts of the k-long substrings will also be the same.
It follows, from Theorem 1 that these two strings cannot be distinguished

by any constraint which is FO-definable with successor.

More precisely, any constraint which is FO-definable with successor is

unable to distinguish in strings w and v whether n precedes ` or whether `
precedes n. As such, no FO-definable constraint with successor can be
violated by w but not by v and vice versa. It follows that *N..L is not FO

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

46 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

definable with successor for precisely the reason that it is this distinction

that *N..L makes.

Having established that linguistically motivated long-distance phonotac-

tic constraints are not FO-definable with successor, we turn to the question

of how such constraints can be defined from the logical perspective offered

here. Essentially, there are two approaches. One is to increase the power

of the logic. The other is to change the signature—the representational

primitives—of strings. This section examines the first option and the next

section examines the second option. This interplay between logical power

and representations and how it affects the expressivity of the linguistic

system is a running theme of this book.

Monadic Second Order (MSO) logic is a logical language that is strictly
more powerful than FO logic. Constraints that are MSO-definable with

successor include every constraint which is FO-definable with successor

because every sentence and formula in FO(/) is also a sentence and for-
mula in MSO logic with successor and is interpreted in the same way. In

addition to first order variables, MSO comes with second order variables.
Generally, variables that are second order are allowed to vary over n-ary
relations. The restriction to monadic second order variables means the

variables in this logic can only vary over unary relations, which correspond

to sets of domain elements. This contrasts with first order variables, which

vary only over individual elements of the domain.

MSO logic is defined formally in Chapter 6, so here we introduce it

informally with examples. In MSO logic, the MSO variables are expressed

with capital letters such as X,Y , and Z to distinguish them from first
order variables which use lowercase letters like x, y, and z. Observe that
x ∈ X and X(x) are synonyms. As with first order variables, second order
variables are introduced into sentences and formulas with quantifiers.

Additional Symbols in MSO logic

X,Y, Z variables which range over sets of elements of the domain

x ∈ X checks whether an element x belongs to a set of elements X
X(x) checks whether an element x belongs to a set of elements X

Table 2.6: Together with the symbols of FO logic shown in Table 2.2, these

symbols make up MSO logic.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 47

With MSO logic over successor, denoted MSO(/), it is now possible to
define the precedence relation as shown below.

closed (X)
def
= (∀x, y)

[
(x ∈ X ∧ x / y) → y ∈ X

]
(2.13)

x < y
def
= (∀X)

[
(x ∈ X ∧ closed (X)) → y ∈ X

]
(2.14)

Intuitively, a set of elements X in the domain of a model of some word

w satisfies closed (X) only if every successor of every element in X is

also in X. In short, closed (X) is true only for sets of elements X which
are transitively closed under successor. Then x precedes y only if for every
closed set of elements X which x belongs to, y also belongs to X.

Figure 2.3 below illustrates these ideas. The successor model for the

string onoo`o is shown. Six rectangular regions are shown, which identify
the six nonempty sets of domain elements which are closed under successor

and thus satisfy closed (X).

1 2 3 4 5 6

o n o o l o

X1
X2

X3
X4

X5
X6

/ / / / /

Figure 2.3: The successor model for the word onoo`o. The dotted rectan-
gular regions indicate the sets of domain elements (Xi) which are closed

under successor.

We can conclude that n (at position 2) precedes ` (at position 5) because
every closed set which element 2 belongs to (X1 and X2) also includes the

element 5. Similarly, we can conclude that ` does not precede n because
it is not the case that all closed sets which contain element 5 also include

element 2. Set X4 for instance contains element 5 but not element 2.

Once the binary relation for precedence (<) has been defined, it is now

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

48 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

straightforward to define the constraint *N..L with features.

*N..L def
= ¬(∃x, y)[x < y ∧ nasal(x) ∧ lateral(y)] (2.15)

The sentence above may look like a sentence of FO logic since no second

order variables are present. However, it is important to remember that the

precedence relation (<) is a user-defined predicate, and as such it is just

an abbreviation for a longer expression, which is defined using the second

order variables of MSO logic. Therefore Equation 2.15 is not an expression

of FO(/).
In many treatments of logic, whether a predicate is atomic or derived

is not something that can be determined from inspecting a sentence or

formula since the notation does not distinguish them. In this book, we are

using very light gray highlighting to distinguish derived predicates from

atomic formulas. Readers should be aware, however, that usually one must

be being acutely aware of the model signature to know whether a predicate

is atomic or derived.

At this point, we have established that the linguistically motivated

long-distance phonotactic constraint *N..L is not definable with FO logic

with successor but is definable with MSO logic with successor. We thus

ask: What other kinds of constraints are MSO-definable with successor?

Another constraint that is not FO-definable with successor but is MSO-

definable constraint with successor is a constraint that requires words to

have an even number of nasals. Words like man and phenomenon obey this

constraint since they have two and four nasals, respectively, but words like

trim, nanotechnology and nonintervention do not since they have one, three

and five nasals, respectively.

To see that this constraint is not FO-definable with successor, we use

Theorem 1 as before. For any nonzero numbers k and t, consider the words
w = ak(nak)2t and v = ak(nak)2tnak. Observe that w obeys the constraint
since it contains 2t nasals and 2t is an even number. On the other hand, v
contains 2t+ 1 nasals and therefore violates the constraint. However, as
Table 2.7 shows, these words have the same substrings of length k, and the
same numbers of each substring, counting only up to the threshold t.
However, this constraint is expressible with MSO logic with successor.

We make use of some additional predicates, including general precedence

(<) defined in Equation 2.14. The predicate firstN is true of x only
if x is the first nasal occurring in the word (Equation 2.16). The predi-

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 49

w = oak(nak)2takn

k-long raw count up to

substring count threshold t notes

oak−1 1 1

ak 2t+ 2 t
ainaj 2t+ 2 t for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
ak−1n 1 1

v = oak(nak)2tnakn

k-long raw count up to

substring count threshold t notes

oak−1 1 1

ak 2t+ 3 t
ainaj 2t+ 3 t for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
ak−1n 1 1

Table 2.7: The k-long substrings and the numbers of their counts in w =
ak(nak)2tak and v = ak(nak)2tnak with word boundaries.

cate lastN is true of x only if x is the last nasal occurring in the word
(Equation 2.17). Also, two variables x and y stand in the nasal-successor
relation (denoted /N) only if x and y are nasals and y is the first nasal

to occur after x (Equation 2.18). Essentially, /N is the successor relation

relativized to nasals (Lambert, 2023).

firstN (x)
def
= nasal(x) ∧ ¬(∃y)[nasal(y) ∧ y < x] (2.16)

lastN (x)
def
= nasal(x) ∧ ¬(∃y)[nasal(y) ∧ x < y] (2.17)

x /N y
def
= nasal(x) ∧ nasal(y) ∧ x < y

∧ ¬(∃z)[nasal(z) ∧ x < z < y] (2.18)

Note we use the shorthand x < y < z for x < y ∧ y < z.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

50 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

With these predicates in place, we write Even-N as in Equation 2.19.

Even-N
def
= (∃X)

[
(∀x)[firstN (x) → X(x)]

∧ (∀x)[lastN (x) → ¬X(x)]
]

∧ (∀x, y)
[
x /N y ∧

(
X(x) ↔ ¬X(y)

)]
(2.19)

In English, this says that a model of word w satisfies Even-N provided there
is a set of domain elements X that includes the first nasal (if one occurs),
does not include the last nasal (if one occurs) and for all pairs of successive

nasals (if they occur), exactly one belongs to X. Consequently, words
containing zero nasals satisfy Even-N because the empty set of domain

elements vacuously satisfies these three conditions. Words containing

exactly one nasal do not satisfy Even-N because the first nasal and the

last nasal are the same element x and they cannot both belong and not
belong to X. However, words with exactly two nasals do satisfy Even-N
because the first nasal belongs to X (satisfying the first condition), the
last nasal does not (satisfying the second condition), and these two nasals

are successive nasals and so are subject to the third condition, which they

satisfy because exactly one of them (the first nasal) belongs to X. A little
inductive reasoning along these lines lets one conclude that only words

with an even number of nasals will satisfy Even-N as intended.

It is natural to wonder whether there is an abstract characterization of

constraints that are MSO-definable with successor in the same way that

Thomas (1982) provided an abstract characterization of constraints that

are FO-definable with successor. In fact there is. Büchi (1960) showed

that these constraints are exactly the ones describable with finite-state

automata.

Theorem 2 (Characterization of MSO-definable constraints with successor).
A constraint is MSO-definable with successor if and only if there is a finite-state

acceptor which recognizes the words obeying the constraint.

From the perspective of formal language theory, they are exactly the

regular languages. Informally, these are formal languages for which the

membership problem can be solved with a constant, finite amount of

memory regardless of the size of the input.

In this section, we showed that FO-definable constraints with successor

are not sufficiently powerful to express long-distance phonotactic con-

straints. One approach is to then increase the power of the logic. One

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.7. THE PRECEDENCE WORD MODEL 51

logical system extends FO by adding quantification over monadic second

order variables. This logic—MSO logic with successor—is able to express

long-distance phonotactic constraints. However, MSO logic with successor

is also sufficiently expressive as a CDL to express constraints like Even-N.

Here is another way of putting it. In successor structures, the infor-

mation that in the word o`oono the ` precedes the n is not immediately
available from the representation. That information can be deduced but

the deduction requires some computational effort. From the logical per-

spective taken here, this deduction requires MSO power and not FO power.

Furthermore, once MSO power is admitted then it becomes possible to

similarly deduce whether or not there are even numbers of elements with

certain properties.

Another approach to developing a CDL which can express long-distance

phonotactic constraints is to change the representation of strings; that is, to

change the model signature. This is precisely the topic of the next section.

2.7 The Precedence Word Model

So far, the logics we have considered have been defined with respect to

the successor model of words. These representations include the successor

relation in their signature. However, as we have seen with phonological

features vis a vis atomic letters, there are different models of strings. In this

section, we consider the precedence model of strings. Simply, this model

contains the precedence relation instead of the successor relation in its
signature.

A domain element x stands in the precedence relation to y if y is an event
that occurs sometime later than x. In this book, we use the symbol < to
indicate the precedence relation. For the word sans, it holds that 1, 4 ∈ Rs

and (1, 4) belong to the precedence relation since position 4 occurs later
than position 1. We can write this fact in several ways, including 1 < 4,
< (1, 4), and (1, 4) ∈<. The signature for the precedence model with letters
is thus {(b)b∈Σ, < } and <-structures would have the form 〈D | (b)b∈Σ, < 〉.
As with the successor structures, there is a general method for construct-

ing precedence structures for strings. Given a string of w of length n, the
domain and unary relations of a precedence structure for w are constructed
in the same way as was the case for the successor structure. Regarding the

precedence relation itself, for each i and j between 1 and n inclusive, (i, j)

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

52 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

belongs to the precedence relation so long as i < j. This is summarized in
Table 2.8. This construction guarantees the model’s soundness: each string

D
def
= {1, 2, . . . n}

a def
= {i ∈ D | bi = b} for each unary relation b

<
def
= {(i, j) ⊆ D ×D | i < j}

Table 2.8: Creating a precedence model for any word w = b1b2 . . . bn.

has a model and distinct strings will have distinct models.

Figure 2.4 shows the <-structure for the word sans on the left and a
graphical diagram of it on the right.

Msans

= 〈D | s, a, n, b, c, . . . , z, < 〉
=

〈
{1, 2, 3, 4} | {1, 4}, {2}, {3},
∅,∅, . . .∅,
{(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4)}

〉
1 2 3 4

s a n s

<

<

<

<

<

<

Figure 2.4: At left, the precedence model of the word sans. At right, a

graphical diagram of this model.

The difference between the <-structures and the /-structures is how the
order of segments in the word are represented. In the precedence model,

the fact that the n is preceded by s in the word sans is immediately available
because the element corresponding to n (position 3) is in the precedence
relation with the element corresponding to the first s (position 1). Under
the successor model, this information was not immediately available as it

was not part of the representation. However, under the precedence model

it is.

Taken seriously from a psychological perspective, the precedence model

can be taken to mean that as words are perceived, information about

the precedence relations is being stored in memory as part of the lexical

representation of the word.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.7. THE PRECEDENCE WORD MODEL 53

Also, in the same way that we considered the successor model both with

and without features, we can also consider a precedence model with and

without features. The precedence model introduced above was without

features, but it is a simple matter to replace the unary relations in that

model with the ones in Table 2.4.

It is straightforward to now write the constraint *N..L in the CDL which

we call “FO with precedence with features” denoted FO(feat,<).

*N..L def
= ¬∃x, y(x < y ∧ nasal(x) ∧ lateral(y)) (2.20)

Equation 2.20 looks identical to Equation 2.15. However, there is a critical

difference. In Equation 2.20, the precedence relation is an atomic formula

but in Equation 2.15 it is a user-defined predicate in MSO logic.

It is natural to ask of course whether a constraint like *NT is expressible

in this CDL. The answer is Yes because successor is FO-definable from

precedence. Equation 2.21 shows how. Essentially, x is succeeded by y
only if x precedes y and there is no element z such that z < y and x < z.

x / y
def
= x < y ∧ ¬(∃z)[x < z < y] (2.21)

It is a striking fact that successor is FO-definable from precedence

but precedence is MSO-definable from successor. This is a considerable

asymmetry between the successor and precedence models of strings.

There are two important consequences. The first is the CDL FO(<)
properly subsumes the CDL FO(/). Not only is every constraint expressible
with the FO(/) also expressible with the FO(<), but there are constraints

like *N..L above that expressible with the FO(<) but not with the FO(/).
Another important consequence is that the CDL MSO(<) is equivalent

in expressive power to the CDL MSO(/) discussed in the previous section.
This is because with MSO logic, precedence can be defined from successor

as shown previously in Equation 2.14 on page 47 and because successor

can be defined from precedence as shown above in Equation 2.21. So

at the level of MSO, these two models make no distinctions among the

kinds of constraints that can be expressed. Furthermore it has been known

since Büchi (1960), that these constraints correspond to exactly the regular

stringsets.

There is also an abstract characterization of FO(<) due to McNaughton
and Papert (1971).

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

54 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Theorem 3 (Characterization of FO-definable constraints with precedence).
A constraint is FO-definable with precedence if and only if there is a positive

integer n such that for all strings x, y, z if xynz obeys the constraint then for all

k > n, xykz obeys the constraint too.

This characterization says that FO-definable constraints with prece-

dence can only distinguish iterations within strings up to some finite

n. In other words, two strings xyiz and xyjz, with both i, j > n but
i 6= j, cannot be distinguished by any FO-definable constraint with prece-
dence. As McNaughton and Papert (1971) amply document, there are other

independently-motivated characterizations of this class as well.

The above characterization can be used to show that Even-N is not

FO-definable with precedence. Again, the strategy is to consider any n and
then to find strings w, v such that (1) Even-N distinguishes w and v in the
sense that one violates Even-N and the other does not while (2) ensuring

that the forms of w, v conform to w = xyiz and v = xyjz for some x, y, z
and numbers i, j > n. If the constraint were FO-definable with precedence
such strings could not exist by Theorem 3. In this case, one solution is to

set x = z = λ (the empty string), y = ma, i = 2n and j = 2n + 1. Then
w = (ma)2n and v = (ma)2n+1. Clearly, w has an even number of nasals
since it has 2n [m]s but v has an odd number since it has 2n+1 [m]s. Thus
Even-N distinguishes these strings and thus by Theorem 3 it cannot be

FO-definable with precedence.

In this section, we considered a model of words where order is repre-

sented with the precedence relation instead of the successor relation. It

was shown that long-distance constraints can be readily expressed with

FO(<). Furthermore, local phonotactic constraints like *NT can also be
expressed because successor is FO-definable from precedence. However,

the converse is not true. This asymmetry means that FO(<) is strictly
more expressive than FO(/). Despite this richer expressivity, It was also
shown that Even-N cannot be expressed in FO(<). Finally, it was noted
that MSO(< is equally expressive as MSO(/). Once there is MSO power,
successor and precedence are each definable from the other. Which of these

constraints can be expressed by which CDLs is summarized in Figure 2.5.

More generally, this section established the following. Although one

way to increase the expressivity of a CDL is to increase the power of the

logic, another way is to change the representations underlying in the model

signatures. This speaks directly to the interplay between representations

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.8. DISCUSSION 55

/ <

MSO *N..L, Even-N Even-N

FO *NT *NT, *N..L

Figure 2.5: Classifying the constraints *NT, *N..L, and Even-N.

and computational power, one of the themes of this chapter.

We conclude that the only CDL discussed so far that can express both

local and long-distance phonotactic constraints (like *NT and *N..L) but

that fails to express constraints like Even-N is FO(<).

2.8 Discussion

This chapter has been about many things. On the one hand, it introduced

model theory and logical languages as a toolkit for providing what De Lacy

termed a Constraint Definition Language.

It then proceeded to show how different words can be represented in

different ways based on the primitive relations one chooses to include in the

model theoretic signature. Four examples were introduced: representations

with letters and successor, representations with features and successor,

representations with letters and precedence, and representations with

features and precedence.

Additionally, two logics were introduced, First Order logic and Monadic

Second Order logic. We explained how the choice of representation and

choice of logic gives rise to a logical language which can express constraints

over those representations.

Finally, we explored some of the consequences of these choices. The

most important ones we stressed are the following.

1. If order is represented with successor and not precedence, then MSO

logic is needed to be able to express long distance phonological

constraints.

2. Logical languages defined with MSO logic over successor structures

can also express constraints that forbid (or require) words to have n
many structures modulo m (0 ≤ n < m) (for example, “Words must
contain evenly many nasals”).

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

56 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

3. If order is represented with precedence and not successor, then FO

logic is sufficient to express long distance phonological constraints,

in addition to local phonological constraints.

4. The above results follow directly from a fact of mathematical logic:

precedence needs MSO logic to be defined from successor but succes-

sor only needs FO logic to be defined from precedence.

We also return to the point that the symbolic and featural represen-

tations in Tables 2.1 and 2.4 can be defined in terms of the other using

FO logic because a symbol can be defined in terms of the conjunction of

the features that make up that symbol and similarly a feature-value can

be defined in terms of a disjunction of symbols which have that feature-

value. It follows that for any constraint C expressible in FO(feat,/), there
is a constraint D in FO(/) such that exactly the same strings violate both
constraints, and vice versa.

Does this mean that there are no differences between symbolic and fea-

tural representations? No. While it does mean that one cannot distinguish

the constraints one can express if FO logic is used along with features or

symbols, it does not say anything about a logic that is weaker than FO

logic. A weaker logic may very well distinguish the expressible constraints

these distinct representational primitives can express. It also doesn’t say

anything about the psychological implications or learning. Other kinds of

evidence from psycholinguistics (Durvasula and Nelson, 2018) or learning

(Wilson and Gallagher, 2018) may be brought to bear on the best choice of

representational primitive.

Here are some of the reasons exploring different representational schemes

and different logics—that is exploring the space of possible Constraint Defi-

nition Languages—is a worthwhile goal. First, the choice of representation

and the choice of logic yields a rigorous, logical language whose formulas

are readable by both humans and machines which can be used to always

correctly answer the question whether a given structure satisfies a given

formula or not. Second, this logical language can be studied explicitly to re-

veal what kinds of constraints it can and cannot express, the facts of which

should then be compared with the typology of phonological constraints.

This lets us draw conclusions like “If there are long-distance constraints in

phonology, then FO with successor is insufficient as a theory of phonological

constraints.”

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

2.8. DISCUSSION 57

In addition to evaluating a logical language in terms of its typological

predictions, we can also examine its psychological predictions as well as

what it would mean for learnability and acquisition. The representational

primitives of the logical language can be understood as a hypothesis of the

psychologically real representational primitives. We can also ask whether

there are algorithms that can learn the formulas of a logical language and

which of these algorithms exhibit behavior observed when humans learn

language.

We hope that this chapter helps persuade readers that exploring different

representational schemes and different logics—that is exploring the space

of possible Constraint Definition Languages—is a worthwhile goal.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

58 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 3

Transformations, Logically

Jeffrey Heinz

This chapter explains how transformations from one representation to

another can be described with the same logical tools introduced in the

last chapter. Transformations are a central component of phonological

theory, which posits a mapping exists between the long-term memory

representations of the pronunciation of morphemes (the underlying forms)

to the more more directly observable, surface representations (the surface

forms) (Hyman, 1975; Kenstowicz and Kisseberth, 1979; Krämer, 2012;

Odden, 2014). The mathematical and computational basis for this work

originates with Courcelle (1994), a thorough survey of which is provided

by Courcelle and Engelfriet (2012a).

This chapter aims to introduce these ideas in an accessible way to

linguists with a basic knowledge of phonology. However, the techniques

have application beyond the theory of phonology to any other subfield of

linguistics, notably morphology and syntax, in part because these methods

apply equally well to trees and graphs, not just strings. Also this chapter

is merely an introduction to these methods. As such, it introduces them

in the context of string-to-string transformations; that is, functions from
strings to strings. As a matter of fact, these methods have been generalized

by computer scientists to describe weighted relations between strings
(Droste and Gastin, 2009). These generalizations permit one to describe

and characterize optionality and exceptionality, in addition to gradient

and probabilistic generalizations. Weighted logics are treated separately in

Chapter 4. Here however, and throughout most of this book, unweighted

59

D
R
A
F
T

60 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

logic is used primarily because weighted logics can obfuscate the central

ideas, which are easier to first understand without them.

The application of these methods for phonological description and

theory is what primarily distinguishes this work from One-Level Declarative

Phonology developed by Bird, Coleman, and Scobbie some thirty years

ago. That research, like the research in this book, emphasizes a declarative

approach to phonological description and theory. The key difference is

that thirty years ago transformations were studied within “one level.” In

other words, transformations were understood as constraints on unspecified

underlying representations. As such, those ‘transformations’ could only

add (further specify) information to those representations. In contrast, in

this chapter we will see how logic can be used to literally add, subtract,

change, or more generally transform one representation into another. For

this reason, one could say that the Computational Generative Phonology

approach in this book is essentially a form of two level Declarative Phonology

(Dolatian, 2020).

3.1 String-to-string Transformations

A logical description of a string-to-string function uses logic to explain how

an input string is mapped to an output string. As with the constraints in the

previous chapter, the logic does not operate over the strings themselves,

but over the model-theoretic representation of those strings. Therefore, a

logical description of a string-to-string function uses logic to convert an

input structure of a string into an output structure (possibly representing a

different string). Recall that the structure of a string depends on the model

signature, and that the signature lists the relations over the domain of the

model which must be specified in order to uniquely identify some string.

Therefore, the logical description needs to specify the output structure in

terms of a logical language given by the signature of the input structure.

Logical descriptions of string-to-string functions must accomplish two

things. First, they must specify the domain of the function – which strings

does the function apply to? Second, for each of (the structures representing)

these input strings, it must specify (structures of) the output strings these

input strings map to. This means specifying both the domain of the output

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.2. WORD-FINAL OBSTRUENT DEVOICING 61

structure and the relations over it.1 These goals are accomplished with

a collection of logical formulas. For a logical description of a function f ,
these formulas together answer questions like the following. Does f apply
to this string? For a given string w, what is f(w)?

As mentioned, there are several ingredients making up a logical transfor-

mation, each with their own names. The domain of the function is specified

by the domain formula. The domain of the output structure is specified by
two ingredients: the copy set and the licensing formulas. The relations
over the output structure are specified by relational formulas. There is
one relational formula for each of the relations in the model signature of

the output. All of these formulas are evaluated with respect to the input
structure in a way that will be made clear below.

In the remainder of this chapter, these ingredients will be explained

with familiar phonological processes. We begin with word-final obstruent
devoicing, which changes a single feature. We next consider word-final
vowel deletion where the output can be smaller than the input. This
is followed by word-final vowel epenthesis where the output can be
larger than the input. We then show how logical transductions can be used

to describe total reduplication. With those basics in place, we consider

the power of MSO-definable transformations by illustrating two logically

possible string-to-string transformations that are not attested, as far as I

know, as phonological processes.

3.2 Word-final obstruent devoicing

For concreteness, let us provide a logical description of the phonological

process of word-final obstruent devoicing. This process maps strings with

word-final voiced obstruents to voiceless ones. For example, this process

maps the string hauz to haus and the string bad to bat. Words without

word-final voiced obstruents surface faithfully so this process can be said

1Note there are two distinct meanings of the word ‘domain’ in use here. The first has
to do with the domain of a function and the second with the domain of a structure. A
function’s domain is the set of elements over which the function is defined. For instance
for F : A → B, the domain is the set A. In contrast, the domain of a structure is the
elements in the ‘universe’ the structure is describing. In finite model theory, which is
used in this book, the domain of a structure is a finite set D of natural numbers 1,…n,
representing the finitely many elements in the universe.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

62 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

to map the string haus to haus.

We choose to model this process with the feature-based successor model

FO (feat, /) described in 2.5 (see Table 2.4). More precisely, strings in both
the input and the output will be represented with (feat, /)-structures. Note
this is a choice and one can choose to model the input, the output, or both,

with other word models.

It follows we want to provide a logical transformation which, for exam-

ple, maps the (feat, /)-structure of hauz to the (feat, /)-structure of haus, as
shown in Figure 3.1. We introduce the logical formulas one at a time and

1 2 3 4

fricative
voiceless

vocalic
low

vocalic
high

fricative
coronal
voiced

/ / /

1 2 3 4

fricative
voiceless

vocalic
low

vocalic
high

fricative
coronal

voiceless

/ / /

Figure 3.1: A graphical diagram of the feature-based successor model of

hauz being mapped to the feature-based successor model of haus.

then summarize them at the end of the example.

The domain of the function f is specified with the domain formula
φdomain. This is a logical formula with no free variables. For all strings

w, f(w) is defined if and only if the structure of w satisfies the formula
(Mw |= φdomain). For word-final obstruent devoicing, we want this function

to apply to every string. Hence we set φdomain
def
= true.

How is the domain of the output structure of determined? Logical

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.2. WORD-FINAL OBSTRUENT DEVOICING 63

transductions fix the domain of the output as a copy of the input domain.

For example, as shown in Figure 3.1, the domain ofMhauz is {1,2,3,4}.

Therefore, the domain of the output structure of f(hauz) is also the set
{1,2,3,4}.

One consequence of constituting the domain of the output structure

this way is that it appears that functions cannot alter the size of the in-

put upon which they are acting. However, it is precisely the copy set C
and the licensing formula φlicense, discussed later in sections 3.4 and 3.3,

respectively, which ultimately determine the precise size of the output

structure. To give a basic preview, the copy set allows transformations

to relate larger outputs to smaller inputs and the licensing formula allows

transformations to relate smaller outputs to larger inputs. Working together,

these ingredients let one relate inputs to outputs of different sizes. For

now, since the word-final voiced obstruent devoicing does preserve the

size of each input in the output, we postpone the particulars of how exactly

copy-sets and the licensing formulas work until sections 3.4 and 3.3.

For obstruent devoicing, setting the copy set and licensing formula

to C = {1} and φlicense
def
= true suffices to ensure that, given the input

structureMhauz, the domain of the output structure is {1,2,3,4}.

Finally, we must determine the relations which hold over the domain

elements of the output structure. For each relation R of arity n in the
signature of output structure, we must specify a formula φR with n free
variables φR(x1, . . . xn). For word-final obstruent devoicing, the signature of
the output structures has one binary relation (the successor relation /) and
several unary relations (the phonological features). Therefore, to specify

this phonological process, we need to specify one logical formula with two

free variables for the successor relation and several logical formulas with

one free variable for the phonological features.

How are these logical formulas for the relations interpreted? For any

string-to-string function f , input structureMw, and relation R of arity n in
the output signature, the elements x1, . . . xn in the domain of the output
structure stand in relation R if and only ifMw |= φR(x1, . . . xn). In other
words, the formula φR(x1, . . . xn) is evaluated with respect to the input
structure, and the logical language to which φR(x1, . . . xn) belongs is based
on the input signature.

For example, the output signature contains the successor relation, which

is a binary relation. So we must define the formula φ/(x, y). Since word-

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

64 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

final obstruent devoicing does not affect the successor relations, we define

this function as follows.

φ/(x, y)︸ ︷︷ ︸
Do x and y in the output model

stand in the successor relation?

def
= x / y︸︷︷︸
Evaluate with respect to the in-

put model.

This means the following: elements x and y in the output structure stand in

the successor relation if and only if corresponding elements x and y satisfy
the successor relation in the input structure. Since 1/2 in the input structure,
it follows that elements 1 and 2 likewise stand in the successor relation in
the output structure. Similarly, since elements 1 and 3 do not stand in the

successor relation in the input structure, it follows that they do not stand in

the successor relation in the output structure. Consequently, the formula

above guarantees (in fact literally says) that the successor relation in the

output will be the same as the successor relation in the input.

As another example, consider the unary relation vocalic. As this is a
unary relation, we must define a formula with one free variable φvocalic(x).
Let us define it as follows.

φvocalic(x)︸ ︷︷ ︸
Does x have the feature

vocalic in the output struc-
ture?

def
= vocalic(x)︸ ︷︷ ︸
Evaluate with respect to the in-

put structure.

It follows from this definition that domain element x in the output model
is vocalic if and only if the corresponding domain element x in the input is
vocalic. This formula captures the fact that word final obstruent devoicing

does not affect the vocalic nature of any elements within a string.

As we know, the only features affected by word-final devoicing are

voicing features, which are the relations voiced and voiceless in our
model signatures. All other unary relations in the signature of the output

structure will be defined similarly to φvocalic(x) (as shown in Table 3.1 on
page 66). However, the voicing features are affected by this process, so

how do we specify which domain elements are voiced or voiceless? The

voiced elements will be the ones that were voiced in the input and are not

word-final obstruents. We can formalize this as follows. It will be useful to

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.3. WORD-FINAL VOWEL DELETION 65

write some user-defined predicates.

wordfinal (x)
def
= ¬∃y (x / y) (3.1)

obstruent (x)
def
= stop(x) ∨ fricative(x) (3.2)

devoicingcontext (x)
def
= wordfinal (x) ∧ obstruent (x) (3.3)

We thus define φvoiced(x) as follows.

φvoiced(x)︸ ︷︷ ︸
Does x have the feature voiced
in the output structure?

def
= voiced(x) ∧ ¬ devoicingcontext (x)︸ ︷︷ ︸

Evaluate with respect to the in-

put structure.

Similarly, the domain elements in the output which are voiceless are those

that are voiceless in the input or those that are word-final obstruents.

φvoiceless(x)︸ ︷︷ ︸
Does x have the feature

voiceless in the output

structure?

def
= voiceless(x) ∨ devoicingcontext (x)︸ ︷︷ ︸

Evaluate with respect to the in-

put structure.

As mentioned, since this process does not affect other phonological

features in the string, each of those unary relations R in the signature of
the output structure can be defined as follows: φR(x)

def
= R(x). In other

words, φvocalic(x)
def
= vocalic(x) and φcoronal(x)

def
= coronal(x) and so on.

For completeness, we show the complete logical description of word-final

devoicing in Table 3.1.

3.3 Word-final vowel deletion

Let us consider another example, word-final vowel deletion, which will il-

lustrate the role played by the licensing formula. Word-final vowel deletion

has been argued to be a process in Yowlumne (also known as Yawelmani

Yokuts) (McCarthy, 2008). The process in Yowlumne is subject to addi-

tional conditions, which are set aside here. Word-final vowel deletion

essentially maps strings like paka to pak and pilot to pilot.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

66 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

φdomain
def
= true

C
def
= {1}

φlicense(x)
def
= true

φ/(x, y)
def
= x / y

φvocalic(x)
def
= vocalic(x)

φlow(x)
def
= low(x)

φhigh(x)
def
= high(x)

φfront(x)
def
= front(x)

φstop(x)
def
= stop(x)

φfricative(x)
def
= fricative(x)

φnasal(x)
def
= nasal(x)

φlateral(x)
def
= lateral(x)

φrhotic(x)
def
= rhotic(x)

φlabial(x)
def
= labial(x)

φcoronal(x)
def
= coronal(x)

φdorsal(x)
def
= dorsal(x)

φvoiced(x)
def
= voiced(x) ∧ ¬ devoicingcontext (x)

φvoiceless(x)
def
= voiceless(x) ∨ devoicingcontext (x)

Table 3.1: The complete logical specification for word-final obstruent

devoicing when the input and output string models are both the feature-

based successor model.

As before, the domain of this function is all strings and so φdomain
def
= true.

Also as before, the domain of the output structure is a copy of the domain

elements of the input structure. However, these domain elements of the

output structure do not automatically exist in the output structure; they

must be licensed by a formula with one free variable called the licensing

formula φlicense(x). In other words, the domain elements of the output

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.3. WORD-FINAL VOWEL DELETION 67

1 2 3 4

stop
labial

voiceless
vocalic

low

stop
dorsal

voiceless
vocalic

low

/ / /

1 2 3

stop
labial

voiceless
vocalic

low

stop
dorsal

voiceless

/ /

Figure 3.2: A graphical diagram of the feature-based successor model of

paka being mapped to the feature-based successor model of pak.

structure are really the licensed copies of the domain elements of the in-

put structure. Since word-final vowels delete in this process, all domain

elements which do not correspond to word-final vowels are licensed.

φlicense(x)︸ ︷︷ ︸
Does x belong to the domain of

the output model?

def
= ¬(wordfinal (x) ∧ vocalic(x))︸ ︷︷ ︸

Evaluate with respect to the in-

put structure.

Also, this process does not affect any phonological features, so each

of the unary relations R in the signature of the output structure can be
defined as follows: φR(x)

def
= R(x). In other words, φvocalic(x)

def
= vocalic(x)

and φvoiced(x)
def
= voiced(x) and so on. What about the binary successor

relation? Letting φ/(x, y)
def
= x / y is sufficient. While it is true that 3 / 4 is

true in the input, the fact that 4 is not licensed ensures that the pair (3, 4) is
not an element of the successor relation in the output model. The relations

in the output structure are always restricted to tuples which only contain

licensed domain elements. Readers are referred to Chapter 6 for details.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

68 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

For completeness, Table 3.2 shows the complete logical description of

word-final vowel deletion.

φdomain
def
= true

C
def
= {1}

φlicense(x)
def
= ¬(wordfinal (x) ∧ vocalic(x))

φ/(x, y)
def
= x / y

φvocalic(x)
def
= vocalic(x)

φlow(x)
def
= low(x)

φhigh(x)
def
= high(x)

φfront(x)
def
= front(x)

φstop(x)
def
= stop(x)

φfricative(x)
def
= fricative(x)

φnasal(x)
def
= nasal(x)

φlateral(x)
def
= lateral(x)

φrhotic(x)
def
= rhotic(x)

φlabial(x)
def
= labial(x)

φcoronal(x)
def
= coronal(x)

φdorsal(x)
def
= dorsal(x)

φvoiced(x)
def
= voiced(x)

φvoiceless(x)
def
= voiceless(x)

Table 3.2: The complete logical specification for word-final vowel deletion

when the input and output string models are both the feature-based succes-

sor model.

This section explained in more detail how the domain elements of the

output structure are determined. While these are always copies of the

domain elements of the input structure, it is not the case that every domain

element in the input structure becomes a domain element of the output

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 69

structure. Only those elements x which satisfy φlicense(x) become domain
elements in the output structure.

3.4 Getting Bigger

So far we have exemplified logical transductions with phonological pro-

cesses that change segmental material and processes that delete segmental

material. How can logical transductions be used to define processes that

add segmental material?

The answer to this question lies in the copy set. We have set aside this

ingredient until now. In the previous examples, the copy set contained only

one element. Thus each input element in the domain was copied exactly

once. More generally, the copy set may contain n elements. It follows
that the domain of the output model may contain n copies of each domain
element of the input structure. The copies of a domain element x in the input
structure are distinguished from each other using the names of the elements

in the copy set. For example, consider the word hauz so that the domain

elements ofMhauz are {1, 2, 3, 4}. If we are defining a logical transduction
and define the copy set C

def
= {1, 2} then there are as many as eight domain

elements in the output structure. It is customary to name these domain

elements as pairs; the first coordinate indicates the domain element in the

input structure being copied and the second coordinate indicates which copy.

Thus the pair (1, 2) indicates the second copy of the first domain element
of the input structure and (3, 1) indicates the first copy of the third element
and so on. The eight possible domain elements in the output structure of

our example are thus {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}.
Whenever the copy set contains more than one element, the number of

licensing formulas and relational formulas needed to describe the logical

transduction multiplies as well. For each i ∈ C, there is a licensing formula
φi

license(x). As before, this formula is evaluated with respect to the corre-
sponding domain element in the input structure. If it evaluates to true on

x then the domain element (x, i) is licensed and belongs to the domain of
the output model. Thus for a copy set C, there are |C| licensing formulas.
Similarly, for each unary relation R in the signature of the output model,

there are |C| relational formulas: for each i ∈ C, we must define Ri(x). The
domain element (x, i) – the ith copy of x in the output structure – belongs

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

70 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

to R in the output structure if and only if Ri(x) evaluates to true in the
input structure.

For each binary relation R in the output signature, there are |C|2 rela-
tional formulas Ri,j(x, y) with i, j ∈ C. If and only if Ri,j(x, y) evaluates to
true with respect to the input model then the ith copy of x stands in the
R relation to the jth copy of y in the output structure. In which case, we
have ((x, i), (y, j)) ∈ R. If Ri,j(x, y) evaluates to false with respect to the
input structure then ((x, i), (y, j)) does not belong to R. For relations of
higher arity, the licensing and relational formula multiply out similarly.

Since the word models developed so far involve at most binary relations,

we ignore relations of higher arity here (though they are treated in the

formalizations in Chapter 6).

How the copy set works along with the additional formulas it entails

are illustrated in the next two examples: word-final vowel epenthesis and

total reduplication. We provide complete logical descriptions of both these

transformations.

3.4.1 Word-final vowel epenthesis

Hindi speakers epenthesize the low vowel a to words which end in sonorant

consonants (Shukla, 2000). We provide a logical description of this process

given the segments describable with the feature-based successor model.

For example, this process would map the hypothetical word pan to pana as

well as pak to pak. Figure 3.3 visualizes the mapping between the model

structures pan and pana.

First we can define sonorant consonants as follows.

sonorant_C (x)
def
= nasal(x) ∨ lateral(x) ∨ rhotic(x) (3.4)

Next, we need a copy set of at least size 2 and so we define C
def
=

{1, 2}. Consequently, for the input pan which has three domain elements
{1, 2, 3}, there are maximally 6 domain elements in the output structure:
{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2)}. Since the copy set C has two ele-
ments, we must define two licensing formula, each with one free variable.

φ1
license(x)

def
= true (3.5)

φ2
license(x)

def
= sonorant_C (x) ∧ wordfinal (x) (3.6)

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 71

1 2 3

stop
labial

voiceless
vocalic

low
nasal

coronal

/ /

1 2 3 4

stop
labial

voiceless
vocalic

low
nasal

coronal
vocalic

low

/ / /

Figure 3.3: A graphical diagram of the feature-based successor model of

pan being mapped to the feature-based successor model of pana.

φ1
license(x) is always true so the first copy of each element is present.

φ2
license(x) is only true when sonorant_C (x)∧ wordfinal (x) evaluates to

true in the input structure. For the word pan this occurs for x = 3, but for the
word pak no x satisfies φ2

license(x). Consequently, the output structure of the
process applied to pan has four domain elements {(1, 1), (2, 1), (3, 1), (3, 2)}
but the the output structure of the process applied to pak has three domain

elements {(1, 1), (2, 1), (3, 1)}.

This is illustrated in Figure 3.4, where the first and second copies of the

domain elements of pan are arranged in rows and the unlicensed elements

are in gray.

Next, we turn to the binary successor relation in the output model.

Here, we must have four formulas to specify the successor relation in the

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

72 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

1,1 2,1 3,1

1,2 2,2 3,2

Figure 3.4: The possible domain elements of the output structure for input

pan when the copy set C
def
= {1, 2}. The unlicensed elements are colored

gray.

output structure. We define these as follows.

φ1,1
/ (x, y)

def
= x / y (3.7)

φ1,2
/ (x, y)

def
= sonorant_C (x) ∧ wordfinal (x)

∧ wordfinal (y) (3.8)

φ2,1
/ (x, y)

def
= false (3.9)

φ2,2
/ (x, y)

def
= false (3.10)

There are two main consequences. First, within the first copy, the domain

elements in the output structure preserve the successor relations present in

the input structure. Second, the only elements which stand in the successor

relation from the first copy to the second copy in the output structure are

x, 1 and y, 2 when x satisfies both wordfinal (x) and sonorant_C (x),

and x = y.
Finally, we must define two formulas for each unary relation R in the

output signature, φ1
R(x) and φ

2
R(x). These will tell us whether x, 1) and

(x, 2) belong to R, respectively. For each unary relation R, we define

φ1
R(x)

def
= R(x). Thus, the first copy of the domain elements are faithful to

the unary relations they satisfied in the input. For the second copy, we

can generally let the domain elements be faithful to the unary relations

they satisfied in the input; however, there are two exceptions. In our

feature-based successor model in Table 2.4, the low vowel a is low and

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 73

1,1 2,1 3,1

1,2 2,2 3,2

/ /

/

Figure 3.5: The successor relations in the output structure for input pan

when the copy set C
def
= {1, 2}. The unlicensed elements are colored gray.

vocalic and so φ2
vocalic(x) and φ

2
low(x) must be defined to be true only when

x corresponds to an element in the input that satisfies sonorant_C (x) and

wordfinal (x). For other unary relations R, we can define φ2
R(x)

def
= false.

1,1 2,1 3,1

1,2 2,2 3,2

stop
labial

voiceless
vocalic

low
nasal

coronal

vocalic
low

/ /

/

Figure 3.6: The model representing pana which is output for the input pan.

The unlicensed elements are colored gray.

For completeness, Table 3.3 shows the complete logical description of

word-final vowel epenthesis. The output structure obtained by applying

this logical transformation toMpan is shown in Figure 3.6. The structure

in Figure 3.6 is equivalent (i.e. isomorphic) to the output structure shown

in Figure 3.3.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

74 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

φdomain
def
= true C

def
= {1, 2}

φ1
license(x)

def
= true φ2

license(x)
def
= sonorant_C (x)

∧ wordfinal (x)

φ1,1
/ (x, y)

def
= x / y φ1,2

/ (x, y)
def
= sonorant_C (x)

∧ wordfinal (x)

∧ wordfinal (y)

φ2,1
/ (x, y)

def
= false φ2,2

succ(x, y)
def
= false

φ1
vocalic(x)

def
= vocalic(x) φ2

vocalic(x)
def
= sonorant_C (x)

∧ wordfinal (x)

φ1
low(x)

def
= low(x) φ2

low(x)
def
= sonorant_C (x)

∧ wordfinal (x)

φ1
high(x)

def
= high(x) φ2

high(x)
def
= false

φ1
front(x)

def
= front(x) φ2

front(x)
def
= false

φ1
stop(x)

def
= stop(x) φ2

stop(x)
def
= false

φ1
fricative(x)

def
= fricative(x) φ2

fricative(x)
def
= false

φ1
nasal(x)

def
= nasal(x) φ2

nasal(x)
def
= false

φ1
lateral(x)

def
= lateral(x) φ2

lateral(x)
def
= false

φ1
rhotic(x)

def
= rhotic(x) φ2

rhotic(x)
def
= false

φ1
labial(x)

def
= labial(x) φ2

labial(x)
def
= false

φ1
coronal(x)

def
= coronal(x) φ2

coronal(x)
def
= false

φ1
dorsal(x)

def
= dorsal(x) φ2

dorsal(x)
def
= false

φ1
voiced(x)

def
= voiced(x) φ2

voiced(x)
def
= false

φ1
voiceless(x)

def
= voiceless(x) φ2

voiceless(x)
def
= false

Table 3.3: The complete logical specification for word-final vowel epenthe-

sis when the input and output string models are both the feature-based

successor model.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 75

3.4.2 Duplication

Here we provide another example of a logical transduction, total redu-

plication. The idea is to make two faithful copies of the input and add

a successor relation from the last segment of the first copy to the initial

segment of the second copy.

Let the copy setC
def
= {1, 2}. Then we essentially make all unary relations

be faithful to their input so for all unary relations R in the output signature

we have φ1
R(x) = φ2

R(x)
def
= R(x). As for the successor relation, two elements

(x, i) and (y, j) stand in the successor relation if only if either one of two
cases hold. First, when i = j = 1 or i = j = 2 then (x, i) / (y, j) only when
x / y holds in the input structure. Second, when i = 1 and j = 2, we have
(x, i) / (y, j) if and only if x is word-final and y is word-initial in the input
model. When i = 2 and j = 1, no successor relation holds. We define

wordinitial (x) as follows.

wordinitial (x)
def
= ¬∃y (y / x) (3.11)

To illustrate, Figure 3.7 shows the output structure for the input pan. In

other words, it is straightforward to define total reduplication using these

methods.

For completeness, Table 3.4 shows the complete logical description of

total reduplication.

3.4.3 Summary

At this point, we have covered how to define transformations logically.

A domain formula determines which words the transformation applies

to. In our examples, the transformations represent total functions and

apply to all words. The signature of the output structure determines the

relational formulas that need to be defined. These formulas belong to a

logical language defined in terms of the relations present in the model

signature of the input structure. A copy set and licensing formulas are used

to calibrate the size of the output structure. For a logical transduction f
defined with a copy set of size n, the maximal size of the output structure
f(x) will be n|x| where |x| is the cardinality of the domain of the model of
x.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

76 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

(1,1) (2,1) (3,1)

stop
labial

voiceless
vocalic

low
nasal

coronal

(1,2) (2,2) (3,2)

stop
labial

voiceless

vocalic
low

nasal
coronal

/ /

/

/ /

Figure 3.7: The model for panpan, which is the output of the reduplication

process applying to the input pan.

3.5 Power of MSO-definable Transformations

What other kinds of transformations can be described with logical trans-

formations? As the astute reader may no doubt have already gathered,

many phonologically or morphologically unnatural processes are also easy

to describe with logical transformations. This is a strength, not a weakness,

of the formal methods advocated here. Basically, the formal methods do

not constitute a theory of phonology; rather, they constitute a meta-language

in which theories of phonology can be stated and compared.

In this section, however, we simply wish to establish concretely the fact

that two unnatural processes—string mirroring and sorting—also permit

logical descriptions.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.5. POWER OF MSO-DEFINABLE TRANSFORMATIONS 77

φdomain
def
= true C

def
= {1, 2}

φ1
license(x)

def
= true φ2

license(x)
def
= true

φ1,1
/ (x, y)

def
= x / y φ1,2

/ (x, y)
def
= wordfinal (x)

∧ wordinitial (y)

φ2,1
/ (x, y)

def
= false φ2,2

succ(x, y)
def
= x / y

φ1
vocalic(x)

def
= vocalic(x) φ2

vocalic(x)
def
= vocalic(x)

φ1
low(x)

def
= low(x) φ2

low(x)
def
= low(x)

φ1
high(x)

def
= high(x) φ2

high(x)
def
= high(x)

φ1
front(x)

def
= front(x) φ2

front(x)
def
= front(x)

φ1
stop(x)

def
= stop(x) φ2

stop(x)
def
= stop(x)

φ1
fricative(x)

def
= fricative(x) φ2

fricative(x)
def
= fricative(x)

φ1
nasal(x)

def
= nasal(x) φ2

nasal(x)
def
= nasal(x)

φ1
lateral(x)

def
= lateral(x) φ2

lateral(x)
def
= lateral(x)

φ1
rhotic(x)

def
= rhotic(x) φ2

rhotic(x)
def
= rhotic(x)

φ1
labial(x)

def
= labial(x) φ2

labial(x)
def
= labial(x)

φ1
coronal(x)

def
= coronal(x) φ2

coronal(x)
def
= coronal(x)

φ1
dorsal(x)

def
= dorsal(x) φ2

dorsal(x)
def
= dorsal(x)

φ1
voiced(x)

def
= voiced(x) φ2

voiced(x)
def
= voiced(x)

φ1
voiceless(x)

def
= voiceless(x) φ2

voiceless(x)
def
= voiceless(x)

Table 3.4: The complete logical specification of total reduplication when

the input and output string models are both the feature-based successor

model.

3.5.1 Mirroring

String mirroring is a process that takes any string w as input and outputs
wwr where wr is the reverse of the string w. For example if the string pan
is submitted to the mirroring process, then the output would be pannap.

Similarly, if paka were input to the mirroring process, the output would be

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

78 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

pakaakap. Mirroring makes palindromes.

Mirroring can be described with a logical transduction that is nearly

identical to the one for total reduplication. The unary relations are defined

in the same way. The only differences lie in two of the formulas for the

successor relation in the output structure. Specifically, φ1,1
/ (x, y) = x/y and

φ2,1
/ (x, y) = false as before. However, φ2,2

/ (x, y)
def
= y / x, which essentially

reverses the successor relations in the second copies of the domain elements.

Finally, φ1,2
/ (x, y)

def
= wordfinal (x) ∧ wordfinal (y). Thus mirroring

places the copies of the word-final element into the successor relation.

Figure 3.8 shows the output structure of the string pannap that is produced

by this logical description of string mirroring given the input pan.

(1,1) (2,1) (3,1)

stop
labial

voiceless
vocalic

low
nasal

coronal

(1,2) (2,2) (3,2)

stop
labial

voiceless

vocalic
low

nasal
coronal

/ /

/

//

Figure 3.8: The model representing pannap, which is the output of the

mirroring process applied to the input pan.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.5. POWER OF MSO-DEFINABLE TRANSFORMATIONS 79

3.5.2 Sorting

String sorting is a process that takes any string as input and outputs a

string of the same length where the symbols are sorted according to a

predetermined order; here we will use alphabetical order. For instance if

the input string is paka then the output string would be aakp. Similarly,

if the input string was banapi the output string would be aabinp. While,

we can do this for any word model of strings discussed so far, we will

assume an alphabet Σ and the precedence model with letters (section 2.7)
for convenience. We also assume that the alphabet is totally ordered

and denote this ordering relation with <α. In a phonological setting, the

alphabetical order could be substituted for any other scale, for example

markedness. This would allow one to express constraints like “the more

marked a segment, the earlier it occurs in a word” or the “the more marked

a segment, the later it occurs in a word.”

Then sorting can be modeled with a logical transduction as follows.

The idea is to have one copy associated with each letter a of the alphabet.
Only letters a are licensed on the copy associated with a. This segregates
the letters by the copies (which are rows in the visualizations) and the first

copy (row) is associated with the first letter in lexicographic order, the

second copy (row) with the second letter, and so on. The ordering relation

is then defined so that earlier copies (rows) precede later copies (rows).

Formally, let the copyset C = Σ. This may seem unusual, but it means
that we make as many copies as there are letters in the alphabet and that

instead of labeling these copies with numbers, we label them with elements

of Σ itself. This facilitates defining the formulas. For each a, b ∈ Σ, define
the relational and licensing formulas as follows.

• For all a, b, let φb
a(x)

def
= a(x).

• For all a, let φa,a
< (x, y)

def
= x < y.

• For a 6= b, let φa,b
< (x, y)

def
= true whenever a <α b and false otherwise.

• For all a, let φa
license(x)

def
= a(x).

The first item faithfully copies the unary relations in the input to each copy

in the output.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

80 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

The second item defines the binary precedence relations for domain

elements in the output that belong to the same copy. In this case, domain

elements (x, a) and (y, a) stand in the precedence relation in the output
if and only if x < y in the input. This ensures the familiar left-to-right
ordering among elements, at least within a copy.

The third item defines the binary precedence relations for domain

elements in the output that belong to different copies. The basic idea is

that alphabetically earlier copies will precede alphabetically later ones.

Whenever a <α b (a is alphabetically earlier than b) is true then φ
a,b
< (x, y)

def
=

true. Whenever a <α b is not true, then φ
a,b
< (x, y)

def
= false.

Finally, we get to the licensing formulas, of which there will be |Σ|. We
define these formulas so that only those domain elements that belong to the

unary relation a in the ath copy are licensed. Everything else is unlicensed.
Recall that relations in the output structure are restricted to the licensed

domain elements. As a consequence of these licensing formulas, there will

be only as many licensed elements as there are domain elements in the

input structure.

Figure 3.9 illustrates this construction when the input is paka.

3.5.3 Summary

Both mirroring and sorting can be described with MSO logical transforma-

tions. In fact, mirroring only used FO with successor, and sorting only used

FO with precedence.

3.6 Discussion

There are three important points which must be mentioned. The first is that

the model signatures for the input and output structures of a transformation

do not need to be the same. The examples earlier in this chapter kept the

input and output structure signatures the same in order to explain how the

logical transformations worked. However, generally, they can be distinct.

As will be explained, this has important consequences for the comparison

of representational theories.

The second point regards a useful property of some transformations;

namely, order preservation. In the domains of morphology and phonology,

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.6. DISCUSSION 81

1,a 2,a 3,a 4,a

1,b 2,b 3,b 4,b

...
...

...
...

1,k 2,k 3,k 4,k

...
...

...
...

1,p 2,p 3,p 4,p

...
...

...
...

1,z 2,z 3,z 4,z

a a

k

p

<

<

<

<

<

<

Figure 3.9: The model representing the output aakp of the sorting process

applied to input paka. All potential domain elements shown. Unlicensed

elements are in gray. Unary relations are only shown on licensed elements.

this turns out to be nearly universal. Reduplicative morphology is the

exception (Dolatian and Heinz, 2020; Rawski et al., 2023). As will be

explained, if the transformation we are describing is order-preserving then

describing processes like epenthesis and deletion become simpler because

we can use the ‘order preservation recipe’ instead of trying to work out the

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

82 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

order relations by hand.

The third point is that logical transformations provide a feasible, flexi-

ble, descriptive tool for linguists to describe phenomena they find in the

world, which can be further analyzed and used by many, both human

and machine. Model theory and logic provide a universal language for

expressing linguistic generalizations.

3.6.1 Transforming Representations

As mentioned, the logical transductions presented in this chapter so far all

have used the same model signature for the input and output structures. In

general, however, they can be different. For example, many phonologists

consider syllable structure to be something not present in underlying rep-

resentations but present in surface representations. The model theoretic

signature for underlying representations would not include those syllabic

relations, but the model theoretic signature for surface representations

would. Chapter ?? presents an example of this.

To illustrate, we can write logical transductions between any of the

model signatures we have considered so far: the successor model, the

precedence model, the successor model with features, and the precedence

model with features.

Consider a logical transduction which translates successor-based struc-

tures to precedence-based structures. For simplicity, let the alphabet be

{a,b}. The input structure signature is thus {a, b, /} and the output struc-
ture signature is {a, b, <}. Table 3.5 provides the formulas for this logical
transduction. The predicate closed is defined in Chapter 2 (see Equa-
tion 2.14). It is left as an exercise for the reader to write the transduction

from the precedence-based structures to successor-based ones.

As another example, one can write translations from symbol-based

models to feature-based models in FO logic straightforwardly. For example,

to translate between the precedence model and the precedence model with

features from Chapter 2, the logical formulas presented in Table 3.6 can

be used. It is left as an exercise for the reader to complete Table 3.6 and to

write a logical transduction from feature-based structures to conventional

ones.

It is also possible to write a FO translation from representations with

unary features to representations with binary features and vice versa. In this

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.6. DISCUSSION 83

φdomain
def
= true

φ1
license(x)

def
= true

C
def
= {1}

φ<(x, y)
def
= (∀X)

[
(x ∈ X ∧ closed (X) → y ∈ X

]
φa(x)

def
= a(x)

φb(x)
def
= b(x)

Table 3.5: The complete logical specification for translating successor-based

models of words in {a, b}∗ to precedence-based models.

φdomain
def
= true

φ1
license(x)

def
= true

C
def
= {1}

φ<(x, y)
def
= x < y

φvocalic(x)
def
= a(x) ∨ e(x) ∨ i(x) ∨ o(x) ∨ u(x)

φb(nasal)
def
= n(x) ∨ m(x)

…

Table 3.6: The complete logical specification for translating successor-based

models of words in {a, b}∗ to precedence-based models.

regard, readers may be interested in (Nelson, 2022), whose comparative

study of the natural classes obtained by unary and binary feature systems,

and the logical connectives used to combine them, reveals that logical nega-

tion effectively converts any feature system into a full binary one and that

in order to effectively represent underspecification or non-binary feature

oppositions, feature values should be encoded into the representational

primitives.

One important consequence of being able to use logical transductions

to describe translations between representations is that the weakest logic

which can translate one representation into another can serve as a proxy

for how similar those representations are. The more powerful the logic

necessary to translate between two representations, the more significantly

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

84 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

different they are. In a sense, the minimally expressive logics required to

translate between two representations are a measure of the informational

content carrying by the representation. Conversely, the weaker the logic

necessary to translate between them, the more they can be considered

notational variants.

As an example, we have already seen that translating from a successor-

based representation to a precedence-based representation requires MSO

logic. On the other hand, translating from precedence-based representation

to successor only requires FO logic. This indicates that the precedence-

based representation carries more information than the successor-based

one. For another example, (Strother-Garcia, 2019) shows that different

linguistic representations of syllable structure can be translated to each

other with a Quantifier-Free logic, which is weaker than First Order (see

Chapter ?? for Quantifier-Free logic). Strother-Garcia’s results indicates
that the information content in those different linguistic representations

of syllable structure are not so different. Other examples of this kind of

research include studying different theories of tonal geometry (Oakden,

2020), and autosegmental representations vis a vis Q-theory (Jardine et al.,

2021).

The second major consequence of being able to use logical transductions

to translate between representations is that such transformations actually

provide a translation between logical languages. This means that if Abraham

describes a theory of phonology with logic L and representation X (so

L(X)) , and Barbara describes a theory of phonology with logic M and

representation Y (so M(Y)), and Charlie presents a logical transduction T

from X-representations to Y-representations then every constraint formula

or sentence φ that can be expressed in L(X) can be translated into a formula
or sentence in T(Y). For example, any first order constraint expressed over

the successor model with letters can be translated into a FO order constraint

over the successor model with features because a FO definable transduction

exists from the conventional successor model to the successor model with

features.

3.6.2 Order Preservation

A transformation is order-preserving provided there is some logical trans-
duction such that for all inputs, the outputs are ordered order so that all the

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.6. DISCUSSION 85

copies of the first position precede all copies of the second position and so

on; and furthermore, it is the case that that within a copy, earlier positions

precede later positions. It can be helpful to visualize order-preservation

as follows. The domain of the input structure D and the copy set C form
a D × C grid of possible output domain elements. In the visualizations
throughout this chapter, these grids have |D| columns and |C| rows. If
the elements in the output structure can be ordered by ordering elements

according to earlier columns first and then by earlier rows, then the trans-

formation is order-preserving. Figure 3.10 illustrates this order with four

positions and a copy set of size four. In order to obtain order preservation,

C
o
p
y

Position

1

1

2

2

3

3
4

4

Figure 3.10: Order preservation

using the precedence relation, one simply asserts φi,j
< (x, y) is true whenever

x < y or whenever x = y and i < j. Otherwise it is false.
The use of the precedence relation for order-preserving functions is

especially helpful when not all domain elements are licensed. In this case,

no special modifications need to be made to how the ordering relation is

defined. This is because the relations in the output structure are restricted

to the licensed domain elements and the precedence relation is total (so

for any two elements, one has to precede the other).

The fact that the successor relation is not total means that writing

formulas for the successor relation for order-preserving transformations

is more complicated. Nonetheless, it can be done. A general solution

is to write the formulas using the licensing function to ensure that the

successor relation only holds between the appropriate licensed elements.

One way to do this uses the definition of φ< above is as follows. φ
i,j
/ (x, y)

is defined to be true if and only if (1) (x, i) and (y, j) satisfy the relevant

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

86 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

licensing formulas, (2) φi,j
< (x, y) is true, and (3) for all (z, k) such that if

(z, k) is ordered between (x, i) and (y, j) then it must not satisfy the relevant
licensing formulas. In other words, the licensed elements form a ‘tier’ and

the successor relation is just the ‘next’ element on this tier.

Because there are general ways to write the order relations when the

transformation is order-preserving, it follows that one can focus on the

other formulas needed to define the relation. It also helps guide the analysis.

For example, if there is epenthesis occurring between positions x and x+ 1
then, in order to take advantage of order-preservation, the epenthesized

element should go on a copy of x, and not on a copy of some other element.

3.6.3 Logic as a descriptive formalism

There are many reasons why linguists should use logic and model theory as

a descriptive formalism. I highlight three: flexibility, theory comparison,

and longevity. To some extent, these follow from the fact that logic and

model theory provide a universal description language for structures.

Many linguists adopt representational choices as part of their analyses.

Model theory and logic do not hinder this freedom. Linguists can choose

their representations. These representations and the generalizations made

over them can be expressed precisely with logic. Later chapters in this book

provide some interesting examples of the kinds representations that can

be explored, especially within phonology and morphology. For example,

TODO: add refs to later chapters.

Logic and model theory also facilitate theory comparison. Other lin-

guists, either contemporary or belonging to later generations, can take

descriptions of linguistic structures and constraints that have been pre-

sented with certain representations and logical languages and rigorously

translate them into their own preferred representations and constraint

languages. These logical languages can then be compared to find genuine

areas where the theories make different predictions.

A third reason is longevity. If the linguistic description is, for example,

in first order logic, one be assured that someone in hundreds of years will

be able to read and understand the description, and that machines will

exist which can process it. The value of this for someone documenting

languages should not be underestimated.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

3.7. CONCLUSION 87

3.7 Conclusion

This chapter has explained how transformations can be expressed logically

between model-theoretic representations following the ideas of Courcelle.

The model signature of the output representation, together with the copy set,

determines the formulas one needs to write. These formulas are written in

a logical language based on the model signature of the input representation,

and are likewise evaluated against the input structure.

Specifically, in order to specify a transformation, one must specify the

following items.

• A formula with no free variables that establishes the domain of the

transformation ϕdom. This determines those structures to which the

function can apply.

• A copy set C of k ≥ 1 elements which determines, along with the size
of the input structure, the maximal size of the output structure. Each

pairing (x, c) with c ∈ C and x in the domain of the input structure is
a possible element in the domain of the output structure.

• For each element c in the copy set, a licensing formula of one free
variable ϕc

license(x) which determines whether (x, c), which is the cth
copy of element x, is licensed in the model of the output structure.
Unlicensed elements are not part of the domain of output structure.

Only licensed ones are.

• For each element c in the copy set, and for each unary relation U
in the signature of the output structure, a formula ϕc

U(x) of one free
variable. This formula means that the cth copy of x bears the unary
relation U in the output structure if only if

1. the cth copy of x is licensed, and

2. φc
U(x) is satisfied when evaluated against the input structure.

• For every pair of elements (c, d) in the copy set and for each binary
relation B in the signature of the output structure, a formula ϕc,d

B (x, y)
of two free variables. This formula means that the cth copy of x
stands in the relation B to the dth copy of y in the output structure if
only if

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

88 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

1. both cth copy of x and the the dth copy of y are licensed, and

2. φc,d
B (x, y) is satisfied when evaluated against the input structure.

These formulas can be specified in any order as long as they are well-

defined. Thus one formula ϕ can be defined in terms of another formula
ψ only if ψ has been defined previously. MSO (and thus FO) logic do not
permit recursive definitions.

The bulk of Parts II and III of this book apply these logical transforma-

tions to case studies and theoretical questions in linguistics, especially in

phonology and morphology. The introduction to model theory provided in

chapters 2 and 3 provide all the necessary background to understand the

chapters in the later chapters. The remaining chapters in Part I do not be

read to understand the work in Parts II and III.

The remaining chapters in Part I provide additional context and enrich-

ment to the material presented thus far. Chapter 4 discusses weighted logics

and explains how logic can also be used to describe non-categorical gener-

alizations. Chapter 5 introduces logic weaker than FO logic for defining

phonological constraints, and provides a logical perspective on work on

the computational nature of phonological constraints (not transformations)

studied in subregular approaches to phonology (Heinz, 2007, 2010; Rogers

et al., 2013; Rogers and Lambert, 2019b,a). Chapter 6 presents a rigorous

mathematical treatment of models, signature, structures, MSO and FO logic,

weighted logics, and propositional logics, that were introduced in Part I of

this book.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 4

Weighted Logics

Jeffrey Heinz

The logical sentences considered in previous chapters evaluate to true
or false with respect to a model-theoretic structure. This leads some to
believe that logical approaches have nothing to say for phenomena that

does not fall into binary categories. In fact, however, the use of logic for the

description of linguistic constraints and transformations does not preclude

studying other kinds of linguistic generalizations, such as those deemed

gradient or probabilistic. Weighted logics can be used for precisely such

generalizations, among many other purposes (Droste and Gastin, 2009).

The sentences can evaluate to a natural number, a real number, a string,

or even a set of strings.

4.1 Four Key Points

In order to understand weighted logics, there are a few key points. The

first is to realize that existential and universal quantification are essentially

recipes for generating a series of disjunctions and conjunctions, respec-

tively. For example the formula ∃(x)φ(x) is equivalent to the expanded for-
mula φ(1) ∨ φ(2) · · · ∨ φ(n) for structures whose domain equals {1, 2, . . . n}.
Similarly, the formula ∀(x)φ(x) is equivalent to the expanded formula
φ(1) ∧ φ(2) · · · ∧ φ(n) for structures with the same domain.
The second key point is that the concepts of disjunction and conjunction

can be generalized to other binary operations. Generally, disjunction is

89

D
R
A
F
T

90 CHAPTER 4. WEIGHTED LOGICS

understood as a kind of addition, and conjunction is understood as a kind of

multiplication. It is conventional to use the symbols⊕ and⊗ for these more
general addition and multiplication operators. Consequently, when reading

a formula of weighted logic, existential quantification and disjunction

are interpreted with ⊕ and universal quantification and conjunction are
interpreted with ⊗.
How the general addition and multiplication operators are instantiated

depends on the kinds of values (weights) the logical formula are supposed

to evaluate to. The value can be a real number or some other class of

values. Weighted logics have been most carefully studied when the class

of values under consideration is a semiring. Semirings are mathematical
structures of values that are closed under the two binary operations ⊗
and ⊕. Additionally, S contains two identity elements: 0 for ⊕ and 1 for
⊗. In fact, the set {true, false} is a semiring where the conjunction is
⊗, disjunction is ⊕, 0 = false, and 1 = true. Some examples of different
semirings are shown below in Table 4.1.

Name S ⊕ ⊗ 0 1

Boolean {true, false} ∨ ∧ false true
Natural N + × 0 1

Real Interval [0, 1] + × 0 1

Viterbi [0, 1] min × 0 1

Finite Language FIN ∪ · ∅ {λ}

Table 4.1: Example Semirings

The third key point is that the logical language for the weighted logic

presented here differs syntactically from the logical languages discussed

previously in one important respect. For the weighted logic presented

here, negation can only be applied to atomic expressions. In other words,

negation cannot be applied to any well-formed formula to obtain another

well-formed formula. The syntactic and semantic details are presented

explicitly in Chapter 6.

Here is some rational for why negation is treated this way in weighted

logic. As we will see, expressions in weighted logics evaluate to an element

of the semiring. In the Boolean semiring, where we have true and false, it
is clear how to interpret negation. But how do we interpret negation in an

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

4.2. EXAMPLES 91

arbitrary semiring? A natural interpretation would be to interpret negation

as an inverse operation, but semirings are not required to contain inverses.
To put it another way, semirings are not necessarily closed under inverses.

For example, the negation of a natural number is not a natural number.

While one approach may be to only consider semirings which are closed

under inverse, the approach pursued by Droste and Gastin (2009) is to

restrict negation to atomic expressions. To illustrate, consider the atomic

expression a(x). If a is true of x then this expression will evaluate to the
identity of ⊗, which is 1. And the expression ¬a(x) would evaluate to
identity of ⊕, which is 0. On the other hand, if a is false of x then these
expressions will evaluate 1 and 0, respectively.

The fourth key point is that the elements of the semiring are atoms

themselves in the logic. For example, in the natural semiring, the number

4 is a term! And syntactically, 4 ∧ 3 is a well-formed expression. When we
interpret it, conjunction is interpreted as ⊗, which in the natural number
semiring is normal multiplication. So the denotation of 4∧3, written

q
4∧3

y
,

is 4× 3 = 12.

4.2 Examples

The remainder of this chapter illustrates with examples weighted logic

formulas and their evaluation.

The first example shows how to count the number of marked structures

in strings.
∗c def

= ∃x[c(x)] (4.1)

Consider how this formula is evaluated with respect to (a representation

of) the string acbc in the natural number semiring. The structure of acbc has
domain equal to {1, 2, 3, 4}. In the equations below we simply writeM for

Macbc. The existential quantifier in
∗c expands to a series of disjunctions,

one for each position in the string.

q ∗c
y
(M) =

q ∨
x∈{1,2,3,4}

c(x)
y
(M) =

q
c(1) ∨ c(2) ∨ c(3) ∨ c(4)

y
(M)

Those disjunctions are interpreted as ⊕.
q
c(1)

y
(M)⊕

q
c(2)

y
(M)⊕

q
c(3)

y
(M)⊕

q
c(4)

y
(M)

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

92 CHAPTER 4. WEIGHTED LOGICS

In the natural number semiring, ⊕ is normal addition (+).
q
c(1)

y
(M) +

q
c(2)

y
(M) +

q
c(3)

y
(M) +

q
c(4)

y
(M)

Each atomic expression evaluates to 1 or 0 depending on whether it is true
of false, respectively, in the structureM.

0 + 1 + 0 + 1 = 2

This is how weighted logics can evaluate to values other than true or false.
The reader can easily verify that the same procedure will correctly evaluate

the structure of the string abba to 0.
The second example shows how to count the length of a string. Again,

we use the natural number semiring.

length def
= ∃x[1] (4.2)

The 1 in the equation is a valid term because 1 is a natural number! Recall
it was mentioned that elements of the semirings are allowed to be atomic

terms. If we consider string acbc again and its structureM, we can see
how length is evaluated. The existential quantifier in length expands
to a series of disjunctions, one for each position in the string.

q
length

y
(M) =

q ∨
x∈{1,2,3,4}

1
y
(M) =

q
1 ∨ 1 ∨ 1 ∨ 1

y
(M)

Again, in the natural number semiring, ∨ is interpreted as normal addition,
and so

q
1 ∨ 1 ∨ 1 ∨ 1

y
(M) evaluates to 1 + 1 + 1 + 1 = 4.

The next example implements a unigram distribution over a three letter

alphabet. For this we will use the real interval semiring.

U def
= ∀x

[(
a(x) ∧ 0.4

)
∨
(
b(x) ∧ 0.4

)
∨
(
c(x) ∧ 0.2

)]
(4.3)

This equation essentially assigns the probabilities of 0.4 to occurrences

of a and b and a probability of 0.2 to an occurrence of c. Below is the
evaluation of U with respect to the structureM of the string acbc. The
universal quantifier will expand to a series of conjunctions of terms. In this

example, those terms themselves are compositions of subterms. Since ⊗
and ⊕ are interpreted as normal multiplication and addition respectively in

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

4.2. EXAMPLES 93

the real interval semiring, the term
(
a(x)∧ 0.4

)
∨
(
b(x)∧ 0.4

)
∨
(
c(x)∧ 0.2

)
will be interpreted as

(
a(x)× 0.4

)
+
(
b(x)× 0.4

)
+
(
c(x)× 0.2

)
for each x

in the domain. Consequently, when evaluating U(Macbc), it first expands
as follows.

q
U

y
(M) =

((
a(1)× 0.4

)
+
(
b(1)× 0.4

)
+
(
c(1)× 0.2

))
×
((

a(2)× 0.4
)
+
(
b(2)× 0.4

)
+
(
c(2)× 0.2

))
×
((

a(3)× 0.4
)
+
(
b(3)× 0.4

)
+
(
c(3)× 0.2

))
×
((

a(4)× 0.4
)
+
(
b(4)× 0.4

)
+
(
c(4)× 0.2

))
The subterms within the term

(
a(x) ∧ 0.4

)
∨
(
b(x) ∧ 0.4

)
∨
(
c(x) ∧ 0.2

)
are mutually exclusive. Position x must satisfy exactly one of a, b, and c.
As a result, two of the subterms will evaluate to zero. Consequently, the

evaluation will continue as follows.

q
U

y
(M) = (1× 0.4 + 0 + 0)

×(0 + 0 + 1× 0.2)
×(0 + 1× 0.4 + 0)
×(0 + 0 + 1× 0.2)

= 0.0064

Other probability distributions over sequences can be expressed in similar

ways.

Our final example makes use of the language semiring to express an

optional post-nasal voicing generalization. The equation below identifies

post-nasal voicing environments. For simplicity we assume the successor

model with letters, and we limit the alphabet to the symbols {a, n, d, t}.

NT def
= ∃x, y

[
x / y ∧ n(x) ∧ d(y)

]
(4.4)

Given the Boolean semiring, the sentence NT would evaluate to true
given the structure of the string anda and to false given the structure of
the string anta.
However, we now want to consider the finite language semiring FIN.

The ⊗ operation is now language concatenation. Given two sets of strings
X and Y , their concatenation is XY = {xy | x ∈ X, y ∈ Y }. Note that the
empty set acts as 0 here and the set containing only the empty string acts as

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

94 CHAPTER 4. WEIGHTED LOGICS

1, the identity. In other words, for all finite languages X, X∅ = ∅X = ∅
and X{λ} = {λ}X = X. The ⊕ operation is now union. We have seen in
the previous example that by multiplying the base terms with elements of

the semiring we can associate different weights to different symbols. The

same approach is in the next equation, where the substring nd is ultimately
associated with the finite language {nd, nt}.

NT def
= ∃x, y

[
x / y ∧ n(x) ∧ {n} ∧ d(y) ∧ {d, t}

]
(4.5)

To see how this works, let’s evaluate NT on the structure of the string
nd. Since the domain of this structure has two elements, the existential
quantifier expands to four disjunctive terms which correspond to the (x, y)
pairs (1, 1), (1, 2), (2, 1), and (2, 2). Each disjunctive term is the conjunction
of three subterms. The first subterm is x / y. This only evaluates to true
for (x, y) pair (1, 2). The others evaluate to false.
Consider one of the false cases, say x = 1 and y = 1. Since 1 is not the

successor of itself, the subterm x / y evaluates to false. False terms are
interpreted as 0, which in the finite language semiring corresponds to the

emptyset. So here
q
x/y

y
= ∅. Since conjunction is interpreted as language

concatenation, we are ‘multiplying’ the other subterms by the emptyset.

Consequently, this entire disjunctive term evaluates to ∅. Likewise, the
other false cases evaluate to ∅.
Let’s move on to the one true case when x = 1 and y = 2. Now

x / y evaluates to true which is interpreted as the multiplicative identity
{λ}. The other subterms evaluate as follows. Since position 1 is a n,q
n(x)×{n}

y
= {λ}{n} = {n}. And since position 2 is a d,

q
d(y)×{d, t}

y
=

{λ}{d, t} = {d, t}. These three subterms multiply together: {λ}{n}{d, t} =
{nd, nt}. This disjunctive term this evaluates to {nd, nt}.
Finally, we combine all the disjunctive terms together with ⊕, which

in this semiring is union. We have ∅ ∪ {nd, nt} ∪∅ ∪∅, which of course
equals {nd, nt}. To sum up we have shown when NT in Equation 4.5 is
applied to the structure of the string nd, it evaluates to the set {nd, nt}.
We are not yet done. Any string without a nd substring given to Equa-

tion 4.5 will evaluate to the empty set. This is because every disjunctive

term will evaluate to the empty set since none of its subterms will be be

true. So to allow the process to apply to any word, it is important that we

embed Equation 4.5 into a larger expression.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

4.2. EXAMPLES 95

How do we accomplish this? The next equation establishes basic faith-

fulness (the identity function).

id def
= ∀x

[(
a(x) ∧ {a}

)
∨
(
n(x) ∧ {n}

)
∨
(
d(x) ∧ {d}

)
∨
(
t(x) ∧ {t}

)] (4.6)

The idea is to combine Equation 4.6 with Equation 4.5 to achieve the

desired outcome. Here is one way to do this.

NT def
= ∀x

[(
a(x) ∧ {a}

)
∨
(
n(x) ∧ {n}

)
∨
(
t(x) ∧ {t}

)
∨
(
d(x) ∧

(
∃y[y / x ∧ n(y)]

)
∧ {d, t}

)
∨
(
d(x) ∧

(
∃y[y / x ∧ ¬n(y)]

)
∧ {d}

)] (4.7)

The idea is to again to make use of mutually exclusive conditions for each

position. In this case there are five. If a position satisfies a, n, or t, it
invariably surfaces faithfully. If a position satisfies d then it depends on
whether a previous position exists which satisfies n. If so, then the fourth
disjunct will evaluate to {d, t} and the last one to ∅. If not, the fourth
disjunct will evaluate to ∅ and the last one {d}.
This last example is especially interesting because it provides another

way to express transformations with logical formula other than the Cour-

cellian approach introduced in chapter 3, which is used throughout the

remainder of this book. The approach to string-to-string functions using

weighted logics over a string or language based semiring (like FIN), to my

knowledge, has not been studied in any more detail.

A basic idea that informed the examples here has been to use the logical

language to identify substructures and to then multiply them by elements

of the appropriate semiring. In this way, the outputs are always some kind

of sum of the relevant weighted substructures.

Finally, it is also worth observing that given two semirings A and B,
a new semiring can be constructed whose elements belong to the cross-

product A × B. For example, we could combine the Finite Language
semiring with the real interval semiring to express probabilities over the

output variations.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

96 CHAPTER 4. WEIGHTED LOGICS

4.3 Conclusion

Weighted logics allow one to express linguistic generalizations beyond

binarity. There are some technical differences in the ways these logics

are defined. Negation only applies to the base cases. Conjunction and

disjunction are interpreted as semiring multiplication ⊗ and addition ⊕.
There are many semirings (Golan, 1999), including ones for strings and

formal languages. While there is much here to explore, the remainder of

this book focuses on the use of logic and model theory as described in

previous chapters. This chapter is presented to lay to rest any doubts about

the efficacy that formal logic brings to non-binary generalizations.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 5

Below First Order Logic

Jeffrey Heinz and James Rogers

This chapter continues the line of thinking developed in Chapter 2. There it

was shown how the choice of constraint definition language (CDL) provides

a theory of possible constraints. It was also shown that from a model-

theoretic perspective, choice of constraint definition language includes

choosing an explicit representation and logical formalism. It was also

argued there that if theorists wish to posit a CDL which can express both

local and long-distance constraints of the kind found in phonology, but

cannot express generalizations like Even-N, then, of the CDLs considered,

First-Order (FO) logic with precedence would be the best choice.

Another way to motivate First-Order logic with precedence is that,

given the CDLs considered so far, it was the least class of constraints that

included both the local and long-distance style constraints. The idea that

“Everything should be made as simple as possible, but no simpler” is at the

heart of scientific thinking.1 We are interested in the minimally necessary

computational machinery to account for the variety of generalizations ob-

served across the world’s languages (cf. the Minimalist Program (Chomsky,

1995)).

One clue that FO is more expressive than necessary, is that it is straight-

forward to define constraints that are sensitive to the number of occurrences

of complex structures in a word. Readers may recall that this counting is

1This expression is typically attributed Einstein but it seems it was sharpened after the
fact (Robinson, 2018).

97

D
R
A
F
T

98 CHAPTER 5. BELOW FIRST ORDER LOGIC

in fact present in the abstract characterization of “FO with successor” in

Theorem 1.

For example, Equation 2.11 gave a definition for the constraint *NT. It

is very easy to write a similar constraint that only penalizes words with

three NT sequences but not two as shown below.

*3NT def
= ¬(∃x1, x2, x3, x4, x5, x6)

[
(
x1 / x2 ∧ nasal(x1) ∧ voiceless(x2)

)
∧
(
x3 / x4 ∧ nasal(x3) ∧ voiceless(x4)

)
∧
(
x5 / x6 ∧ nasal(x5) ∧ voiceless(x6)

)
∧
(
x1 6= x3 ∧ x1 6= x5 ∧ x3 6= x5

)]
(5.1)

Note we use x 6= y as shorthand for ¬(x = y). According to this constraint
hypothetical words like kampantasakanka are ill-formed, but words like

kampantasakaka are well-formed. Is there a principled way to eliminate

this kind of counting from the CDLs?

There is. Propositional logic is a logical system that is weaker than
FO. In this section we motivate and define a propositional-style logic along

the lines developed by Rogers and Lambert (2019b). We do this for both

the successor and the precedence models of strings.

The resulting CDLs do not have the ability to count in the manner

above. More generally, the abstract characterizations of the resulting CDLs

corresponds to a particular type of memory model, the so-called “Testable”

classes (McNaughton and Papert, 1971; Simon, 1975), with clear cognitive

implications (Rogers and Pullum, 2011; Rogers et al., 2013). We return to

these broader issues after introducing propositional logic.

5.1 Propositional Logic with Factors

Sentences of propositional logic are Boolean combinations of atomic propo-
sitions. The Boolean connectives, presented in Table 2.2, are the symbols:
∧ (conjunction), ∨ (disjunction), ¬ (negation), → (implication), and ↔
(biconditional).2 Classically, the atomic propositions can be anything from

2In technical presentations of propositional logic, only some of these are presented as
fundamental and the remainder are derived from those.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

5.1. PROPOSITIONAL LOGIC WITH FACTORS 99

sentences like “All men are mortal” to “The sample contained chlorine.”

The truth of any sentence in propositional logic can be computed from the

truth values of the atomic propositions along with the standard ways the

Boolean connectives are interpreted. Good introductions to propositional

logic include Keisler and Robbin (1996) and Hedman (2004).

Additionally, one way to interpret the meaning of a sentence φ in
propositional logic is as the set of worlds in the universe for which φ would
evaluate to true. In our context, the universe is the set of possible strings
Σ∗ and each string in Σ∗ is a “world” in this universe. Thus, just as with

sentences of FO and MSO logic, each propositional sentence φ will pick out
some set of strings in Σ∗, which are those words for which φ can be said to
be true of.

What are the atomic propositions in this universe of strings? Following

Rogers and Lambert (2019b), we present atomic propositions based on the

notion of containment. They are sentences of the form “Words contain
S”, where S is a model-theoretic connected structure. Consequently the
proposition S will be true of any string w whose model Mw contains S.
In this case, we say that S is a factor of Mw.

In order to precisely define the factor relation, we must introduce
the meanings of connected and contains. The formal details are given in

Chapter 6 and are illustrated below with examples.

As an example, consider the successor model with features and the

structure with domain D = {1, 2}, the successor relation given by {(1, 2)},
with nasal={1}, voiceless={2}, and with all other unary relations de-
noting phonological features equal to the empty set. This structure, which

we denote NT, represents a nasal immediately succeeded by a voiceless
segment. It is shown in Figure 5.1.

1 2

nasal voiceless

/

Figure 5.1: The factor NT

Compare this structure withMsans in the successor model with features

presented in Figure 2.2. We can say that the structure NT is a factor of

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

100 CHAPTER 5. BELOW FIRST ORDER LOGIC

Msans becauseMsans contains the structure NT. This is because we can
find elements in the domain ofMsans – namely elements 3 and 4 – which

match the elements 1 and 2. By “match”, we mean that the relations held

by 1 and 2 in NT hold for 3 and 4 inMsans, respectively. What relations are

held by 1 and 2 in NT? 1 satisfies the unary relation nasal and 2 satisfies
the unary relation voiceless. Additionally, 2 is the successor of 1. We can
likewise see that inMsans, 3 satisfies the unary relation nasal, 4 satisfies
the unary relation voiceless, and 4 is the successor of 3. For these reasons,
we can conclude thatMsans contains the structure NT.
However, containment alone is insufficient to define the factor relation.

Let’s consider another structure N, T . Like NT, this structure has domain
D = {1, 2} with nasal={1}, voiceless={2}, and with all other unary
relations denoting phonological features equal to the empty set. Further-

more, no successor relation holds between these two elements. The model

Msans also contains this structure because we can find elements inMsans

which match the elements in N, T . In fact, successor structures of words

like donut and ten also contain the structure N, T .

We choose to eliminate the possibility of such disconnected structures,

by requiring the atoms of our propositional logic to be connected structures.
Informally, a structure is connected if any two elements in a domain can be

connected by a series of relations that chain the two elements together. For

example, let the structure CCC be defined to have domain D = {1, 2, 3},
to have cons={1,2,3} with all other unary relations denoting phonological
features equal to the empty set, and to have the successor relation given

by {(1, 2), (2, 3). There are three pairs of domain elements: (1,2), (2,3),
and (1,3). Clearly pairs (1,2) and (2,3) are connected pairs since they are

connected by the successor relation. Pair (1,3) is also connected, however,

via the series of successor relations that connects 1 to 2 and then 2 to

3. Formal details are given in Chapter 6 (see also Rogers and Lambert

(2019b)).

We refer to connected structures as factors.3 We observe that models

of every string in Σ∗ is a factor because each is a connected structure.

Furthermore, we can now understand why NT is a factor of Msans. It is

because NT is a connected structure contained withinMsans. If a factor S

3We avoid the term substructure since it has a distinct meaning in model theory; see
Hedman (2004) for instance.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

5.2. EXAMPLES OF PROPOSITIONAL LOGIC WITH FACTORS 101

is contained within a structureM, we write S v M. Hence, NT v Msans.

At last we can specify the atoms of the propositional logic we introduce.

The atoms are factors. Every connected structure contained in some string

in Σ∗ is an atom. Thus, to decide whether a model of a stringM satisfies a

sentence of propositional logic with a structure S as an atom, we will need
to decide whether S is a factor ofM as shown in Equation 5.2

M |= S iff S v M (5.2)

The remainder of the logic is defined like every other propositional

logic. Sentences of propositional logic combine atomic propositions with

the Boolean connectives (∧ conjunction, ∨ disjunction, ¬ negation, →
implication, and ↔ biconditional), and these combinations have their

usual meanings. The language associated with a propositional sentence φ
is also defined in the usual manner.

L(φ) = {w ∈ Σ∗ | Mw |= φ} (5.3)

As was the case with FO and MSO logics, this propositional-style logic we

have introduced depends on a model signature. This is because what the

atomic propositions — the connected structures — depend is on the model

signature.

5.2 Examples of Propositional Logic with Fac-

tors

In this section we discuss the CDLs: PROP(/), PROP(<), and PROP(/,o,n),
each with and without features. These refer to propositional logical lan-

guages defined with factors from the model signatures with successor,

precedence, and successor with word boundaries respectively. It can be

shown that each of these CDLs is unable to define a constraint that penalizes

words with three NT sequences but not two (regardless of whether or not

features are used).

Each of these CDLs has a very similar characterization as expressed in

the following theorem. We identify the size of a factor with the size of its
domain.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

102 CHAPTER 5. BELOW FIRST ORDER LOGIC

Theorem 4 (Characterization of PROP-definable constraints). A constraint

is PROP-definable with model signature R if and only if there is a number k
such that for any two strings w and v, whenever the R-structures of these two

strings have the same factors up to size k under the given model, then either

both w and v violate the constraint or neither does.

That the theorem is true is not hard to see. If two strings w, v have
exactly the same factors up to size k then their structures satisfy exactly
the same set of atomic propositions. Since the truth of any propositional

formula φ depends only on the truth or falsity of its atomic propositions, it
must be the case that either bothMw |= φ andMv |= φ or neitherMw nor

Mv satisfy φ.
Significant literature exists on the classes of formal languages definable

with some of these CDLs. In particular the class of formal languages

definable with PROP(/) are Strongly Locally Testable (Beauquier and Pin,
1991). A constraint like *NT is thus not only FO-definable with successor

but it is PROP-definable with successor.

To be explicit, if the alphabet is the one used in Chapter 2 ({a, b, d, e,

g, i, k, l, m, n, o, p, r, s, t, u, z}) then *NT can be expressed as shown in

Equation 5.4 below.

∗NT def
= ¬mk ∧ ¬mp ∧ ¬ms ∧ ¬mt ∧ ¬nk ∧ ¬np ∧ ¬ns ∧ ¬nt (5.4)

In Equation 5.4, the sequence ab represents the factor where the first
element is a and the second is b. On the other hand, if we are using
features, then *NT can be expressed as shown in Equation 5.5 below.

∗NT def= ¬NT (5.5)

where NT represents the factor shown in Figure 5.1. We conclude that *NT
is definable with PROP(/) (with or without features) and is therefore a
Strongly Locally Testable constraint.

We can also show that the constraint which is violated by three NT

sequences but not two is not definable in this way. To show this, we use

Theorem 4. Let us call this particular constraint *3NT. If this constraint

was definable with PROP(/), then according to this theorem there would
be some maximum factor size k such that for any two strings w and v,
whenever the model structures of these two strings have the same factors

up to size k under the given model, then either both w and v violate the

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

5.2. EXAMPLES OF PROPOSITIONAL LOGIC WITH FACTORS 103

constraint or neither does. Consequently, we can show a constraint is not

PROP(/) by showing there exists, for any k, two strings with the same set
of factors, but one obeys the constraint and one does not.

Pick an arbitrary k and consider the strings w = akntakntak and v =
akntakntakntak. Clearly w obeys *3NT but v does not. And yet these strings
have the same set of k-factors: {ak, ak−1n, ak−2nt, ak−3nta, . . . , ntak−2}. Since
we can always find a pair of strings that *3NT distinguishes for any k, there
is no maximum k such that strings with the same k-factors either both obey
or both violate the constraint. It follows from Theorem 4 that *3NT is not

definable in PROP(/).
Another class of constraints that has been well studied is definable

with PROP(/,o,n). This model extends the successor model with left and
right word boundaries. The signature of this model is {(b)b∈Σ/,o,n, }
where symbols o and n denote unary relations which are interpreted as
the left and right word boundaries, respectively. The model-theoretic

representation of a string w = b1b2 . . . bn is presented in Table 5.1.

D
def
= {0, 1, 2, . . . n+ 1}

a def
= {i ∈ D | bi = b} for each unary relation a

/
def
= {(i, i+ 1) ⊆ D ×D}

o def
= {0}

n def
= {n+ 1}

Table 5.1: The successor model for words with word boundaries w =
b1b2 . . . bn.

For example, Figure 5.2 shows the structure the successor model with

word boundaries assigns to the string sans. Under this model, factors can

0 1 2 3 4 5

o s a n s n

/ / / / /

Figure 5.2: A graphical depiction of the successor model with word bound-

aries of the word sans.

distinguish structures at left and right word boundaries from ones that

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

104 CHAPTER 5. BELOW FIRST ORDER LOGIC

are not at these boundaries. The class of languages definable with this

model and propositional logic is exactly the Locally Testable languages

(McNaughton and Papert, 1971; Rogers and Pullum, 2011). The Locally

Testable Languages are known to properly include the Strongly Locally

Testable languages. Similar arguments to the ones presented above will

also show that *3NT is not Locally Testable for any factor size k.

We next address the question of whether features increase or decrease

the definable constraints. We observe that two strings with the same factors

in a model signature with letters PROP((b)b∈Σ, /,o,n, letters) will also have
the same factors in a model signature with features PROP(feat, /,o,n) and
vice versa. So the expressivity of PROP(feat, /,o,n) and PROP(/,o,n,
letters) are the same (the Locally Testable class) and thus no arguments

based on expressivity can be used to distinguish these CDLs. However, it

is of course the case that the way certain sets of strings can be expressed

within these logical languages will be different, and arguments for one or

the other CDL could be made on such grounds.

The class of formal languages definable with PROP(<) are Piecewise
Testable (Simon, 1975). The constraint *N..L is PROP-definable with

precedence with and without features as shown in Figure 5.3 below.

1¬ 2

n l

1¬∧ 2

m l

< <

1 2¬

nasal lateral

<

Figure 5.3: The factor NL with letters (above) and features (below)

To summarize this section, a propositional logic whose atomic proposi-

tions correspond to factors interpreted in terms of containment provides

CDLs that are less powerful than corresponding FO ones. Figure 5.4 illus-

trates the situation with the constraints discussed in Chapter 2.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

5.3. CONJUNCTIONS OF NEGATIVE LITERALS 105

/, features <, features

MSO *N..L, Even-N Even-N

FO

PROP *NT *N..L

Figure 5.4: Classifying the constraints *NT, *N..L, and Even-N.

5.3 Conjunctions of Negative Literals

The constraints presented above all have the same form. That is, they are

the conjunctions of negative literals. A literal is an atomic proposition. If

P is a literal then its negative literal is simply ¬P . In the propositional
logic with factors introduced above, conjunctions of negative literals simply

mean an expression of propositional logic of the following form.

¬X1 ∧ ¬X2 ∧ . . . ∧ ¬Xn

Such an expression simply means “Words are well-formed provided they

don’t contain X1 and don’t contain X2 and …don’t contain Xn.”

Constraints that can be defined with the logical language CNL(/,o,n)
correspond exactly to the class of Strictly Local Languages (McNaughton

and Papert, 1971; Rogers and Pullum, 2011). This class of languages has

as its defining property Suffix Substitution Closure.

Theorem 5 (Characterization of CNL(/,o,n) constraints). A constraint is

CNL(/,o,n) definable if and only if there is a number k such that for any

strings u1, v1, u2, v2 ∈ Σ∗ and for any string x of length k − 1, whenever u1xv1
and u2xv2 obey the constraint, it is the case that the string u1xv2.

For example, in the case of *NT, it will turn out that k = 2. Since both
strings minato and pungu obey the *NT constraint, and since both share
a sequence of length k − 1 (here this is n), then we can identify u1 = mi,
v1 = ato, u2 = pu, v2 = gu, and x = n. Hence we have u1xv1 = minato and
u2xv2 = pungu and we satisfy the antecedent condition in the statement
of the theorem. It follows that the string u1xv2 = mingu must also be a
string that obeys *NT. And in fact it does. This is true for all such strings

u1, v1, u2, v2 and x.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

106 CHAPTER 5. BELOW FIRST ORDER LOGIC

Suffix Substitution Closure (SSC) is an abstract property that holds of

any Strictly Local language regardless of the intensional description of the

formal language. We could use any of the logical languages discussed so

far to define the set of strings which do not violate the constraint *NT. We

write a finite-state acceptor or use some other grammatical formalism. The

SSC tell us something about the shape of a formal language in the same way

that having 4 sides and 4 right angles tells us that the shape of a polygon

is a rectangle. No intensional description required.

Suffix Substitution Closure can be used to show that certain constraints

are NOT Strictly Local (and therefore NOT definable with CNL(/,o,n) by
finding, for any k, two strings u1xv1 and u2xv2 with x the length of k − 1,
which obey the constraint but where u1xv2 does not.
Here is an example, consider the formula φ in PROP(/,o,n) defined in

Equation 5.6.

φ = a (5.6)

This constraint says words must contain the letter a. We can use Suffix
Substitution Closure to show that this constraint is not definable with

CDL(/,o,n). Fix k. Consider the strings cck−1a and ack−1c. Both of these
obey the constraint since they both contain a. However, when we set
u1 = c, x = ck−1, v1 = a, u2 = a, and v2 = c we can see that the substituting
the suffix yields u1xv2 = cck−1c, which clearly violates the constraint since
it contains no a.
The formula in Equation 5.7 provides another example.

φ = ¬a → ¬b (5.7)

A word w obeys this constraint provided the sentence “if w does not contain
a then w does not contain b” is true. In other words, words without as must
also be without bs. Again, pick a k. Consider the strings cck−1c and ack−1b.
Both of these obey the constraint. The first one obeys it because it contains

neither as nor bs. The second one obeys it because it contains an a, and so
the antecedent in the conditional is not met. However, when we set u1 = c,
x = ck−1, v1 = c, u2 = a, and v2 = b we can see that substituting the suffix
yields u1xv2 = cck−1b, which clearly violates the constraint since it contains
no a but does contain b.
If we change the model signature, other classes of languages are ob-

tained. For example, the constraints definable with CNL(<) correspond
exactly to the Strictly Piecewise Languages (Rogers et al., 2010, 2013). The

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

5.4. DISCUSSION 107

constraint *N..L is definable with CNL(<). This class of languages has as
its defining property Subsequence Closure.

Theorem 6 (Characterization of CNL(<) constraints). A constraint is CNL(<)
definable if and only if for any string x which obeys the constraint, every

subsequence of x also obeys the constraint.

Like with Suffix Substitution Closure, this is a property of Strictly Piece-

wise languages independent of the grammatical formalism. Subsequence

Closure gives us another kind of shape in the space of formal languages.

The conclusion that we come to is that if we are only interested in

defining constraints like *NT and *N..L, a minimally expressive constraint

language that does the job is to have constraints drawn from CNL(/) and
CNL(<). Figure 5.5 illustrates. This is more or less the position adopted by

MSO *N..L, Even-N Even-N

FO

Prop

CNL *NT *N..L

/, features <, features

Figure 5.5: Classifying the constraints *NT, *N..L, and Even-N.

Heinz (2010). A key difference between then and now is that the logical

and model-theoretic presentation allows us to more precisely understand

the nature of the restrictions on what makes a possible constraint. This is

partly because the relationships between the different logical formalisms

(MSO, FO, Prop, CNL) are well understood, and partly because we also

understand the consequences of certain representational choices.

An important line of research has also examined constraints like *N..L us-

ing autosegmental representations, invoking the concept of a phonological

tier. Readers are referred to TODO:add tier refs here...

5.4 Discussion

When more constraints are examined in more languages, it almost certainly

reveals that things may not be as simple as this presentation suggests. But

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

108 CHAPTER 5. BELOW FIRST ORDER LOGIC

this discussion was not so much about the correctness of this particular

conclusion, as it was to emphasize a way to proceed with analysis.

We seek to formalize linguistic generalizations to help us understand

them. Expressing these constraints in a logical language does this in spades.

It requires us to be explicit about representations. It requires us to be

explicit about the logical formalism. When we combine a model-theoretic

representation with a logic, whether it MSO, FO, Propositional, or some

fragment thereof like CNL, we have created a Constraint Definition Lan-

guage, which gives us a class of patterns.

That class of patterns can be studied, and situated with respect to other

classes of patterns. Humboldt is famous for having said that language makes

“infinite employment of finite means” (von Humboldt, 1999, p. 91), but he

also said that to do linguistic typology one needs to have two encyclopedias

(Frans Planc, p.c.) One of these encyclopedias is an “Encyclopedia of

Types,” by which he meant the collection of linguistic generalizations

that we go out and find in the world. The other is an “Encyclopedia of

Categories,” by which he meant some systematic way of putting classifying

those types. Different logical languages, parameterized by logical power on

the one hand, and model-theoretic representation on the other, provide an

unparalleled Encyclopedia of Categories with which we can study linguistic

generalizations.

Another consideration is learning. We can ask whether the constraints

definable with a particular CDL can be learned, under different definitions

of what learning means. It is known that when the maximum factor size is

specified to some k, that CNL constraints are efficiently learnable under
different definitions of learning. The class of PROP constraints similarly

constrained is also learnable, but generally not feasibly. See Lambert et al.

(2021) for details.

This chapter explored logics weaker than First Order as they could

be applied to constraints. What about transformations? This question

is more open. It is not straightforward how to synthesize the approach

taken in this chapter, which uses containment and propositional logic,

with the Courcellian logical transformations explained in Chapter 3. On

the other hand, in Chapter ??, Chandlee and Lindell present a significant
result by establishing an equivalence between Input Strictly Local functions

(Chandlee and Heinz, 2018) and a weaker fragment of First Order logic

known as Quantifier Free logic. Another approach, not pursued in this

book, utilizes algebraic properties of the transformations to explore weaker

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

5.5. SUMMARY 109

variants (Lambert, 2022; Lambert and Heinz, 2023).

5.5 Summary

In this chapter, we showed how propositional logics can be used to express

constraints using the notion of structural containment. It was important that

our structures be connected; and we introduced the term factor to talk about

such connected structures. We observed that many local and long-distance

phonotactic constraints belong to a fragment of such a propositional logical

language, which is the conjunctions of negative literals. We concluded

that there are many logical languages which can be defined and studied to

classify phonological constraints.

possible revision: return to the shape metaphor introduced with
SSC and subsequence closure. Extract and put in its own short section
which also mentions the characterizations of Star Free, from the
previous chapter, and LT and PT from this one.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

110 CHAPTER 5. BELOW FIRST ORDER LOGIC

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 6

Formal Presentation of Model
Theory and Logic

Jeffrey Heinz

This chapter presents formal definitions of the syntax and semantics of three

logical formalisms discussed in earlier chapters. It draws from Enderton

(1972, 2001); Courcelle (1994); Engelfriet and Hoogeboom (2001); Hedman

(2004) and Courcelle and Engelfriet (2012b). The organization of this

chapter follows the order of the material in part I of this book. First,

relational models, model signatures, and structures are defined. Then the

syntax and semantics of MSO logic and FO logic are presented. Next the

formulas needed for Courcellian logical transductions where the words

are represented with model-theoretic relational structures are presented

and it is explained how they are interpreted. The following section defines

semirings, and the syntax and semantics of weighted logic. The last section

defines connected structures, factors, and the syntax and semantics of a

propositional logic whose atomic propositions are connected structures

found within words.

6.1 Relational Models and Signatures

A n-ary relation R is a relation of arity n. This means it expresses a relation
among n different elements. So if D is the domain of elements then R is a

111

D
R
A
F
T

112 CHAPTER 6. FORMAL DEFINITIONS

subset of

Dn = D ×D × . . .×D︸ ︷︷ ︸
n times

.

For example, a unary relation is a subset of D and a binary relation is a
subset of D ×D. The arity of a relation R is denoted ρ(R).
A signature is a finite number of relations, denoted R. The relations in

R can be of various arities. Formally,

R = {Ri | ∃n ∈ N, 1 ≤ i ≤ n, ρ(Ri) > 0} .

In words, R is a set of n relations, and Ri is a ρ(Ri)-ary relation. A sig-
nature can be thought of as a way to define a class of logically possible

structures. It can be thought of as expressing the type of representations

under consideration.

A relational structure of type R, also called a R-structure, is a tuple
〈D | (R)R∈R〉. Relational structures are representations of the information
that is immediately accessible about an object. The object can be identified

as a set elements of a domain with certain relationships which exist among

those elements. Since the objects we consider have only finitely many

domain elements, these structures are called finite relational structures.

If the analyst has a class of objects in mind (for example words) then it

is important to ensure that each unique object has some model and that

distinct objects have distinct models.

As an example, consider conventional word models. Fix an alphabet Σ.
Then a conventional word model has |Σ| unary relations, one for each letter
of the alphabet, and one binary relation, which is the ordering relation. The

two models only differ in the ordering relation. For successor-structures,

we require / = {(i, i+ 1) | i, i+ 1 ∈ D} but for precedence-structures, we
require < = {(i, j) | i, j ∈ D, i < j}.

6.2 MSO Logic for relational models

The difference between MSO and FO logic has to do with quantification.
Both logics make use of variables. MSOmakes use of two kinds of variables:
variables that range over individual elements of the domain and variables

that range over sets of individual elements of the domain. The former are

denoted with lowercase letters such as x, y, z and the latter with uppercase

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6.2. MSO LOGIC FOR RELATIONAL MODELS 113

letters X,Y, Z. We denote these two countable sets of variables with Vx
and VX respectively. While MSO uses both kinds of variables, FO logic only
uses Vx. Therefore FO logic is literally those formulas of MSO logic without
quantification over sets of individual domain elements.

If ρ(R) = 1, and x stands in the R relation in some domain, we write
R(x). Similarly, if ρ(R) = 2, and x1 stands in the R relation to x2 in
some domain, we write R(x1, x2). Generally, if ρ(R) = n, and the el-
ements x1, x2, . . . xn stand in the R relation in some domain, we write
R(x1, x2, . . . xn). When ρ(R) is not explicit, we use ~x to mean a tuple of
ρ(R) variables and write R(~x) to mean R holds for the tuple of elements in
~x. In the notation R(~x), it is understood that ρ(R) = |~x|.

6.2.1 Syntax of MSO logic

This sections defines the syntax of MSO logic.

Definition 1 (Formulas of MSO logic). Fix a signature R. The formulas of
MSO(R) are defined inductively as follows.

The base cases.

For all variables x, y ∈ Vx = {x0, x1, . . .}, X ∈ VX = {X0, X1, . . .}, the
following are formulas of MSO logic.

(B1) x = y (equality)
(B2) x ∈ X (membership)
(B3) R(~x) for each R ∈ R (atomic relational formulas)

The inductive cases.

If ϕ, ψ are formulas of MSO logic, then so are

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

114 CHAPTER 6. FORMAL DEFINITIONS

(I1) (¬ϕ) (negation)
(I2) (ϕ ∨ ψ) (disjunction)
(I3) (ϕ ∧ ψ) (conjunction)
(I4) (ϕ→ ψ) (implication)
(I5) (ϕ↔ ψ) (biconditional)
(I6) (∃x)[ϕ] (existential quantification for individuals)
(I7) (∃X)[ϕ] (existential quantification for sets of individuals)
(I8) (∀x)[ϕ] (universal quantification for individuals)
(I9) (∀X)[ϕ] (universal quantification for sets of individuals)

Nothing else is a formula of MSO logic.

It is possible to define a MSO logic with some subset of the above induc-

tive cases (for example negation, disjunction, and existential quantification)

and to derive the remainder. The above definition attempts to strike a

balance between austere minimality and some utility.

6.2.2 Semantics of MSO logic

The free variables of a formula ϕ are those variables in ϕ that are not
quantified. A formula is a sentence if none of its variables are free. Only
sentences can be interpreted.

If a R-structureM satisfies, or models, a sentence ϕ ∈ MSO(R), one
writesM |= ϕ. If Ω is a class of objects (like Σ∗) and R is a signature for
representing elements of Ω then the extension of ϕ is denoted

q
ϕ
y
and

equals {ω ∈ Ω | Mω |= ϕ}.
It will also be useful to think of the interpretation of ϕ as a function

that maps relational structures to the set {true, false}. Since
q
ϕ
y
denotes

a set, this function is essentially that set’s indicator function. Instead of
introducing new notation for this indicator function, I will reuse the

q
ϕ
y

notation. So while
q
ϕ
y
designates a set,

q
ϕ
y
(M) denotes a function which

takes an R-structureM and returns a truth value. Whether
q
ϕ
y
is being

interpreted as a set or as a function should be clear from context.

In order to evaluate
q
ϕ
y
(M)—that is, in order to decide whether

M |= ϕ—variables must be assigned values. For this reason, the functionq
ϕ
y
actually takes two arguments: one is the R-structureM and one is the

assignment function. The assignment function S maps individual variables
(like x) to individual elements of domain D and maps set-of-individual

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6.2. MSO LOGIC FOR RELATIONAL MODELS 115

variables (like X) to sets of individuals (so subsets of D). Formally, S :
(Vx → D) ∪ (VX → ℘(D)). The assignment function S may be partial, even
empty. The empty assignment is denoted S0.

We evaluate
q
ϕ
y
(M,S0). Throughout the evaluation, the assignment

function S gets updated. The notation S[x 7→ e] updates the assignment
function to bind element e to variable x. Similarly, the notation S[X 7→ S]
updates the assignment function to bind the set of elements S to variable
X. Then whetherM |= ϕ can be determined inductively by the below
definition.

Definition 2 (Interpreting sentences of MSO logic). Fix a signature R.

The base cases.

(B1)
q
x = y

y
(M,S) ↔ S(x) = S(y)

(B2)
q
x ∈ X

y
(M,S) ↔ S(x) ∈ S(X)

(B3) For each R ∈ R,
q
R(~x)

y
(M, S) ↔ S(~x) ∈ R

To clarify the notation in (B3): if ~x = (x1, x2, . . . xn) then S(~x) = (S(x1),S(x2), . . .S(xn)).

The inductive cases.

(I1)
q
(¬ϕ)

y
(M,S) ↔ ¬

q
ϕ
y
(M,S)

(I2)
q
(ϕ ∨ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) ∨

q
ψ

y
(M,S)

(I3)
q
(ϕ ∧ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) ∧

q
ψ

y
(M,S)

(I4)
q
(ϕ→ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) →

q
ψ

y
(M, S)

(I5)
q
(ϕ↔ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) ↔

q
ψ

y
(M, S)

(I6)
q
(∃x)[ϕ]

y
(M,S) ↔ (

∨
e∈D

q
ϕ
y
(M,S[x 7→ e])

(I7)
q
(∃X)[ϕ]

y
(M,S) ↔ (

∨
S⊆D

q
ϕ
y
(M,S[X 7→ S])

(I8)
q
(∀x)[ϕ]

y
(M,S) ↔ (

∧
e∈D

q
ϕ
y
(M,S[x 7→ e])

(I9)
q
(∀X)[ϕ]

y
(M,S) ↔ (

∧
S⊆D

q
ϕ
y
(M,S[X 7→ S])

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

116 CHAPTER 6. FORMAL DEFINITIONS

6.3 FO Logic

FO(R) is defined as all the formulas of MSO(R) logic which include no
quantification over sets of individuals. In other words, there are no sen-

tences which include variables from VX and so cases B2, I7, and I9 never
occur. In all other respects, sentences of FO logic are interpreted the same

way as above.

6.4 Courcellian Logical Transformations

Next we define transductions from RA-structures to RB-structures.

A deterministic MSO-definable transduction τ from RA-structures to

RB-structures is specified by the following formulas.

1. a domain formula ϕd ∈ MSO(RA) with no free variables;

2. a nonempty copy set C ⊂ N of finite cardinality;

3. for each c ∈ C, a licensing formula ϕc
`(x) ∈ MSO(RA) with one free

variable; and

4. for each RB ∈ RB with ρ(RB) = n and ~c ∈ Cn, there is a relational
formula ϕ~c

RB
(~x) ∈ MSO(R) with n free variables (note |~c| = |~x| = n).

It follows that defining τ requires the following formulas to be defined.

• one domain formula

• |C| licensing formulas

•
∑

RB∈RB
|C|ρ(RB) relational formulas. To explain why, observe that

|C| relational formulas will need to be defined for each unary relation
inRB; |C|2 relational formulas will need to be defined for each binary
relation in RB; and generally |C|n relational formulas will need to be
defined for each n-ary relation in RB.

Next we define how the above formulas provide a RB-structures from

a given RA-structureM = 〈DA | (R)R∈RA
〉.

1. IfM |= ϕd then τ(M is defined. Otherwise τ(M) is undefined.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6.5. WEIGHTED MONADIC SECOND ORDER LOGIC 117

2. If τ(M) is defined then it equals the RB-structure 〈DB | (R)R∈RB
〉

where

• DB = {(e, c) | e ∈ DA, c ∈ C,M |= ϕc
`(x)}

• For each R ∈ RB with ρ(R) = n,
and for each 〈(x1, c1), . . . , (xn, cn)〉 ∈ (DB)

n,

it is the case that 〈(x1, c1), . . . , (xn, cn)〉 ∈ RB iffM |= ϕ~c
RB

(~x)
where ~c = 〈c1, . . . , cn〉 and ~x = 〈x1, . . . , xn〉.

Consequently, the following conclusions stand.

• For any element element e in DA of the RA-structure and for any

element c ∈ C, the pair (e, c) exists in the domain of the RB-structure

τ(M) if and only if ϕc
`(e) is true.

• For any unary relation R ∈ RB, e ∈ DA, and c ∈ C, R(e, c) holds if
and only ifM |= ϕc

R(e) and (e, c) ∈ DB.

• For any binary relation R ∈ RB, e1, e2 ∈ DA, and c1, c2 ∈ C,
R((e1, c1), (e2, c2)) holds if and only ifM |= ϕc1,c2

R� (e1, e2) and
(e1, c1), (e2, c2) ∈ DB.

6.5 Weighted Monadic Second Order Logic

This section formalizes the concepts that were introduced in Chapter 4.

6.5.1 Semirings

We have seen how we can use logic to describe functions f : Σ∗ →
{true, false}. Weighted logics allow one to describe functions with differ-
ent co-domains, including N, [0, 1],∆∗ and so on. Crucially, the co-domain

is a mathematical object known as a semiring. We basically follow the
presentation by Droste and Gastin (2009).1

1An important difference is I have kept equality, which they omit. One reason to
omit equality is that it may not be decidable for an arbitrary semiring whether two of
its elements are equal. For example, in the real interval, most real numbers are not even
computable. Nevertheless, equality is assumed here.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

118 CHAPTER 6. FORMAL DEFINITIONS

A semiring is a set S with two binary operations ⊕,⊗, called ‘addi-
tion/plus’ and ‘multiplication/times’, and with elements 1 and 0 with the

following properties satisfied for all x, y, z ∈ S:

(P1) x⊕ y, x⊗ y ∈ S (closure under ⊕ and ⊗)
(P2) x⊕ y = y ⊕ x (⊕ is commutative)
(P3) 0⊕ x = x⊕ 0 = x (0 is the identity for ⊕)
(P4) 1⊗ x = x⊗ 1 = x (1 is the identity for ⊗)
(P5) 0⊗ x = x⊗ 0 = 0 (0 is an annihilator for ⊗)
(P6) x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) (⊗ right distributes over ⊕)

Below are some examples of semirings.

Name S ⊕ ⊗ 0 1

Boolean {true, false} ∨ ∧ false true
Natural N + × 0 1

Viterbi [0, 1] max × 0 1

Language ℘(Σ∗) ∪ · ∅ {λ}

Previously we could understand existential quantification as disjunction

over the elements in the domain whereas universal quantification is a

conjunction of the elements in the domain. With WMSO, existential quan-

tification combines the elements of the domain with ⊕ whereas universal
quantification combines them with ⊗.

6.5.2 Syntax of Weighted MSO Logic

Definition 3 (Formulas of WMSO logic). Fix a signature R and a semiring
S. The formulas of WMSO(S,R) are defined inductively as follows.

The base cases.

For all variables x, y ∈ {x0, x1, . . .}, X ∈ {X0, X1, . . .}, and for all R ∈ M
the following are formulas of MSO logic.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6.5. WEIGHTED MONADIC SECOND ORDER LOGIC 119

(B1) s, for each s ∈ S (atomic semiring element)
(B2) x = y (equality)
(B3) x 6= y (non-equality)
(B4) x ∈ X (membership)
(B5) x 6∈ X (non-membership)
(B6) R(~x), for each R ∈ M (positive relational atom)
(B7) ¬R(~x), for each R ∈ M (negative relational atom)

As before, it is understood that the |~x| = ρ(R). So if R is a unary relation,
then ~x = (x). If R is a binary relation, then ~x = (x, y), and so on.

The inductive cases.

If ϕ, ψ are formulas of MSO logic, then so are

(I1) (ϕ ∨ ψ) (disjunction)
(I2) (ϕ ∧ ψ) (conjunction)
(I3) (∃x)[ϕ] (existential quantification for individuals)
(I4) (∃X)[ϕ] (existential quantification for sets of individuals)
(I5) (∀x)[ϕ] (universal quantification for individuals)
(I6) (∀X)[ϕ] (universal quantification for sets of individuals)

Nothing else is a formula of weighted MSO logic. Note that negation is

only present in the base cases.

6.5.3 Semantics of Weighted MSO Logic

Let Ω be a class of objects (like Σ∗) and let S be a semiring. Let R de-
note a signature for representing elements of Ω. Let ϕ be a sentence of
WMSO(S,R). Then

q
ϕ
y
denotes a function with domain Ω and co-domain

S. Formally,
q
ϕ
y
: Ω → S.

As before, interpreting ϕ requires an assignment function S. We writeq
ϕ
y
(M,S) to express the value in S that ϕ assigns toM.

Definition 4 (Interpreting formulas of WMSO logic). Fix a signature R
and semiring S. Let D be the domain of the input R-structureM.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

120 CHAPTER 6. FORMAL DEFINITIONS

The base cases.

(B1)
q
s
y
(M,S) def

= s

(B2)
q
(x = y)

y
(M,S) def

= 1 iff S(x) = S(y) , 0 otherwise

(B3)
q
x 6= y

y
(M,S) def

= 0 iff S(x) = S(y) , 1 otherwise

(B4)
q
x ∈ X

y
(M,S) def

= 1 iff S(x) ∈ S(X) , 0 otherwise

(B5)
q
x 6∈ X

y
(M,S) def

= 0 iff S(x) ∈ S(X) , 1 otherwise

(B6)
q
R(~x)

y
(M, S) def

= 1 iff R(S(~x)) , 0 otherwise

(B7)
q
¬R(~x)

y
(M,S) def

= 0 iff R(S(~x)) , 1 otherwise

The inductive cases.

(I1)
q
(ϕ ∨ ψ)

y
(M,S) def

=
q
ϕ
y
(M,S)⊕

q
ϕ
y
(M,S)

(I2)
q
(ϕ ∧ ψ)

y
(M,S) def

=
q
ϕ
y
(M,S)⊗

q
ϕ
y
(M,S)

(I3)
q
(∃x)[ϕ]

y
(M,S) def

=
⊕

e∈D
q
ϕ
y
(S[x 7→ e], w)

(I4)
q
(∃X)[ϕ]

y
(M,S) def

=
⊕

E∈D
q
ϕ
y
(S[X 7→ E], w)

(I5)
q
(∀x)[ϕ]

y
(M,S) def

=
⊗

e∈D
q
ϕ
y
(S[x 7→ e], w)

(I6)
q
(∀X)[ϕ]

y
(M,S) def

=
⊗

E∈D
q
ϕ
y
(S[X 7→ E], w)

Since multiplication is not necessarily commutative, the order in which

it occurs matters. When there is universal quantification over individuals

(∀x), the multiplication is done according to the natural order. This means
that if the elements of D are natural numbers then they are multiplied
according to the order of natural numbers.

When there is universal quantification over sets of individuals, an

order over the subsets of the domain must be assumed. One way to order

finite subsets of natural numbers is to order them according to the length-

lexicographic order of their list-representations. A list-representation of

a finite subset of natural numbers is just the list of numbers in ascending

order.

Finally, since addition is necessarily commutative (unlike multiplica-

tion), we do not worry about the order of the computation for existential

quantification.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6.6. PROPOSITIONAL LOGIC 121

6.6 Propositional Logic

This section defines a logical language using propositional logic and R-
structures.

We begin with what is meant by connected relational structure with
a signatureR. For eachR-structureM withR = {R1, . . . Rn} let the binary
relation C be defined as follows.

C
def
=

{
(x, y) ∈ D ×D |
∃i ∈ {1 . . . n}, Ri ∈ R

∃k ∈ N [ρ(Ri) = k],

∃(x1 . . . xk) ∈ Ri,

∃s, t ∈ {1 . . . k}, x = xs, y = xt
}

Further, let C∗ denote the transitive closure of C. This means C∗ is the least

set which contains C and for which it is the case that whenever (x, y) ∈ C∗

and (y, z) ∈ C∗ then (x, z) ∈ C∗ too. Then a structure A is connected
whenever, for all x, y in the domain of A, it holds that (x, y) ∈ C∗.

As an example, consider the structureMabbcc in the conventional succes-

sor model. This is a connected structure because the the successor relation

chains together any two elements. For instance, that domain elements 1
and 4 are connected is witnessed by these elements of the successor relation
(1, 2), (2, 3), (3, 4). In fact, the structure of every string under every model
discussed is connected under this definition.

What is an example of an unconnected structure? Under the signature

〈/, a, b, c〉, consider the structure A = {{1, 2} | ∅, {1}, {2}, ∅}. This structure
contains two elements (one is labeled a and one is labeled b) but they are

not connected by any series of relations.

Next we discuss what it means for one structure to be a restriction of
another. Let A,B both be R-structures. A is a restriction of structure B
if DA ⊆ DB and for each m-ary relation R, we have (x1 . . . xm) ∈ RA if and

only if (x1 . . . xm) ∈ RB and x1, . . . , xm ∈ DA. So A is essentially what is
left of B after B is stripped of elements and relations which are not wholly
within the domain of A.

Finally, we say structure A is contained by B structure if A is iso-
morphic to a restriction of B. Whenever A is contained by B and A is a
connected structure, we also say A is a factor of B (denoted A v B).

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

122 CHAPTER 6. FORMAL DEFINITIONS

For each string w ∈ Σ∗, let F (Mw) denote the set of factors of the
structureMw and let Fk(Mw) be set of factors whose size is less than or
equal to k (recall that the size of a structure is equal to the cardinality of its
domain). Formally, F (w) = {S v Mw} and Fk(w) = {S v Mw | |S| ≤ k}.
Finally, we lift the definition of F and Fk to sets of strings as follows.

F (S) =
⋃
w∈S

F (Mw) (6.1)

Fk(S) =
⋃
w∈S

Fk(Mw) (6.2)

6.6.1 Syntax of Propositional Logic

We can now define sentences of propositional logic as follows.

Definition 5 (Propositional Logic with Literal Factors). Fix a signature R.

The base case.

(B1) For all factors f in F (Σ∗), f is a sentence of PROP(R).

The inductive cases.

If ϕ, ψ are formulas of PROP(R), then so are

(I1) ¬ϕ (negation)
(I2) (ϕ ∨ ψ) (disjunction)
(I3) (ϕ ∧ ψ) (conjunction)
(I4) (ϕ→ ψ) (implication)
(I5) (ϕ↔ ψ) (biconditional)

Nothing else is a formula of Propositional logic.

As with non-weighted MSO logic, for a sentence ϕ belonging to PROP(R)
and a R-structureM, we sayM |= ϕ if ϕ is true ofM. If Ω is a class of
objects (like Σ∗) and R is a signature for representing elements of Ω then
the extension of ϕ is denoted

q
ϕ
y
and equals {ω ∈ Ω | Mω |= ϕ}.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

6.6. PROPOSITIONAL LOGIC 123

6.6.2 Semantics of Propositional Logic

As with the non-weighted case before, we conceive of
q
ϕ
y
as an indicator

function which maps relational structures to the set {true, false}.

Definition 6 (Intepreting Sentences of Propositional Logic with Literal
Factors). Fix a signature R.

The base case.

(B1) For all factors f in F (Σ∗),
q
f
y
(M)

def
= f v M.

The inductive cases.

If ϕ, ψ are formulas of PROP(R), then so are

(I1)
q
(¬ϕ)

y
(M) ↔ ¬

q
ϕ
y
(M)

(I2)
q
(ϕ ∨ ψ)

y
(M) ↔

q
ϕ
y
(M) ∨

q
ψ

y
(M)

(I3)
q
(ϕ ∧ ψ)

y
(M) ↔

q
ϕ
y
(M) ∧

q
ψ

y
(M)

(I4)
q
(ϕ→ ψ)

y
(M) ↔

q
ϕ
y
(M) →

q
ψ

y
(M)

(I5)
q
(ϕ↔ ψ)

y
(M) ↔

q
ϕ
y
(M) ↔

q
ψ

y
(M)

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

124 CHAPTER 6. FORMAL DEFINITIONS

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Part II

Case Studies

125

D
R
A
F
T

D
R
A
F
T

Part III

Theoretical Contributions

127

D
R
A
F
T

D
R
A
F
T

Part IV

Horizons

129

D
R
A
F
T

D
R
A
F
T

131

note to editors: the horizons and survey chapters may need to get

merged. also should ask authors to send us things to cite if we missed them

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

132

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

Bibliography

Albro, Dan. 2005. A large-scale, LPM-OT analysis of Malagasy. Doctoral

dissertation, University of California, Los Angeles.

Allauzen, Cyril, Michael Riley, Johan Schalkwyk, Wojciech Skut, and

Mehryar Mohri. 2007. OpenFst: A general and efficient weighted finite-

state transducer library. In Proceedings of the Ninth International Conference

on Implementation and Application of Automata, (CIAA 2007), vol. 4783

of Lecture Notes in Computer Science, 11–23. Springer.

URL http://www.openfst.org

Anderson, Stephen. 1974. The Organization of Phonology. Academic Press.

Archangeli, Diana, and Douglas Pulleyblank. 2022. Emergent phonology,

vol. 7 of Conceptual Foundations of Language Science. Berlin: Language

Science Press.

Bale, Alan, and Charles Reiss. 2018. Phonology: A Formal Introduction. The

MIT Press.

Beauquier, D., and J.E. Pin. 1991. Languages and scanners. Theoretical

Computer Science 84:3–21.

Beesley, Kenneth, and Lauri Kartunnen. 2003. Finite State Morphology. CSLI

Publications.

Benua, Laura. 1997. Transderivational identity: Phonological relations

between words. Doctoral dissertation, University of Massachusetts,

Amherst.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata.

Mathematical Logic Quarterly 6:66–92.

133

http://www.openfst.org

D
R
A
F
T

134 BIBLIOGRAPHY

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral

dissertation, The University of Delaware.

Chandlee, Jane, and Jeffrey Heinz. 2018. Strict locality and phonological

maps. Linguistic Inquiry 49:23–60.

Chomsky, Noam. 1995. The Minimalist Program. The MIT Press.

Chomsky, Noam, and Morris Halle. 1968. The Sound Pattern of English. New

York: Harper & Row.

Courcelle, Bruno. 1994. Monadic second-order definable graph transduc-

tions: a survey 126:53–75.

Courcelle, Bruno, and Joost Engelfriet. 2012a. Graph Structure and Monadic

Second-Order Logic, a Language Theoretic Approach. Cambridge: Cam-

bridge University Press.

Courcelle, Bruno, and Joost Engelfriet. 2012b. Graph Structure and Monadic

Second-Order Logic, a Language Theoretic Approach. Cambridge University

Press.

Dolatian, Hossep. 2020. Computational locality of cyclic phonology in

armenian. Doctoral dissertation, Stony Brook University.

Dolatian, Hossep, and Jeffrey Heinz. 2020. Computing and classifying

reduplication with 2-way finite-state transducers. Journal of Language

Modelling 8:179–250.

Dresher, Elan B. 2011. The phoneme. In The Blackwell Companion to

Phonology, edited by Elizabeth HumeMarc van Oostendorp, Colin J. Ewen

and Keren Rice, vol. 1, 241–266. Malden, MA & Oxford: Wiley-Blackwell.

Droste, Manfred, and Paul Gastin. 2009. Weighted automata and weighted

logics. In Droste et al. (2009), chap. 5.

Droste, Manfred, and Werner Kuich. 2009. Semirings and formal power

series. In Droste et al. (2009), chap. 1.

Droste, Manfred, Werner Kuich, and Heiko Vogler, eds. 2009. Handbook

of Weighted Automata. Monographs in Theoretical Computer Science.

Springer.

September 6, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 135

Durvasula, Karthik, and Scott Nelson. 2018. Lexical retuning targets fea-

tures. In Proceedings of the Annual Meetings on Phonology, edited by Gillian

Gallagher, Maria Gouskova, and Sora Yin. Linguistic Society of America.

Enderton, Herbert B. 1972. A Mathematical Introduction to Logic. Academic

Press.

Enderton, Herbert B. 2001. A Mathematical Introduction to Logic. 2nd ed.

Academic Press.

Engelfriet, Joost, and Hendrik Jan Hoogeboom. 2001. MSO definable string

transductions and two-way finite-state transducers. Transactions of the

Association for Computational Linguistics 2:216–254.

URL http://doi.acm.org/10.1145/371316.371512

Frank, Robert, and Giorgo Satta. 1998. Optimality Theory and the gen-

erative complexity of constraint violability. Computational Linguistics

24:307–315.

Gerdemann, Dale, and Mans Hulden. 2012. Practical finite state optimality

theory. In Proceedings of the 10th International Workshop on Finite State

Methods and Natural Language Processing, 10–19.

Golan, Jonathan S. 1999. Semirings and their Applications. Springer.

Goodman, Joshua. 1999. Semiring parsing. Computational Linguistics

25:573–606.

Gorman, Kyle. 2016. Pynini: A python library for weighted finite-state

grammar compilation. In Proceedings of the SIGFSMWorkshop on Statistical

NLP and Weighted Automata, 75–80. Berlin, Germany.

Gorman, Kyle, and Richard Sproat. 2021. Finite-State Text Processing. Mor-

gan & Claypool Publishers.

Hansson, Gunnar. 2010. Consonant Harmony: Long-Distance Interaction in

Phonology. No. 145 in University of California Publications in Linguistics.

Berkeley, CA: University of California Press. Available on-line (free) at

eScholarship.org.

Hayes, Bruce. 2009. Introductory Phonology. Wiley-Blackwell.

September 6, 2024 © Jeffrey Heinz

http://doi.acm.org/10.1145/371316.371512

D
R
A
F
T

136 BIBLIOGRAPHY

Hayes, Bruce, Bruce Tesar, and Kie Zuraw. 2013. Otsoft 2.3.2. software

package.

URL http://www.linguistics.ucla.edu/people/hayes/otsoft

Hedman, Shawn. 2004. A First Course in Logic. Oxford University Press.

Heinz, Jeffrey. 2007. The inductive learning of phonotactic patterns. Doc-

toral dissertation, University of California, Los Angeles.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry

41:623–661.

Heinz, Jeffrey. 2014. Culminativity times harmony equals unbounded

stress. In Word Stress: Theoretical and Typological Issues, edited by Harry

van der Hulst, chap. 8. Cambridge, UK: Cambridge University Press.

Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 2006. Introduction to

Automata Theory, Languages, and Computation. 3rd ed. Addison-Wesley.

Hulden, Mans. 2009a. Finite-state machine construction methods and algo-

rithms for phonology and morphology. Doctoral dissertation, University

of Arizona.

Hulden, Mans. 2009b. Foma: a finite-state compiler and library. In Pro-

ceedings of the 12th Conference of the European Chapter of the Association

for Computational Linguistics, 29–32. Association for Computational Lin-

guistics.

von Humboldt, Wilhelm. 1999. On Language. Cambridge Texts in the

History of Philosophy. Cambridge University Press. Edited by Michael

Losonsky. Translated by Peter Heath. Originally published 1836.

Hyman, Larry. 1975. Phonology: Theory and Analysis. Holt, Rinehart and

Winston.

Jardine, Adam, Nick Danis, and Luca Iacoponi. 2021. A formal investigation

of q-theory in comparison to autosegmental representations. Linguistic

Inquiry 52:333–358.

URL https://doi.org/10.1162/ling_a_00376

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The

Hague: Mouton.

September 6, 2024 © Jeffrey Heinz

http://www.linguistics.ucla.edu/people/hayes/otsoft
https://doi.org/10.1162/ling_a_00376

D
R
A
F
T

BIBLIOGRAPHY 137

Kager, René. 1999. Optimality Theory. Cambridge University Press.

Kaplan, Ronald, and Martin Kay. 1994. Regular models of phonological

rule systems. Computational Linguistics 20:331–378.

Karttunen, Lauri. 1998. The proper treatment of optimality in compu-

tational phonology. In FSMNLP’98, 1–12. International Workshop on

Finite-State Methods in Natural Language Processing, Bilkent University,

Ankara, Turkey.

Karttunen, Lauri. 2006. The insufficiency of paper-and-pencil linguistics:

the case of Finnish prosody. Rutgers Optimality Archive #818-0406.

Keisler, H. Jerome, and Joel Robbin. 1996. Mathematical Logic and Com-

putability. McGraw-Hill.

Kenstowicz, Michael, and Charles Kisseberth. 1977. Topics in Phonological

Theory. New York: Academic Press.

Kenstowicz, Michael, and Charles Kisseberth. 1979. Generative Phonology.

Academic Press, Inc.

Kozen, Dexter. 1997. Automata and Computability. Springer.

Krämer, Martin. 2012. Underlying Representations. Cambridge University

Press.

de Lacy, Paul. 2011. Markedness and faithfulness constraints. In The

Blackwell Companion to Phonology, edited by M. V. Oostendorp, C. J.

Ewen, E. Hume, and K. Rice. Blackwell.

Lambert, Dakotah. 2022. Unifying classification schemes for languages and

processes with attention to locality and relativizations thereof. Doctoral

dissertation, Stony Brook University.

URL https://vvulpes0.github.io/PDF/dissertation.pdf/

Lambert, Dakotah. 2023. Relativized adjacency. Journal of Logic Language

and Information .

Lambert, Dakotah, and Jeffrey Heinz. 2023. An algebraic characterization

of total input strictly local functions. In Proceedings of the Society for

Computation in Linguistics, vol. 6.

September 6, 2024 © Jeffrey Heinz

https://vvulpes0.github.io/PDF/dissertation.pdf/

D
R
A
F
T

138 BIBLIOGRAPHY

Lambert, Dakotah, Jonathan Rawski, and Jeffrey Heinz. 2021. Typology

emerges from simplicity in representations and learning. Journal of

Language Modelling 9:151–194.

McCarthy, John. 2003. OT constraints are categorical. Phonology

20:75–138.

McCarthy, John. 2008. Doing Optimality Theory. Malden, MA: Blackwell.

McCarthy, John, and Alan Prince. 1995. Faithfulness and reduplicative iden-

tity. In Papers in Optimality Theory, edited by Jill Beckman, Laura Walsh

Dickey, and Suzanne Urbanczyk, no. 18 in University of Massuchusetts

Occasional Papers in Linguistics, 249–384.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata.

MIT Press.

Mohri, Mehryar, and Richard Sproat. 1996. An efficient compiler for

weighted rewrite rules. In Proceedings of the 34th Meeting of the Association

for Computational Linguistics (ACL ’96).

Nelson, Scott. 2022. A model theoretic perspective on phonological feature

systems. In Proceedings of the Society for Computation in Linguistics 2022,

edited by Allyson Ettinger, Tim Hunter, and Brandon Prickett, 1–10.

online: Association for Computational Linguistics.

URL https://aclanthology.org/2022.scil-1.1

Oakden, Chris. 2020. Notational equivalence in tonal geometry. Phonology

37:257–296.

Odden, David. 1994. Adjacency parameters in phonology. Language

70:289–330.

Odden, David. 2014. Introducing Phonology. 2nd ed. Cambridge University

Press.

Pater, Joe. 1999. Austronesian nasal substitution and other *NC
˚
effects.

In The Prosody–Morphology Interface, edited by René Kager, Harry van

der Hulst, and Wim Zonneveld. Cambridge: Cambridge University Press.

ROA 160-1196.

September 6, 2024 © Jeffrey Heinz

https://aclanthology.org/2022.scil-1.1

D
R
A
F
T

BIBLIOGRAPHY 139

Postal, Paul M. 1968. Aspects of Phonological Theory. Harper & Row.

Prince, Alan. 2002. Arguing optimality. In Papers in Optimality Theory

II, edited by Angela Carpenter, Andries Coetzee, and Paul De Lacy,

no. 26 in University of Massachussetts Occasional Papers in Linguis-

tics, 269–304. Amherst, MA: GLSA Publications. Available on Rutgers

Optimality Archive, ROA-562.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint

interaction in generative grammar. Tech. Rep. 2, Rutgers University

Center for Cognitive Science.

Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint

Interaction in Generative Grammar. Blackwell Publishing.

Prince, Alan, Bruce Tesar, and Nazarré Merchant. 2016. Otworkplace.

software package. Additions by Luca Iacoponi and Natalie DelBusso.

URL https://sites.google.com/site/otworkplace/home

Rawski, Jonathan, Hossep Dolatian, Jeffrey Heinz, and Eric Raimy. 2023.

Regular and polyregular theories of reduplication. Glossa: a journal of

general linguistics 8:1–38.

Riggle, Jason. 2004. Generation, recognition, and learning in finite state

Optimality Theory. Doctoral dissertation, University of California, Los

Angeles.

Roark, Brian, and Richard Sproat. 2007. Computational Approaches to

Morphology and Syntax. Oxford: Oxford University Press.

Robinson, Andrew. 2018. Einstein said that – didn’t he? Nature 557:30.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher,

David Wellcome, and Sean Wibel. 2010. On languages piecewise testable

in the strict sense. In The Mathematics of Language, edited by Christian

Ebert, Gerhard Jäger, and Jens Michaelis, vol. 6149 of Lecture Notes in

Artifical Intelligence, 255–265. Springer.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lam-

bert, and Sean Wibel. 2013. Cognitive and sub-regular complexity. In

Formal Grammar, edited by Glyn Morrill and Mark-Jan Nederhof, vol.

8036 of Lecture Notes in Computer Science, 90–108. Springer.

September 6, 2024 © Jeffrey Heinz

https://sites.google.com/site/otworkplace/home

D
R
A
F
T

140 BIBLIOGRAPHY

Rogers, James, and Dakotah Lambert. 2019a. Extracting Subregular con-

straints from Regular stringsets. Journal of Language Modelling 7:143–176.

Rogers, James, and Dakotah Lambert. 2019b. Some classes of sets of

structures definable without quantifiers. In Proceedings of the 16th Meeting

on the Mathematics of Language, 63–77. Toronto, Canada: Association for

Computational Linguistics.

URL https://www.aclweb.org/anthology/W19-5706

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition

experiments and the subregular hierarchy. Journal of Logic, Language and

Information 20:329–342.

Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement

as correspondence. Language 80:475–531.

Savitch, Walter J. 1993. Why it may pay to assume that languages are

infinite. Annals of Mathematics and Artificial Intelligence 8:17–25.

Scobbie, James M., John S. Coleman, and Steven Bird. 1996. Key aspects

of declarative phonology. In Current Trends in Phonology: Models and

Methods, edited by Jacques Durand and Bernard Laks, vol. 2, 685–709.

Manchester, UK: European Studies Research Institute. University of

Salford.

Shukla, Shaligram. 2000. Hindi Phonology. Muenchen: Lincom Europa.

Simon, Imre. 1975. Piecewise testable events. In Automata Theory and

Formal Languages, 214–222.

Sipser, Michael. 2012. Introduction to the Theory of Computation. 3rd ed.

Cengage Learning.

Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John J.

McCarthy, and Joe Pater. 2010. Ot-help 2.0. software package.

URL http://people.umass.edu/othelp/

Strother-Garcia, Kristina. 2019. Using model theory in phonology: A

novel characterization of syllable structure and syllabification. Doctoral

dissertation, University of Delaware.

September 6, 2024 © Jeffrey Heinz

https://www.aclweb.org/anthology/W19-5706
http://people.umass.edu/othelp/

D
R
A
F
T

BIBLIOGRAPHY 141

Tesar, Bruce. 2014. Output-driven Phonology. Cambridge University Press.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic.

Journal of Computer and Systems Sciences 25:370–376.

Thomas, Wolfgang. 1997. Languages, automata, and logic. In Handbook of

Formal Languages, vol. 3, chap. 7. Springer.

Wilson, Colin, and Gillian Gallagher. 2018. Accidental gaps and surface-

based phonotactic learning: a case study of South Bolivian Quechua.

Linguistic Inquiry 49:610–623.

September 6, 2024 © Jeffrey Heinz

	I Foundations
	Intensional and Extensional Descriptions of Phonological Generalizations
	Generative Phonology
	Extensional and Intensional Descriptions
	Issues with Familiar Grammars
	Computational Theory of Language
	Doing Computational Phonology

	Representations, Models, and Constraints
	Logic and Constraints in Phonology
	Chapter Outline
	The Successor Model
	First Order Logic
	Word Models with Phonological Features
	Monadic Second-Order Logic
	The Precedence Word Model
	Discussion

	Transformations, Logically
	String-to-string Transformations
	Word-final obstruent devoicing
	Word-final vowel deletion
	Getting Bigger
	Word-final vowel epenthesis
	Duplication
	Summary

	Power of MSO-definable Transformations
	Mirroring
	Sorting
	Summary

	Discussion
	Transforming Representations
	Order Preservation
	Logic as a descriptive formalism

	Conclusion

	Weighted Logics
	Four Key Points
	Examples
	Conclusion

	Below First Order Logic
	Propositional Logic with Factors
	Examples of Propositional Logic with Factors
	Conjunctions of Negative Literals
	Discussion
	Summary

	Formal Presentation of Model Theory and Logic
	Relational Models and Signatures
	MSO Logic for relational models
	Syntax of MSO logic
	Semantics of MSO logic

	FO Logic
	Courcellian Logical Transformations
	Weighted Monadic Second Order Logic
	Semirings
	Syntax of Weighted MSO Logic
	Semantics of Weighted MSO Logic

	Propositional Logic
	Syntax of Propositional Logic
	Semantics of Propositional Logic

	II Case Studies
	III Theoretical Contributions
	IV Horizons

