
D
R
A
F
T

Doing Computational Phonology

September 23, 2024

D
R
A
F
T

ii

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Contents

I Foundations 1

1 Intensional and Extensional Descriptions of Phonological Gen-
eralizations 3

1.1 Generative Phonology . 3

1.2 Extensional and Intensional Descriptions 6

1.3 Issues with Familiar Grammars 12

1.4 Computational Theory of Language 16

1.5 Doing Computational Phonology 22

2 Representations, Models, and Constraints 25

2.1 Logic and Constraints in Phonology 25

2.2 Chapter Outline . 27

2.3 The Successor Model . 29

2.4 First Order Logic . 32

2.5 Word Models with Phonological Features 39

2.6 Monadic Second-Order Logic 43

2.7 The Precedence Word Model 51

2.8 Discussion . 55

3 Transformations, Logically 59

3.1 String-to-string Transformations 60

3.2 Word-final obstruent devoicing 61

3.3 Word-final vowel deletion 65

3.4 Getting Bigger . 69

3.4.1 Word-final vowel epenthesis 70

3.4.2 Duplication . 75

3.4.3 Summary . 75

3.5 Power of MSO-definable Transformations 76

iii

D
R
A
F
T

iv CONTENTS

3.5.1 Mirroring . 77

3.5.2 Sorting . 79

3.5.3 Summary . 80

3.6 Discussion . 80

3.6.1 Transforming Representations 82

3.6.2 Order Preservation 84

3.6.3 Logic as a descriptive formalism 86

3.7 Conclusion . 87

4 Weighted Logics 89

4.1 Four Key Points . 89

4.2 Examples . 91

4.3 Conclusion . 96

5 Below First Order Logic 97

5.1 Propositional Logic with Factors 98

5.2 Examples of Propositional Logic with Factors 101

5.3 Conjunctions of Negative Literals 105

5.4 Discussion . 107

5.5 Summary . 109

6 Formal Presentation of Model Theory and Logic 111

6.1 Relational Models and Signatures 111

6.2 MSO Logic for relational models 112

6.2.1 Syntax of MSO logic 113

6.2.2 Semantics of MSO logic 114

6.3 FO Logic . 116

6.4 Courcellian Logical Transformations 116

6.5 Weighted Monadic Second Order Logic 117

6.5.1 Semirings . 117

6.5.2 Syntax of Weighted MSO Logic 118

6.5.3 Semantics of Weighted MSO Logic 119

6.6 Propositional Logic . 121

6.6.1 Syntax of Propositional Logic 122

6.6.2 Semantics of Propositional Logic 123

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

CONTENTS v

II Case Studies 125

7 Regressive voicing assimilation in Russian obstruent clusters127

7.1 Introduction . 127

7.2 General description on the data 127

7.3 Logical formalization of assimilation 129

7.3.1 Representations . 129

7.3.2 A Logical Transduction for Voice Assimilation . . . 131

7.4 Discussion . 134

7.5 Conclusion . 135

8 Saltation in Polish 137

8.1 Representations . 138

8.2 Logical Transduction . 139

8.3 Discussion . 145

8.4 Conclusion . 146

9 Palatalization and Harmony in Lamba 147

9.1 Data and phonology of Lamba 147

9.1.1 Vowel Harmony . 147

9.1.2 Palatalization . 148

9.1.3 Nasalization . 150

9.1.4 Summary . 151

9.2 Computational formalization of Lamba 152

9.2.1 Representations . 152

9.2.2 A Logical Transduction 153

9.2.3 Another Logical Transduction 159

9.3 Conclusion . 165

10 Obstruent devoicing and g-deletion in Turkish 167

10.1 Introduction . 167

10.2 Computational Analysis . 169

10.2.1 Representations . 169

10.2.2 Logical formalization 170

10.3 Conclusion . 175

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

vi CONTENTS

11 Cluster Reduction in Tibetan 177

11.1 Phonological Analysis . 178

11.2 Representations . 180

11.3 Transformations . 180

11.4 Conclusion . 183

12 Autosegmental Representations in Zigula and Shambaa 185

12.1 Zigula . 185

12.2 Shambaa . 189

12.3 Summary . 191

12.4 Representations . 192

12.5 Transformations . 196

12.6 Discussion . 200

12.7 Summary . 202

13 Compound Reduction in Signed Phonology 203

13.1 Model-Theoretic Representations of Signs 203

13.2 Compound Reduction . 207

13.3 Compound Reduction as a Logical Transformation 208

13.4 Discussion . 213

13.5 Conclusion . 214

14 Focus and Verb Movement in Hungarian 217

14.1 Syntactic analysis . 218

14.2 Representations . 220

14.3 Logical transduction . 224

14.4 Conclusion . 225

III Theoretical Contributions 227

15 Syllable Structure and the Sonority Sequencing Principle 229

15.1 Introduction . 229

15.2 Universal Principles of Syllable Structure 231

15.3 Basic CV Typology . 235

15.3.1 The Typology . 235

15.3.2 Analysis of the Typology 236

15.3.3 Comparison to OT 238

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

CONTENTS vii

15.4 Complex Onsets and Codas 240

15.4.1 Sonority Relations 241

15.4.2 Constraints on Sonority Sequencing 242

15.5 Conclusion . 245

16 Primitive Constraints for Nonlexical Stress Patterns 249

16.1 The Phonotactics of Stress 250

16.2 Multifaceted Descriptive Methodology 252

16.2.1 Universal Constraints 253

16.2.2 Identifying Differences with Differences 254

16.2.3 Simplifying Descriptions 256

16.3 Partial Factoring of Regular Patterns 257

16.3.1 Strictly Piecewise Constraints: Factoring via Down-

ward Closures . 257

16.3.2 Strictly Local Constraints: The Powerset Graph . . . 260

16.3.3 Tier-based Strictly Local: Extending SL Results . . . 262

16.4 Discussion . 263

16.5 Conclusion . 264

17 A Formal Analysis of Correspondence Theory 267

17.1 Introduction . 267

17.2 Background to Optimality Theory 269

17.3 Correspondence Theory . 270

17.3.1 Representing Candidates 271

17.3.2 The GEN function 273

17.3.3 The set of candidates for a given input 275

17.4 Phonological Maps from FO-constraints over Correspondence

Structures . 277

17.4.1 Assimilation . 278

17.4.2 Epenthesis . 281

17.4.3 Deletion . 282

17.4.4 Metathesis . 283

17.4.5 Fission . 284

17.4.6 Coalescence . 286

17.5 Conclusion . 287

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

viii CONTENTS

18 Phonetically Grounded Phonological Representations 291

18.1 Introduction . 291

18.2 Incorporating Phonetic Fact into Logical Formalism 293

18.3 Representing Phonetic Difficulty 294

18.4 Constraints on Phonetic Difficulty 296

18.5 Discussion . 298

18.6 Conclusion . 300

19 Representations of Gradual Oppositions 303

19.1 Background . 304

19.1.1 Danish Vowel Lowering 304

19.1.2 Trubetzkoy’s Oppositions 307

19.1.3 The Mirror Principle 308

19.2 Traditional Analyses . 309

19.3 Representing Aperture . 310

19.4 A Logical Transduction of Danish Vowel Lowering 313

19.5 Discussion . 317

19.6 Conclusion . 319

20 Logical approximations of lexical strata, cophonologies, and
cyclicity 321

20.1 Introduction . 321

20.2 Background . 323

20.2.1 What are cyclicity and strata 324

20.2.2 Illustrating cyclicity with Armenian 326

20.3 Components of cyclic phonology 328

20.4 First cycle: Generating a stem 331

20.4.1 Morphological and phonological representations . . 332

20.4.2 Operation: Encoding derivational history 334

20.4.3 Morphology: Morphological functions 336

20.4.4 Examination: What to parse and what rules to apply 340

20.4.5 Prosody: Syllabification 342

20.4.6 Phonology: Stem-level rule of stress 345

20.5 Second cycle: Generating a derivative 348

20.5.1 Operation and Morphology: Adding a derivational

suffix . 348

20.5.2 Examination and Prosody: Stem-levels and resyllabi-

fication . 353

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

CONTENTS ix

20.5.3 Phonology: Cyclic reduction 356

20.6 Third cycle: Word-level phonology 359

20.6.1 Operation and Morphology: Adding an inflectional

suffix . 359

20.6.2 Examination: Parsing instructions 361

20.6.3 Prosody: Generating prosodic words 361

20.6.4 Phonology: Word-level phonology blocks reduction 363

20.7 Evaluating the cyclic architecture and the computation of

cyclicity . 366

20.8 Conclusion . 370

21 Evaluating Precedence-Based Phonology: Logical structure of
reduplication and linearization 375

21.1 Introduction . 375

21.2 Background in computational morphology and reduplication 377

21.2.1 Most morphology and phonology are regular 377

21.2.2 Reduplication is more powerful 378

21.2.3 Reduplication is MSO-definable 379

21.2.4 Interim summary . 381

21.3 Previous work on computing theories of reduplication . . . 382

21.4 Precedence-Based Phonology 383

21.4.1 Immediate precedence in Precedence-Based Phonology383

21.4.2 Stacks as data structures for immediate precedence 386

21.5 Linearization: Preliminaries and Compaction 390

21.5.1 Preliminaries . 391

21.5.2 Compaction: finding unambiguous precedences . . . 392

21.6 Linearization: Calling via iteratively projecting precedences 394

21.6.1 Illustration of Calling 394

21.6.2 Formalization . 397

21.6.3 Scaling to triplication 401

21.7 Discussion and Conclusion 402

21.8 Proof that Calling is not MSO-definable 403

22 Logical Perspectives on Strictly Local Transformations 407

22.1 Introduction . 407

22.2 Preliminaries . 410

22.2.1 Finite-state transducers 410

22.2.2 Language theory . 410

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

x CONTENTS

22.2.3 Model theory . 412

22.2.4 Polymorphic formulas: typed variables 413

22.3 Intuition of the proof . 415

22.3.1 Substitution . 416

22.3.2 Epenthesis . 418

22.3.3 Deletion . 421

22.4 Main Result . 424

22.4.1 Every finite-to-one ISL function can be described by

quantifier-free formulas 425

22.4.2 Every quantifier-free interpretation is computable by

an ISL FST . 428

22.5 Conclusion . 431

22.6 Appendix: Deciding adjacency 432

IV Horizons 433

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Part I

Foundations

1

D
R
A
F
T

D
R
A
F
T

Chapter 1

Intensional and Extensional
Descriptions of Phonological
Generalizations

Jeffrey Heinz

1.1 Generative Phonology

Within languages, the pronunciation of a morpheme often differs depending

on its morpho-phonological context. While examples like English go/went

indicate that these different pronunciations may have almost nothing in

common, it is much more typical that the pronunciations of the same

morpheme in different contexts are in fact similar, as with common English

plural cat[s]/dog[z]. The main empirical conclusion linguists have drawn

with respect to this phenomena is that the variation in the pronunciation

of morphemes is systematic. It is no accident that the plural form of tip uses

[s] just like cat[s] and that the plural form of dud is [z] just like dog[z].

Explaining this systematic variation is an important goal of linguistic theory.

The central hypothesis of Generative Phonology (GP) is presented below.

(F) The observed systematic variation in the pronunciation of morphemes
is best explained if people hold a single mental representation of the

pronunciation of each morpheme (the underlying representation, UR)

which is lawfully transformed into its pronounced variants (the surface

representation, SR).

3

D
R
A
F
T

4 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

This book assumes this hypothesis is correct, and does not review any

arguments for it.1 Readers interested in arguments for this position are

directed to Odden (2014, chapter 4) and Kenstowicz and Kisseberth (1979,

chapter 6).

If this hypothesis is correct, then there are three questions every theory

of generative phonology must address.

(FF) 1. What is the nature of the underlying representations?

2. What is the nature of the surface representations?

3. What is the nature of the transformations between these repre-

sentations?

These questions are certainly not exhaustive but they are of critical

importance. Another related important question is “How different can the

underlying representations be from the surface representations?” This has

been called the question of abstraction (Kenstowicz and Kisseberth, 1977).

This book provides a general framework which addresses these ques-

tions from a computational perspective. The computational perspective

addresses both the nature of the representations and the nature of the trans-

formations. It is flexible in the sense that different representational schemes

can be studied and compared. This is accomplished through model-theoretic

representations of words and phrases. It is also flexible in the sense that

different types of computational power can be studied and compared. This

is accomplished by studying what can be accomplished with different kinds

of logical expressions. As will be explained, model theory and logic provide

a mathematical foundation for theory construction, theory comparison,

and descriptive linguistics.

The study of phonology from the computational perspective allows one

to construct theories of phonology which provide answers to the above

questions. Representational choices and choices of logical power essentially

determine the theory and its empirical predictions. Theories of phonology

developed under this framework are examples of Computational Generative

Phonology (CGP).

1The words transformed and transformation are used here in their original meaning
simply to signify that the URs become SRs, and that the SR derived from some UR may
not be identical to this UR. If a UR is related to a SR via the transformative component of
a phonological grammar, it is also often said the UR is mapped to the SR. These words
are deliberately neutral with respect to the specific type of grammar being employed.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.1. GENERATIVE PHONOLOGY 5

To begin motivating CGP, I would like to give some examples of how

current phonological theories aim to answer these questions. It is not

possible to comprehensively survey here the range of answers that have

been offered. Therefore, I only highlight some answers and do so only in

very broad strokes.

Rule-based theories, as exemplified by Chomsky and Halle (1968), for

example, have argued that the abstract underlying representations are

subject to language-specific morpheme structure constraints (MSCs). The

transformation from underlying forms to surface forms are due to language-

specific rules, which are applied in a language-specific order. Constraints on

surface representations were, generally speaking, not part of the ontology

of these theories, and therefore were not posited to have any psychologi-

cal reality. Such generalizations—the phonotactic generalizations—were

derivable from the interaction of the MSCs and the rules (Postal, 1968).

On the other hand, in classic Optimality Theory (Prince and Smolensky,

1993, 2004), there are no constraints on underlying representations (rich-

ness of the base), but there are psychologically real, universal constraints

on surface forms (markedness constraints). The transformation from under-

lying forms to surface forms is formulated as a process of global optimization

over these markedness constraints as well as constraints which penalize

differences between surface and underlying forms (faithfulness constraints).

While both the markedness and faithfulness constraints are universal, their

relative importance is language-specific. So in every language the surface

pronunciation of an underlying representation is predicted to be the glob-

ally optimal form (the one that violates the most important constraints

the least). Of course what is optimal varies across languages because the

relative importance of the constraints varies across languages.

These two theories are radically different in what they take to be psy-

chologically real. The ontologies of the theories are very different. Perhaps

this is most clear with respect to the concept of phonemes (Dresher, 2011).

Phonemes exist as a consequence of the ontology of rule-based theories,

but they do not as a consequence of the ontology of OT. This is simply

because phonemes are a kind of MSC; underlying representations of mor-

phemes must be constructed out of them, and nothing else. In OT, there

are no MSCs and hence there are no phonemes. The principle of Lexicon
Optimization guarantees that the URs of pit and spit are /phIt/ and /spIt/,
respectively (Kager, 1999). The underlying, mental representation of the

voiceless labial stops in both words are not the same. Consequently, the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

complementary distribution of speech sounds (allophonic variation) are

explained in a very different manner in the two theories, and these theories

promote different views of the notion of contrast. Despite these differences

however, there is an important point of agreement: In both theories, com-

plementary distribution of speech sounds in surface forms is the outcome

of a transformation of underlying forms to surface forms.

This is the point I wish to emphasize: neither theory abandons the

fundamental insight stated on page 3 in (F). The theories offer radically
different answers to the questions asked on 4 in (FF), but they agree on

the questions being asked.2

In the remainder of this chapter, I motivate a computational approach

to phonology. I first make an important distinction between extensional

and intensional descriptions of linguistic generalizations and argue that the

former is important for understanding the latter. I then argue that neither

rule-based nor constraint-based formalisms as practiced provide adequate

intensional descriptions of phonological generalizations.

This is then contrasted with automata and logical descriptions of lan-

guage. The chapter concludes that logical descriptions of linguistic gen-

eralizations have some advantages over automata-theoretic descriptions.

This is not to say automata are not useful (they are!) but that logic offers

more immediate rewards to linguists interested in writing and analyzing

grammars. So when we consider the ways in which we spend our time,

logic is a good place to start.

1.2 Extensional and Intensional Descriptions

McCarthy (2008a, pp. 33–34) emphasizes the importance of descriptive

generalizations in preparing analyses. “Good descriptive generalizations,”

he writes “are accurate characterizations of the systematic patterns that

can be observed in the data.” They are, as he explains, “the essential

intermediate step between data and analysis.” This is because descriptive

generalizations go beyond the data; they make predictions about things

not yet observed.

2It is true that periodically some work is published which challenges these core ideas,
for example the work on output-to-output correspondence (Benua, 1997, and others) or
the recent work of Archangeli and Pulleyblank (2022).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 7

Descriptive generalizations are important for computational phonol-

ogy too. They are typically stated in prose. For example, consider the

phonological generalizations below.

Word final vowels are prohibited. (1.1)

Consonant clusters are prohibited word-finally. (1.2)

These generalizations are good ones because they allow the analyst to

recognize that potentially unobserved forms like tapaka is ill-formed but

tanak is well-formed with respect to 1.1. Similarly, we recognize that 1.2

distinguishes between forms like tapakt and tanakta.

The generalizations above divide every possible word of every length

cleanly into two sets: those that obey the description and those that do not.

This is illustrated in the figure below for the generalization in (1.1). The

ap, ab, at, ad,

. . .

patak, patag,

. . .

medinakatap,

. . .

. . .

. . .

. . .

apa, api, ape,

pataka, pataga,

medinakatapa,

Figure 1.1: The generalization that “Word final vowels are prohibited”

partitions the set of all possible forms into two sets.

set of words that are well-formed according to (1.1) is called its extension.

Importantly, this set—the extension—is infinite in size. For instance, it

is not possible to write down every possible word that obeys the general-

ization in (1.1). If a set of words formed from a finite alphabet is infinite

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

8 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

then there is no upper bound on the length of words. Likewise, if there is

no upper bound on the length of words formed from a finite alphabet then

this set is infinite in size. Thus whether the size of a set of words is infinite

or not is intertwined with whether or not there is an upper bound on the

length of words. These issues are so important to get clear that they are

discussed in further detail below.

Extensional descriptions contrast with intensional descriptions of general-

izations. For now, intensional descriptions can be thought of as grammars

that denote the extension. The prose in (1.1) and (1.2) are examples of

intensional descriptions. Rule-based grammars and OT grammars are also

examples of intensional descriptions. A good intensional description is one

where the the extension can be rigorously and precisely defined from the

intensional description. Generally, English prose does not make for good

intensional descriptions. Further below, I will argue that in their current

forms and practice, rule-based grammars and OT grammars are more like

English prose than good intensional descriptions.

Let us now return to the infinitely-sized extensions. Is it reasonable for

descriptive generalizations like (1.1) to denote an infinite set of words?

Yes, it is. One reason is that these generalizations make no reference to

length at all. If the length of words mattered, it ought to be part of the

generalization. Another way of thinking about this is that if there were

a principled upper bound on the length of words, then that would be a

generalization distinct from (1.1) above, and hence ought not be included

within it. Finally, even if for some reason (1.1) ultimately denoted a finite

set, there are reasons to treat its extension as infinite anyway. Savitch

(1993) argues that large finite sets of strings are often best understood if

they are factored into two parts: an infinite set of strings and a separate

finite-length condition. They are, in his words, “essentially infinite.” The

basis of the argument is a demonstration that intensional descriptions of

infinite sets can be smaller in size than the intensional descriptions of finite

sets.

These infinite-sized extensions do not exist in the same way that your

fingernails, your bed, or your brain exists. Instead they exist mathemati-

cally. Each generalization is an infinite object like a circle, which is a set

of infinitely many points each exactly the same distance from a center. But

we can never see the mathematical object in its entirety in the real world.

It is a fact that circles as infinite objects do not exist. The situation with

linguistic generalizations is similar. The extension is there mathematically,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 9

but we cannot write down every element of the extension in a list for the

same reason all points of a circle cannot be written down in a list since

there are infinitely many. But we can write down a grammar which can be

understood as generating the infinite set, in the same way that a perfect

circle can be generated by specifying a center point and a distance (the

radius).

The same circle can be described in other ways as well. If we employ

the Cartesian plane, we could generate a circle with an equation of the

form (x − a)2 + (y − b)2 = r2 where the r is the radius of the circle and
(a, b) is its center. The equation is interpreted as follows: all and only
points (x, y) which satisfy the equation belong to the circle. The equation
is an intensional description and the set of (x, y) points satisfying this
equation—the circle itself—is its extension.

We can also describe a circle on a plane with polar coordinates instead

of Cartesian ones. Recall that polar coordinates are of the form (r, θ) where
r is the radius and θ is an angle. The equation r = 2a cos(θ) + 2b sin(θ)
provides the general form of the circle with the radius given by

√
a2 + b2

and the center by (a, b) (in Cartesian coordinates). The polar equation is
interpreted like the Cartesian one: all and only points (r, θ) which satisfy
the equation belong to the circle.

There are some interesting differences between these two coordinate

systems. Each point in the Cartesian system has a unique representation,

but each point in the polar system has infinitely many representations

(since the same angle can be described in infinitely many ways, e.g. 0◦ =
360◦ = 720◦ = . . .). If the center of the circle is the origin of the graph,
the polar equation simplifies to r = a whereas the Cartesian equation
remains more complicated x2+ y2 = r2. Thus, the polar equation r = 4 and
the Cartesian equation x2 + y2 = 16 are different equations with different
interpretations, but they describe the same unique circle: one of radius

four centered around the origin. The two equations differ intensionally,

but their extension is the same.

It seems strange to ask which of these two descriptions is the ‘right’

description of this circle. They are different descriptions of the same thing.

Some descriptions might be more useful than others for some purposes. It

also interesting to ask what properties the circles have irrespective of a

particular description. For instance the length of a circle’s perimeter and

the size of a circle’s area are certainly relatable to these descriptions, but

they are also in a sense independent of the particulars. The perimeter and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

10 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

area depend on the radius but not the center, though both the radius and

the center appear in the equations above. Perhaps this suggests that the

radius is a more fundamental structure to a circle than its center, though

both certainly matter.

The analogy I wish to draw is that rule-based and OT-theoretic for-

malisms are like the Cartesian and polar coordinate systems. The analogy

is far from perfect, but it is instructive. Both rule-based and OT analyses

provide descriptions of platonic, infinitely sized objects. In many cases,

but not all, the two formalisms describe the same object, insofar as the

empirical evidence allows.

What is this object? The transformations from underlying represen-

tations to surface representations can be thought of as a function, in the

mathematical sense of the word. Another word for function prevalent in

the phonological literature is map (Tesar, 2014). For example, consider the

two descriptive generalizations below.

Word final vowels delete. (1.3)

Word final vowels delete except when preceded by a consonant cluster.

(1.4)

These generalizations also have infinite-sized extensions, but the extensions

are better understood as functions. Figure 1.2 illustrates the extension of

the generalization expressed in (1.3).

There are three parts to a function. First, there is its domain, which is

the set of objects the function applies to. Second, there is its co-domain,

which is the set of objects to which the elements of the domain are mapped.

Third, there is the map itself, which says which domain elements are

transformed (mapped) to which co-domain elements. Thus to specify a

function, one needs to provide a description of its domain, its co-domain,

and a description of which domain elements become which co-domain

elements. Following traditional phonological terminology, I use the term

constraint to refer to intensional descriptions of either the domain or
co-domain.

The parts of a function align nearly perfectly with the fundamental

questions of phonological theory given in (FF) on page 4. The underlying
representations correspond to the domain. The surface representations

make up the co-domain. And the transformation from underlying to surface

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 11

apapa

apapi

apape

medinakatapakmedinakatapaka

patagpataga

patakpataka

. . .

. . .

. . .

Figure 1.2: The function corresponding to the generalizations that “Word

final vowels delete.”

forms is the map from domain elements to co-domain elements. From this

perspective, describing the phonology of a language requires identifying

aspects of this function.

Further, in linguistic typology we are actually interested in the class

of such functions that correspond to possible human phonologies. If the

phonologies of languages are circles we would be interested in the universal

properties of circles and the extent of their variation. Circles are pretty

simple, so the answers are straightforward. All circles have a center and a

radius, but their centers can be different points and their radii can have

different lengths. What universal properties do phonological functions

share? What kind of variation does the human animal permit across these

functions?

The point is that when we develop a linguistic generalization, it is impor-

tant to know what its extension is. Ultimately, the intensional description—

the grammar—must generate this extension. The emphasis placed here

on the extensional description as an infinite object should not be taken

to mean intensional descriptions do not matter. Of course they matter:

theories of these intensional descriptions ought to make predictions about

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

what is psychologically real, predictions that in principle are testable with

the right kinds of psycholinguistic and neurolinguistic experimentation.

They also can make predictions about linguistic typology since the avail-

able intensional descriptions limit the extensions accordingly. In addition

to making correct predictions, phonologists expect that intensional de-

scriptions express the ‘right’ generalizations. Clarity about the extensional

descriptions are an essential, intermediate step between the descriptive

generalizations stated in prose and formal intensional descriptions (the

grammatical analysis).

It is critically important that it is well-understood how the intensional

descriptions relate to the extensional ones. We want to be able to answer

questions like the following:

1. Given a word w and an intensional description of a constraint C, does
w violate C? (We may also be interested in the number of violations
of C and the where within the word the violations occur.)

2. Given a word w in the domain of a transformation f what words in
the co-domain of f does f map w to, if any?

3. Given a word v in the co-domain of a transformation f what words
in the domain of f map to v, if any?

Question 1 is often called the membership problem. Question 2 is often

called the generation problem. Question 3 is often called the recognition

or parsing problem. Good intensional descriptions allow answers to these

questions to be computed correctly and effectively. In the next section, I

argue that rule-based intensional descriptions and OT grammars are not

good intensional descriptions in this narrow sense.

1.3 Issues with Familiar Grammars

Chomsky and Halle (1968) present a formalization based on rewrite rules.

The basic rewrite rule is of the form A −→ B / C D . This notation

is intended to mean that if an input string contains CAD then the output

string will output CBD (so A is rewritten as B in the context C D).

To understand the extension of a rule, we need to know how to apply it.

Originally, Chomsky and Halle (1968, p. 344) intended for the rules to apply

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.3. ISSUES WITH FAMILIAR GRAMMARS 13

simultaneously to all the relevant targets in an input string. They wrote,

“To apply a rule, the entire string is first scanned for segments that satisfy

the environmental constraints of the rule. After all such segments have

been identified in the string, the changes required by the rule are applied

simultaneously.” For many phonological rules, this explanation appears

sufficient to denote the extension. For instance the rule corresponding to

the descriptive generalizations (1.3) is V −→ ∅ / # . Humans have no

difficulty using this rule to answer the generation and parsing problems

above given this intensional description. However, it is much less clear

what the extension of any rule would be. Determining this depends in part

on what A, B, C and D themselves are able to denote, and how rules apply

when application of the rule can create more CAD sequences.

The phonological literature after SPE addressed the question of rule

application (Anderson, 1974), and other types of rule application were

identified such as left-to-right or right-to-left. It was clear that the mode

of application determined the extension of the rule. For example, for the

input string /oana/ and rule V −→ [+nasal] / [+nasal] simultaneous

application yields output [oãna] but right-to-left application yields output

[õãna]. While linguistically-chosen examples served to distinguish one

mode of application from another, general solutions to the generation and

recognition questions by Johnson (1972) and Kaplan and Kay (1994) were

for the most part ignored by generative phonologists.

It is my contention that rule application is still not well-understood by

most students of phonology, despite the careful computational analyses

by Johnson (1972); Kaplan and Kay (1994) and Mohri and Sproat (1996).

In informal surveys of phonologists in-training, many have difficulty of

applying the rule aa −→ b simultaneously to the input /aaa/. People
wonder whether the right output is [ab], [ba], or [bb]. According to Kaplan

and Kay’s analysis, there are two outputs for this input when the rule aa

−→ b is applied simultaneously. They are [ab] and [ba]. Their analysis
translates rewrite rules into finite-state automata, which are grammars

whose extensions are very well defined and understood. These will be

explained in a bit more detail in the next section.

Interestingly, Kaplan and Kay’s analyses of rule application, which has

been implemented in software programs like xfst (Beesley and Karttunen,
2003), openfst (Allauzen et al., 2007), foma (Hulden, 2009a,b), and pynini
(Gorman, 2016; Gorman and Sproat, 2021) do not exhaust the possible

natural interpretations of the rewrite rule A −→ B / C D . Like Johnson

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

14 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

and Kaplan and Kay’s analyses, Chandlee’s (2014) analysis also uses finite-

state automata to determine an extension of a rule A −→ B / C D ,

provided that CAD is a finite set of strings. Unlike Kaplan and Kay, her

interpretation of the extension of the rule aa −→ b maps input /aaa/ to
[bb]. This result is arguably what Chomsky and Halle in mind when they

described simultaneous application because each aa sequence satisfies “the

environmental constraints of the rule.”

The point of the foregoing discussion is simply this: a rule A −→ B
/ C D underdetermines its extension. The extensions are a critical

part of any rule-based theory and there is more than one way such rules

determine extensions. This point is neither new nor controversial. It is

a well-known chapter in the history of phonological theory. Chandlee’s

(2014) discussion shows that this chapter is not closed. To my knowledge,

Bale and Reiss (2018) is the first textbook on phonology that provides an

adequate interpretation of the application of rewrite rules.

Optimality Theory is an improvement in some sense. Given an OT gram-

mar and an input form, there is a well-defined solution to the generation

problem. This solution follows from the architecture of the OT grammar.

The GEN component generates the set of possible candidates and the EVAL

component uses the grammar of ranked constraints to select the optimal

candidates.

Nonetheless in actual phonological analyses the generation problem

faces two difficulties, each acknowledged in the literature. The first one is

ensuring that all the possible candidates are actually considered by EVAL.

The absence of an overlooked candidate can sink an analysis. The proposed

optimal candidate turns out to be less harmonic than some other candidate

that the analysts failed to consider. How can analysts ensure that every

candidate has been considered?

The second is ensuring that all the relevant constraints are present in

the analysis. The absence of a relevant constraint can also sink an analysis.

(Prince, 2002, p. 276) makes this abundantly clear. He explains that if

a constraint that must be dominated by some other constraint is ignored

then the analysis is “dangerously incomplete.” Similarly, if a constraint

that may dominate some other constraint is omitted then the analysis is

“too strong and may be literally false.”

As a result, any phonological analysis of a language which does not

incorporate the entire set of constraints is not guaranteed to be correct.

This makes studying some aspect of the phonology of the language difficult.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.3. ISSUES WITH FAMILIAR GRAMMARS 15

The constraints deemed irrelevant to the fragment of the phonology under

investigation (and which are therefore excluded) actually need to be shown

to be irrelevant for analysts to establish the validity of their OT analyses.

Both these problems in OT can be overcome. The solution again comes

from the theory of computation, in particular from the theories of finite-

state automata and so-called regular languages (defined and discussed in

the next section). The earliest result is that even if the constraints and GEN

can be defined in these terms, the maps OT produces are not guaranteed

to be definable in these terms — unless the constraints have a finite bound

on the maximum number of violations they can assign (Frank and Satta,

1998). Karttunen (1998) uses this fact to provide a solution and software

for the generation and recognition problems (see also (Gerdemann and

Hulden, 2012)), and so he assumes each constraint has some maximum

number of violations. While some theoretical phonologists have argued

for this position (McCarthy, 2003), most do not adopt it. Riggle (2004)

provides a different solution which does not require bounding the number

of violations constraints assign. His solution is guaranteed to be correct

provided the map the OT grammar is in fact representable as a finite-state

relation (not all of them are). Another solution is present in Albro’s (2005)

dissertation, which provides a comprehensive OT analysis of the phonology

of Malagasy.

Each of these authors make use of finite-state automata to guarantee

the correctness of their solutions. However, none of these approaches have

yet to make its way into the more commonly used software for conducting

OT analyses such as OTSoft (Hayes et al., 2013), OT-Help (Staubs et al.,

2010), and OTWorkplace (Prince et al., 2016). A particular weakness of

this software, unlike Karttunen’s, Riggle’s, and Albro’s is that they can

only work with finite candidate sets, despite the fact that GEN is typically

understood as generating an infinite candidate set. Consequently, the

commonly used software amounts to nothing more than pen-and-paper

approaches with lots of paper and lots of pens, and so the aforementioned

issues remain (Karttunen, 2006).

McCarthy (2008a, p. 76) argues the aforementioned computational

approaches are only possible in a “narrowly circumscribed phenomenon.”

However, this ignores Albro’s detailed, thorough analysis of the whole

phonology of Malagasy (Albro, 2005). McCarthy also argues the methods

are only as good as the algorithm that generates the candidates. Of course

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

that is true, but the alternatives are manual, heuristic methods.3 People may

differ on which is better, but I will place my bets on the algorithm which

is guaranteed not to leave out candidates that GEN produces. McCarthy’s

dismissal of the value of computational approaches is unfortunate, but it is

representative of attitudes in the field.

Regardless of the extent to which different researchers appreciate the

computational treatments of phonological theories, it is noteworthy and

no accident that every attempt to guarantee a solution of the recognition

and generation problems (and the membership problem when constraints

are involved) makes use of finite-state automata and the theory of regular

languages. Even OTWorkplace employs the finite-state calculus by way of

regular expressions to automatically assign constraint violations to candi-

dates. What are these devices? And what makes them so good for denoting

extensions of phonological generalizations?

1.4 Computational Theory of Language

Automata are a cornerstone of the computational theory of language.
Automata are machines that process specific types of data structures like

strings or trees. They form a fundamental chapter of computer science.

There are many kinds of automata. The Turing machine is just one example.

Pushdown automata are another. Readers are referred to texts such as

Kozen (1997), (Hopcroft et al., 2006) and Sipser (2012) for overviews of

the theory of computation.

There are also deep connections between automata and logic. In this

section, I will briefly review finite-state automata for string processing.

Then I will informally introduce logic as another way of providing an

intensional description of phonological generalizations. Their extensions

are also well-defined; and in fact in many cases there are algorithms which

convert a logical description into an automaton that describes exactly the

same extension (Büchi, 1960; Thomas, 1997; Engelfriet and Hoogeboom,

2001).

We begin with a simple automaton, the finite-state acceptor. It is an
intensional description with a well-defined extension. As a matter of fact,

3It is true that the GEN function in the Albro’s, Karttunen’s, and Riggle’s methods is
not exactly the same as the one assumed in Correspondence Theory (McCarthy and Prince,
1995), but it is instructive to understand why.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.4. COMPUTATIONAL THEORY OF LANGUAGE 17

it is a precise, finite description of a potentially infinite set of strings.

A finite-state acceptor contains a finite set of states. We give the states

names so we can talk about them; for instance they are often indexed

with numbers. Some states are designated ‘start’ states. Some states are

designated ‘accepting’ states. (States can be both ‘start’ and ‘accepting’

states.) Transitions lead from one state to another; they are labeled with

letters from some alphabet.

So a finite-state acceptor is a finitely-sized collection of states and

transitions. What is its extension? Well the extension is defined as follows.

Informally, a word w is accepted/generated/recognized by a finite-state
acceptor A if there is a path along the transitions of A which begins in a
start state of A, which ends in a final state of A, and which spells out w
exactly.

As an example, consider Figure 1.3, which shows the finite-state accep-

tor for the generalization in (1.1) that word-final vowels are prohibited.

Per convention, the start state is designated by the unanchored incoming

arrow and final states are marked with a double perimeter. The word nok

0 1a o

n

k

nk

a

o

Figure 1.3: A finite state acceptor for the generalization “Word final vowels

are prohibited.” A simple alphabet {n,k,a,o} is assumed.

is generated by this machine since there is a path beginning in a start state

and ending in a final state which spells it out. This path is shown below.

Input: n o k

States: 0 → 1 → 0 → 1

A minute of inspection reveals that every path for every word which ends

in a vowel ends in state 0, which is not an accepting state. But every path

for every word which does not end in a vowel ends in state 1, which is

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

18 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

accepting. Algorithms which solve membership problems for finite-state

acceptors are well understood (Kozen, 1997; Hopcroft et al., 2006; Sipser,

2012).

Finite-state automata are not limited to acceptors. String-to-string

functions can be described with automata that are called transducers.
These are acceptors whose labels have been augmented with an additional

coordinate. Instead of a single symbol, Labels are now symbols paired with

strings. Figure 1.4 shows the finite-state transducer for the generalization

that word-final vowels delete. As before, valid paths through this machine

(those that begin in start states and end in accepting states) spell out input

words and the output words they map to. In the figure, the colon separates

the left coordinate (input) from the right coordinate (output). The symbol

λ denotes the empty string. To illustrate, consider the path which shows

0 1

a:a
o:o
n:n
k:k

n:n

k:k

a:λ

o:λ

Figure 1.4: A finite state trasnsducer for the generalization “Word final

vowels delete.” A simple alphabet {n,k,a,o} is assumed.

that the output of nako is nak.

Input: n a k o

States: 0 → 0 → 0 → 0 → 1

Output: n a k λ

As with the membership problem and finite-state acceptors, there are

algorithms which solve the generation and recognition problems for finite-

state transducers.

There are some interesting things to observe about the finite-state

transducer in Figure 1.4. The first is that it is non-deterministic. This

means for a given input, there may be more than one path. For instance,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.4. COMPUTATIONAL THEORY OF LANGUAGE 19

the input /kon/ maps to [kon], and there are two paths that spell it out.

But only one is valid: the one that reads and writes n and moves from state
0 to state 1.4

Another point is that the transducer in Figure 1.4 maps the input word

/nakao/ to [naka]. As such, this machine is a formal description of the

extension of the rule V −→ ∅ / # applying simultaneously. In OT, if

Final-C outranks Max, then the output would be nak with the last two

vowels deleting. With rules, this could be accomplished by applying the

aforementioned rule right-to-left. The finite-state transducer shown in

Figure 1.5 realizes this mapping. For readability, distinct transitions with

the same origin and destination are shown as multiple labels on a single

arrow.

0 1

2

3a:a
o:o

a:λ
o:λ

n:n
k:k

a:λ
o:λ

n:n
k:k

a:a
o:o

n:n
k:k

a:a
o:o

a:λ
o:λ

Figure 1.5: A finite state transducer for the generalization “Strings of

vowels word-finally delete.” A simple alphabet {n,k,a,o} is assumed.

Transducers can also map strings to numbers. The simple one shown in

Figure 1.6 counts the number of os in a word. The idea here is that instead

of combining the outputs of valid paths with concatenation as for strings,

they are combined with addition. Below is an example of the only valid

path for the word naoko which would be mapped to 2.

4Non-determinism is one way optionality can be handled with finite-state transducers.
If state 0 was also an accepting state then there would be two valid paths for the input
/noko/. One path would yield the output [noko] and the other the output [nak].

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

0

a:0
o:1
n:0
k:0

Figure 1.6: A finite state transducer which counts the number of os in

words. A simple alphabet {n,k,a,o} is assumed.

Input: n a o k o

States: A → A → A → A → A → A

Output: 0 0 1 0 1

This is the approach used by Riggle (2004) to define markedness and

faithfulness constraints in OT. There are many generalizations of this kind

available to transducers made possible by the study of semirings (Roark

and Sproat, 2007; Droste and Kuich, 2009; Goodman, 1999). Semirings

are discussed in more detail in Chapter 4. However the main point I wish

to express is that the extension of the transducers discussed so far are all

precisely defined and the corresponding generation problems solvable.

What of the recognition problem? Another important advantage of

finite-state automata is that they are invertible. Consequently, a solution
to the generation problem entails a solution to the recognition problem.

Given a string nak, the transducer can tell you that it is the output of the

each of the following inputs: nak, naka, nako.

Nonetheless, despite the advantages well-defined extensions bring, there

are some shortcomings to using finite-state automata for phonological

analyses. One is that letters of the alphabet are treated atomically. For

instance, there is no sense in which the symbols [p,t,k] share any properties.

It remains unclear how to incorporate phonological features and natural

classes in a natural way into these machines. The most common way seems

to just group the letters together that behave together as I have done in the

examples above. While this is certainly sufficiently expressive, it may not

be completely satisfying. We want our intensional descriptions to somehow

speak directly to the descriptive ones. In the case of “Word final vowels

are prohibited” we want to be able to express the relevant natural class

directly.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.4. COMPUTATIONAL THEORY OF LANGUAGE 21

Another drawback is that as the generalizations become more complex,

so do the finite-state automata. They become spaghetti-like and difficult

to read. This drawback is mitigated, however, in a couple of ways. The

first is that it is very well understood how to combine different finite-state

automata to produce new ones. This allows the generalizations instantiated

by the ‘primitive’ ones to persist to some degree in the complex ones.

For instance, it is straightforward to construct a finite-state acceptor that

generates exactly the intersection of two infinite sets of strings which are

generated by two acceptors. (Heinz (2014) provides concrete examples in

the domain of stress.) Similarly, it is straightforward to construct a finite-

state transducer that generates the composition of two functions which

are generated by finite-state transducers (Roark and Sproat, 2007; Gorman

and Sproat, 2021). In this way, more complex finite-state automata can

be constructed from simpler parts, much in the same way more complex

phonological grammars are built up from identifying generalizations that

interact in some manner.

A third problem is that even simple machines are not easy to write in text.

They are often pictured as diagrams, and in the same way it can be tiring to

read them, it can be tiring to draw them as well. This problem is mitigated

in a couple of ways. First, there are helpful software packages which can

automatically draw machines, like GraphViz.5 Some researchers use tables

or matrix notation, others use types of regular expressions (Beesley and

Karttunen, 2003; Hulden, 2009b; Lambert, 2022), and still others use logic.

In this book, we are going to use logic and not automata to represent

linguistic generalizations. There are several reasons for this. Most im-

portantly, like automata, the extensions of logical formula are precisely

defined. Another key reason is that the representations are flexible. We can

represent words exactly as any phonologist would want. As this book will

show, phonological features, syllable structures, autosegmental representa-

tions, hand shapes, phonetic information, and a host of as-yet-unconsidered

possibilities are available and directly representable with logic. Thirdly, as

this book will show, the combination of logical power and representation

provides a natural way to entertain distinct theories of phonology and com-

pare them. Additionally, there is a literature showing how logical formula

can be translated into automata which are equivalent in the sense that

they solve the same membership, generation, and recognition problems.

5https://graphviz.org.

September 23, 2024 © Jeffrey Heinz

https://graphviz.org

D
R
A
F
T

22 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

While this literature does not address every phonological representation

proposed, the basic analytical methods which show how this can be done

for strings and trees are there. As long as the phonological representations

the analyst uses can be encoded as strings, the translations to automata are

possible.

Finally, logic is not going anywhere. This is very important. If a linguist

describes a generalization with logical experessions using the representa-

tions they prefer, they can be guaranteed that people in will be able to

read their description and understand it hundreds of years later.

In short, logical formula have all of the advantages, and none of the

disadvantages, of automata.

1.5 Doing Computational Phonology

How does one do computational generative phonology? This book provides

an answer.

In the first part, logical foundations and model theory are presented

in the context of strings. It is explained how model theory allows one to

precisely formulate different representations of words and phrases. It is

explained how the primitive elements in these representations would have

ontological status in the theory. It is also explained how logical expressions

can be used to define constraints to delimit possible representations in words

and phrases, and how they can also define possible transformations which

map one representation to another. It is explained how weighted logical
expressions allow one to express a variety of linguistic generalizations,

including gradient ones, if desired. These definitions and techniques are

illustrated with examples drawn from phonology, as well as examples

showing the terrific expressivity of the framework. The first part of this

books opens a large window into the techniques and possibilties.

In the second part, these techniques are applied to the kinds of phonol-

ogy problems one finds in standard textbooks on phonology. The focus

here is descriptive in the following sense. Linguists marshall arguments

from a collection of linguistic forms they have before them in favor of par-

ticular linguistic generalizations. These arguments are presented and then

the linguistic generalizations are formalized in terms of model-theoretic

representations and logic. The chapters are short, each dealing with one

relatively small and straightforward phonological problem. These exam-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

1.5. DOING COMPUTATIONAL PHONOLOGY 23

ples serve as models for how analysis of other small and straightforward

phonological problems can be analyzed within CGP.

In the third part, the chapters address a variety of theoretical issues

addressing both aspects of representation and computional power. Sebas-

tian shows how to incorporate insights from phonetically-based phonology

into CGP representationally. Hwangbo shows how representing vowel

height in terms of degrees of aperture leads to straightforward analysis of

vowel lowering in a language like Danish. Strother-Garcia analyzes syllable

structure and the sonority sequencing principle. Lambert and Rogers show

how the stress patterns in the world’s languages can be understood as a

particular combination of primitive constraints. They further character-

izes the complexity of those constraints. Lindell and Chandlee provide a

logical characterization of Input Strictly Local functions, which Chandlee

showed earlier to well-characterize an important natural class of phonolog-

ical transformations. Dolatian shows that the Raimy-style linearization is

computationally actually very complex. Having identified the source of

complexity, he suggests way to mitigate it. Payne provides similar results

for the comptuational complexity of GEN. Vu shows how transformations

can also be expressed as constraints on correspondence structures. These

chapters are but a small sample of the kinds of research questions and

investigations that can be addressed with the tools introduced in part one.

TODO: update these mentions and add mentions to Rawski’s chapter,
Nelson’s chapter.
Computational generative phonology is simple. It is not hard. We be-

lieve theories of generative phonology developed in this tradition will lead

to advances in our understanding of the nature of phonological grammars

and the minds which know them.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

24 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 2

Representations, Models, and
Constraints

Jeffrey Heinz and James Rogers

2.1 Logic and Constraints in Phonology

In this chapter, we show how to use logic and model-theoretic represen-

tations to define well-formedness condtitions over phonological repre-

sentations (such as markedness constraints). The power in this kind of

computational analysis comes from the framework’s flexibility in both the

kind of logic used and the choice of representation.

As will be explained, these choices provide a “Constraint Definition

Language” (CDL) in the sense of (de Lacy, 2011). A CDL is a language

with a formal syntax and semantics, with which one can precisely define

constraints and with which one can interpret those constraints with respect

to representations. Each CDL has consequences for typology, learnability,

and the psychology of language, which can be carefully studied. Con-

versely, psychological, typological, and learnability considerations provide

evidence for the computational nature of phonological generalizations on

well-formedness; that is for the choices we can make.

This is not the first effort to apply logic to phonological theory. In fact,

there is considerable history. A notable turning point occurred in the early

1990s with the developments of two theories: Declarative Phonology and

Optimality Theory.

25

D
R
A
F
T

26 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Declarative Phonology made explicit use of logical statements in de-

scribing the phonology of a language. For instance (Scobbie et al., 1996,

p. 688) expressed a general principle of theories of syllables which prohibit

ambisyllabicity this way: ∀x¬(onset(x) ∧ coda(x)), which in English reads
“For all segments x, it is not the case that x is both an onset and a coda.”
In Optimality Theory, first-order logic was often used implicitly to

define constraints. For example, the definition of the constraint MAX-IO

in OT given by McCarthy and Prince (1995, p. 16) is “Every segment of

the input has a correspondent in the output.” On page 14, they define the

correspondence relation: “Given two strings S1 and S2, correspondence is a

relation R from the elements of S1 to those of S2. Elements α ∈S1 and β ∈S2
are referred to as correspondents of one another when αRβ.” As will be
clear by the end of this chapter, this definition of MAX-IO is essentially a

statement in First Order Logic: For all α ∈S1 there exists β ∈S2 such that
αRβ.
Unlike Optimality Theory, the CDLs introduced in this chapter are

assumed to provide language-specific, inviolable constraints. For a rep-

resentation to be well-formed it must not violate any constraint. This is

a property the CDLs in this chapter have in common with Declarative

Phonology. Scobbie et al. explain:

The actual model of constraint interaction adopted is maximally

simple: the declarative model. In such a model, all constraints

must be satisfied. The procedural order in which constraints

are checked (or equivalently, in which they apply) is not part

of the grammar, but part of an implementation of the grammar

(as a parser, say) which cannot affect grammaticality. (Scobbie

et al., 1996, p. 692)

What Scobbie et al. are emphasizing is that logical specifications of gram-

mar specify what is being computed as opposed to how it is being computed.

We agree with Scobbie et al. (1996) that this is an attractive property of

logical languages.

While this chapter, and others in this book, assume the constraints are

language-specific and inviolable, it is a mistake to conclude that this line of

work only applies to grammars that make binary distinctions between well-

formed and ill-formed structures. In fact, the model-theoretic and logical

framework advocated here can also describe gradient well-formedness

with weighted logical languages. These allow one to specify what is

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.2. CHAPTER OUTLINE 27

being computed when linguistic representations are assigned numbers

of violations of a constraint, as in the case in Optimality Theory when

evaluating candidates, or real numbers, as in the case of assigning some

probabilities to structures (Droste and Gastin, 2009). This chapter does

not discuss weighted logical languages, but they are reviewed with some

examples in Chapter 4.

2.2 Chapter Outline

In the remainder of this chapter, we informally introduce model-theoretic

representations of strings and different logics. We focus on strings because

they are widely used and well-understood. Most importantly, they are suf-

ficient to illustrate how different CDLs can be defined and how these CDLs

have consequences for psychological and typological aspects of language

as well as learnability. Several chapters later in the book provide concrete

examples of non-string representations motivated by phonological theory.

Add forward references to autosegmental representations (Chapter
XYZ), syllable structure (Chapter XYZ), morphological representations,
gradient phonetic representations, etc.)

A formal, mathematical treatment of the representations and logic is

given in Chapter 6. Concepts and definitions introduced here are presented

there precisely and unambiguously. Some readers may benefit by consulting

this chapter in parallel with that one.

Essentially, this chapter compares several CDLs by varying the repre-

sentation of words (called models) and the logical language (First Order vs

Monadic Second Order). The models we consider vary along two dimen-

sions: the representation of speech sounds (segments vs feature bundles),

and the representation of order (successor vs precedence).

The first model we introduce is the canonical word model, which is

known as the successor model. This is followed by an informal treatment

of First-Order (FO) logic. This yields the first CDL we consider (FO with

successor) and we show how to define a constraint like *NT—voiceless

obstruents are prohibited from occurring immediately after nasals—in this

CDL.

Next we alter the successor model so that the representations make use

of phonological features. This yields another CDL (FO with successor and

features). We comment on some notable points of comparison between the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

28 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

two CDLs, again using the *NT constraint.

The narrative continues by discussing one typological weakness of the

aforementioned CDLs: they are unable to describe long-distance constraints

which are arguably part of the phonological competence of speakers of

some languages. This provides some motivation for a CDL defined in terms

of a more powerful logic, Monadic Second Order (MSO) logic. This CDL

we call ‘MSO with successor and features,’ and we explain how it is able to

define such long-distance constraints. The key is that with MSO logic it is

possible to deduce that one element in a string precedes another element, no

matter how much later the second element occurs. The availability of the

precedence relation makes it possible to define long-distance constraints.

We continue to evaluate the MSO with successor CDL from a typological

perspective. We argue that there are significant classes of constraints

definable in this CDL that are bizarre from a phonological perspective. An

example is the constraint which forbids words to have evenly many nasals

(*Even-N). In other words, we motivate seeking a more restrictive CDL

which is still capable of describing local and long-distance constraints in

phonology.

One solution we consider is to make the precedence order a primitive

relation of the representation. This model of words is called the precedence

model, which stands in contrast to the successor model. We show how the

CDL “FO with precedence and features” is also able to describe both local

and long-distance constraints of the kind found in the phonologies of the

world’s languages and excludes (some) of the bizarre constraints that the

CDL ‘MSO with successor and features’ is able to describe.

Finally, the chapter concludes with a high-level discussion seeking to

emphasize the following points. First, there is a tradeoff between representa-

tions and logical power. Second, as mentioned, the choice of representation

and the choice of logic has consequences for typology, psychological reality,

memory, and learnability. Third, the representations and logics discussed

in this chapter are only the tip of the iceberg. Readers undoubtedly will

have asked themselves “What about this possible representation?” and

“Why don’t we consider this variety of logic?” Later chapters in this book

address some such questions. Comprehensively answering such questions,

however, is beyond the scope of this book. But it is not beyond the scope

of phonological theory. If some readers of this book pose and answer such

questions, then this book will have succeeded in its goals.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.3. THE SUCCESSOR MODEL 29

2.3 The Successor Model

This section introduces the central ideas of model-theoretic representations

with a concrete example. The concrete example comes from the “successor”

model, which is one of the canonical model-theoretic representations for

strings.

Model-theoretic representations provide a uniform framework for rep-

resenting all kinds of objects. Here the objects under study are strings. We

need to be clear about two things: what the objects are, and what counts

as a successful model-theoretic representation of a set of objects.

Strings are sequences of events. If we are talking about words, the

events could be given as speech sounds from the International Phonetic

Alphabet, or as gestural events in speech or sign, or as perceptual landmarks

in auditory space or visual space. In this chapter, we consider models of

strings over the following alphabet of IPA symbols: a, b, d, e, g, i, k, l, m, n,

o, p, r, s, t, u, z. Limiting this alphabet in this way is pedagogically useful,

and it will be clear that it can be expanded as needed for one’s purpose.

In general, the set of alphabetic symbols is denoted Σ and Σ∗ denotes the

set of all possible sequences of finite length that can be constructed from

symbols in Σ.
A successful model theoretic-representation of a set of objects must

provide a representation for each object and must provide distinct repre-

sentations for distinct objects. It may be strange to ask the question “How

can we represent strings?” After all if we are talking about the string sans,

isn’t sans itself a representation of it? It is, but the information carried in

such representations is implicit. Model-theoretic representations make the

information explicit.

Model-theoretic representations for objects of finite size like strings are

structures which contain two parts. The first is a finite set of elements

called the domain, written D. The second is a finite set of relations
R = {R1, R2, . . . Rn}. The relations provide information about the domain
elements and how those elements relate to each other. These relations

constitute the signature of the model. In this book, a model-theoretic
representation with signature R is called an R-structure, and it is written
like this: 〈D | R1, R2, . . . Rn〉.
We first show a model-theoretic representation of a word and then we

explain it. While this may seem backwards to some, it seems to work better

pedagogically. It can be helpful to refer to the end-product as one goes

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

30 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

about explaining how one got there.

Figure 2.1 shows the successor structure for the word sans in addition

to a graphical diagram of it on its right. The graphical diagram puts

the domain elements in circles. Edges labeled with / indicate the binary
relation called “successor.” Finally, the unary relations, one for each symbol

in the alphabet, are shown in typewriter font above the domain elements

that belong to them. Throughout this book we will often use graphical

diagrams instead of displaying the literal mathematical representation on

the left. The order of the relations in the signature is fixed but it is also

arbitrary.

Mtent

= 〈D | s, a, n, b, d, . . . , z, / 〉
=

〈
{1, 2, 3, 4} | {1, 4}, {2}, {3},
∅,∅, . . .∅,
{(1, 2), (2, 3), (3, 4)}

〉 1 2 3 4

s a n s

/ / /

Figure 2.1: At left, the successor model of the word sans. At right, a

graphical diagram of this model.

In the case of strings, the number of domain elements matches the

length of the string. So a model-theoretic representation of a word like

sans would have a domain with four elements, one for each event in the

sequence. We can represent these domain elements with the suits in a

deck of cards {♥,♦,♣,♠} or we could use numbers {1, 2, 3, 4} as we did in
Figure 2.1. We will usually use numbers because as strings get longer we

can always find new numbers. However, keep in mind that the numbers

are just names of elements in the model in the same way the suits would

have been. They get their meaning from the relationships they stand in,

not from anything inherent in the numbers themselves.

In the signature for successor structures, for each symbol b in the alpha-
bet, there is a unary relation b. In Figure 2.1, the alphabet is the limited
set of IPA symbols mentioned previously. We use the typewriter font to

distinguish the relations from the symbols. We write (b)b∈Σ to mean this
finite set of relations. For each b ∈ Σ, if a domain element belongs to the
unary relation b then it means this element has the property of being b.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.3. THE SUCCESSOR MODEL 31

Regarding the word sans, the relational structure shown in Figure 2.1 in-

dicates that there are four distinct elements. Two of them belong to s; a
different element belongs to a; and the remaining element belongs to n.
For every symbol b ∈ Σ− {s, a, n}, the relation b is empty. For all x ∈ D
and all b ∈ Σ, when we write x ∈ b or b(x) we mean that domain element
x belongs to the unary relation b.
The signature of the successor model also includes a single binary

relation called “successor”. A domain element x indicating some event
stands in the successor relation to y if y corresponds to the event which is
in fact the next event after x. In this book, we use the symbol / to indicate
the successor relation. For the word sans, if 2 ∈ Ra and 3 ∈ Rn then (2, 3)
would be in the successor relation. There are at least three common ways to

write the fact that domain elements 2 and 3 stand in the successor relation:
(2, 3) ∈ / (set notation), /(2, 3) (prefix notation), and 2 / 3 (infix notation).

The signature R for the successor model is thus {(b)b∈Σ, / } and R-
structures would have the form 〈D | (b)b∈Σ, / 〉. It is also customary to use
salient aspects of the signature to refer to the signature itself. In the case

of the successor model, it is the successor relation that plays a critical

role. For this reason, we will refer to structures with the aforementioned

signature R as /-structures.

The successor model is not the only way to represent words. From a

phonological perspective, it is arguably a strange model. After all, there are

no phonological features! We will consider more phonologically natural

models of words below.

It is easy to see that there is a general method for constructing a unique

model for each logically possible string. Given a string w of length n we can
always construct a successor model for it as follows. Since w is a sequence
of n symbols, we let w = b1b2 . . . bn. Then set the domain D = {1, 2, . . . n}.
For each symbol b ∈ Σ and i between 1 and n inclusive, i ∈ b if and only
if bi = b. And finally, for each i between 1 and n − 1 inclusive, let the
only elements of the successor relation be (i, i+ 1).1 This is summarized in
Table 2.1.

This construction guarantees the soundness of the successor model: each

string has one structure and distinct strings will have distinct structures.

It is also important to recognize that removing any one of the unary or

binary relations will result in a signature which does not guarantee that

1Here we are taking advantage of the numeric interpretation of the domain elements.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

32 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

D
def
= {1, 2, . . . n}

b def
= {i ∈ D | bi = b} for each unary relation b

/
def
= {(i, i+ 1) ⊆ D ×D}

Table 2.1: Creating a successor model for any word w = b1b2 . . . bn.

models of distinct strings are distinct.

Model-theoretic representations provide an ontology and a vocabulary

for talking about objects. They provide a primitive set of facts from which

we can reason. For instance in the word random, we know that the m occurs

sometime after the n. However this fact is not immediately available from

the successor model. It can be deduced, but that deduction requires some

computation. Measuring the cost of such computations is but one facet of

what model theory accomplishes. On the other hand, the successor model

makes immediately available the information that d occurs immediately

after the n. As will hopefully be clear by the end of this chapter, this

distinction can shed light on differences between local and long-distance

constraints in phonology.

From a psychological perspective, the primitive set of facts a model-

theoretic representation encodes about a word can be thought of as primi-

tive psychological units. In its strongest form, the model-theoretic repre-

sentation of words as embodied in its signature makes a concrete claim

about the psychological reality of the ways words are represented mentally.

2.4 First Order Logic

Now that the models provide explicit representations, what do we do with

them? Logic provides a language for talking about these representations.

First Order logic is a well-understood logical language which we introduce

informally here. For those already familiar with FO logic, you will see that

we take advantage of things like prenex normal form without discussion.2

In addition to the Boolean connectives such as conjunction, disjunction,

implication, and negation, FO logic also includes existential and universal

2Readers are referred to Keisler and Robbin (1996); Enderton (2001) and Hedman
(2004) for complete treatments of first order logic including prenex normal form.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 33

quantification over variables that range over domain elements. These vari-

ables are called first order variables. Apart from these logical connectives
and quantified variables, the basic vocabulary of FO logic comes from the

relations in the signature. Thus each model-theoretic representation supplies

essential ingredients for the logical language. Table 2.2 summarizes the

vocabulary of FO logic with an arbitrary model 〈D | R1, R2, . . . Rn〉. The
expressions in the category “Model Vocabulary” in Table 2.2 are also called

atomic formulas because they are the primitive terms from which larger
logical expressions are built. In other words, not only can a signature R
give rise to model theoretic representations of a class of objects, but a

signature R also gives rise to a first-order logical language. This language
is made up of the expressions that can be built from the model vocabulary

and the logical connectives and quantifiers in a syntactically valid way.

We call this logical language FO(R).
Since Chapter 6 defines FO logic formally, here we introduce the concept

of valid sentences and formulas of FO logic ostensively. Below we give

examples of three types of expressions: sentences of FO logic, formulas

of FO logic, and syntactically ill-formed expressions. Sentences of FO

logic are complete, syntactically valid sentences that can be interpreted

with respect to a signature. Formulas of FO logic are syntactically valid

expressions, but are not complete in the sense that they contain variables

which are not bound to anything. The sentences and formulas that belong

to a logical language FO(R) will be called R-sentences and R-formulas,
respectively. The syntactically ill-formed expressions demonstrate common

ways expressions are incorrectly stated.

Example 1 (Sentences of FO(/). Below are five /-sentences of FO logic
with English translations below.3

1. Sentences of FO logic.

(a) ∃x, y, z (¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z))
(b) ∃x, y (n(x) ∧ t(y) ∧ x / y)
(c) ¬∃x, y (n(x) ∧ t(y) ∧ x / y)
(d) ∀x, y (¬(n(x) ∧ t(y) ∧ x / y))
(e) ∀x∃y (n(x) → (t(y) ∧ x / y))

3In the examples, we use the word ‘element’ to refer to domain elements. However,
since we are talking about strings, we could have equally well used words like ‘event’ or
‘position’.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

34 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Boolean Values

true true

> true

false false

⊥ false

Boolean Connectives

∧ conjunction

∨ disjunction

¬ negation

→ implication

↔ biconditional

Syntactic Elements

(left parentheses

) right parentheses

, comma for separating variables

Variables, Quantifiers, and Equality

x, y, z variables which range over elements of the domain

∃ existential quantifier

∀ universal quantifier

= equality between variables

Model Vocabulary

R(x) for each unary relation R in {R1, R2, . . . Rn}
R(x, y) for each binary relation R in {R1, R2, . . . Rn}
xRy for each binary relation R in {R1, R2, . . . Rn}
…

R(x1, x2 . . . xm) for each m-ary relation R in {R1, R2, . . . Rm}

Table 2.2: Symbols and their meaning in FO logic. Certain sequences of

these symbols are valid FO sentences and formulas. Note binary relations

are often written in two ways.

2. Literal English translation.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 35

• There exist elements x, y, z such that x is not y, x is not z, and y
is not z.

• There exist elements x, y such that x satisfies property n, y satis-
fies property t, and y is the successor of x.

• There does not exist elements x, y such that x satisfies property
n, y satisfies property t, and y is the successor of x.

• For all elements x, y it is not the case that x satisfies property n,
y satisfies property t, and y is the successor of x.

• For all elements x, there is element y such that if x satisfies
property n then y satisfies property t and y is the successor of x.

3. English translation (in terms of the models).

(a) There are three distinct domain elements.
(b) There are two domain elements in the successor relation; the

former has the property of being n; the latter has the property

of being t.
(c) It is not the case that there exists two domain elements in the

successor relation of which the former has the property of being

n and the latter has the property of being t.
(d) For every pair of domain elements that stand in the successor

relation, it is not the case that the former has the property of

being n and the latter has the property of being t.
(e) For all domain element which have the property of being n, it

is succeeded by a domain element which has the property of

being t.

4. English translation (in terms of the strings the models represent).

(a) There are at least three symbols.
(b) There is a substring nt.
(c) There is no substring nt.
(d) There is no substring nt.
(e) Every n is immediately followed by t.

R-sentences of FO logic are interpreted with respect to R-structures.
A structure for which the sentence is true are said to satisfy the sentence.
If a structure (or model) M of string w satisfies a sentence φ we write

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

36 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Mw |= φ. Consequently, every FO sentence φ divides the objects being
modeled into two classes: those that satisfy φ and those that do not. In
this way, logical sentences define constraints. The strings whose models
satisfy the sentence do not violate the constraint; strings whose models do

not satisfy the constraint do violate it.

Table 2.3 provides examples of strings whose models satisfy the formulas

in Example 1 and examples of strings whose models do not. An important

φ Mw |= φ Mw 6|= φ

(a) too, sans, ttt to, a

(b) sant, rent, ntnt ten, to, phobia

(c) ten, to, phobia sant, rent, ntnt

(d) ten, to, phobia sant, rent, ntnt

(e) rent, antler ten, nantucket

Table 2.3: Some strings whose models satisfy the formulas in Example 1

and some whose models do not.

feature of FO logic is that there are algorithmic solutions to the problem of

deciding whether a given R-structure satisfies a given R-sentence. This
algorithm works because the syntactic rules that build up larger sentences

from smaller ones have clear semantic interpretations with respect to

the structure under consideration. In short, it is an unambiguous and

compositional system. For instance,M |= φ ∧ ψ if and only ifM |= φ and
M |= ψ. The interpretation of quantifiers is discussed after introducing
formulas below.

R-formulas of FO logic are incomplete sentences in the sense that
they contain variables that are not bound. A variable is bound only if
it is has been introduced with a quantifier and is within that quantifier’s

scope. Variables that are not bound are called free. R-formulas are only
interpretable with respect to an R-structureM if the free variables are

assigned some interpretation as elements of the domain ofM.

Example 2 (Formulas of FO(/)). 1. Formulas of FO logic.

(a) n(x) ∨ m(x) ∨ N(x)
(b) ∃y (n(x) ∧ t(y) ∧ x / y)
(c) ¬∃y (x / y)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 37

(d) ¬∃y (y / x)
(e) ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z)
(f) x / y ∧ y / z

2. English translation.

(a) x has the property of being n, m, or N.
(b) x has the property of being n and coming immediately before
an element which has the property of being t.

(c) There is no element which succeeds x.
(d) There is no element which x succeeds.
(e) x, y and z are distinct.
(f) x is succeeded succeeded by y which is succeeded by z.

The difference between formulas and sentences is that sentences admit

no free variables. Since sentences have no free variables, they must begin

with quantifiers. Because formulas can only be interpreted in terms of

one or more un-instantiated variables, formulas are often used to define

predicates. Predicates are essentially abbreviations for formulas with the
unbound variables serving as parameters. Below we repeat the formulas

from above, but use them to define new predicates. We also write predicates

in typewriter font, but with a very light gray highlight to distinguish

them from atomic formulas.

nasal (x)
def
= n(x) ∨ m(x) ∨ N(x) (2.1)

nt (x)
def
= ∃y (n(x) ∧ t(y) ∧ x / y) (2.2)

last (x)
def
= ¬∃y (x / y) (2.3)

first (x)
def
= ¬∃y (y / x) (2.4)

distinct3 (x, y, z)
def
= ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z) (2.5)

string3 (x, y, z)
def
= x / y ∧ y / z (2.6)

These predicates can then be used to define new expressions. For exam-

ple, the sentence ∀x(¬ nt (x)) is equivalent to (1d) in Example 1 above. In
the same way that programmers write functions which encapsulate snippets

of often-used programming code, predicates generally help writing and

reading complex logical expressions.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

38 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Determining whether a structure satisfies a sentence is compositional.

It also depends on the assignment of variables to elements in the model’s
domain. For instance, to determine whetherM satisfies φ = ∃x(ψ(x)), we
must find an element of the domain ofM, which if assigned to x, has the
consequence that ψ evaluates to true. If no such element exists, thenM
does not satisfy φ. Similarly,M satisfies φ = ∀x(ψ(x)) if and only if every
element of the domainM, when assigned to x, results in ψ evaluating to
true. The formal semantics of FO logic is given in Chapter 6.
Finally we give some examples of syntactically ill-formed sequences.

The following expressions are junk; they are not interpretable at all.

Example 3 (Syntactically ill-formed sequences).

1. Syntactically ill-formed sequences.

(a) x∃)x(
(b) ∀∃ (n ∨ t)
(c) ¬∃(n / t)

2. Comments.

(a) Quantifiers always introduce variables to their left and paren-

theses are used normally.

(b) No quantifier can be introduced without a variable and n-ary
relations from the model vocabulary must always include n
variables.

(c) Many beginning students make this sort of error when trying

to express a logical sentence which forbids nt sequences. This

expression breaks the same rules as the one before it.

We conclude this section by providing an example of a logical sentence

defining a constraint which bans voiceless obstruents after nasals. This is

a constraint in the literature often abbreviated *NT (Pater, 1999). Since

the model signature does not include relations for concepts like nasals and

voiceless consonants, we first define predicates for these notions.

Example 4 (The constraint *NT defined under the FOwith successor model).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.5. WORD MODELS WITH PHONOLOGICAL FEATURES 39

nasal (x)
def
= n(x) ∨ m(x) (2.7)

voiceless (x)
def
= p(x) ∨ t(x) ∨ k(x) ∨ s(x) (2.8)

*NT def
= ¬∃x, y(x / y ∧ nasal (x) ∧ voiceless (y)) (2.9)

It is easy to see that /-structures of words like sans and lampoon do

not satisfy *NT but /-structures of words like ten and moon do. For ex-

ample, in the /-structure of sans, the expression ∃x, y(x / y ∧ nasal (x) ∧

voiceless (y)) is true when x = 3 and y = 4. Hence, *NT evaluates
to false. On the other hand, in the /-structure of the word moon, every

value assigned x and y results in the sentence ∃x, y(x / y ∧ nasal (x) ∧

voiceless (y)) evaluating to false. Hence the sentence *NT evaluates

to true and soMmoon |= *NT .
This section has presented the first CDL: FO with successor, also written

as FO(/). The FO with successor model has been studied carefully and it
is known precisely what kinds of constraints can and cannot be expressed

with this CDL (Thomas, 1982), as will be discussed further below.

2.5 Word Models with Phonological Features

One way in which the successor model above is strange from a phono-

logical perspective is its absence of phonological features. The properties

associated with the elements of the domain are singular, atomic segments.

However, nothing in model theory itself prohibits domain elements from

having more than one property. It is a consequence of the construction in

Table 2.1 that each domain element will satisfy exactly one of the unary

relations b, no more and no less. We can formalize this statement of the
successor model in Remark 1 as follows.

Remark 1 (The successor model entails disjoint unary relations). For all

/-structuresM = 〈D | (b)b∈Σ, / 〉, and for all a, b ∈ (b)b∈Σ, it is the case
that a ∩ b = ∅.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

40 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

It is possible to design different models of words, where the unary rela-

tions do not represent segments like a, b, or n but phonetic or phonological

features such as vocalic, labial, or nasal. Crucially, these models would not

entail disjoint unary relations: a domain element could be both voiced and

labial for instance.

In this part of the chapter, we give one example of such a model. There

are many others, as many as there are theories of phonological features.

The model we give here is primarily for pedagogical reasons; we are not

stating particular beliefs or arguments regarding the nature of feature

systems. We are only choosing a simple system that illustrates some key

points.

We set up a feature system with privative features for the simple
alphabet Σ discussed earlier a, b, d, e, g, h, i, k, l, m, n, o, p, r, s, t, u,

z. The use of privative features contrasts with the typical assumption in

phonological theory that features are binary (Hayes, 2009; Odden, 2014;
Bale and Reiss, 2018). We choose not to pick a minimal nor maximal set of

features for distinguishing this set. Instead we choose somewhat arbitrarily

a middle ground based on standard descriptive phonetic terms used for

describing the manner, place and laryngeal quality in articulating sounds.

We call this model “the successor model with features.” Its signature, which

we denote as (feat,/), is shown below.

{vocalic, low, high, front, stop, fricative, nasal, lateral,
rhotic, voiced, voiceless, labial, coronal, dorsal, / } (2.10)

This contrasts with the successor model in the previous section, which

we will call “the successor model without features,” or sometimes “the

successor model with letters.” Table 2.4 shows how to construct a (feat,/)-
structure for any string in Σ∗. Again this model ensures that distinct strings

from Σ∗ have different models and that every string has some model.

As an example, Figure 2.2 shows the (feat,/)-structure of the word sans.

The successor model with features contrasts sharply with the successor

model without features in an important way. To see how, first consider the

constraint *NT. Under the successor model with features, this constraint

would be defined as in Equation 2.11

Example 5 (The constraint *NT defined under the FO with successor model

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.5. WORD MODELS WITH PHONOLOGICAL FEATURES 41

D
def
= {1, 2, . . . n}

vocalic def
= {i ∈ D | ai ∈ {a, e, i, o, u}}

low def
= {i ∈ D | ai = a}

high def
= {i ∈ D | ai ∈ {i, u}}

front def
= {i ∈ D | ai ∈ {e, i}}

stop def
= {i ∈ D | ai ∈ {b, d, g, k, p, t}}

fricative def
= {i ∈ D | ai ∈ {h, s, z}}

nasal def
= {i ∈ D | ai ∈ {m,n}}

lateral def
= {i ∈ D | ai = l}

rhotic def
= {i ∈ D | ai = r}

voiced def
= {i ∈ D | ai ∈ {b, d, g, z}}

voiceless def
= {i ∈ D | ai ∈ {k, p, s, t, h}}

labial def
= {i ∈ D | ai ∈ {b, p,m}}

coronal def
= {i ∈ D | ai ∈ {d, s, t, z}}

dorsal def
= {i ∈ D | ai ∈ {g, k}}

/
def
= {(i, i+ 1) | 1 ≤ i < n}

Table 2.4: Creating a successor model with features for any word w =
b1b2 . . . bn.

with features).

*NT def
= ¬∃x, y(x / y ∧ nasal(x) ∧ voiceless(y)) (2.11)

This looks similar to the definition of *NT under the successor model

(Equation 2.7), but there is a critical difference. The predicates above in

Equation 2.11 are atomic formulas and not user-defined predicates as they

are in Equation 2.7.

This is an important ontological difference between these two models.

In the successor model with features there is no primitive representational

concept that corresponds to a sound segment like [t] as there is in the suc-

cessor model without features. Conversely, in the successor model without

features there is no primitive representational concept that corresponds

to a phonological feature like voiceless as there is in the successor model

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

42 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Msans =
〈
{1, 2, 3, 4} |

vocalic = {2},
low = {2},

fricative = {1, 4},
nasal = {3},

voiceless = {1, 4},
coronal = {1, 3, 4},
lateral = ∅

. . .

/ = {(1, 2), (2, 3)

(3, 4)}
〉

1 2 3 4

fricative
coronal

voiceless

vocalic
low

nasal
coronal

fricative
coronal

voiceless
/ / /

Figure 2.2: At left, the successor model with features of the word sans.

Unary relations which equal the empty set are omitted for readability. At

right, a graphical diagram of this model.

with features. Features are derived concepts in the the successor model

without features, and segments are derived concepts in the the successor

model with features.

In the successor model with features we can write user-defined predi-

cates that define properties of domain elements that we can interpret to

mean “being t”.

t (x)
def
= stop(x) ∧ coronal(x) ∧ voiceless(x) (2.12)

Other sound segments would be defined similarly.

One way to put this difference is that in the successor model with

features one can immediately determine whether a domain element is

voiced or not, but in the successor model without features one cannot

immediately determine this fact. Instead one can deduce it by checking the

appropriate user-defined predicate. Likewise, in the successor model with

features one cannot immediately determine whether a domain element is

t or not. With the featural representations, such a fact must be deduced

with a user-defined predicate like the one above.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 43

Also, the fact that such user-defined predicates exist should not be taken

for granted. They exist here because the only logical system discussed so

far is FO. With FO logic, it is possible to define a predicate for any subset of

the alphabet Σ for both successor models with and without features. If the
logical system was restricted in some further way then some user-defined

predicates may not be possible to define. For example, if the logical system

only permitted conjunction and no other Boolean connective then it would

not be possible to define a predicate for voiceless stops in the successor

model without features. This interplay between representations and logical

power with respect to expressivity is an important theme of this chapter.

It will be discussed at length with respect to the successor relation, and

we will return to it in the context of features when restricted logics are

introduced in Chapter 5.

It is a consequence of FO logic that any constraint definable with one of

the successor models discussed so far is definable in the other. This leads to

the conclusion that there are no typological distinctions between a theory

that holds that the right CDL for phonology is one based on First-Order

logic over the successor model with features and a theory that holds the

right CDL for phonology is one based on First-Order logic over the successor

model without features. Both admit exactly the same class of constraints,

with respect to some alphabet Σ.
However, while the two models do not make different typological pre-

dictions, they make different predictions in other ways. This is because

in regard to phonological theory, the model signature is an ontological

commitment to the psychological reality of the model vocabulary. Taken

seriously, the successor model with features says that the mental represen-

tations of words carries only the information shown in Figure 2.2. Thus,

taken seriously, the successor model with features says that the segments

in the word sans are not perceived as such but are instead perceived in

terms of their features. Clever psycholinguistic experiments could bring

evidence to bear on which model more accurately resembles the actual

mental representations of words.

2.6 Monadic Second-Order Logic

This section introduces Monadic Second-Order (MSO) logic. This logic is

strictly more expressive than FO logic. We motivate the discussion of MSO

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

44 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

logic from a linguistic perspective by showing that FO with successor, both

with and without features, is not sufficient to account for long-distance

phonotactic constraints.

What are long-distance phonotactic constraints? Odden (1994) draws

attention to an unbounded nasal assimilation in Kikongo whereby under-

lying /ku-kinis-il-a/ becomes [kukinisina] ‘to make dance for.’ From one

perspective, this assimilation could be said to be driven by a phonotac-

tic constraint that forbids laterals from occurring after nasals. Similar

long-distance constraints have been posited for a variety of long-distance

assimilation and dissimilation processes (Rose and Walker, 2004; Hansson,

2010).

We first show that the phonotactic constraint which bans laterals from

occurring anywhere after nasals cannot be expressed in the FOwith successor

model. We refer to this constraint as *N..L. As we hope to make clear,

the problem is that the notion of precedence is not FO-definable from

successor. To illustrate this problem, consider that the logically possible

word [kukinisila] is ill-formed in Kikongo. The nasal [n] has only one

successor [i], but it precedes many segments including the second and third

[i]s as well as the [s,l] and [a]. It is the fact that [n] precedes [l] which

makes [kukinisila] ill-formed according to the phonotactic constraint *N..L.

Constraint *N..L is not FO definable with successor. To prove this we

use an abstract characterization of the constraints definable with FO(/) due
to Thomas (1982) and reviewed in Rogers and Pullum (2011). Thomas

called the class of formal languages obeying this characterization Locally
Threshold Testable.

Theorem 1 (Characterization of FO(/) definable constraints). A constraint

is FO-definable with successor if and only if there are two natural numbers k and
t such that for any two strings w and v, if w and v contain the same substrings

x of length k the same number of times counting only up to t, then either

both w and v violate the constraint or neither does.

Essentially, this theorem says constraints that are FO-definable with

successor cannot distinguish among strings that are composed of the same

number and type of substrings of some length k, where substrings can be
counted only up to some threshold t.
We can use this theorem to show that *N..L is not FO definable with

successor by presenting two strings which *N..L distinguishes but which

are not distinguishable according to the criteria in Theorem 1. This would

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 45

prove that *N..L is not LTT and thus not FO-definable with successor.

Importantly, we have to present two such strings for any k and t. (These
strings can depend on k and t.)

We use notation bk to mean the string consisting of k consecutive bs.
So b3 = bbb. For any numbers k and t larger than 0, consider the words
w = oknok`ok and v = ok`oknok. Table 2.5 below shows the substrings up
to length k, and their number of occurrences. Each word has the same
substrings and the same number of them. Note the left and right word

boundaries (o and n respectively) are customarily included as part of the
strings.

count w = ooknok`okn Notes

1 ook−1

3 ok

1 oinoj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 oi`oj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 ok−1n

count v = ook`oknokn Notes

1 ook−1

3 ok

1 oinoj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 oi`oj for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
1 ok−1n

Table 2.5: The k-long substrings with their number of occurrences in the
strings w = oknok`ok and v = ok`oknok with word boundaries.

As can be seen from the above table, the two strings have exactly the

same number of occurrences of each k-long substring. Consequently, for
any threshold t, the counts of the k-long substrings will also be the same.
It follows, from Theorem 1 that these two strings cannot be distinguished

by any constraint which is FO-definable with successor.

More precisely, any constraint which is FO-definable with successor is

unable to distinguish in strings w and v whether n precedes ` or whether `
precedes n. As such, no FO-definable constraint with successor can be
violated by w but not by v and vice versa. It follows that *N..L is not FO

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

46 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

definable with successor for precisely the reason that it is this distinction

that *N..L makes.

Having established that linguistically motivated long-distance phonotac-

tic constraints are not FO-definable with successor, we turn to the question

of how such constraints can be defined from the logical perspective offered

here. Essentially, there are two approaches. One is to increase the power

of the logic. The other is to change the signature—the representational

primitives—of strings. This section examines the first option and the next

section examines the second option. This interplay between logical power

and representations and how it affects the expressivity of the linguistic

system is a running theme of this book.

Monadic Second Order (MSO) logic is a logical language that is strictly
more powerful than FO logic. Constraints that are MSO-definable with

successor include every constraint which is FO-definable with successor

because every sentence and formula in FO(/) is also a sentence and for-
mula in MSO logic with successor and is interpreted in the same way. In

addition to first order variables, MSO comes with second order variables.
Generally, variables that are second order are allowed to vary over n-ary
relations. The restriction to monadic second order variables means the

variables in this logic can only vary over unary relations, which correspond

to sets of domain elements. This contrasts with first order variables, which

vary only over individual elements of the domain.

MSO logic is defined formally in Chapter 6, so here we introduce it

informally with examples. In MSO logic, the MSO variables are expressed

with capital letters such as X,Y , and Z to distinguish them from first
order variables which use lowercase letters like x, y, and z. Observe that
x ∈ X and X(x) are synonyms. As with first order variables, second order
variables are introduced into sentences and formulas with quantifiers.

Additional Symbols in MSO logic

X,Y, Z variables which range over sets of elements of the domain

x ∈ X checks whether an element x belongs to a set of elements X
X(x) checks whether an element x belongs to a set of elements X

Table 2.6: Together with the symbols of FO logic shown in Table 2.2, these

symbols make up MSO logic.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 47

With MSO logic over successor, denoted MSO(/), it is now possible to
define the precedence relation as shown below.

closed (X)
def
= (∀x, y)

[
(x ∈ X ∧ x / y) → y ∈ X

]
(2.13)

x < y
def
= (∀X)

[
(x ∈ X ∧ closed (X)) → y ∈ X

]
(2.14)

Intuitively, a set of elements X in the domain of a model of some word

w satisfies closed (X) only if every successor of every element in X is

also in X. In short, closed (X) is true only for sets of elements X which
are transitively closed under successor. Then x precedes y only if for every
closed set of elements X which x belongs to, y also belongs to X.

Figure 2.3 below illustrates these ideas. The successor model for the

string onoo`o is shown. Six rectangular regions are shown, which identify
the six nonempty sets of domain elements which are closed under successor

and thus satisfy closed (X).

1 2 3 4 5 6

o n o o l o

X1
X2

X3
X4

X5
X6

/ / / / /

Figure 2.3: The successor model for the word onoo`o. The dotted rectan-
gular regions indicate the sets of domain elements (Xi) which are closed

under successor.

We can conclude that n (at position 2) precedes ` (at position 5) because
every closed set which element 2 belongs to (X1 and X2) also includes the

element 5. Similarly, we can conclude that ` does not precede n because
it is not the case that all closed sets which contain element 5 also include

element 2. Set X4 for instance contains element 5 but not element 2.

Once the binary relation for precedence (<) has been defined, it is now

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

48 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

straightforward to define the constraint *N..L with features.

*N..L def
= ¬(∃x, y)[x < y ∧ nasal(x) ∧ lateral(y)] (2.15)

The sentence above may look like a sentence of FO logic since no second

order variables are present. However, it is important to remember that the

precedence relation (<) is a user-defined predicate, and as such it is just

an abbreviation for a longer expression, which is defined using the second

order variables of MSO logic. Therefore Equation 2.15 is not an expression

of FO(/).
In many treatments of logic, whether a predicate is atomic or derived

is not something that can be determined from inspecting a sentence or

formula since the notation does not distinguish them. In this book, we are

using very light gray highlighting to distinguish derived predicates from

atomic formulas. Readers should be aware, however, that usually one must

be being acutely aware of the model signature to know whether a predicate

is atomic or derived.

At this point, we have established that the linguistically motivated

long-distance phonotactic constraint *N..L is not definable with FO logic

with successor but is definable with MSO logic with successor. We thus

ask: What other kinds of constraints are MSO-definable with successor?

Another constraint that is not FO-definable with successor but is MSO-

definable constraint with successor is a constraint that requires words to

have an even number of nasals. Words like man and phenomenon obey this

constraint since they have two and four nasals, respectively, but words like

trim, nanotechnology and nonintervention do not since they have one, three

and five nasals, respectively.

To see that this constraint is not FO-definable with successor, we use

Theorem 1 as before. For any nonzero numbers k and t, consider the words
w = ak(nak)2t and v = ak(nak)2tnak. Observe that w obeys the constraint
since it contains 2t nasals and 2t is an even number. On the other hand, v
contains 2t+ 1 nasals and therefore violates the constraint. However, as
Table 2.7 shows, these words have the same substrings of length k, and the
same numbers of each substring, counting only up to the threshold t.
However, this constraint is expressible with MSO logic with successor.

We make use of some additional predicates, including general precedence

(<) defined in Equation 2.14. The predicate firstN is true of x only
if x is the first nasal occurring in the word (Equation 2.16). The predi-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 49

w = oak(nak)2takn

k-long raw count up to

substring count threshold t notes

oak−1 1 1

ak 2t+ 2 t
ainaj 2t+ 2 t for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
ak−1n 1 1

v = oak(nak)2tnakn

k-long raw count up to

substring count threshold t notes

oak−1 1 1

ak 2t+ 3 t
ainaj 2t+ 3 t for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1
ak−1n 1 1

Table 2.7: The k-long substrings and the numbers of their counts in w =
ak(nak)2tak and v = ak(nak)2tnak with word boundaries.

cate lastN is true of x only if x is the last nasal occurring in the word
(Equation 2.17). Also, two variables x and y stand in the nasal-successor
relation (denoted /N) only if x and y are nasals and y is the first nasal

to occur after x (Equation 2.18). Essentially, /N is the successor relation

relativized to nasals (Lambert, 2023).

firstN (x)
def
= nasal(x) ∧ ¬(∃y)[nasal(y) ∧ y < x] (2.16)

lastN (x)
def
= nasal(x) ∧ ¬(∃y)[nasal(y) ∧ x < y] (2.17)

x /N y
def
= nasal(x) ∧ nasal(y) ∧ x < y

∧ ¬(∃z)[nasal(z) ∧ x < z < y] (2.18)

Note we use the shorthand x < y < z for x < y ∧ y < z.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

50 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

With these predicates in place, we write Even-N as in Equation 2.19.

Even-N
def
= (∃X)

[
(∀x)[firstN (x) → X(x)]

∧ (∀x)[lastN (x) → ¬X(x)]
]

∧ (∀x, y)
[
x /N y ∧

(
X(x) ↔ ¬X(y)

)]
(2.19)

In English, this says that a model of word w satisfies Even-N provided there
is a set of domain elements X that includes the first nasal (if one occurs),
does not include the last nasal (if one occurs) and for all pairs of successive

nasals (if they occur), exactly one belongs to X. Consequently, words
containing zero nasals satisfy Even-N because the empty set of domain

elements vacuously satisfies these three conditions. Words containing

exactly one nasal do not satisfy Even-N because the first nasal and the

last nasal are the same element x and they cannot both belong and not
belong to X. However, words with exactly two nasals do satisfy Even-N
because the first nasal belongs to X (satisfying the first condition), the
last nasal does not (satisfying the second condition), and these two nasals

are successive nasals and so are subject to the third condition, which they

satisfy because exactly one of them (the first nasal) belongs to X. A little
inductive reasoning along these lines lets one conclude that only words

with an even number of nasals will satisfy Even-N as intended.

It is natural to wonder whether there is an abstract characterization of

constraints that are MSO-definable with successor in the same way that

Thomas (1982) provided an abstract characterization of constraints that

are FO-definable with successor. In fact there is. Büchi (1960) showed

that these constraints are exactly the ones describable with finite-state

automata.

Theorem 2 (Characterization of MSO-definable constraints with successor).
A constraint is MSO-definable with successor if and only if there is a finite-state

acceptor which recognizes the words obeying the constraint.

From the perspective of formal language theory, they are exactly the

regular languages. Informally, these are formal languages for which the

membership problem can be solved with a constant, finite amount of

memory regardless of the size of the input.

In this section, we showed that FO-definable constraints with successor

are not sufficiently powerful to express long-distance phonotactic con-

straints. One approach is to then increase the power of the logic. One

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.7. THE PRECEDENCE WORD MODEL 51

logical system extends FO by adding quantification over monadic second

order variables. This logic—MSO logic with successor—is able to express

long-distance phonotactic constraints. However, MSO logic with successor

is also sufficiently expressive as a CDL to express constraints like Even-N.

Here is another way of putting it. In successor structures, the infor-

mation that in the word o`oono the ` precedes the n is not immediately
available from the representation. That information can be deduced but

the deduction requires some computational effort. From the logical per-

spective taken here, this deduction requires MSO power and not FO power.

Furthermore, once MSO power is admitted then it becomes possible to

similarly deduce whether or not there are even numbers of elements with

certain properties.

Another approach to developing a CDL which can express long-distance

phonotactic constraints is to change the representation of strings; that is, to

change the model signature. This is precisely the topic of the next section.

2.7 The Precedence Word Model

So far, the logics we have considered have been defined with respect to

the successor model of words. These representations include the successor

relation in their signature. However, as we have seen with phonological

features vis a vis atomic letters, there are different models of strings. In this

section, we consider the precedence model of strings. Simply, this model

contains the precedence relation instead of the successor relation in its
signature.

A domain element x stands in the precedence relation to y if y is an event
that occurs sometime later than x. In this book, we use the symbol < to
indicate the precedence relation. For the word sans, it holds that 1, 4 ∈ Rs

and (1, 4) belongs to the precedence relation since position 4 occurs later
than position 1. We can write this fact in several ways, including 1 < 4,
< (1, 4), and (1, 4) ∈<. The signature for the precedence model with letters
is thus {(b)b∈Σ, < } and <-structures would have the form 〈D | (b)b∈Σ, < 〉.
As with the successor structures, there is a general method for construct-

ing precedence structures for strings. Given a string w of length n, the
domain and unary relations of a precedence structure for w are constructed
in the same way as was the case for the successor structure. Regarding the

precedence relation itself, for each i and j between 1 and n inclusive, (i, j)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

52 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

belongs to the precedence relation so long as i < j. This is summarized in
Table 2.8. This construction guarantees the model’s soundness: each string

D
def
= {1, 2, . . . n}

a def
= {i ∈ D | bi = b} for each unary relation b

<
def
= {(i, j) ⊆ D ×D | i < j}

Table 2.8: Creating a precedence model for any word w = b1b2 . . . bn.

has a model and distinct strings will have distinct models.

Figure 2.4 shows the <-structure for the word sans on the left and a
graphical diagram of it on the right.

Msans

= 〈D | s, a, n, b, c, . . . , z, < 〉
=

〈
{1, 2, 3, 4} | {1, 4}, {2}, {3},
∅,∅, . . .∅,
{(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4)}

〉
1 2 3 4

s a n s

<

<

<

<

<

<

Figure 2.4: At left, the precedence model of the word sans. At right, a

graphical diagram of this model.

The difference between the <-structures and the /-structures is how the
order of segments in the word are represented. In the precedence model,

the fact that the n is preceded by s in the word sans is immediately available
because the element corresponding to n (position 3) is in the precedence
relation with the element corresponding to the first s (position 1). Under
the successor model, this information was not immediately available as it

was not part of the representation. However, under the precedence model

it is.

Taken seriously from a psychological perspective, the precedence model

can be taken to mean that as words are perceived, information about

the precedence relations is being stored in memory as part of the lexical

representation of the word.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.7. THE PRECEDENCE WORD MODEL 53

Also, in the same way that we considered the successor model both with

and without features, we can also consider a precedence model with and

without features. The precedence model introduced above was without

features, but it is a simple matter to replace the unary relations in that

model with the ones in Table 2.4.

It is straightforward to now write the constraint *N..L in the CDL which

we call “FO with precedence with features” denoted FO(feat,<).

*N..L def
= ¬∃x, y(x < y ∧ nasal(x) ∧ lateral(y)) (2.20)

Equation 2.20 looks identical to Equation 2.15. However, there is a critical

difference. In Equation 2.20, the precedence relation is an atomic formula

but in Equation 2.15 it is a user-defined predicate in MSO logic.

It is natural to ask of course whether a constraint like *NT is expressible

in this CDL. The answer is Yes because successor is FO-definable from

precedence. Equation 2.21 shows how. Essentially, x is succeeded by y
only if x precedes y and there is no element z such that z < y and x < z.

x / y
def
= x < y ∧ ¬(∃z)[x < z < y] (2.21)

It is a striking fact that successor is FO-definable from precedence

but precedence is MSO-definable from successor. This is a considerable

asymmetry between the successor and precedence models of strings.

There are two important consequences. The first is the CDL FO(<)
properly subsumes the CDL FO(/). Not only is every constraint expressible
with the FO(/) also expressible with the FO(<), but there are constraints

like *N..L above that are expressible with the FO(<) but not with the
FO(/).
Another important consequence is that the CDL MSO(<) is equivalent

in expressive power to the CDL MSO(/) discussed in the previous section.
This is because with MSO logic, precedence can be defined from successor

as shown previously in Equation 2.14 on page 47 and because successor

can be defined from precedence as shown above in Equation 2.21. So

at the level of MSO, these two models make no distinctions among the

kinds of constraints that can be expressed. Furthermore it has been known

since Büchi (1960), that these constraints correspond to exactly the regular

stringsets.

There is also an abstract characterization of FO(<) due to McNaughton
and Papert (1971).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

54 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Theorem 3 (Characterization of FO-definable constraints with precedence).
A constraint is FO-definable with precedence if and only if there is a positive

integer n such that for all strings x, y, z if xynz obeys the constraint then for all

k > n, xykz obeys the constraint too.

This characterization says that FO-definable constraints with prece-

dence can only distinguish iterations within strings up to some finite

n. In other words, two strings xyiz and xyjz, with both i, j > n but
i 6= j, cannot be distinguished by any FO-definable constraint with prece-
dence. As McNaughton and Papert (1971) amply document, there are other

independently-motivated characterizations of this class as well.

The above characterization can be used to show that Even-N is not

FO-definable with precedence. Again, the strategy is to consider any n and
then to find strings w, v such that (1) Even-N distinguishes w and v in the
sense that one violates Even-N and the other does not while (2) ensuring

that the forms of w, v conform to w = xyiz and v = xyjz for some x, y, z
and numbers i, j > n. If the constraint were FO-definable with precedence
such strings could not exist by Theorem 3. In this case, one solution is to

set x = z = λ (the empty string), y = ma, i = 2n and j = 2n + 1. Then
w = (ma)2n and v = (ma)2n+1. Clearly, w has an even number of nasals
since it has 2n [m]s but v has an odd number since it has 2n+1 [m]s. Thus
Even-N distinguishes these strings and thus by Theorem 3 it cannot be

FO-definable with precedence.

In this section, we considered a model of words where order is repre-

sented with the precedence relation instead of the successor relation. It

was shown that long-distance constraints can be readily expressed with

FO(<). Furthermore, local phonotactic constraints like *NT can also be
expressed because successor is FO-definable from precedence. However,

the converse is not true. This asymmetry means that FO(<) is strictly
more expressive than FO(/). Despite this richer expressivity, it was also
shown that Even-N cannot be expressed in FO(<). Finally, it was noted
that MSO(<) is equally expressive as MSO(/). Once there is MSO power,
successor and precedence are each definable from the other. Which of these

constraints can be expressed by which CDLs is summarized in Figure 2.5.

More generally, this section established the following. Although one

way to increase the expressivity of a CDL is to increase the power of the

logic, another way is to change the representations underlying in the model

signatures. This speaks directly to the interplay between representations

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.8. DISCUSSION 55

/ <

MSO *N..L, Even-N Even-N

FO *NT *NT, *N..L

Figure 2.5: Classifying the constraints *NT, *N..L, and Even-N.

and computational power, one of the themes of this chapter.

We conclude that the only CDL discussed so far that can express both

local and long-distance phonotactic constraints (like *NT and *N..L) but

that fails to express constraints like Even-N is FO(<).

2.8 Discussion

This chapter has been about many things. On the one hand, it introduced

model theory and logical languages as a toolkit for providing what De Lacy

termed a Constraint Definition Language.

It then proceeded to show how different words can be represented in

different ways based on the primitive relations one chooses to include in the

model theoretic signature. Four examples were introduced: representations

with letters and successor, representations with features and successor,

representations with letters and precedence, and representations with

features and precedence.

Additionally, two logics were introduced, First Order logic and Monadic

Second Order logic. We explained how the choice of representation and

choice of logic gives rise to a logical language which can express constraints

over those representations.

Finally, we explored some of the consequences of these choices. The

most important ones we stressed are the following.

1. If order is represented with successor and not precedence, then MSO

logic is needed to be able to express long distance phonological

constraints.

2. Logical languages defined with MSO logic over successor structures

can also express constraints that forbid (or require) words to have n
many structures modulo m (0 ≤ n < m) (for example, “Words must
contain evenly many nasals”).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

56 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

3. If order is represented with precedence and not successor, then FO

logic is sufficient to express long distance phonological constraints,

in addition to local phonological constraints.

4. The above results follow directly from a fact of mathematical logic:

precedence needs MSO logic to be defined from successor but succes-

sor only needs FO logic to be defined from precedence.

We also return to the point that the symbolic and featural represen-

tations in Tables 2.1 and 2.4 can be defined in terms of the other using

FO logic because a symbol can be defined in terms of the conjunction of

the features that make up that symbol and similarly a feature-value can

be defined in terms of a disjunction of symbols which have that feature-

value. It follows that for any constraint C expressible in FO(feat,/), there
is a constraint D in FO(/) such that exactly the same strings violate both
constraints, and vice versa.

Does this mean that there are no differences between symbolic and fea-

tural representations? No. While it does mean that one cannot distinguish

the constraints one can express if FO logic is used along with features or

symbols, it does not say anything about a logic that is weaker than FO

logic. A weaker logic may very well distinguish the expressible constraints

these distinct representational primitives can express. It also doesn’t say

anything about the psychological implications or learning. Other kinds of

evidence from psycholinguistics (Durvasula and Nelson, 2018) or learning

(Wilson and Gallagher, 2018) may be brought to bear on the best choice of

representational primitive.

Here are some of the reasons exploring different representational schemes

and different logics—that is exploring the space of possible Constraint Defi-

nition Languages—is a worthwhile goal. First, the choice of representation

and the choice of logic yields a rigorous, logical language whose formulas

are readable by both humans and machines which can be used to always

correctly answer the question whether a given structure satisfies a given

formula or not. Second, this logical language can be studied explicitly to re-

veal what kinds of constraints it can and cannot express, the facts of which

should then be compared with the typology of phonological constraints.

This lets us draw conclusions like “If there are long-distance constraints in

phonology, then FO with successor is insufficient as a theory of phonological

constraints.”

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

2.8. DISCUSSION 57

In addition to evaluating a logical language in terms of its typological

predictions, we can also examine its psychological predictions as well as

what it would mean for learnability and acquisition. The representational

primitives of the logical language can be understood as a hypothesis of the

psychologically real representational primitives. We can also ask whether

there are algorithms that can learn the formulas of a logical language and

which of these algorithms exhibit behavior observed when humans learn

language.

We hope that this chapter helps persuade readers that exploring different

representational schemes and different logics—that is exploring the space

of possible Constraint Definition Languages—is a worthwhile goal.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

58 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 3

Transformations, Logically

Jeffrey Heinz

This chapter explains how transformations from one representation to

another can be described with the same logical tools introduced in the

last chapter. Transformations are a central component of phonological

theory, which posits a mapping exists between the long-term memory

representations of the pronunciation of morphemes (the underlying forms)

to the more more directly observable, surface representations (the surface

forms) (Hyman, 1975; Kenstowicz and Kisseberth, 1979; Krämer, 2012;

Odden, 2014). The mathematical and computational basis for this work

originates with Courcelle (1994), a thorough survey of which is provided

by Courcelle and Engelfriet (2012).

This chapter aims to introduce these ideas in an accessible way to

linguists with a basic knowledge of phonology. However, the techniques

have application beyond the theory of phonology to any other subfield of

linguistics, notably morphology and syntax, in part because these methods

apply equally well to trees and graphs, not just strings. Also this chapter

is merely an introduction to these methods. As such, it introduces them

in the context of string-to-string transformations; that is, functions from
strings to strings. As a matter of fact, these methods have been generalized

by computer scientists to describe weighted relations between strings
(Droste and Gastin, 2009). These generalizations permit one to describe

and characterize optionality and exceptionality, in addition to gradient

and probabilistic generalizations. Weighted logics are treated separately in

Chapter 4. Here however, and throughout most of this book, unweighted

59

D
R
A
F
T

60 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

logic is used primarily because weighted logics can obfuscate the central

ideas, which are easier to first understand without them.

The application of these methods for phonological description and

theory is what primarily distinguishes this work from One-Level Declarative

Phonology developed by Bird, Coleman, and Scobbie some thirty years

ago. That research, like the research in this book, emphasizes a declarative

approach to phonological description and theory. The key difference is

that thirty years ago transformations were studied within “one level.” In

other words, transformations were understood as constraints on unspecified

underlying representations. As such, those ‘transformations’ could only

add (further specify) information to those representations. In contrast, in

this chapter we will see how logic can be used to literally add, subtract,

change, or more generally transform one representation into another. For

this reason, one could say that the Computational Generative Phonology

approach in this book is essentially a form of two level Declarative Phonology

(Dolatian, 2020a).

3.1 String-to-string Transformations

A logical description of a string-to-string function uses logic to explain how

an input string is mapped to an output string. As with the constraints in the

previous chapter, the logic does not operate over the strings themselves,

but over the model-theoretic representation of those strings. Therefore, a

logical description of a string-to-string function uses logic to convert an

input structure of a string into an output structure (possibly representing a

different string). Recall that the structure of a string depends on the model

signature, and that the signature lists the relations over the domain of the

model which must be specified in order to uniquely identify some string.

Therefore, the logical description needs to specify the output structure in

terms of a logical language given by the signature of the input structure.

Logical descriptions of string-to-string functions must accomplish two

things. First, they must specify the domain of the function – which strings

does the function apply to? Second, for each of (the structures representing)

these input strings, it must specify (structures of) the output strings these

input strings map to. This means specifying both the domain of the output

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.2. WORD-FINAL OBSTRUENT DEVOICING 61

structure and the relations over it.1 These goals are accomplished with

a collection of logical formulas. For a logical description of a function f ,
these formulas together answer questions like the following. Does f apply
to this string? For a given string w, what is f(w)?

As mentioned, there are several ingredients making up a logical transfor-

mation, each with their own names. The domain of the function is specified

by the domain formula. The domain of the output structure is specified by
two ingredients: the copy set and the licensing formulas. The relations
over the output structure are specified by relational formulas. There is
one relational formula for each of the relations in the model signature of

the output. All of these formulas are evaluated with respect to the input
structure in a way that will be made clear below.

In the remainder of this chapter, these ingredients will be explained

with familiar phonological processes. We begin with word-final obstruent
devoicing, which changes a single feature. We next consider word-final
vowel deletion where the output can be smaller than the input. This
is followed by word-final vowel epenthesis where the output can be
larger than the input. We then show how logical transductions can be used

to describe total reduplication. With those basics in place, we consider

the power of MSO-definable transformations by illustrating two logically

possible string-to-string transformations that are not attested, as far as I

know, as phonological processes.

3.2 Word-final obstruent devoicing

For concreteness, let us provide a logical description of the phonological

process of word-final obstruent devoicing. This process maps strings with

word-final voiced obstruents to voiceless ones. For example, this process

maps the string hauz to haus and the string bad to bat. Words without

word-final voiced obstruents surface faithfully so this process can be said

1Note there are two distinct meanings of the word ‘domain’ in use here. The first has
to do with the domain of a function and the second with the domain of a structure. A
function’s domain is the set of elements over which the function is defined. For instance
for F : A → B, the domain is the set A. In contrast, the domain of a structure is the
elements in the ‘universe’ the structure is describing. In finite model theory, which is
used in this book, the domain of a structure is a finite set D of natural numbers 1,…n,
representing the finitely many elements in the universe.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

62 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

to map the string haus to haus.

We choose to model this process with the feature-based successor model

FO (feat, /) described in 2.5 (see Table 2.4). More precisely, strings in both
the input and the output will be represented with (feat, /)-structures. Note
this is a choice and one can choose to model the input, the output, or both,

with other word models.

It follows we want to provide a logical transformation which, for exam-

ple, maps the (feat, /)-structure of hauz to the (feat, /)-structure of haus, as
shown in Figure 3.1. We introduce the logical formulas one at a time and

1 2 3 4

fricative
voiceless

vocalic
low

vocalic
high

fricative
coronal
voiced

/ / /

1 2 3 4

fricative
voiceless

vocalic
low

vocalic
high

fricative
coronal

voiceless

/ / /

Figure 3.1: A graphical diagram of the feature-based successor model of

hauz being mapped to the feature-based successor model of haus.

then summarize them at the end of the example.

The domain of the function f is specified with the domain formula
φdomain. This is a logical formula with no free variables. For all strings

w, f(w) is defined if and only if the structure of w satisfies the formula
(Mw |= φdomain). For word-final obstruent devoicing, we want this function

to apply to every string. Hence we set φdomain
def
= true.

How is the domain of the output structure determined? Logical trans-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.2. WORD-FINAL OBSTRUENT DEVOICING 63

ductions fix the domain of the output as a copy of the input domain. For

example, as shown in Figure 3.1, the domain ofMhauz is {1,2,3,4}. There-

fore, the domain of the output structure of f(hauz) is also the set {1,2,3,4}.

One consequence of constituting the domain of the output structure

this way is that it appears that functions cannot alter the size of the in-

put upon which they are acting. However, it is precisely the copy set C
and the licensing formula φlicense, discussed later in sections 3.4 and 3.3,

respectively, which ultimately determine the precise size of the output

structure. To give a basic preview, the copy set allows transformations

to relate larger outputs to smaller inputs and the licensing formula allows

transformations to relate smaller outputs to larger inputs. Working together,

these ingredients let one relate inputs to outputs of different sizes. For

now, since the word-final voiced obstruent devoicing does preserve the

size of each input in the output, we postpone the particulars of how exactly

copy-sets and the licensing formulas work until sections 3.4 and 3.3.

For obstruent devoicing, setting the copy set and licensing formula

to C = {1} and φlicense
def
= true suffices to ensure that, given the input

structureMhauz, the domain of the output structure is {1,2,3,4}.

Finally, we must determine the relations which hold over the domain

elements of the output structure. For each relation R of arity n in the
signature of output structure, we must specify a formula φR with n free
variables φR(x1, . . . xn). For word-final obstruent devoicing, the signature of
the output structures has one binary relation (the successor relation /) and
several unary relations (the phonological features). Therefore, to specify

this phonological process, we need to specify one logical formula with two

free variables for the successor relation and several logical formulas with

one free variable for the phonological features.

How are these logical formulas for the relations interpreted? For any

string-to-string function f , input structureMw, and relation R of arity n in
the output signature, the elements x1, . . . xn in the domain of the output
structure stand in relation R if and only ifMw |= φR(x1, . . . xn). In other
words, the formula φR(x1, . . . xn) is evaluated with respect to the input
structure, and the logical language to which φR(x1, . . . xn) belongs is based
on the input signature.

For example, the output signature contains the successor relation, which

is a binary relation. So we must define the formula φ/(x, y). Since word-
final obstruent devoicing does not affect the successor relations, we define

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

64 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

this function as follows.

φ/(x, y)︸ ︷︷ ︸
Do x and y in the output model

stand in the successor relation?

def
= x / y︸︷︷︸
Evaluate with respect to the in-

put model.

This means the following: elements x and y in the output structure stand in

the successor relation if and only if corresponding elements x and y satisfy
the successor relation in the input structure. Since 1/2 in the input structure,
it follows that elements 1 and 2 likewise stand in the successor relation in
the output structure. Similarly, since elements 1 and 3 do not stand in the

successor relation in the input structure, it follows that they do not stand in

the successor relation in the output structure. Consequently, the formula

above guarantees (in fact literally says) that the successor relation in the

output will be the same as the successor relation in the input.

As another example, consider the unary relation vocalic. As this is a
unary relation, we must define a formula with one free variable φvocalic(x).
Let us define it as follows.

φvocalic(x)︸ ︷︷ ︸
Does x have the feature

vocalic in the output struc-
ture?

def
= vocalic(x)︸ ︷︷ ︸
Evaluate with respect to the in-

put structure.

It follows from this definition that domain element x in the output model
is vocalic if and only if the corresponding domain element x in the input is
vocalic. This formula captures the fact that word final obstruent devoicing

does not affect the vocalic nature of any elements within a string.

As we know, the only features affected by word-final devoicing are

voicing features, which are the relations voiced and voiceless in our
model signatures. All other unary relations in the signature of the output

structure will be defined similarly to φvocalic(x) (as shown in Table 3.1 on
page 66). However, the voicing features are affected by this process, so

how do we specify which domain elements are voiced or voiceless? The

voiced elements will be the ones that were voiced in the input and are not

word-final obstruents. We can formalize this as follows. It will be useful to

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.3. WORD-FINAL VOWEL DELETION 65

write some user-defined predicates.

wordfinal (x)
def
= ¬∃y (x / y) (3.1)

obstruent (x)
def
= stop(x) ∨ fricative(x) (3.2)

devoicingcontext (x)
def
= wordfinal (x) ∧ obstruent (x) (3.3)

We thus define φvoiced(x) as follows.

φvoiced(x)︸ ︷︷ ︸
Does x have the feature voiced
in the output structure?

def
= voiced(x) ∧ ¬ devoicingcontext (x)︸ ︷︷ ︸

Evaluate with respect to the in-

put structure.

Similarly, the domain elements in the output which are voiceless are those

that are voiceless in the input or those that are word-final obstruents.

φvoiceless(x)︸ ︷︷ ︸
Does x have the feature

voiceless in the output

structure?

def
= voiceless(x) ∨ devoicingcontext (x)︸ ︷︷ ︸

Evaluate with respect to the in-

put structure.

As mentioned, since this process does not affect other phonological

features in the string, each of those unary relations R in the signature of
the output structure can be defined as follows: φR(x)

def
= R(x). In other

words, φvocalic(x)
def
= vocalic(x) and φcoronal(x)

def
= coronal(x) and so on.

For completeness, we show the complete logical description of word-final

devoicing in Table 3.1.

3.3 Word-final vowel deletion

Let us consider another example, word-final vowel deletion, which will il-

lustrate the role played by the licensing formula. Word-final vowel deletion

has been argued to be a process in Yowlumne (also known as Yawelmani

Yokuts) (McCarthy, 2008a). The process in Yowlumne is subject to ad-

ditional conditions, which are set aside here. Word-final vowel deletion

essentially maps strings like paka to pak and pilot to pilot.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

66 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

φdomain
def
= true

C
def
= {1}

φlicense(x)
def
= true

φ/(x, y)
def
= x / y

φvocalic(x)
def
= vocalic(x)

φlow(x)
def
= low(x)

φhigh(x)
def
= high(x)

φfront(x)
def
= front(x)

φstop(x)
def
= stop(x)

φfricative(x)
def
= fricative(x)

φnasal(x)
def
= nasal(x)

φlateral(x)
def
= lateral(x)

φrhotic(x)
def
= rhotic(x)

φlabial(x)
def
= labial(x)

φcoronal(x)
def
= coronal(x)

φdorsal(x)
def
= dorsal(x)

φvoiced(x)
def
= voiced(x) ∧ ¬ devoicingcontext (x)

φvoiceless(x)
def
= voiceless(x) ∨ devoicingcontext (x)

Table 3.1: The complete logical specification for word-final obstruent

devoicing when the input and output string models are both the feature-

based successor model.

As before, the domain of this function is all strings and so φdomain
def
= true.

Also as before, the domain of the output structure is a copy of the domain

elements of the input structure. However, these domain elements of the

output structure do not automatically exist in the output structure; they

must be licensed by a formula with one free variable called the licensing

formula φlicense(x). In other words, the domain elements of the output

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.3. WORD-FINAL VOWEL DELETION 67

1 2 3 4

stop
labial

voiceless
vocalic

low

stop
dorsal

voiceless
vocalic

low

/ / /

1 2 3

stop
labial

voiceless
vocalic

low

stop
dorsal

voiceless

/ /

Figure 3.2: A graphical diagram of the feature-based successor model of

paka being mapped to the feature-based successor model of pak.

structure are really the licensed copies of the domain elements of the in-

put structure. Since word-final vowels delete in this process, all domain

elements which do not correspond to word-final vowels are licensed.

φlicense(x)︸ ︷︷ ︸
Does x belong to the domain of

the output model?

def
= ¬(wordfinal (x) ∧ vocalic(x))︸ ︷︷ ︸

Evaluate with respect to the in-

put structure.

Also, this process does not affect any phonological features, so each

of the unary relations R in the signature of the output structure can be
defined as follows: φR(x)

def
= R(x). In other words, φvocalic(x)

def
= vocalic(x)

and φvoiced(x)
def
= voiced(x) and so on. What about the binary successor

relation? Letting φ/(x, y)
def
= x / y is sufficient. While it is true that 3 / 4 is

true in the input, the fact that 4 is not licensed ensures that the pair (3, 4) is
not an element of the successor relation in the output model. The relations

in the output structure are always restricted to tuples which only contain

licensed domain elements. Readers are referred to Chapter 6 for details.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

68 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

For completeness, Table 3.2 shows the complete logical description of

word-final vowel deletion.

φdomain
def
= true

C
def
= {1}

φlicense(x)
def
= ¬(wordfinal (x) ∧ vocalic(x))

φ/(x, y)
def
= x / y

φvocalic(x)
def
= vocalic(x)

φlow(x)
def
= low(x)

φhigh(x)
def
= high(x)

φfront(x)
def
= front(x)

φstop(x)
def
= stop(x)

φfricative(x)
def
= fricative(x)

φnasal(x)
def
= nasal(x)

φlateral(x)
def
= lateral(x)

φrhotic(x)
def
= rhotic(x)

φlabial(x)
def
= labial(x)

φcoronal(x)
def
= coronal(x)

φdorsal(x)
def
= dorsal(x)

φvoiced(x)
def
= voiced(x)

φvoiceless(x)
def
= voiceless(x)

Table 3.2: The complete logical specification for word-final vowel deletion

when the input and output string models are both the feature-based succes-

sor model.

This section explained in more detail how the domain elements of the

output structure are determined. While these are always copies of the

domain elements of the input structure, it is not the case that every domain

element in the input structure becomes a domain element of the output

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 69

structure. Only those elements x which satisfy φlicense(x) become domain
elements in the output structure.

3.4 Getting Bigger

So far we have exemplified logical transductions with phonological pro-

cesses that change segmental material and processes that delete segmental

material. How can logical transductions be used to define processes that

add segmental material?

The answer to this question lies in the copy set. We have set aside this

ingredient until now. In the previous examples, the copy set contained only

one element. Thus each input element in the domain was copied exactly

once. More generally, the copy set may contain n elements. It follows
that the domain of the output model may contain n copies of each domain
element of the input structure. The copies of a domain element x in the input
structure are distinguished from each other using the names of the elements

in the copy set. For example, consider the word hauz so that the domain

elements ofMhauz are {1, 2, 3, 4}. If we are defining a logical transduction
and define the copy set C

def
= {1, 2} then there are as many as eight domain

elements in the output structure. It is customary to name these domain

elements as pairs; the first coordinate indicates the domain element in the

input structure being copied and the second coordinate indicates which copy.

Thus the pair (1, 2) indicates the second copy of the first domain element
of the input structure and (3, 1) indicates the first copy of the third element
and so on. The eight possible domain elements in the output structure of

our example are thus {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2)}.
Whenever the copy set contains more than one element, the number of

licensing formulas and relational formulas needed to describe the logical

transduction multiplies as well. For each i ∈ C, there is a licensing formula
φi

license(x). As before, this formula is evaluated with respect to the corre-
sponding domain element in the input structure. If it evaluates to true on

x then the domain element (x, i) is licensed and belongs to the domain of
the output model. Thus for a copy set C, there are |C| licensing formulas.
Similarly, for each unary relation R in the signature of the output model,

there are |C| relational formulas: for each i ∈ C, we must define Ri(x). The
domain element (x, i) – the ith copy of x in the output structure – belongs

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

70 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

to R in the output structure if and only if Ri(x) evaluates to true in the
input structure.

For each binary relation R in the output signature, there are |C|2 rela-
tional formulas Ri,j(x, y) with i, j ∈ C. If and only if Ri,j(x, y) evaluates to
true with respect to the input model then the ith copy of x stands in the
R relation to the jth copy of y in the output structure. In which case, we
have ((x, i), (y, j)) ∈ R. If Ri,j(x, y) evaluates to false with respect to the
input structure then ((x, i), (y, j)) does not belong to R. For relations of
higher arity, the licensing and relational formula multiply out similarly.

Since the word models developed so far involve at most binary relations,

we ignore relations of higher arity here (though they are treated in the

formalizations in Chapter 6).

How the copy set works along with the additional formulas it entails

are illustrated in the next two examples: word-final vowel epenthesis and

total reduplication. We provide complete logical descriptions of both these

transformations.

3.4.1 Word-final vowel epenthesis

Hindi speakers epenthesize the low vowel a to words which end in sonorant

consonants (Shukla, 2000). We provide a logical description of this process

given the segments describable with the feature-based successor model.

For example, this process would map the hypothetical word pan to pana as

well as pak to pak. Figure 3.3 visualizes the mapping between the model

structures pan and pana.

First we can define sonorant consonants as follows.

sonorant_C (x)
def
= nasal(x) ∨ lateral(x) ∨ rhotic(x) (3.4)

Next, we need a copy set of at least size 2 and so we define C
def
=

{1, 2}. Consequently, for the input pan which has three domain elements
{1, 2, 3}, there are maximally 6 domain elements in the output structure:
{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2)}. Since the copy set C has two ele-
ments, we must define two licensing formulas, each with one free variable.

φ1
license(x)

def
= true (3.5)

φ2
license(x)

def
= sonorant_C (x) ∧ wordfinal (x) (3.6)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 71

1 2 3

stop
labial

voiceless
vocalic

low
nasal

coronal

/ /

1 2 3 4

stop
labial

voiceless
vocalic

low
nasal

coronal
vocalic

low

/ / /

Figure 3.3: A graphical diagram of the feature-based successor model of

pan being mapped to the feature-based successor model of pana.

φ1
license(x) is always true so the first copy of each element is present.

φ2
license(x) is only true when sonorant_C (x)∧ wordfinal (x) evaluates to

true in the input structure. For the word pan this occurs for x = 3, but for the
word pak no x satisfies φ2

license(x). Consequently, the output structure of the
process applied to pan has four domain elements {(1, 1), (2, 1), (3, 1), (3, 2)}
but the the output structure of the process applied to pak has three domain

elements {(1, 1), (2, 1), (3, 1)}.

This is illustrated in Figure 3.4, where the first and second copies of the

domain elements of pan are arranged in rows and the unlicensed elements

are in gray.

Next, we turn to the binary successor relation in the output model.

Here, we must have four formulas to specify the successor relation in the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

72 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

1,1 2,1 3,1

1,2 2,2 3,2

Figure 3.4: The possible domain elements of the output structure for input

pan when the copy set C
def
= {1, 2}. The unlicensed elements are colored

gray.

output structure. We define these as follows.

φ1,1
/ (x, y)

def
= x / y (3.7)

φ1,2
/ (x, y)

def
= sonorant_C (x) ∧ wordfinal (x)

∧ wordfinal (y) (3.8)

φ2,1
/ (x, y)

def
= false (3.9)

φ2,2
/ (x, y)

def
= false (3.10)

There are two main consequences. First, within the first copy, the domain

elements in the output structure preserve the successor relations present in

the input structure. Second, the only elements which stand in the successor

relation from the first copy to the second copy in the output structure are

x, 1 and y, 2 when x satisfies both wordfinal (x) and sonorant_C (x),

and when y satisfies wordfinal (y).
Finally, we must define two formulas for each unary relation R in the

output signature, φ1
R(x) and φ

2
R(x). These will tell us whether (x, 1) and

(x, 2) belong to R, respectively. For each unary relation R, we define

φ1
R(x)

def
= R(x). Thus, the first copy of the domain elements are faithful to

the unary relations they satisfied in the input. For the second copy, we

can generally let the domain elements be faithful to the unary relations

they satisfied in the input; however, there are two exceptions. In our

feature-based successor model in Table 2.4, the low vowel a is low and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 73

1,1 2,1 3,1

1,2 2,2 3,2

/ /

/

Figure 3.5: The successor relations in the output structure for input pan

when the copy set C
def
= {1, 2}. The unlicensed elements are colored gray.

vocalic and so φ2
vocalic(x) and φ

2
low(x) must be defined to be true only when

x corresponds to an element in the input that satisfies sonorant_C (x) and

wordfinal (x). For other unary relations R, we can define φ2
R(x)

def
= false.

1,1 2,1 3,1

1,2 2,2 3,2

stop
labial

voiceless
vocalic

low
nasal

coronal

vocalic
low

/ /

/

Figure 3.6: The model representing pana which is output for the input pan.

The unlicensed elements are colored gray.

For completeness, Table 3.3 shows the complete logical description of

word-final vowel epenthesis. The output structure obtained by applying

this logical transformation toMpan is shown in Figure 3.6. The structure

in Figure 3.6 is equivalent (i.e. isomorphic) to the output structure shown

in Figure 3.3.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

74 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

φdomain
def
= true C

def
= {1, 2}

φ1
license(x)

def
= true φ2

license(x)
def
= sonorant_C (x)

∧ wordfinal (x)

φ1,1
/ (x, y)

def
= x / y φ1,2

/ (x, y)
def
= sonorant_C (x)

∧ wordfinal (x)

∧ wordfinal (y)

φ2,1
/ (x, y)

def
= false φ2,2

succ(x, y)
def
= false

φ1
vocalic(x)

def
= vocalic(x) φ2

vocalic(x)
def
= sonorant_C (x)

∧ wordfinal (x)

φ1
low(x)

def
= low(x) φ2

low(x)
def
= sonorant_C (x)

∧ wordfinal (x)

φ1
high(x)

def
= high(x) φ2

high(x)
def
= false

φ1
front(x)

def
= front(x) φ2

front(x)
def
= false

φ1
stop(x)

def
= stop(x) φ2

stop(x)
def
= false

φ1
fricative(x)

def
= fricative(x) φ2

fricative(x)
def
= false

φ1
nasal(x)

def
= nasal(x) φ2

nasal(x)
def
= false

φ1
lateral(x)

def
= lateral(x) φ2

lateral(x)
def
= false

φ1
rhotic(x)

def
= rhotic(x) φ2

rhotic(x)
def
= false

φ1
labial(x)

def
= labial(x) φ2

labial(x)
def
= false

φ1
coronal(x)

def
= coronal(x) φ2

coronal(x)
def
= false

φ1
dorsal(x)

def
= dorsal(x) φ2

dorsal(x)
def
= false

φ1
voiced(x)

def
= voiced(x) φ2

voiced(x)
def
= false

φ1
voiceless(x)

def
= voiceless(x) φ2

voiceless(x)
def
= false

Table 3.3: The complete logical specification for word-final vowel epenthe-

sis when the input and output string models are both the feature-based

successor model.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.4. GETTING BIGGER 75

3.4.2 Duplication

Here we provide another example of a logical transduction, total redu-

plication. The idea is to make two faithful copies of the input and add

a successor relation from the last segment of the first copy to the initial

segment of the second copy.

Let the copy setC
def
= {1, 2}. Then we essentially make all unary relations

be faithful to their input: for all unary relations R in the output signature,

let φ1
R(x) = φ2

R(x)
def
= R(x). As for the successor relation, two elements (x, i)

and (y, j) stand in the successor relation if only if either one of two cases
hold. First, when i = j = 1 or i = j = 2 then (x, i) / (y, j) only when
x / y holds in the input structure. Second, when i = 1 and j = 2, we have
(x, i) / (y, j) if and only if x is word-final and y is word-initial in the input
model. When i = 2 and j = 1, no successor relation holds. We define

wordinitial (x) as follows.

wordinitial (x)
def
= ¬∃y (y / x) (3.11)

To illustrate, Figure 3.7 shows the output structure for the input pan. In

other words, it is straightforward to define total reduplication using these

methods.

For completeness, Table 3.4 shows the complete logical description of

total reduplication.

3.4.3 Summary

At this point, we have covered how to define transformations logically.

A domain formula determines which words the transformation applies

to. In our examples, the transformations represent total functions and

apply to all words. The signature of the output structure determines the

relational formulas that need to be defined. These formulas belong to a

logical language defined in terms of the relations present in the model

signature of the input structure. A copy set and licensing formulas are used

to calibrate the size of the output structure. For a logical transduction f
defined with a copy set of size n, the maximal size of the output structure
f(x) will be n|x| where |x| is the cardinality of the domain of the model of
x.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

76 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

(1,1) (2,1) (3,1)

stop
labial

voiceless
vocalic

low
nasal

coronal

(1,2) (2,2) (3,2)

stop
labial

voiceless

vocalic
low

nasal
coronal

/ /

/

/ /

Figure 3.7: The model for panpan, which is the output of the reduplication

process applying to the input pan.

3.5 Power of MSO-definable Transformations

What other kinds of transformations can be described with logical trans-

formations? As the astute reader may no doubt have already gathered,

many phonologically or morphologically unnatural processes are also easy

to describe with logical transformations. This is a strength, not a weakness,

of the formal methods advocated here. Basically, the formal methods do

not constitute a theory of phonology; rather, they constitute a meta-language

in which theories of phonology can be stated and compared.

In this section, however, we simply wish to establish concretely the fact

that two unnatural processes—string mirroring and sorting—also permit

logical descriptions.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.5. POWER OF MSO-DEFINABLE TRANSFORMATIONS 77

φdomain
def
= true C

def
= {1, 2}

φ1
license(x)

def
= true φ2

license(x)
def
= true

φ1,1
/ (x, y)

def
= x / y φ1,2

/ (x, y)
def
= wordfinal (x)

∧ wordinitial (y)

φ2,1
/ (x, y)

def
= false φ2,2

succ(x, y)
def
= x / y

φ1
vocalic(x)

def
= vocalic(x) φ2

vocalic(x)
def
= vocalic(x)

φ1
low(x)

def
= low(x) φ2

low(x)
def
= low(x)

φ1
high(x)

def
= high(x) φ2

high(x)
def
= high(x)

φ1
front(x)

def
= front(x) φ2

front(x)
def
= front(x)

φ1
stop(x)

def
= stop(x) φ2

stop(x)
def
= stop(x)

φ1
fricative(x)

def
= fricative(x) φ2

fricative(x)
def
= fricative(x)

φ1
nasal(x)

def
= nasal(x) φ2

nasal(x)
def
= nasal(x)

φ1
lateral(x)

def
= lateral(x) φ2

lateral(x)
def
= lateral(x)

φ1
rhotic(x)

def
= rhotic(x) φ2

rhotic(x)
def
= rhotic(x)

φ1
labial(x)

def
= labial(x) φ2

labial(x)
def
= labial(x)

φ1
coronal(x)

def
= coronal(x) φ2

coronal(x)
def
= coronal(x)

φ1
dorsal(x)

def
= dorsal(x) φ2

dorsal(x)
def
= dorsal(x)

φ1
voiced(x)

def
= voiced(x) φ2

voiced(x)
def
= voiced(x)

φ1
voiceless(x)

def
= voiceless(x) φ2

voiceless(x)
def
= voiceless(x)

Table 3.4: The complete logical specification of total reduplication when

the input and output string models are both the feature-based successor

model.

3.5.1 Mirroring

String mirroring is a process that takes any string w as input and outputs
wwr where wr is the reverse of the string w. For example if the string pan
is submitted to the mirroring process, then the output would be pannap.

Similarly, if paka were input to the mirroring process, the output would be

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

78 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

pakaakap. Mirroring makes palindromes.

Mirroring can be described with a logical transduction that is nearly

identical to the one for total reduplication. The unary relations are defined

in the same way. The only differences lie in two of the formulas for the

successor relation in the output structure. Specifically, φ1,1
/ (x, y) = x/y and

φ2,1
/ (x, y) = false as before. However, φ2,2

/ (x, y)
def
= y / x, which essentially

reverses the successor relations in the second copies of the domain elements.

Finally, φ1,2
/ (x, y)

def
= wordfinal (x) ∧ wordfinal (y). Thus mirroring

places the copies of the word-final element into the successor relation.

Figure 3.8 shows the output structure of the string pannap that is produced

by this logical description of string mirroring given the input pan.

(1,1) (2,1) (3,1)

stop
labial

voiceless
vocalic

low
nasal

coronal

(1,2) (2,2) (3,2)

stop
labial

voiceless

vocalic
low

nasal
coronal

/ /

/

//

Figure 3.8: The model representing pannap, which is the output of the

mirroring process applied to the input pan.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.5. POWER OF MSO-DEFINABLE TRANSFORMATIONS 79

3.5.2 Sorting

String sorting is a process that takes any string as input and outputs a

string of the same length where the symbols are sorted according to a

predetermined order; here we will use alphabetical order. For instance if

the input string is paka then the output string would be aakp. Similarly,

if the input string was banapi the output string would be aabinp. While

we can do this for any word model of strings discussed so far, we will

assume an alphabet Σ and the precedence model with letters (section 2.7)
for convenience. We also assume that the alphabet is totally ordered

and denote this ordering relation with <α. In a phonological setting, the

alphabetical order could be substituted for any other scale, for example

markedness. This would allow one to express constraints like “the more

marked a segment, the earlier it occurs in a word” or the “the more marked

a segment, the later it occurs in a word.”

Then sorting can be modeled with a logical transduction as follows.

The idea is to have one copy associated with each letter a of the alphabet.
Only letters a are licensed on the copy associated with a. This segregates
the letters by the copies (which are rows in the visualizations) and the first

copy (row) is associated with the first letter in lexicographic order, the

second copy (row) with the second letter, and so on. The ordering relation

is then defined so that earlier copies (rows) precede later copies (rows).

Formally, let the copyset C = Σ. This may seem unusual, but it means
that we make as many copies as there are letters in the alphabet and that

instead of labeling these copies with numbers, we label them with elements

of Σ itself. This facilitates defining the formulas. For each a, b ∈ Σ, define
the relational and licensing formulas as follows.

• For all a, b, let φb
a(x)

def
= a(x).

• For all a, let φa,a
< (x, y)

def
= x < y.

• For a 6= b, let φa,b
< (x, y)

def
= true whenever a <α b and false otherwise.

• For all a, let φa
license(x)

def
= a(x).

The first item faithfully copies the unary relations in the input to each copy

in the output.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

80 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

The second item defines the binary precedence relations for domain

elements in the output that belong to the same copy. In this case, domain

elements (x, a) and (y, a) stand in the precedence relation in the output
if and only if x < y in the input. This ensures the familiar left-to-right
ordering among elements, at least within a copy.

The third item defines the binary precedence relations for domain

elements in the output that belong to different copies. The basic idea is

that alphabetically earlier copies will precede alphabetically later ones.

Whenever a <α b (a is alphabetically earlier than b) is true then φ
a,b
< (x, y)

def
=

true. Whenever a <α b is not true, then φ
a,b
< (x, y)

def
= false.

Finally, we get to the licensing formulas, of which there will be |Σ|. We
define these formulas so that only those domain elements that belong to the

unary relation a in the ath copy are licensed. Everything else is unlicensed.
Recall that relations in the output structure are restricted to the licensed

domain elements. As a consequence of these licensing formulas, there will

be only as many licensed elements as there are domain elements in the

input structure.

Figure 3.9 illustrates this construction when the input is paka.

3.5.3 Summary

Both mirroring and sorting can be described with MSO logical transforma-

tions. In fact, mirroring only used FO with successor, and sorting only used

FO with precedence.

3.6 Discussion

There are three important points which must be mentioned. The first is that

the model signatures for the input and output structures of a transformation

do not need to be the same. The examples earlier in this chapter kept the

input and output structure signatures the same in order to explain how the

logical transformations worked. However, generally, they can be distinct.

As will be explained, this has important consequences for the comparison

of representational theories.

The second point regards a useful property of some transformations;

namely, order preservation. In the domains of morphology and phonology,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.6. DISCUSSION 81

1,a 2,a 3,a 4,a

1,b 2,b 3,b 4,b

...
...

...
...

1,k 2,k 3,k 4,k

...
...

...
...

1,p 2,p 3,p 4,p

...
...

...
...

1,z 2,z 3,z 4,z

a a

k

p

<

<

<

<

<

<

Figure 3.9: The model representing the output aakp of the sorting process

applied to input paka. All potential domain elements shown. Unlicensed

elements are in gray. Unary relations are only shown on licensed elements.

this turns out to be nearly universal. Reduplicative morphology is the

exception (Dolatian and Heinz, 2020; Rawski et al., 2023). As will be

explained, if the transformation we are describing is order-preserving then

describing processes like epenthesis and deletion become simpler because

we can use the ‘order preservation recipe’ instead of trying to work out the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

82 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

order relations by hand.

The third point is that logical transformations provide a feasible, flexi-

ble, descriptive tool for linguists to describe phenomena they find in the

world, which can be further analyzed and used by many, both human

and machine. Model theory and logic provide a universal language for

expressing linguistic generalizations.

3.6.1 Transforming Representations

As mentioned, the logical transductions presented in this chapter so far all

have used the same model signature for the input and output structures. In

general, however, they can be different. For example, many phonologists

consider syllable structure to be something not present in underlying rep-

resentations but present in surface representations. The model theoretic

signature for underlying representations would not include those syllabic

relations, but the model theoretic signature for surface representations

would. Chapter 11 presents an example of this.

To illustrate, we can write logical transductions between any of the

model signatures we have considered so far: the successor model, the

precedence model, the successor model with features, and the precedence

model with features.

Consider a logical transduction which translates successor-based struc-

tures to precedence-based structures. For simplicity, let the alphabet be

{a,b}. The input structure signature is thus {a, b, /} and the output struc-
ture signature is {a, b, <}. Table 3.5 provides the formulas for this logical
transduction. The predicate closed is defined in Chapter 2 (see Equa-
tion 2.14). It is left as an exercise for the reader to write the transduction

from the precedence-based structures to successor-based ones.

As another example, one can write translations from symbol-based

models to feature-based models in FO logic straightforwardly. For example,

to translate between the precedence model and the precedence model with

features from Chapter 2, the logical formulas presented in Table 3.6 can

be used. It is left as an exercise for the reader to complete Table 3.6 and to

write a logical transduction from feature-based structures to conventional

ones.

It is also possible to write a FO translation from representations with

unary features to representations with binary features and vice versa. In this

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.6. DISCUSSION 83

φdomain
def
= true

φ1
license(x)

def
= true

C
def
= {1}

φ<(x, y)
def
= (∀X)

[
(x ∈ X ∧ closed (X) → y ∈ X

]
φa(x)

def
= a(x)

φb(x)
def
= b(x)

Table 3.5: The complete logical specification for translating successor-based

models of words in {a, b}∗ to precedence-based models.

φdomain
def
= true

φ1
license(x)

def
= true

C
def
= {1}

φ<(x, y)
def
= x < y

φvocalic(x)
def
= a(x) ∨ e(x) ∨ i(x) ∨ o(x) ∨ u(x)

φb(nasal)
def
= n(x) ∨ m(x)

…

Table 3.6: The complete logical specification for translating successor-based

models of words in {a, b}∗ to precedence-based models.

regard, readers may be interested in (Nelson, 2022), whose comparative

study of the natural classes obtained by unary and binary feature systems,

and the logical connectives used to combine them, reveals that logical nega-

tion effectively converts any feature system into a full binary one and that

in order to effectively represent underspecification or non-binary feature

oppositions, feature values should be encoded into the representational

primitives.

One important consequence of being able to use logical transductions

to describe translations between representations is that the weakest logic

which can translate one representation into another can serve as a proxy

for how similar those representations are. The more powerful the logic

necessary to translate between two representations, the more significantly

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

84 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

different they are. In a sense, the minimally expressive logics required to

translate between two representations are a measure of the informational

content carrying by the representation. Conversely, the weaker the logic

necessary to translate between them, the more they can be considered

notational variants.

As an example, we have already seen that translating from a successor-

based representation to a precedence-based representation requires MSO

logic. On the other hand, translating from precedence-based representation

to successor only requires FO logic. This indicates that the precedence-

based representation carries more information than the successor-based

one. For another example, (Strother-Garcia, 2019) shows that different

linguistic representations of syllable structure can be translated to each

other with a Quantifier-Free logic, which is weaker than First Order (see

Chapter 22 for Quantifier-Free logic). Strother-Garcia’s results indicates

that the information content in those different linguistic representations

of syllable structure are not so different. Other examples of this kind of

research include studying different theories of tonal geometry (Oakden,

2020), and autosegmental representations vis a vis Q-theory (Jardine et al.,

2021).

The second major consequence of being able to use logical transductions

to translate between representations is that such transformations actually

provide a translation between logical languages. This means that if Abraham

describes a theory of phonology with logic L and representation X (so

L(X)) , and Barbara describes a theory of phonology with logic M and

representation Y (so M(Y)), and Charlie presents a logical transduction T

from X-representations to Y-representations then every constraint formula

or sentence φ that can be expressed in L(X) can be translated into a formula
or sentence in T(Y). For example, any first order constraint expressed over

the successor model with letters can be translated into a FO order constraint

over the successor model with features because a FO definable transduction

exists from the conventional successor model to the successor model with

features.

3.6.2 Order Preservation

A transformation is order-preserving provided there is some logical trans-
duction such that for all inputs, the outputs are ordered so that all the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.6. DISCUSSION 85

copies of the first position precede all copies of the second position and so

on; and furthermore, it is the case that that within a copy, earlier positions

precede later positions. It can be helpful to visualize order-preservation

as follows. The domain of the input structure D and the copy set C form
a D × C grid of possible output domain elements. In the visualizations
throughout this chapter, these grids have |D| columns and |C| rows. If
the elements in the output structure can be ordered by ordering elements

according to earlier columns first and then by earlier rows, then the trans-

formation is order-preserving. Figure 3.10 illustrates this order with four

positions and a copy set of size four. In order to obtain order preservation,

C
o
p
y

Position

1

1

2

2

3

3
4

4

Figure 3.10: Order preservation

using the precedence relation, one simply asserts φi,j
< (x, y) is true whenever

x < y or whenever x = y and i < j. Otherwise it is false.
The use of the precedence relation for order-preserving functions is

especially helpful when not all domain elements are licensed. In this case,

no special modifications need to be made to how the ordering relation is

defined. This is because the relations in the output structure are restricted

to the licensed domain elements and the precedence relation is total (so

for any two elements, one has to precede the other).

The fact that the successor relation is not total means that writing

formulas for the successor relation for order-preserving transformations is

more complicated. Nonetheless, it can be done. A general solution is to

write the formulas using the licensing function to ensure that the successor

relation only holds between the appropriate licensed elements. One way

to do this uses the definition of general precedence in the output structure

φ< above. Let φ
i,j
/ (x, y) to be defined as true if and only if (1) (x, i) and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

86 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

(y, j) satisfy the relevant licensing formulas, (2) φi,j
< (x, y) is true, and (3) for

all (z, k) such that if (z, k) is ordered between (x, i) and (y, j) then it must
not satisfy the relevant licensing formulas. In other words, the licensed

elements form a ‘tier’ and the successor relation is just the ‘next’ element

on this tier.

Because there are general ways to write the order relations when the

transformation is order-preserving, it follows that one can focus on the

other formulas needed to define the relation. It also helps guide the analysis.

For example, if there is epenthesis occurring between positions x and x+ 1
then, in order to take advantage of order-preservation, the epenthesized

element should go on a copy of x, and not on a copy of some other element.

3.6.3 Logic as a descriptive formalism

There are many reasons why linguists should use logic and model theory as

a descriptive formalism. I highlight three: flexibility, theory comparison,

and longevity. To some extent, these follow from the fact that logic and

model theory provide a universal description language for structures.

Many linguists adopt representational choices as part of their analyses.

Model theory and logic do not hinder this freedom. Linguists can choose

their representations. These representations and the generalizations made

over them can be expressed precisely with logic. Later chapters in this

book provide some interesting examples of the kinds of representations

that can be explored, especially within phonology and morphology. For

example, TODO: add refs to later chapters.

Logic and model theory also facilitate theory comparison. Other lin-

guists, either contemporary or belonging to later generations, can take

descriptions of linguistic structures and constraints that have been pre-

sented with certain representations and logical languages and rigorously

translate them into their own preferred representations and constraint

languages. These logical languages can then be compared to find genuine

areas where the theories make different predictions.

A third reason is longevity. If the linguistic description is, for example,

in first order logic, one can be assured that someone in hundreds of years

will be able to read and understand the description, and that machines

will exist which can process it. The value of this for someone documenting

languages should not be underestimated.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

3.7. CONCLUSION 87

3.7 Conclusion

This chapter has explained how transformations can be expressed logically

between model-theoretic representations following the ideas of Courcelle.

The model signature of the output representation, together with the copy set,

determines the formulas one needs to write. These formulas are written in

a logical language based on the model signature of the input representation,

and are likewise evaluated against the input structure.

Specifically, in order to specify a transformation, one must specify the

following items.

• A formula with no free variables that establishes the domain of the

transformation ϕdom. This determines those structures to which the

function can apply.

• A copy set C of k ≥ 1 elements which determines, along with the size
of the input structure, the maximal size of the output structure. Each

pairing (x, c) with c ∈ C and x in the domain of the input structure is
a possible element in the domain of the output structure.

• For each element c in the copy set, a licensing formula of one free
variable ϕc

license(x) which determines whether (x, c), which is the cth
copy of element x, is licensed in the model of the output structure.
Unlicensed elements are not part of the domain of output structure.

Only licensed ones are.

• For each element c in the copy set, and for each unary relation U
in the signature of the output structure, a formula ϕc

U(x) of one free
variable. This formula means that the cth copy of x bears the unary
relation U in the output structure if only if

1. the cth copy of x is licensed, and

2. φc
U(x) is satisfied when evaluated against the input structure.

• For every pair of elements (c, d) in the copy set and for each binary
relation B in the signature of the output structure, a formula ϕc,d

B (x, y)
of two free variables. This formula means that the cth copy of x
stands in the relation B to the dth copy of y in the output structure if
only if

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

88 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

1. both cth copy of x and the the dth copy of y are licensed, and

2. φc,d
B (x, y) is satisfied when evaluated against the input structure.

These formulas can be specified in any order as long as they are well-

defined. Thus one formula ϕ can be defined in terms of another formula
ψ only if ψ has been defined previously. MSO (and thus FO) logic do not
permit recursive definitions.

The bulk of Parts II and III of this book apply these logical transforma-

tions to case studies and theoretical questions in linguistics, especially in

phonology and morphology. The introduction to model theory provided in

chapters 2 and 3 provide all the necessary background to understand the

chapters in the later parts of this book. The remaining chapters in Part I

do not be read to understand the work in Part II. While Chapter 4 is useful

background to some of the first chapters in Part III, it is not relevant to

later chapters in Part III.

The remaining chapters in Part I provide additional context and enrich-

ment to the material presented thus far. Chapter 4 discusses weighted logics

and explains how logic can also be used to describe non-categorical gener-

alizations. Chapter 5 introduces logic weaker than FO logic for defining

phonological constraints, and provides a logical perspective on work on

the computational nature of phonological constraints (not transformations)

studied in subregular approaches to phonology (Heinz, 2007, 2010; Rogers

et al., 2013; Rogers and Lambert, 2019b,a). Chapter 6 presents a rigorous

mathematical treatment of models, signature, structures, MSO and FO logic,

weighted logics, and propositional logics, that were introduced in Part I of

this book.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 4

Weighted Logics

Jeffrey Heinz

The logical sentences considered in previous chapters evaluate to true
or false with respect to a model-theoretic structure. This leads some to
believe that logical approaches have nothing to say for phenomena that

does not fall into binary categories. In fact, however, the use of logic for the

description of linguistic constraints and transformations does not preclude

studying other kinds of linguistic generalizations, such as those deemed

gradient or probabilistic. Weighted logics can be used for precisely such

generalizations, among many other purposes (Droste and Gastin, 2009).

The sentences can evaluate to a natural number, a real number, a string,

or even a set of strings.

4.1 Four Key Points

In order to understand weighted logics, there are a few key points. The

first is to realize that existential and universal quantification are essentially

recipes for generating a series of disjunctions and conjunctions, respec-

tively. For example the formula ∃(x)φ(x) is equivalent to the expanded for-
mula φ(1) ∨ φ(2) · · · ∨ φ(n) for structures whose domain equals {1, 2, . . . n}.
Similarly, the formula ∀(x)φ(x) is equivalent to the expanded formula
φ(1) ∧ φ(2) · · · ∧ φ(n) for structures with the same domain.
The second key point is that the concepts of disjunction and conjunction

can be generalized to other binary operations. Generally, disjunction is

89

D
R
A
F
T

90 CHAPTER 4. WEIGHTED LOGICS

understood as a kind of addition, and conjunction is understood as a kind of

multiplication. It is conventional to use the symbols⊕ and⊗ for these more
general addition and multiplication operators. Consequently, when reading

a formula of weighted logic, existential quantification and disjunction

are interpreted with ⊕ and universal quantification and conjunction are
interpreted with ⊗.
How the general addition and multiplication operators are instantiated

depends on the kinds of values (weights) the logical formula are supposed

to evaluate to. The value can be a real number or some other class of

values. Weighted logics have been most carefully studied when the class

of values under consideration is a semiring. Semirings are mathematical
structures of values that are closed under the two binary operations ⊗
and ⊕. Additionally, S contains two identity elements: 0 for ⊕ and 1 for
⊗. In fact, the set {true, false} is a semiring where the conjunction is
⊗, disjunction is ⊕, 0 = false, and 1 = true. Some examples of different
semirings are shown below in Table 4.1.

Name S ⊕ ⊗ 0 1

Boolean {true, false} ∨ ∧ false true
Natural N + × 0 1

Real Interval [0, 1] + × 0 1

Viterbi [0, 1] min × 0 1

Finite Language FIN ∪ · ∅ {λ}

Table 4.1: Example Semirings

The third key point is that the logical language for the weighted logic

presented here differs syntactically from the logical languages discussed

previously in one important respect. For the weighted logic presented

here, negation can only be applied to atomic expressions. In other words,

negation cannot be applied to any well-formed formula to obtain another

well-formed formula. The syntactic and semantic details are presented

explicitly in Chapter 6.

Here is some rational for why negation is treated this way in weighted

logic. As we will see, expressions in weighted logics evaluate to an element

of the semiring. In the Boolean semiring, where we have true and false, it
is clear how to interpret negation. But how do we interpret negation in an

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

4.2. EXAMPLES 91

arbitrary semiring? A natural interpretation would be to interpret negation

as an inverse operation, but semirings are not required to contain inverses.
To put it another way, semirings are not necessarily closed under inverses.

For example, the negation of a natural number is not a natural number.

While one approach may be to only consider semirings which are closed

under inverse, the approach pursued by Droste and Gastin (2009) is to

restrict negation to atomic expressions. To illustrate, consider the atomic

expression a(x). If a is true of x then this expression will evaluate to the
identity of ⊗, which is 1. And the expression ¬a(x) would evaluate to
identity of ⊕, which is 0. On the other hand, if a is false of x then these
expressions will evaluate 1 and 0, respectively.

The fourth key point is that the elements of the semiring are atoms

themselves in the logic. For example, in the natural semiring, the number

4 is a term! And syntactically, 4 ∧ 3 is a well-formed expression. When we
interpret it, conjunction is interpreted as ⊗, which in the natural number
semiring is normal multiplication. So the denotation of 4∧3, written

q
4∧3

y
,

is 4× 3 = 12.

4.2 Examples

The remainder of this chapter illustrates with examples weighted logic

formulas and their evaluation.

The first example shows how to count the number of marked structures

in strings.
∗c def

= ∃x[c(x)] (4.1)

Consider how this formula is evaluated with respect to (a representation

of) the string acbc in the natural number semiring. The structure of acbc has
domain equal to {1, 2, 3, 4}. In the equations below we simply writeM for

Macbc. The existential quantifier in
∗c expands to a series of disjunctions,

one for each position in the string.

q ∗c
y
(M) =

q ∨
x∈{1,2,3,4}

c(x)
y
(M) =

q
c(1) ∨ c(2) ∨ c(3) ∨ c(4)

y
(M)

Those disjunctions are interpreted as ⊕.
q
c(1)

y
(M)⊕

q
c(2)

y
(M)⊕

q
c(3)

y
(M)⊕

q
c(4)

y
(M)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

92 CHAPTER 4. WEIGHTED LOGICS

In the natural number semiring, ⊕ is normal addition (+).
q
c(1)

y
(M) +

q
c(2)

y
(M) +

q
c(3)

y
(M) +

q
c(4)

y
(M)

Each atomic expression evaluates to 1 or 0 depending on whether it is true
of false, respectively, in the structureM.

0 + 1 + 0 + 1 = 2

This is how weighted logics can evaluate to values other than true or false.
The reader can easily verify that the same procedure will correctly evaluate

the structure of the string abba to 0.
The second example shows how to count the length of a string. Again,

we use the natural number semiring.

length def
= ∃x[1] (4.2)

The 1 in the equation is a valid term because 1 is a natural number! Recall
it was mentioned that elements of the semirings are allowed to be atomic

terms. If we consider string acbc again and its structureM, we can see
how length is evaluated. The existential quantifier in length expands
to a series of disjunctions, one for each position in the string.

q
length

y
(M) =

q ∨
x∈{1,2,3,4}

1
y
(M) =

q
1 ∨ 1 ∨ 1 ∨ 1

y
(M)

Again, in the natural number semiring, ∨ is interpreted as normal addition,
and so

q
1 ∨ 1 ∨ 1 ∨ 1

y
(M) evaluates to 1 + 1 + 1 + 1 = 4.

The next example implements a unigram distribution over a three letter

alphabet. For this we will use the real interval semiring.

U def
= ∀x

[(
a(x) ∧ 0.4

)
∨
(
b(x) ∧ 0.4

)
∨
(
c(x) ∧ 0.2

)]
(4.3)

This equation essentially assigns the probabilities of 0.4 to occurrences

of a and b and a probability of 0.2 to an occurrence of c. Below is the
evaluation of U with respect to the structureM of the string acbc. The
universal quantifier will expand to a series of conjunctions of terms. In this

example, those terms themselves are compositions of subterms. Since ⊗
and ⊕ are interpreted as normal multiplication and addition respectively in

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

4.2. EXAMPLES 93

the real interval semiring, the term
(
a(x)∧ 0.4

)
∨
(
b(x)∧ 0.4

)
∨
(
c(x)∧ 0.2

)
will be interpreted as

(
a(x)× 0.4

)
+
(
b(x)× 0.4

)
+
(
c(x)× 0.2

)
for each x

in the domain. Consequently, when evaluating U(Macbc), it first expands
as follows.

q
U

y
(M) =

((
a(1)× 0.4

)
+
(
b(1)× 0.4

)
+
(
c(1)× 0.2

))
×
((

a(2)× 0.4
)
+
(
b(2)× 0.4

)
+
(
c(2)× 0.2

))
×
((

a(3)× 0.4
)
+
(
b(3)× 0.4

)
+
(
c(3)× 0.2

))
×
((

a(4)× 0.4
)
+
(
b(4)× 0.4

)
+
(
c(4)× 0.2

))
The subterms within the term

(
a(x) ∧ 0.4

)
∨
(
b(x) ∧ 0.4

)
∨
(
c(x) ∧ 0.2

)
are mutually exclusive. Position x must satisfy exactly one of a, b, and c.
As a result, two of the subterms will evaluate to zero. Consequently, the

evaluation will continue as follows.

q
U

y
(M) = (1× 0.4 + 0 + 0)

×(0 + 0 + 1× 0.2)
×(0 + 1× 0.4 + 0)
×(0 + 0 + 1× 0.2)

= 0.0064

Other probability distributions over sequences can be expressed in similar

ways.

Our final example makes use of the language semiring to express an

optional post-nasal voicing generalization. The equation below identifies

post-nasal voicing environments. For simplicity we assume the successor

model with letters, and we limit the alphabet to the symbols {a, n, d, t}.

NT def
= ∃x, y

[
x / y ∧ n(x) ∧ d(y)

]
(4.4)

Given the Boolean semiring, the sentence NT would evaluate to true
given the structure of the string anda and to false given the structure of
the string anta.
However, we now want to consider the finite language semiring FIN.

The ⊗ operation is now language concatenation. Given two sets of strings
X and Y , their concatenation is XY = {xy | x ∈ X, y ∈ Y }. Note that the
empty set acts as 0 here and the set containing only the empty string acts as

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

94 CHAPTER 4. WEIGHTED LOGICS

1, the identity. In other words, for all finite languages X, X∅ = ∅X = ∅
and X{λ} = {λ}X = X. The ⊕ operation is now union. We have seen in
the previous example that by multiplying the base terms with elements of

the semiring we can associate different weights to different symbols. The

same approach is in the next equation, where the substring nd is ultimately
associated with the finite language {nd, nt}.

NT def
= ∃x, y

[
x / y ∧ n(x) ∧ {n} ∧ d(y) ∧ {d, t}

]
(4.5)

To see how this works, let’s evaluate NT on the structure of the string
nd. Since the domain of this structure has two elements, the existential
quantifier expands to four disjunctive terms which correspond to the (x, y)
pairs (1, 1), (1, 2), (2, 1), and (2, 2). Each disjunctive term is the conjunction
of three subterms. The first subterm is x / y. This only evaluates to true
for (x, y) pair (1, 2). The others evaluate to false.
Consider one of the false cases, say x = 1 and y = 1. Since 1 is not the

successor of itself, the subterm x / y evaluates to false. False terms are
interpreted as 0, which in the finite language semiring corresponds to the

emptyset. So here
q
x/y

y
= ∅. Since conjunction is interpreted as language

concatenation, we are ‘multiplying’ the other subterms by the emptyset.

Consequently, this entire disjunctive term evaluates to ∅. Likewise, the
other false cases evaluate to ∅.
Let’s move on to the one true case when x = 1 and y = 2. Now

x / y evaluates to true which is interpreted as the multiplicative identity
{λ}. The other subterms evaluate as follows. Since position 1 is a n,q
n(x)×{n}

y
= {λ}{n} = {n}. And since position 2 is a d,

q
d(y)×{d, t}

y
=

{λ}{d, t} = {d, t}. These three subterms multiply together: {λ}{n}{d, t} =
{nd, nt}. This disjunctive term this evaluates to {nd, nt}.
Finally, we combine all the disjunctive terms together with ⊕, which

in this semiring is union. We have ∅ ∪ {nd, nt} ∪∅ ∪∅, which of course
equals {nd, nt}. To sum up we have shown when NT in Equation 4.5 is
applied to the structure of the string nd, it evaluates to the set {nd, nt}.
We are not yet done. Any string without a nd substring given to Equa-

tion 4.5 will evaluate to the empty set. This is because every disjunctive

term will evaluate to the empty set since none of its subterms will be be

true. So to allow the process to apply to any word, it is important that we

embed Equation 4.5 into a larger expression.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

4.2. EXAMPLES 95

How do we accomplish this? The next equation establishes basic faith-

fulness (the identity function).

id def
= ∀x

[(
a(x) ∧ {a}

)
∨
(
n(x) ∧ {n}

)
∨
(
d(x) ∧ {d}

)
∨
(
t(x) ∧ {t}

)] (4.6)

The idea is to combine Equation 4.6 with Equation 4.5 to achieve the

desired outcome. Here is one way to do this.

NT def
= ∀x

[(
a(x) ∧ {a}

)
∨
(
n(x) ∧ {n}

)
∨
(
t(x) ∧ {t}

)
∨
(
d(x) ∧

(
∃y[y / x ∧ n(y)]

)
∧ {d, t}

)
∨
(
d(x) ∧

(
∃y[y / x ∧ ¬n(y)]

)
∧ {d}

)] (4.7)

The idea is to again to make use of mutually exclusive conditions for each

position. In this case there are five. If a position satisfies a, n, or t, it
invariably surfaces faithfully. If a position satisfies d then it depends on
whether a previous position exists which satisfies n. If so, then the fourth
disjunct will evaluate to {d, t} and the last one to ∅. If not, the fourth
disjunct will evaluate to ∅ and the last one {d}.
This last example is especially interesting because it provides another

way to express transformations with logical formula other than the Cour-

cellian approach introduced in chapter 3, which is used throughout the

remainder of this book. The approach to string-to-string functions using

weighted logics over a string or language based semiring (like FIN), to my

knowledge, has not been studied in any more detail.

A basic idea that informed the examples here has been to use the logical

language to identify substructures and to then multiply them by elements

of the appropriate semiring. In this way, the outputs are always some kind

of sum of the relevant weighted substructures.

Finally, it is also worth observing that given two semirings A and B,
a new semiring can be constructed whose elements belong to the cross-

product A × B. For example, we could combine the Finite Language
semiring with the real interval semiring to express probabilities over the

output variations.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

96 CHAPTER 4. WEIGHTED LOGICS

4.3 Conclusion

Weighted logics allow one to express linguistic generalizations beyond

binarity. There are some technical differences in the ways these logics

are defined. Negation only applies to the base cases. Conjunction and

disjunction are interpreted as semiring multiplication ⊗ and addition ⊕.
There are many semirings (Golan, 1999), including ones for strings and

formal languages. While there is much here to explore, the remainder of

this book focuses on the use of logic and model theory as described in

previous chapters. This chapter is presented to lay to rest any doubts about

the efficacy that formal logic brings to non-binary generalizations.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 5

Below First Order Logic

Jeffrey Heinz and James Rogers

This chapter continues the line of thinking developed in Chapter 2. There it

was shown how the choice of constraint definition language (CDL) provides

a theory of possible constraints. It was also shown that from a model-

theoretic perspective, choice of constraint definition language includes

choosing an explicit representation and logical formalism. It was also

argued there that if theorists wish to posit a CDL which can express both

local and long-distance constraints of the kind found in phonology, but

cannot express generalizations like Even-N, then, of the CDLs considered,

First-Order (FO) logic with precedence would be the best choice.

Another way to motivate First-Order logic with precedence is that,

given the CDLs considered so far, it was the least class of constraints that

included both the local and long-distance style constraints. The idea that

“Everything should be made as simple as possible, but no simpler” is at the

heart of scientific thinking.1 We are interested in the minimally necessary

computational machinery to account for the variety of generalizations ob-

served across the world’s languages (cf. the Minimalist Program (Chomsky,

1995)).

One clue that FO is more expressive than necessary, is that it is straight-

forward to define constraints that are sensitive to the number of occurrences

of complex structures in a word. Readers may recall that this counting is

1This expression is typically attributed Einstein but it seems it was sharpened after the
fact (Robinson, 2018).

97

D
R
A
F
T

98 CHAPTER 5. BELOW FIRST ORDER LOGIC

in fact present in the abstract characterization of “FO with successor” in

Theorem 1.

For example, Equation 2.11 gave a definition for the constraint *NT. It

is very easy to write a similar constraint that only penalizes words with

three NT sequences but not two as shown below.

*3NT def
= ¬(∃x1, x2, x3, x4, x5, x6)

[
(
x1 / x2 ∧ nasal(x1) ∧ voiceless(x2)

)
∧
(
x3 / x4 ∧ nasal(x3) ∧ voiceless(x4)

)
∧
(
x5 / x6 ∧ nasal(x5) ∧ voiceless(x6)

)
∧
(
x1 6= x3 ∧ x1 6= x5 ∧ x3 6= x5

)]
(5.1)

Note we use x 6= y as shorthand for ¬(x = y). According to this constraint
hypothetical words like kampantasakanka are ill-formed, but words like

kampantasakaka are well-formed. Is there a principled way to eliminate

this kind of counting from the CDLs?

There is. Propositional logic is a logical system that is weaker than
FO. In this section we motivate and define a propositional-style logic along

the lines developed by Rogers and Lambert (2019b). We do this for both

the successor and the precedence models of strings.

The resulting CDLs do not have the ability to count in the manner

above. More generally, the abstract characterizations of the resulting CDLs

corresponds to a particular type of memory model, the so-called “Testable”

classes (McNaughton and Papert, 1971; Simon, 1975), with clear cognitive

implications (Rogers and Pullum, 2011; Rogers et al., 2013). We return to

these broader issues after introducing propositional logic.

5.1 Propositional Logic with Factors

Sentences of propositional logic are Boolean combinations of atomic propo-
sitions. The Boolean connectives, presented in Table 2.2, are the symbols:
∧ (conjunction), ∨ (disjunction), ¬ (negation), → (implication), and ↔
(biconditional).2 Classically, the atomic propositions can be anything from

2In technical presentations of propositional logic, only some of these are presented as
fundamental and the remainder are derived from those.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

5.1. PROPOSITIONAL LOGIC WITH FACTORS 99

sentences like “All men are mortal” to “The sample contained chlorine.”

The truth of any sentence in propositional logic can be computed from the

truth values of the atomic propositions along with the standard ways the

Boolean connectives are interpreted. Good introductions to propositional

logic include Keisler and Robbin (1996) and Hedman (2004).

Additionally, one way to interpret the meaning of a sentence φ in
propositional logic is as the set of worlds in the universe for which φ would
evaluate to true. In our context, the universe is the set of possible strings
Σ∗ and each string in Σ∗ is a “world” in this universe. Thus, just as with

sentences of FO and MSO logic, each propositional sentence φ will pick out
some set of strings in Σ∗, which are those words for which φ can be said to
be true of.

What are the atomic propositions in this universe of strings? Following

Rogers and Lambert (2019b), we present atomic propositions based on the

notion of containment. They are sentences of the form “Words contain
S”, where S is a model-theoretic connected structure. Consequently the
proposition S will be true of any string w whose model Mw contains S.
In this case, we say that S is a factor of Mw.

In order to precisely define the factor relation, we must introduce
the meanings of connected and contains. The formal details are given in

Chapter 6 and are illustrated below with examples.

As an example, consider the successor model with features and the

structure with domain D = {1, 2}, the successor relation given by {(1, 2)},
with nasal={1}, voiceless={2}, and with all other unary relations de-
noting phonological features equal to the empty set. This structure, which

we denote NT, represents a nasal immediately succeeded by a voiceless
segment. It is shown in Figure 5.1.

1 2

nasal voiceless

/

Figure 5.1: The factor NT

Compare this structure withMsans in the successor model with features

presented in Figure 2.2. We can say that the structure NT is a factor of

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

100 CHAPTER 5. BELOW FIRST ORDER LOGIC

Msans becauseMsans contains the structure NT. This is because we can
find elements in the domain ofMsans – namely elements 3 and 4 – which

match the elements 1 and 2. By “match”, we mean that the relations held

by 1 and 2 in NT hold for 3 and 4 inMsans, respectively. What relations are

held by 1 and 2 in NT? 1 satisfies the unary relation nasal and 2 satisfies
the unary relation voiceless. Additionally, 2 is the successor of 1. We can
likewise see that inMsans, 3 satisfies the unary relation nasal, 4 satisfies
the unary relation voiceless, and 4 is the successor of 3. For these reasons,
we can conclude thatMsans contains the structure NT.
However, containment alone is insufficient to define the factor relation.

Let’s consider another structure N, T . Like NT, this structure has domain
D = {1, 2} with nasal={1}, voiceless={2}, and with all other unary
relations denoting phonological features equal to the empty set. Further-

more, no successor relation holds between these two elements. The model

Msans also contains this structure because we can find elements inMsans

which match the elements in N, T . In fact, successor structures of words

like donut and ten also contain the structure N, T .

We choose to eliminate the possibility of such disconnected structures,

by requiring the atoms of our propositional logic to be connected structures.
Informally, a structure is connected if any two elements in a domain can be

connected by a series of relations that chain the two elements together. For

example, let the structure CCC be defined to have domain D = {1, 2, 3},
to have cons={1,2,3} with all other unary relations denoting phonological
features equal to the empty set, and to have the successor relation given

by {(1, 2), (2, 3). There are three pairs of domain elements: (1,2), (2,3),
and (1,3). Clearly pairs (1,2) and (2,3) are connected pairs since they are

connected by the successor relation. Pair (1,3) is also connected, however,

via the series of successor relations that connects 1 to 2 and then 2 to

3. Formal details are given in Chapter 6 (see also Rogers and Lambert

(2019b)).

We refer to connected structures as factors.3 We observe that models

of every string in Σ∗ is a factor because each is a connected structure.

Furthermore, we can now understand why NT is a factor of Msans. It is

because NT is a connected structure contained withinMsans. If a factor S

3We avoid the term substructure since it has a distinct meaning in model theory; see
Hedman (2004) for instance.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

5.2. EXAMPLES OF PROPOSITIONAL LOGIC WITH FACTORS 101

is contained within a structureM, we write S v M. Hence, NT v Msans.

At last we can specify the atoms of the propositional logic we introduce.

The atoms are factors. Every connected structure contained in some string

in Σ∗ is an atom. Thus, to decide whether a model of a stringM satisfies a

sentence of propositional logic with a structure S as an atom, we will need
to decide whether S is a factor ofM as shown in Equation 5.2

M |= S iff S v M (5.2)

The remainder of the logic is defined like every other propositional

logic. Sentences of propositional logic combine atomic propositions with

the Boolean connectives (∧ conjunction, ∨ disjunction, ¬ negation, →
implication, and ↔ biconditional), and these combinations have their

usual meanings. The language associated with a propositional sentence φ
is also defined in the usual manner.

L(φ) = {w ∈ Σ∗ | Mw |= φ} (5.3)

As was the case with FO and MSO logics, this propositional-style logic we

have introduced depends on a model signature. This is because what the

atomic propositions — the connected structures — depend is on the model

signature.

5.2 Examples of Propositional Logic with Fac-

tors

In this section we discuss the CDLs: PROP(/), PROP(<), and PROP(/,o,n),
each with and without features. These refer to propositional logical lan-

guages defined with factors from the model signatures with successor,

precedence, and successor with word boundaries respectively. It can be

shown that each of these CDLs is unable to define a constraint that penalizes

words with three NT sequences but not two (regardless of whether or not

features are used).

Each of these CDLs has a very similar characterization as expressed in

the following theorem. We identify the size of a factor with the size of its
domain.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

102 CHAPTER 5. BELOW FIRST ORDER LOGIC

Theorem 4 (Characterization of PROP-definable constraints). A constraint

is PROP-definable with model signature R if and only if there is a number k
such that for any two strings w and v, whenever the R-structures of these two

strings have the same factors up to size k under the given model, then either

both w and v violate the constraint or neither does.

That the theorem is true is not hard to see. If two strings w, v have
exactly the same factors up to size k then their structures satisfy exactly
the same set of atomic propositions. Since the truth of any propositional

formula φ depends only on the truth or falsity of its atomic propositions, it
must be the case that either bothMw |= φ andMv |= φ or neitherMw nor

Mv satisfy φ.
Significant literature exists on the classes of formal languages definable

with some of these CDLs. In particular the class of formal languages

definable with PROP(/) are Strongly Locally Testable (Beauquier and Pin,
1991). A constraint like *NT is thus not only FO-definable with successor

but it is PROP-definable with successor.

To be explicit, if the alphabet is the one used in Chapter 2 ({a, b, d, e,

g, i, k, l, m, n, o, p, r, s, t, u, z}) then *NT can be expressed as shown in

Equation 5.4 below.

∗NT def
= ¬mk ∧ ¬mp ∧ ¬ms ∧ ¬mt ∧ ¬nk ∧ ¬np ∧ ¬ns ∧ ¬nt (5.4)

In Equation 5.4, the sequence ab represents the factor where the first
element is a and the second is b. On the other hand, if we are using
features, then *NT can be expressed as shown in Equation 5.5 below.

∗NT def= ¬NT (5.5)

where NT represents the factor shown in Figure 5.1. We conclude that *NT
is definable with PROP(/) (with or without features) and is therefore a
Strongly Locally Testable constraint.

We can also show that the constraint which is violated by three NT

sequences but not two is not definable in this way. To show this, we use

Theorem 4. Let us call this particular constraint *3NT. If this constraint

was definable with PROP(/), then according to this theorem there would
be some maximum factor size k such that for any two strings w and v,
whenever the model structures of these two strings have the same factors

up to size k under the given model, then either both w and v violate the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

5.2. EXAMPLES OF PROPOSITIONAL LOGIC WITH FACTORS 103

constraint or neither does. Consequently, we can show a constraint is not

PROP(/) by showing there exists, for any k, two strings with the same set
of factors, but one obeys the constraint and one does not.

Pick an arbitrary k and consider the strings w = akntakntak and v =
akntakntakntak. Clearly w obeys *3NT but v does not. And yet these strings
have the same set of k-factors: {ak, ak−1n, ak−2nt, ak−3nta, . . . , ntak−2}. Since
we can always find a pair of strings that *3NT distinguishes for any k, there
is no maximum k such that strings with the same k-factors either both obey
or both violate the constraint. It follows from Theorem 4 that *3NT is not

definable in PROP(/).
Another class of constraints that has been well studied is definable

with PROP(/,o,n). This model extends the successor model with left and
right word boundaries. The signature of this model is {(b)b∈Σ/,o,n, }
where symbols o and n denote unary relations which are interpreted as
the left and right word boundaries, respectively. The model-theoretic

representation of a string w = b1b2 . . . bn is presented in Table 5.1.

D
def
= {0, 1, 2, . . . n+ 1}

a def
= {i ∈ D | bi = b} for each unary relation a

/
def
= {(i, i+ 1) ⊆ D ×D}

o def
= {0}

n def
= {n+ 1}

Table 5.1: The successor model for words with word boundaries w =
b1b2 . . . bn.

For example, Figure 5.2 shows the structure the successor model with

word boundaries assigns to the string sans. Under this model, factors can

0 1 2 3 4 5

o s a n s n

/ / / / /

Figure 5.2: A graphical depiction of the successor model with word bound-

aries of the word sans.

distinguish structures at left and right word boundaries from ones that

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

104 CHAPTER 5. BELOW FIRST ORDER LOGIC

are not at these boundaries. The class of languages definable with this

model and propositional logic is exactly the Locally Testable languages

(McNaughton and Papert, 1971; Rogers and Pullum, 2011). The Locally

Testable Languages are known to properly include the Strongly Locally

Testable languages. Similar arguments to the ones presented above will

also show that *3NT is not Locally Testable for any factor size k.

We next address the question of whether features increase or decrease

the definable constraints. We observe that two strings with the same factors

in a model signature with letters PROP((b)b∈Σ, /,o,n, letters) will also have
the same factors in a model signature with features PROP(feat, /,o,n) and
vice versa. So the expressivity of PROP(feat, /,o,n) and PROP(/,o,n,
letters) are the same (the Locally Testable class) and thus no arguments

based on expressivity can be used to distinguish these CDLs. However, it

is of course the case that the way certain sets of strings can be expressed

within these logical languages will be different, and arguments for one or

the other CDL could be made on such grounds.

The class of formal languages definable with PROP(<) are Piecewise
Testable (Simon, 1975). The constraint *N..L is PROP-definable with

precedence with and without features as shown in Figure 5.3 below.

1¬ 2

n l

1¬∧ 2

m l

< <

1 2¬

nasal lateral

<

Figure 5.3: The factor NL with letters (above) and features (below)

To summarize this section, a propositional logic whose atomic proposi-

tions correspond to factors interpreted in terms of containment provides

CDLs that are less powerful than corresponding FO ones. Figure 5.4 illus-

trates the situation with the constraints discussed in Chapter 2.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

5.3. CONJUNCTIONS OF NEGATIVE LITERALS 105

/, features <, features

MSO *N..L, Even-N Even-N

FO

PROP *NT *N..L

Figure 5.4: Classifying the constraints *NT, *N..L, and Even-N.

5.3 Conjunctions of Negative Literals

The constraints presented above all have the same form. That is, they are

the conjunctions of negative literals. A literal is an atomic proposition. If

P is a literal then its negative literal is simply ¬P . In the propositional
logic with factors introduced above, conjunctions of negative literals simply

mean an expression of propositional logic of the following form.

¬X1 ∧ ¬X2 ∧ . . . ∧ ¬Xn

Such an expression simply means “Words are well-formed provided they

don’t contain X1 and don’t contain X2 and …don’t contain Xn.”

Constraints that can be defined with the logical language CNL(/,o,n)
correspond exactly to the class of Strictly Local Languages (McNaughton

and Papert, 1971; Rogers and Pullum, 2011). This class of languages has

as its defining property Suffix Substitution Closure.

Theorem 5 (Characterization of CNL(/,o,n) constraints). A constraint is

CNL(/,o,n) definable if and only if there is a number k such that for any

strings u1, v1, u2, v2 ∈ Σ∗ and for any string x of length k − 1, whenever u1xv1
and u2xv2 obey the constraint, it is the case that the string u1xv2.

For example, in the case of *NT, it will turn out that k = 2. Since both
strings minato and pungu obey the *NT constraint, and since both share
a sequence of length k − 1 (here this is n), then we can identify u1 = mi,
v1 = ato, u2 = pu, v2 = gu, and x = n. Hence we have u1xv1 = minato and
u2xv2 = pungu and we satisfy the antecedent condition in the statement
of the theorem. It follows that the string u1xv2 = mingu must also be a
string that obeys *NT. And in fact it does. This is true for all such strings

u1, v1, u2, v2 and x.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

106 CHAPTER 5. BELOW FIRST ORDER LOGIC

Suffix Substitution Closure (SSC) is an abstract property that holds of

any Strictly Local language regardless of the intensional description of the

formal language. We could use any of the logical languages discussed so

far to define the set of strings which do not violate the constraint *NT. We

write a finite-state acceptor or use some other grammatical formalism. The

SSC tell us something about the shape of a formal language in the same way

that having 4 sides and 4 right angles tells us that the shape of a polygon

is a rectangle. No intensional description required.

Suffix Substitution Closure can be used to show that certain constraints

are NOT Strictly Local (and therefore NOT definable with CNL(/,o,n) by
finding, for any k, two strings u1xv1 and u2xv2 with x the length of k − 1,
which obey the constraint but where u1xv2 does not.
Here is an example, consider the formula φ in PROP(/,o,n) defined in

Equation 5.6.

φ = a (5.6)

This constraint says words must contain the letter a. We can use Suffix
Substitution Closure to show that this constraint is not definable with

CDL(/,o,n). Fix k. Consider the strings cck−1a and ack−1c. Both of these
obey the constraint since they both contain a. However, when we set
u1 = c, x = ck−1, v1 = a, u2 = a, and v2 = c we can see that the substituting
the suffix yields u1xv2 = cck−1c, which clearly violates the constraint since
it contains no a.
The formula in Equation 5.7 provides another example.

φ = ¬a → ¬b (5.7)

A word w obeys this constraint provided the sentence “if w does not contain
a then w does not contain b” is true. In other words, words without as must
also be without bs. Again, pick a k. Consider the strings cck−1c and ack−1b.
Both of these obey the constraint. The first one obeys it because it contains

neither as nor bs. The second one obeys it because it contains an a, and so
the antecedent in the conditional is not met. However, when we set u1 = c,
x = ck−1, v1 = c, u2 = a, and v2 = b we can see that substituting the suffix
yields u1xv2 = cck−1b, which clearly violates the constraint since it contains
no a but does contain b.
If we change the model signature, other classes of languages are ob-

tained. For example, the constraints definable with CNL(<) correspond
exactly to the Strictly Piecewise Languages (Rogers et al., 2010, 2013). The

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

5.4. DISCUSSION 107

constraint *N..L is definable with CNL(<). This class of languages has as
its defining property Subsequence Closure.

Theorem 6 (Characterization of CNL(<) constraints). A constraint is CNL(<)
definable if and only if for any string x which obeys the constraint, every

subsequence of x also obeys the constraint.

Like with Suffix Substitution Closure, this is a property of Strictly Piece-

wise languages independent of the grammatical formalism. Subsequence

Closure gives us another kind of shape in the space of formal languages.

The conclusion that we come to is that if we are only interested in

defining constraints like *NT and *N..L, a minimally expressive constraint

language that does the job is to have constraints drawn from CNL(/) and
CNL(<). Figure 5.5 illustrates. This is more or less the position adopted by

MSO *N..L, Even-N Even-N

FO

Prop

CNL *NT *N..L

/, features <, features

Figure 5.5: Classifying the constraints *NT, *N..L, and Even-N.

Heinz (2010). A key difference between then and now is that the logical

and model-theoretic presentation allows us to more precisely understand

the nature of the restrictions on what makes a possible constraint. This is

partly because the relationships between the different logical formalisms

(MSO, FO, Prop, CNL) are well understood, and partly because we also

understand the consequences of certain representational choices.

An important line of research has also examined constraints like *N..L us-

ing autosegmental representations, invoking the concept of a phonological

tier. Readers are referred to TODO:add tier refs here...

5.4 Discussion

When more constraints are examined in more languages, it almost certainly

reveals that things may not be as simple as this presentation suggests. But

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

108 CHAPTER 5. BELOW FIRST ORDER LOGIC

this discussion was not so much about the correctness of this particular

conclusion, as it was to emphasize a way to proceed with analysis.

We seek to formalize linguistic generalizations to help us understand

them. Expressing these constraints in a logical language does this in spades.

It requires us to be explicit about representations. It requires us to be

explicit about the logical formalism. When we combine a model-theoretic

representation with a logic, whether it MSO, FO, Propositional, or some

fragment thereof like CNL, we have created a Constraint Definition Lan-

guage, which gives us a class of patterns.

That class of patterns can be studied, and situated with respect to other

classes of patterns. Humboldt is famous for having said that language makes

“infinite employment of finite means” (von Humboldt, 1999, p. 91), but he

also said that to do linguistic typology one needs to have two encyclopedias

(Frans Planc, p.c.) One of these encyclopedias is an “Encyclopedia of

Types,” by which he meant the collection of linguistic generalizations

that we go out and find in the world. The other is an “Encyclopedia of

Categories,” by which he meant some systematic way of putting classifying

those types. Different logical languages, parameterized by logical power on

the one hand, and model-theoretic representation on the other, provide an

unparalleled Encyclopedia of Categories with which we can study linguistic

generalizations.

Another consideration is learning. We can ask whether the constraints

definable with a particular CDL can be learned, under different definitions

of what learning means. It is known that when the maximum factor size is

specified to some k, that CNL constraints are efficiently learnable under
different definitions of learning. The class of PROP constraints similarly

constrained is also learnable, but generally not feasibly. See Lambert et al.

(2021) for details.

This chapter explored logics weaker than First Order as they could

be applied to constraints. What about transformations? This question

is more open. It is not straightforward how to synthesize the approach

taken in this chapter, which uses containment and propositional logic,

with the Courcellian logical transformations explained in Chapter 3. On

the other hand, in Chapter 22, Chandlee and Lindell present a significant

result by establishing an equivalence between Input Strictly Local functions

(Chandlee and Heinz, 2018) and a weaker fragment of First Order logic

known as Quantifier Free logic. Another approach, not pursued in this

book, utilizes algebraic properties of the transformations to explore weaker

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

5.5. SUMMARY 109

variants (Lambert, 2022; Lambert and Heinz, 2023).

5.5 Summary

In this chapter, we showed how propositional logics can be used to express

constraints using the notion of structural containment. It was important that

our structures be connected; and we introduced the term factor to talk about

such connected structures. We observed that many local and long-distance

phonotactic constraints belong to a fragment of such a propositional logical

language, which is the conjunctions of negative literals. We concluded

that there are many logical languages which can be defined and studied to

classify phonological constraints.

possible revision: return to the shape metaphor introduced with
SSC and subsequence closure. Extract and put in its own short section
which also mentions the characterizations of Star Free, from the
previous chapter, and LT and PT from this one.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

110 CHAPTER 5. BELOW FIRST ORDER LOGIC

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 6

Formal Presentation of Model
Theory and Logic

Jeffrey Heinz

This chapter presents formal definitions of the syntax and semantics of three

logical formalisms discussed in earlier chapters. It draws from Enderton

(2001); Courcelle (1994); Engelfriet and Hoogeboom (2001); Hedman

(2004) and Courcelle and Engelfriet (2012). The organization of this

chapter follows the order of the material in part I of this book. First,

relational models, model signatures, and structures are defined. Then the

syntax and semantics of MSO logic and FO logic are presented. Next the

formulas needed for Courcellian logical transductions where the words

are represented with model-theoretic relational structures are presented

and it is explained how they are interpreted. The following section defines

semirings, and the syntax and semantics of weighted logic. The last section

defines connected structures, factors, and the syntax and semantics of a

propositional logic whose atomic propositions are connected structures

found within words.

6.1 Relational Models and Signatures

A n-ary relation R is a relation of arity n. This means it expresses a relation
among n different elements. So if D is the domain of elements then R is a

111

D
R
A
F
T

112 CHAPTER 6. FORMAL DEFINITIONS

subset of

Dn = D ×D × . . .×D︸ ︷︷ ︸
n times

.

For example, a unary relation is a subset of D and a binary relation is a
subset of D ×D. The arity of a relation R is denoted ρ(R).
A signature is a finite number of relations, denoted R. The relations in

R can be of various arities. Formally, if n ∈ N is the number of relations
in the signature, let

R = 〈R1, . . . Rn〉 such that for all 1 ≤ i ≤ n, ρ(Ri) > 0.

In words, R is a tuple of n relations, and Ri is a ρ(Ri)-ary relation. A
signature can be thought of as a way to define a class of logically possible

structures. It can be thought of as expressing the type of representations

under consideration.

A relational structure of type R, also called a R-structure, is a tuple
〈D | (R)R∈R〉. Relational structures are representations of the information
that is immediately accessible about an object. The object can be identified

as a set elements of a domain with certain relationships which exist among

those elements. Since the objects we consider have only finitely many

domain elements, these structures are called finite relational structures.

If the analyst has a class of objects in mind (for example words) then it

is important to ensure that each unique object has some model and that

distinct objects have distinct models.

As an example, consider conventional word models. Fix an alphabet Σ.
Then a conventional word model has |Σ| unary relations, one for each letter
of the alphabet, and one binary relation, which is the ordering relation. The

two models only differ in the ordering relation. For successor-structures,

we require / = {(i, i+ 1) | i, i+ 1 ∈ D} but for precedence-structures, we
require < = {(i, j) | i, j ∈ D, i < j}.

6.2 MSO Logic for relational models

The difference between MSO and FO logic has to do with quantification.
Both logics make use of variables. MSOmakes use of two kinds of variables:
variables that range over individual elements of the domain and variables

that range over sets of individual elements of the domain. The former are

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6.2. MSO LOGIC FOR RELATIONAL MODELS 113

denoted with lowercase letters such as x, y, z and the latter with uppercase
letters X,Y, Z. We denote these two countable sets of variables with Vx
and VX respectively. While MSO uses both kinds of variables, FO logic only
uses Vx. Therefore FO logic is literally those formulas of MSO logic without
quantification over sets of individual domain elements.

If ρ(R) = 1, and x stands in the R relation in some domain, we write
R(x). Similarly, if ρ(R) = 2, and x1 stands in the R relation to x2 in
some domain, we write R(x1, x2). Generally, if ρ(R) = n, and the el-
ements x1, x2, . . . xn stand in the R relation in some domain, we write
R(x1, x2, . . . xn). When ρ(R) is not explicit, we use ~x to mean a tuple of
ρ(R) variables and write R(~x) to mean R holds for the tuple of elements in
~x. In the notation R(~x), it is understood that ρ(R) = |~x|.

6.2.1 Syntax of MSO logic

This sections defines the syntax of MSO logic.

Definition 1 (Formulas of MSO logic). Fix a signature R. The formulas of
MSO(R) are defined inductively as follows.

The base cases.

For all variables x, y ∈ Vx = {x0, x1, . . .}, X ∈ VX = {X0, X1, . . .}, the
following are formulas of MSO logic.

(B1) x = y (equality)
(B2) x ∈ X (membership)
(B3) R(~x) for each R ∈ R (atomic relational formulas)

The inductive cases.

If ϕ, ψ are formulas of MSO logic, then so are

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

114 CHAPTER 6. FORMAL DEFINITIONS

(I1) (¬ϕ) (negation)
(I2) (ϕ ∨ ψ) (disjunction)
(I3) (ϕ ∧ ψ) (conjunction)
(I4) (ϕ→ ψ) (implication)
(I5) (ϕ↔ ψ) (biconditional)
(I6) (∃x)[ϕ] (existential quantification for individuals)
(I7) (∃X)[ϕ] (existential quantification for sets of individuals)
(I8) (∀x)[ϕ] (universal quantification for individuals)
(I9) (∀X)[ϕ] (universal quantification for sets of individuals)

Nothing else is a formula of MSO logic.

It is possible to define a MSO logic with some subset of the above induc-

tive cases (for example negation, disjunction, and existential quantification)

and to derive the remainder. The above definition attempts to strike a

balance between austere minimality and some utility.

6.2.2 Semantics of MSO logic

The free variables of a formula ϕ are those variables in ϕ that are not
quantified. A formula is a sentence if none of its variables are free. Only
sentences can be interpreted.

If a R-structureM satisfies, or models, a sentence ϕ ∈ MSO(R), one
writesM |= ϕ. If Ω is a class of objects (like Σ∗) and R is a signature for
representing elements of Ω then the extension of ϕ is denoted

q
ϕ
y
and

equals {ω ∈ Ω | Mω |= ϕ}.
It will also be useful to think of the interpretation of ϕ as a function

that maps relational structures to the set {true, false}. Since
q
ϕ
y
denotes

a set, this function is essentially that set’s indicator function. Instead of
introducing new notation for this indicator function, I will reuse the

q
ϕ
y

notation. So while
q
ϕ
y
designates a set,

q
ϕ
y
(M) denotes a function which

takes an R-structureM and returns a truth value. Whether
q
ϕ
y
is being

interpreted as a set or as a function should be clear from context.

In order to evaluate
q
ϕ
y
(M)—that is, in order to decide whether

M |= ϕ—variables must be assigned values. For this reason, the functionq
ϕ
y
actually takes two arguments: one is the R-structureM and one is the

assignment function. The assignment function S maps individual variables
(like x) to individual elements of domain D and maps set-of-individual

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6.2. MSO LOGIC FOR RELATIONAL MODELS 115

variables (like X) to sets of individuals (so subsets of D). Formally, S :
(Vx → D) ∪ (VX → ℘(D)). The assignment function S may be partial, even
empty. The empty assignment is denoted S0.

We evaluate
q
ϕ
y
(M,S0). Throughout the evaluation, the assignment

function S gets updated. The notation S[x 7→ e] updates the assignment
function to bind element e to variable x. Similarly, the notation S[X 7→ S]
updates the assignment function to bind the set of elements S to variable
X. Then whetherM |= ϕ can be determined inductively by the below
definition.

Definition 2 (Interpreting sentences of MSO logic). Fix a signature R.

The base cases.

(B1)
q
x = y

y
(M,S) ↔ S(x) = S(y)

(B2)
q
x ∈ X

y
(M,S) ↔ S(x) ∈ S(X)

(B3) For each R ∈ R,
q
R(~x)

y
(M, S) ↔ S(~x) ∈ R

To clarify the notation in (B3): if ~x = (x1, x2, . . . xn) then S(~x) = (S(x1),S(x2), . . .S(xn)).

The inductive cases.

(I1)
q
(¬ϕ)

y
(M,S) ↔ ¬

q
ϕ
y
(M,S)

(I2)
q
(ϕ ∨ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) ∨

q
ψ

y
(M,S)

(I3)
q
(ϕ ∧ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) ∧

q
ψ

y
(M,S)

(I4)
q
(ϕ→ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) →

q
ψ

y
(M, S)

(I5)
q
(ϕ↔ ψ)

y
(M,S) ↔

q
ϕ
y
(M, S) ↔

q
ψ

y
(M, S)

(I6)
q
(∃x)[ϕ]

y
(M,S) ↔ (

∨
e∈D

q
ϕ
y
(M,S[x 7→ e])

(I7)
q
(∃X)[ϕ]

y
(M,S) ↔ (

∨
S⊆D

q
ϕ
y
(M,S[X 7→ S])

(I8)
q
(∀x)[ϕ]

y
(M,S) ↔ (

∧
e∈D

q
ϕ
y
(M,S[x 7→ e])

(I9)
q
(∀X)[ϕ]

y
(M,S) ↔ (

∧
S⊆D

q
ϕ
y
(M,S[X 7→ S])

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

116 CHAPTER 6. FORMAL DEFINITIONS

6.3 FO Logic

FO(R) is defined as all the formulas of MSO(R) logic which include no
quantification over sets of individuals. In other words, there are no sen-

tences which include variables from VX and so cases B2, I7, and I9 never
occur. In all other respects, sentences of FO logic are interpreted the same

way as above.

6.4 Courcellian Logical Transformations

Next we define transductions from RA-structures to RB-structures.

A deterministic MSO-definable transduction τ from RA-structures to

RB-structures is specified by the following formulas.

1. a domain formula ϕd ∈ MSO(RA) with no free variables;

2. a nonempty copy set C ⊂ N of finite cardinality;

3. for each c ∈ C, a licensing formula ϕc
`(x) ∈ MSO(RA) with one free

variable; and

4. for each RB ∈ RB with ρ(RB) = n and ~c ∈ Cn, there is a relational
formula ϕ~c

RB
(~x) ∈ MSO(R) with n free variables (note |~c| = |~x| = n).

It follows that defining τ requires the following formulas to be defined.

• one domain formula

• |C| licensing formulas

•
∑

RB∈RB
|C|ρ(RB) relational formulas. To explain why, observe that

|C| relational formulas will need to be defined for each unary relation
inRB; |C|2 relational formulas will need to be defined for each binary
relation in RB; and generally |C|n relational formulas will need to be
defined for each n-ary relation in RB.

Next we define how the above formulas provide a RB-structures from

a given RA-structureM = 〈DA | (R)R∈RA
〉.

1. IfM |= ϕd then τ(M is defined. Otherwise τ(M) is undefined.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6.5. WEIGHTED MONADIC SECOND ORDER LOGIC 117

2. If τ(M) is defined then it equals the RB-structure 〈DB | (R)R∈RB
〉

where

• DB = {(e, c) | e ∈ DA, c ∈ C,M |= ϕc
`(x)}

• For each R ∈ RB with ρ(R) = n,
and for each 〈(x1, c1), . . . , (xn, cn)〉 ∈ (DB)

n,

it is the case that 〈(x1, c1), . . . , (xn, cn)〉 ∈ RB iffM |= ϕ~c
RB

(~x)
where ~c = 〈c1, . . . , cn〉 and ~x = 〈x1, . . . , xn〉.

Consequently, the following conclusions stand.

• For any element element e in DA of the RA-structure and for any

element c ∈ C, the pair (e, c) exists in the domain of the RB-structure

τ(M) if and only if ϕc
`(e) is true.

• For any unary relation R ∈ RB, e ∈ DA, and c ∈ C, R(e, c) holds if
and only ifM |= ϕc

R(e) and (e, c) ∈ DB.

• For any binary relation R ∈ RB, e1, e2 ∈ DA, and c1, c2 ∈ C,
R((e1, c1), (e2, c2)) holds if and only ifM |= ϕc1,c2

R� (e1, e2) and
(e1, c1), (e2, c2) ∈ DB.

6.5 Weighted Monadic Second Order Logic

This section formalizes the concepts that were introduced in Chapter 4.

6.5.1 Semirings

We have seen how we can use logic to describe functions f : Σ∗ →
{true, false}. Weighted logics allow one to describe functions with differ-
ent co-domains, including N, [0, 1],∆∗ and so on. Crucially, the co-domain

is a mathematical object known as a semiring. We basically follow the
presentation by Droste and Gastin (2009).1

1An important difference is I have kept equality, which they omit. One reason to
omit equality is that it may not be decidable for an arbitrary semiring whether two of
its elements are equal. For example, in the real interval, most real numbers are not even
computable. Nevertheless, equality is assumed here.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

118 CHAPTER 6. FORMAL DEFINITIONS

A semiring is a set S with two binary operations ⊕,⊗, called ‘addi-
tion/plus’ and ‘multiplication/times’, and with elements 1 and 0 with the

following properties satisfied for all x, y, z ∈ S:

(P1) x⊕ y, x⊗ y ∈ S (closure under ⊕ and ⊗)
(P2) x⊕ y = y ⊕ x (⊕ is commutative)
(P3) 0⊕ x = x⊕ 0 = x (0 is the identity for ⊕)
(P4) 1⊗ x = x⊗ 1 = x (1 is the identity for ⊗)
(P5) 0⊗ x = x⊗ 0 = 0 (0 is an annihilator for ⊗)
(P6) x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) (⊗ right distributes over ⊕)

Below are some examples of semirings.

Name S ⊕ ⊗ 0 1

Boolean {true, false} ∨ ∧ false true
Natural N + × 0 1

Viterbi [0, 1] max × 0 1

Language ℘(Σ∗) ∪ · ∅ {λ}

Previously we could understand existential quantification as disjunction

over the elements in the domain whereas universal quantification is a

conjunction of the elements in the domain. With WMSO, existential quan-

tification combines the elements of the domain with ⊕ whereas universal
quantification combines them with ⊗.

6.5.2 Syntax of Weighted MSO Logic

Definition 3 (Formulas of WMSO logic). Fix a signature R and a semiring
S. The formulas of WMSO(S,R) are defined inductively as follows.

The base cases.

For all variables x, y ∈ {x0, x1, . . .}, X ∈ {X0, X1, . . .}, and for all R ∈ M
the following are formulas of MSO logic.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6.5. WEIGHTED MONADIC SECOND ORDER LOGIC 119

(B1) s, for each s ∈ S (atomic semiring element)
(B2) x = y (equality)
(B3) x 6= y (non-equality)
(B4) x ∈ X (membership)
(B5) x 6∈ X (non-membership)
(B6) R(~x), for each R ∈ M (positive relational atom)
(B7) ¬R(~x), for each R ∈ M (negative relational atom)

As before, it is understood that the |~x| = ρ(R). So if R is a unary relation,
then ~x = (x). If R is a binary relation, then ~x = (x, y), and so on.

The inductive cases.

If ϕ, ψ are formulas of MSO logic, then so are

(I1) (ϕ ∨ ψ) (disjunction)
(I2) (ϕ ∧ ψ) (conjunction)
(I3) (∃x)[ϕ] (existential quantification for individuals)
(I4) (∃X)[ϕ] (existential quantification for sets of individuals)
(I5) (∀x)[ϕ] (universal quantification for individuals)
(I6) (∀X)[ϕ] (universal quantification for sets of individuals)

Nothing else is a formula of weighted MSO logic. Note that negation is

only present in the base cases.

6.5.3 Semantics of Weighted MSO Logic

Let Ω be a class of objects (like Σ∗) and let S be a semiring. Let R de-
note a signature for representing elements of Ω. Let ϕ be a sentence of
WMSO(S,R). Then

q
ϕ
y
denotes a function with domain Ω and co-domain

S. Formally,
q
ϕ
y
: Ω → S.

As before, interpreting ϕ requires an assignment function S. We writeq
ϕ
y
(M,S) to express the value in S that ϕ assigns toM.

Definition 4 (Interpreting formulas of WMSO logic). Fix a signature R
and semiring S. Let D be the domain of the input R-structureM.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

120 CHAPTER 6. FORMAL DEFINITIONS

The base cases.

(B1)
q
s
y
(M,S) def

= s

(B2)
q
(x = y)

y
(M,S) def

= 1 iff S(x) = S(y) , 0 otherwise

(B3)
q
x 6= y

y
(M,S) def

= 0 iff S(x) = S(y) , 1 otherwise

(B4)
q
x ∈ X

y
(M,S) def

= 1 iff S(x) ∈ S(X) , 0 otherwise

(B5)
q
x 6∈ X

y
(M,S) def

= 0 iff S(x) ∈ S(X) , 1 otherwise

(B6)
q
R(~x)

y
(M, S) def

= 1 iff R(S(~x)) , 0 otherwise

(B7)
q
¬R(~x)

y
(M,S) def

= 0 iff R(S(~x)) , 1 otherwise

The inductive cases.

(I1)
q
(ϕ ∨ ψ)

y
(M,S) def

=
q
ϕ
y
(M,S)⊕

q
ϕ
y
(M,S)

(I2)
q
(ϕ ∧ ψ)

y
(M,S) def

=
q
ϕ
y
(M,S)⊗

q
ϕ
y
(M,S)

(I3)
q
(∃x)[ϕ]

y
(M,S) def

=
⊕

e∈D
q
ϕ
y
(S[x 7→ e], w)

(I4)
q
(∃X)[ϕ]

y
(M,S) def

=
⊕

E∈D
q
ϕ
y
(S[X 7→ E], w)

(I5)
q
(∀x)[ϕ]

y
(M,S) def

=
⊗

e∈D
q
ϕ
y
(S[x 7→ e], w)

(I6)
q
(∀X)[ϕ]

y
(M,S) def

=
⊗

E∈D
q
ϕ
y
(S[X 7→ E], w)

Since multiplication is not necessarily commutative, the order in which

it occurs matters. When there is universal quantification over individuals

(∀x), the multiplication is done according to the natural order. This means
that if the elements of D are natural numbers then they are multiplied
according to the order of natural numbers.

When there is universal quantification over sets of individuals, an

order over the subsets of the domain must be assumed. One way to order

finite subsets of natural numbers is to order them according to the length-

lexicographic order of their list-representations. A list-representation of

a finite subset of natural numbers is just the list of numbers in ascending

order.

Finally, since addition is necessarily commutative (unlike multiplica-

tion), we do not worry about the order of the computation for existential

quantification.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6.6. PROPOSITIONAL LOGIC 121

6.6 Propositional Logic

This section defines a logical language using propositional logic and R-
structures.

We begin with what is meant by connected relational structure with
a signatureR. For eachR-structureM withR = {R1, . . . Rn} let the binary
relation C be defined as follows.

C
def
=

{
(x, y) ∈ D ×D |
∃i ∈ {1 . . . n}, Ri ∈ R

∃k ∈ N [ρ(Ri) = k],

∃(x1 . . . xk) ∈ Ri,

∃s, t ∈ {1 . . . k}, x = xs, y = xt
}

Further, let C∗ denote the transitive closure of C. This means C∗ is the least

set which contains C and for which it is the case that whenever (x, y) ∈ C∗

and (y, z) ∈ C∗ then (x, z) ∈ C∗ too. Then a structure A is connected
whenever, for all x, y in the domain of A, it holds that (x, y) ∈ C∗.

As an example, consider the structureMabbcc in the conventional succes-

sor model. This is a connected structure because the the successor relation

chains together any two elements. For instance, that domain elements 1
and 4 are connected is witnessed by these elements of the successor relation
(1, 2), (2, 3), (3, 4). In fact, the structure of every string under every model
discussed is connected under this definition.

What is an example of an unconnected structure? Under the signature

〈/, a, b, c〉, consider the structure A = {{1, 2} | ∅, {1}, {2}, ∅}. This structure
contains two elements (one is labeled a and one is labeled b) but they are

not connected by any series of relations.

Next we discuss what it means for one structure to be a restriction of
another. Let A,B both be R-structures. A is a restriction of structure B
if DA ⊆ DB and for each m-ary relation R, we have (x1 . . . xm) ∈ RA if and

only if (x1 . . . xm) ∈ RB and x1, . . . , xm ∈ DA. So A is essentially what is
left of B after B is stripped of elements and relations which are not wholly
within the domain of A.

Finally, we say structure A is contained by B structure if A is iso-
morphic to a restriction of B. Whenever A is contained by B and A is a
connected structure, we also say A is a factor of B (denoted A v B).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

122 CHAPTER 6. FORMAL DEFINITIONS

For each string w ∈ Σ∗, let F (Mw) denote the set of factors of the
structureMw and let Fk(Mw) be set of factors whose size is less than or
equal to k (recall that the size of a structure is equal to the cardinality of its
domain). Formally, F (w) = {S v Mw} and Fk(w) = {S v Mw | |S| ≤ k}.
Finally, we lift the definition of F and Fk to sets of strings as follows.

F (S) =
⋃
w∈S

F (Mw) (6.1)

Fk(S) =
⋃
w∈S

Fk(Mw) (6.2)

6.6.1 Syntax of Propositional Logic

We can now define sentences of propositional logic as follows.

Definition 5 (Propositional Logic with Literal Factors). Fix a signature R.

The base case.

(B1) For all factors f in F (Σ∗), f is a sentence of PROP(R).

The inductive cases.

If ϕ, ψ are formulas of PROP(R), then so are

(I1) ¬ϕ (negation)
(I2) (ϕ ∨ ψ) (disjunction)
(I3) (ϕ ∧ ψ) (conjunction)
(I4) (ϕ→ ψ) (implication)
(I5) (ϕ↔ ψ) (biconditional)

Nothing else is a formula of Propositional logic.

As with non-weighted MSO logic, for a sentence ϕ belonging to PROP(R)
and a R-structureM, we sayM |= ϕ if ϕ is true ofM. If Ω is a class of
objects (like Σ∗) and R is a signature for representing elements of Ω then
the extension of ϕ is denoted

q
ϕ
y
and equals {ω ∈ Ω | Mω |= ϕ}.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

6.6. PROPOSITIONAL LOGIC 123

6.6.2 Semantics of Propositional Logic

As with the non-weighted case before, we conceive of
q
ϕ
y
as an indicator

function which maps relational structures to the set {true, false}.

Definition 6 (Intepreting Sentences of Propositional Logic with Literal
Factors). Fix a signature R.

The base case.

(B1) For all factors f in F (Σ∗),
q
f
y
(M)

def
= f v M.

The inductive cases.

If ϕ, ψ are formulas of PROP(R), then so are

(I1)
q
(¬ϕ)

y
(M) ↔ ¬

q
ϕ
y
(M)

(I2)
q
(ϕ ∨ ψ)

y
(M) ↔

q
ϕ
y
(M) ∨

q
ψ

y
(M)

(I3)
q
(ϕ ∧ ψ)

y
(M) ↔

q
ϕ
y
(M) ∧

q
ψ

y
(M)

(I4)
q
(ϕ→ ψ)

y
(M) ↔

q
ϕ
y
(M) →

q
ψ

y
(M)

(I5)
q
(ϕ↔ ψ)

y
(M) ↔

q
ϕ
y
(M) ↔

q
ψ

y
(M)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

124 CHAPTER 6. FORMAL DEFINITIONS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Part II

Case Studies

125

D
R
A
F
T

D
R
A
F
T

Chapter 7

Regressive voicing assimilation
in Russian obstruent clusters

Hossep Dolatian

7.1 Introduction

Russian is known for having the common phonological process of voicing

assimilation in obstruent clusters. In brief, obstruents clusters in lexical

items can have heterogeneous voicing in the underlying representation

(UR): /at valnɨ/ ‘from wave.’ But in the surface representation (SR), the

clusters agree in voice: [ad valnɨ]. This chapter illustrate how this local

phonological process can be described and formalized with the logical

methods in Part I of this book.

7.2 General description on the data

Table 7.1 lists prepositional phrases made up of a preposition and a single-

word object. We look at three prepositions: obstruent final /at, bʲiz/, and

vowel-final /u/. Data and transcriptions are taken from Halle and Clements

(1983, 109).

127

D
R
A
F
T

128
CHAPTER 7. REGRESSIVE VOICING ASSIMILATION IN RUSSIAN OBSTRUENT

CLUSTERS

First Segment of X ‘from X’ ‘without X’ ‘next to X’ Gloss for X

voiced sonorant at rózɨt͡s bʲiz rózɨ u rózɨ ‘rose’

at mʲɛnɨ bʲiz mʲɛnɨ u mʲɛnɨ ‘change’

at lunɨ bʲiz lunɨ u lunɨ ‘moon’

at álɨ bʲiz álɨ u álɨ ‘Ala’ (name)

at irɨ bʲiz irɨ u irɨ ‘Ira’ (name)

voiced obstruent ad valnɨ bʲiz valnɨ u valnɨ ‘wave’

ad baradɨ bʲiz baradɨ ́ u baradɨ ́ ‘beard’

ad galavɨ bʲiz galavɨ u galavɨ ‘head’

voiceless obstruent at pʲitɨ bʲis pʲitɨ u pʲitɨ ‘heel’

at sʲistrɨ ́ bʲis sʲistrɨ ́ u sʲistrɨ ́ ‘sister’

at karovɨ bʲis karóvɨ u karóvɨ ‘cow’

Table 7.1: Data set for voicing assimilation of Russian obstruent clusters

The vowel-final preposition ‘next to’ has a single surface form [u]. It is

reasonable to propose a faithful UR /u/. In contrast, the obstruent-final

prepositions vary in their pronunciation. The preposition ‘from’ is [ad]

before voiced obstruents, [at] elsewhere. The preposition ‘without’ is [bʲis]

before voiceless obstruents, and [bʲiz] elsewhere. This variation is best

explained by positing the URs /at, bʲiz/ and a phonological process of

regressive voicing assimilation.

Generalization 7.1. Voicing assimilation in obstruents. Obstruent
become voiceless before voiceless obstruents. Obstruents becomes voiced

before voiced obstruents.

Table 7.2 illustrates how this generalization correctly accounts for the

systematic variation in the pronunciations of the prepositions in Table 7.1.

‘from wave’ ‘from heel’ ‘without wave’ ‘without heel’

Input UR /at valnɨ/ /at pʲitɨ/ /bʲiz valnɨ/ /bʲiz pʲitɨ/

Assimilation ad valnɨ bʲis pʲitɨ

Output SR [ad valnɨ] [at pʲitɨ] [bʲiz valnɨ] [bʲis pʲitɨ]

Table 7.2: Application of regressive voicing assimilation

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

7.3. LOGICAL FORMALIZATION OF ASSIMILATION 129

This generalization can be expressed with an SPE-style rule using so-

called alpha notation: [-son] −→ [αvoice] / [-son, αvoice] . In Op-
timality Theory, the markedness constraint *[-son,αvoice][-son,−αvoice]
would outrank the constraint Ident(voice). Additional constraints would

be required to make sure that the second obstruent in the sequence stays

faithful. In the remainder of this chapter, I formalize this generalization

with model theory and logical transductions.

7.3 Logical formalization of assimilation

This section provides an analysis using First Order logic and model-theoretic

representations of regressive voicing assimilation in Russian obstruent

clusters. It is important to be clear both about the representations and the

transformations.

7.3.1 Representations

Voicing assimilation has two key properties: a) it targets the features

[±voice] and [−son], b) it references adjacent segments. Therefore the
input and output word models must be able to reference these properties.

For both the underlying representations and surface representations, I

essentially adopt a successor word model with features (see 2.5). There

are several different feature systems that make the appropriate featural

distinctions. Here I adopt a simple system. In particular, I assume that

features are privative, not binary. Thus, the word model uses the unary

relations voice(x) and son(x). A segment x is voiced whenever voice(x)
evaluates to true. A segment x is voiceless whenever voice(x) evaluates
to false, meaning that ¬voice(x) is true. Similarly, a segment x is an
obstruent whenever¬son(x) is true. Besides these features, the wordmodel
must also have other features to distinguish all possible segments in Russian,

but they don’t play role in assimilation. This set of privative features, which

includes voice and son, is denoted F . To the order segments, the word
model uses the binary successor relation (succ). The above information is
summarized in the model’s signature below.

R = {/} ∪ F

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

130
CHAPTER 7. REGRESSIVE VOICING ASSIMILATION IN RUSSIAN OBSTRUENT

CLUSTERS

1 2 3 4 5 6

a t pʲ i t ɨ

son
voice

son
voice

son
voice

/ / / / /

(a) UR /at pʲitɨ/ ‘from heel’

1 2 3 4 5 6 7 8

bʲ i z v a l n ɨ

voice
son

voice voice voice
son

voice
son

voice
son

voice
son

voice
/ / / / / / /

(b) UR /bʲiz valnɨ/ ‘without wave’

1 2 3 4 5 6 7

bʲ i z p i t ɨ

voice
son

voice voice
son

voice
son

voice
/ / / / / /

(c) UR /bʲiz pʲitɨ/ ‘without heel’

Figure 7.1: Word models of three underlying representations

Figure 7.1 presents word models for the examples /bʲiz valnɨ/ ‘from

heel,’ /bʲiz pʲitɨ/ ‘without wave,’ /bʲiz pʲitɨ/ ‘without heel.’ Following con-

vention, the domain elements are non-negative integers. Each segment is

represented by privative phonological features and only the features voice
and son are shown in Figure 7.1. To facilitate interpretability, segments
are shown in gray below their corresponding domain elements. Adjacent

pairs of segments stand in the successor relationship, represented by arrows

labeled with /.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

7.3. LOGICAL FORMALIZATION OF ASSIMILATION 131

7.3.2 A Logical Transduction for Voice Assimilation

As explained in Chapter 3, defining logical transformation requires defining

the copy set, a domain formula, a licensing formula, and formulas for the

relations in the model signature of the surface representation. All of these

formulas are to defined with a logical language in terms of the relations of

the model signature of the underlying representations. This analysis uses

First Order logic with the R-structures defined in the previous sections.
The domain formula is defined to be true so that transformation applies

to every input. Since voicing assimilation does not change the number

of segments between the input and output, a copy set C of cardinality 1
suffices, and the licensing formula is defined to be true.
The key parts of the transformation lie defining the unary relations for

the output structure. The only change that takes place regards the feature

voice. All features f ∈ F except for this one are faithful in the surface form.
Nor is there any repositioning of the segments. If a segment x precedes a
segment y in the input, then it also does so in the output. These faithful
aspects of the transformation are captured with the equations below.

φf(x)
def
= f(x) where f ∈ F , f 6= voice (7.1)

φsucc(x, y)
def
= succ(x, y) (7.2)

Note that the first equation is a template for all features other than voice.

For example, that equation means that φson(x) = son(x) and similarly for
the other features in F .
Regarding voicing, a sound x change its voicing quality based on

whether a) it is an obstruent, and b) it precedes another obstruent. To

make our formalization easier to follow, we define the following predicates

that capture whether a segment x is a voiceless or voiced, and whether x
precedes a voiceless obstruent or voiced obstruent y.

vd_obst (x)
def
= ¬son(x) ∧ voice(x) (7.3)

vless_obst (x)
def
= ¬son(x) ∧ ¬voice(x) (7.4)

pre_vd_obst (x)
def
= ∃y[vd_obst (y) ∧ x / y] (7.5)

pre_vless_obst (x)
def
= ∃y[vless_obst (y) ∧ x / y] (7.6)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

132
CHAPTER 7. REGRESSIVE VOICING ASSIMILATION IN RUSSIAN OBSTRUENT

CLUSTERS

For any given segment x, it will surface as [+voice] if and only if any
of the following conditions are satisfied:

(a) it is voiced sonorant underlyingly,

(b) it is a voiced obstruent that does not precede a voiceless obstruent, or

(c) it is a voiceless obstruent that precedes a voiced obstruent.

These three conditions are captured via disjunction in the output formula

below.

φvoice(x)
def
= [voice(x) ∧ son(x)] (7.7)

∨ [vd_obst (x) ∧ ¬ pre_vless_obst (x)]

∨ [vless_obst (x) ∧ pre_vd_obst (x)]

We illustrate the application of this formula with the UR /at valnɨ/

‘from wave’ and the SR [ad valnɨ]. We show the word models of the UR

and SR in Figure 7.2. To facilitate discussion, output domain elements are

marked with an apostrophe.

1 2 3 4 5 6 7

a t v a l n ɨ

son
voice voice

son
voice

son
voice

son
voice

son
voice

/ / / / / /

(a) Input UR /at valnɨ/

1’ 2’ 3’ 4’ 5’ 6’ 7’

a d v a l n ɨ

son
voice voice voice

son
voice

son
voice

son
voice

son
voice

/ / / / / /

(b) Output SR /ad valnɨ/

Figure 7.2: Input UR and output SR as word models ‘from wave’

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

7.3. LOGICAL FORMALIZATION OF ASSIMILATION 133

The relevant segment is the /t/ at x = 2. It surfaces as voiced [d] at
index 2’. It is underlyingly voiceless, meaning voice(2) is false. Thus
the first two disjuncts in φvoice(2) are false. However, this segment is a
voiceless obstruent that precedes a voiced obstruent. Thus the third disjunct

in φvoice(2) is true. Thus this segment gains the feature [+voice] in the
output. Table 7.3 shows the truth value of each relevant input formula and

predicate.

x

Formulas 1 2 3 4 5 6 7

voice(x) > ⊥ > > > > >
son(x) > ⊥ ⊥ > > > >

vd_obst (x) ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥
vless_obst (x) ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥
pre_vd_obst (x) ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥

pre_vless_obst (x) > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

φvoice(x) > > > > > > >
voice(x) ∧ son(x) > ⊥ ⊥ > > > >
vd_obst (x) ∧ ¬ pre_vless_obst (x) ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥

vless_obst (x) ∧ pre_vd_obst (x) ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥

Table 7.3: Truth values for the transformation of /at valnɨ/ to [ad valnɨ]

‘from heel.’

Note how the segment /v/ at index 3 surfaces as voiced [v] at index 3’

because it is a voiced obstruent and does not precede a voiceless obstruent

(condition (c) above). Thus this segment satisfies the second disjunct of

our voicing formula.

Interested readers are encouraged to see how these formulas derive the

correct output structures for the other words in Figure 7.1.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

134
CHAPTER 7. REGRESSIVE VOICING ASSIMILATION IN RUSSIAN OBSTRUENT

CLUSTERS

7.4 Discussion

The data considered does not show how Russian treats a cluster of more

than two obstruents, e.g. /atbta/. There are Russian words with triple

obstruent clusters such as [fspyat] ‘back’ and [vzdrógnut] ‘to shutter.’ These

obstruent clusters, and all others that I am aware of, agree in voicing.

This fact has been used as evidence for a phonotactic constraint like

*[-son,αvoice][-son,−αvoice] used in an OT analysis. In terms of First
Order logic and the R-structures employed here, this constraint can be
expressed with the formula below.

Agree def
= ¬∃x, y

[(
¬son(x) ∧ ¬son(y) ∧ x / y

)
→ (7.8)(

voice(x) ∧ voice(y)) ∨ (¬voice(x) ∧ ¬voice(y))
)]

In words, this formula says if there are two adjacent obstruents then they

are either both voiced or both voiceless. There is no evidence that I am

aware of that this constraint is violated in any surface forms in Russian.

It may be seem surprising then, that the logical transduction in the

previous section maps hypothetical inputs like /atbta/ to surface forms

which violate this constraint, such as [adpta]. Readers should verify that

the logical transduction presented will map the R-structure for /atbta/
to the R-structure for [adpta]. One may wonder whether how this pre-
diction compares to one given by Optimality Theory where a sufficiently

highly ranked Agree constraint ensures such clusters are not derived from

underlying forms. The idea that grammars should map any hypothetical

underlying forms to well-formed surface forms has been dubbed ‘Richness

of the Base’ (see discussion by Kager (1999)), and has been proposed as a

desiderata of phonological theories.

This line of reasoning, however, is not without its flaws. One problem

is there is no evidence how Russian speakers would actually pronounce

underlying /atpkza/ or /atbgza/ because such URs do not exist, a fact

which could be accounted for with a theory that allows constraints like

Agree to apply to the underlying forms of lexical items. Also, it is well

known that ranking Agree over Ident gives rise to majority rules effects,

which have been argued to be problematic on typological (Baković, 2000),

computational (Heinz and Lai, 2013), and psycholinguistic grounds (Finley,

2008). Another analysis, available to Optimality Theory, is to run around

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

7.5. CONCLUSION 135

the Majority Rules issue by enforcing spans of adjacent obstruents to agree

with the rightmost obstruent in the span, which is consistent with the

regressive nature of the assimilation in Russian.1

This analysis is also available to the logical approach, and could be

accomplished using First Order logic with word models inlcuding general

precedence (<) but not with words models only including successor (/).2

In this analysis, the predicates pre_vd_obst (x) and pre_vless_obst (x)
would have to be redefined to be true whenever x is followed by a sequence
of obstruents, of which the rightmost one is a voiceless or voiced obstruent,

respectively. In particular, the term x / y in those definitions would be
replaced by the term below.

x < y ∧ ¬∃z[¬son(z) ∧ y / z] ∧ ∀z[x < z < y ∧ ¬son(z)] (7.9)

In words, this formula says that position x comes before position y, that
the next position after y is not an obstruent, and that all the positions
between x and y are obstruents. Since y is an obstruent (given the rest of

the definitions of pre_vd_obst (x) and pre_vless_obst (x)), this formula
ensure that x is to the immediate left of a span of obstruents of which y is
the rightmost one.

7.5 Conclusion

Voicing assimilation is a common phonological process that targets obstru-

ent clusters. This chapter analyzed and formalized an example of regressive

voicing assimilation in Russian with FO(/,F) where F is a collection of
privative features distinguishing speech segments in Russian.

1Another plausible approach is to appeal to different prioritizations of faithfulness to
segments based on whether make up roots or affixes. However, since this does not address
the questions raised by Richness of the Base it will not be further discussed, except to say
that such distinctions can also be treated with modoel theory and logic. See (Dolatian,
2020a) for example.
2Technically, this could be accomplished with successor (/) provided the size of spans

of obstruent clusters is bounded in length. However, this situation is also against the spirit
of the rich base.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

136
CHAPTER 7. REGRESSIVE VOICING ASSIMILATION IN RUSSIAN OBSTRUENT

CLUSTERS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 8

Saltation in Polish

Amanda Payne

This chapter provides a logical analysis of the phonological process of velar

palatalization in Polish, which is one of the processes in the world’s lan-

guages that has been identified as saltatory. Hayes and White (2015) define

saltation, so-named because it is a phonological ‘leap’, in the following
way:

Let A, B, and C be phonological segments. Suppose that for

every feature for which A and C have the same value, B likewise

has that value; but that B differs from both A and C. If in some

context A alternates with C, but B remains invariant, then the

alternation A ∼ C is a saltation.

Consequently saltatory alternations are cases when a sound alternates with

a sound less similar to it than ‘necessary,’ as the following example will

make clear. The alternation of interest in this chapter comes from the

data in Łubowicz (2002), and readers are referred to Rubach (1984) and

Gussmann (2007) for additional details.

Polish has several palatalization processes affecting obstruents (Guss-

mann, 2007). This chapter focuses exclusively on the process whereby

velar obstruents become alveolar1 before front vowels. It affects /k/ and

/x/ fairly straightforwardly, as seen in (1) and (2).

1Rubach (1984) describes these consonants as post-alveolar but Jassem (2003) and
Gussmann (2007) describe them as alveolar. We follow these later descriptions.

137

D
R
A
F
T

138 CHAPTER 8. SALTATION IN POLISH

1. /krok+ it͡ɕ/→ krot͡ʃ+ it͡ɕ ‘to step’

2. /strax+ it͡ɕ/→ straʃ+ it͡ɕ ‘to frighten’

However, the velar /g/, in addition to undergoing palatalization, also

undergoes spirantization in the same environment, as seen in (3).

3. /vag+ it͡ɕ/→ vaʒ+ it͡ɕ (*vad͡ʒ+ it͡ɕ) ‘to weigh’

Note also that the alveolar /d͡ʒ/ does exist in the pre-front vowel envi-

ronment when it is there underlyingly, as in (4).

4. /brɨd͡ʒ+ ɨk + ɨ/→ brɨd͡ʒ+ ek ‘bridge (dim)’

Examining this alternation in the light of Hayes and White’s definition

makes clear it is an example of saltation. The segments /g/ and /ʒ/ share

every manner of articulation except continuancy and timing of the release.

(They also differ in place of articulation.) The segment /d͡ʒ/ differs from

/ʒ/ only in that articulating the former requires completely blocking the

airflow in the oral cavity. The segment /d͡ʒ/ differs from /g/ in place of

articulation as well as the timing of the release. Consequently the /g/→
[ʒ] alternation before front vowels constitutes an example of saltation since

/d͡ʒ/ remains invariant in that context. This alternation is thus unexpected,

in the sense that [d͡ʒ] is featurally and therefore phonetically more similar to

/g/ than [ʒ] is. If phonological alternations are minimal repairs to marked

structures, a standard hypothesis of Optimality Theory, it is unclear why

/g/ maps to [ʒ] before front vowels instead of [d͡ʒ].

8.1 Representations

To model this alternation, we will use word models consisting of sets of

features and the binary successor relation (/) (see Chapter 2.5). In order to
proceed, we must determine which features are relevant for the language

and alternation. Like the preceding chapter, this chapter also assumes

the features are privative. Consequently a segment x is voiced if voice(x)
evaluates to true and is voiceless if voice(x) evaluates to false.
Since the alternation changes velar obstruents to alveolar ones before

front vowels, the features sonorant, dorsal, coronal, vocalic and front
are relevant. The alternation also affects manner features like continuant

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

8.2. LOGICAL TRANSDUCTION 139

and del_rel (delayed release) depending in part on the feature voice. Thus
all of these features are included in the set F of unary relations in the
signature of the models for both the underlying and surface forms.

Table 8.1 shows the features for the velar and alveolar obstruents in

Polish. Finally, the set F also includes other features relevant to the

segment place manner voicing

k dorsal
x dorsal continuant
g dorsal voice
t͡ʃ coronal del_rel
ʃ coronal continuant
d͡ʒ coronal del_rel voice
ʒ coronal continuant voice

Table 8.1: Features for the relevant velar and alveolar obstruents

language but not necessarily relevant to this particular alternation. The

variable f will be used to represent these other features in F that have not
been made explicit above.

8.2 Logical Transduction

Next I define a logical transduction using First Order logic over the struc-

tures given in the previous section. For this, we need the following formulas.

• A domain formula, φdom. In this case it is simply φdom
def
= true.

• A copy set C which will determine the limit of the size of the surface
forms in terms of copies of the underlying forms. Here, since there is

no insertion of segments from input to output, I let C
def
= {1}.

• A licensing formula φlicense(x), which determines whether the copy
of element x is licensed in the domain of the output structure of the
surface form. Here, since there is no deletion of segments from input

to output, I let φlicense(x)
def
= true.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

140 CHAPTER 8. SALTATION IN POLISH

• The binary relation formula φ/, where φ/(x, y)
def
= x / y.

• Unary relation formulas for each feature in F . Many of these show
no change between the underlying and surface forms, while others

will describe the palatalization and spirantization found in the Polish

data. The remainder of this section details these formulas.

Velar palatalization does not affect the features sonorant, vocalic,
front, and voice. It follows that these features are always faithful between
input and output structures.

φsonorant(x)
def
= sonorant(x) (8.5)

φvocalic(x)
def
= vocalic(x) (8.6)

φfront(x)
def
= front(x) (8.7)

φvoice(x)
def
= voice(x) (8.8)

The features dorsal, coronal, continuant, and del_rel can change de-
pending on their context. All other features f which are in F are also
defined to be faithful to the input as shown below.

φf(x)
def
= f(x) (8.9)

Next I turn to the features dorsal, coronal, continuant, and del_rel.
It will be helpful to identify when a segment x is an obstruent before a
front vowel.

before_front_vowel (x)
def
= ¬sonorant(x) (8.10)

∧ ∃y(x / y ∧ front(y) ∧ vocalic(y))

Underlying velar obstruents remain velar in the surface form, unless

they are before front vowels.

φdorsal(x)
def
= dorsal(x) ∧ ¬ before_front_vowel (x) (8.11)

Underlying alveolar segments remain alveolar in the surface form, plus

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

8.2. LOGICAL TRANSDUCTION 141

velar obstruents become alveolar before front vowels.2

φcoronal(x)
def
= coronal(x) (8.12)

∨ (dorsal(x) ∧ before_front_vowel (x))

Underlying continuants remain continuants, plus the voiced velar stop

becomes a fricative before front vowels.

φcontinuant(x)
def
= continuant(x) (8.13)

∨ (dorsal(x) ∧ voice(x) ∧ before_front_vowel (x))

Underlying segments with a delayed release remain delayed release,

plus the voiceless velar stop becomes an affricate when before front vowels.

φdel_rel(x)
def
= del_rel(x) (8.14)

∨
(
dorsal(x) ∧ ¬voice(x) ∧ ¬continuant(x)

∧ before_front_vowel (x)
)

I illustrate how this transduction works for the the four hypothetical

examples below.

5. /gi/→ [ʒi]

6. /ki/→ [t͡ʃi]

7. /xi/→ [ʃi]

8. /d͡ʒi/→ [d͡ʒ]

Consider first the alternation in (5). Here, /gi/ undergoes a becomes

[ʒi] as shown in Figure 8.1. The truth values for the relevant formulas are

displayed in Table 8.2.

In (6), the underlying representation /ki/ becomes [t͡ʃi] as shown in

Figure 8.2. Note that the voiceless velar [k] takes on the feature del_rel,
as displayed in Table 8.3.

Next we turn to the alternation in (7). Here, /xi/ undergoes a typical

palatalization, becoming [ʃi] (Figure 8.3). The evaluation of the logical

formulas is shown in Table 8.4.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

142 CHAPTER 8. SALTATION IN POLISH

1 2

g i

voice
dorsal

front
vocalic

/ → 1 2

ʒ i

voice
coronal

continuant
front

vocalic
/

Figure 8.1: Word models for the input /gi/ and output [ʒi].

x

Formulas 1 2

voice(x) > >
sonorant(x) ⊥ >
continuant(x) ⊥ >
vocalic(x) ⊥ >
front(x) ⊥ >

before_front_vowel (x) > ⊥

φcontinuant(x) > >
φdorsal(x) ⊥ ⊥
φcoronal(x) > ⊥
φdel_rel(x) ⊥ ⊥

Table 8.2: Truth values for the transformation of /gi/ to [ʒi] in Polish.

1 2

k i

dorsal
front

vocalic

/ → 1 2

t͡ʃ i

coronal
del_rel

front
vocalic

/

Figure 8.2: Word models for the input /ki/ and output [t͡ʃi].

Finally, consider the hypothetical form in (8), /d͡ʒi/, which surfaces

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

8.2. LOGICAL TRANSDUCTION 143

x

Formulas 1 2

voice(x) ⊥ >
sonorant(x) ⊥ >
continuant(x) ⊥ >
vocalic(x) ⊥ >
front(x) ⊥ >

before_front_vowel (x) > ⊥

φcontinuant(x) ⊥ >
φdorsal(x) ⊥ ⊥
φcoronal(x) > ⊥
φdel_rel(x) > ⊥

Table 8.3: Truth values for the transformation of /ki/ to [t͡ʃi].

1 2

x i

dorsal
continuant

front
vocalic

/ → 1 2

ʃ i

coronal
continuant

front
vocalic

/

Figure 8.3: Word models for the input /xi/ and output [ʃi].

1 2

d͡ʒ i

voice
coronal
del_rel

front
vocalic

/
→ 1 2

d͡ʒ i

voice
coronal
del_rel

front
vocalic

/

Figure 8.4: Word model for the input /d͡ʒi/ and the output [d͡ʒi].

faithfully as the output [d͡ʒi] (Figures 8.4). The evaluation of the logical

2There are palatalization processes affecting alveolar obstruents in the language

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

144 CHAPTER 8. SALTATION IN POLISH

x

Formulas 1 2

voice(x) ⊥ >
sonorant(x) ⊥ >
continuant(x) > >
vocalic(x) ⊥ >
front(x) ⊥ >

before_front_vowel (x) > ⊥

φcontinuant(x) > >
φdorsal(x) ⊥ ⊥
φcoronal(x) > ⊥
φdel_rel(x) ⊥ ⊥

Table 8.4: Truth values for the transformation of /xi/ to [ʃi].

formulae is shown in Table 8.5.

When full words are considered, the process behaves exactly the same.

For instance, consider the saltative alternation shown in (3) where /vag+
it͡ɕ/→ [vaʒ+ it͡ɕ].
The structure of the underlying form /vagit͡ɕ/ is shown in Figure 8.5.

1 2 3 4 5

v a g i t͡ɕ

voice
continuant vocalic

voice
dorsal

front
vocalic del_rel

/ / / /

Figure 8.5: Word model for the input /vagit͡ɕ/

If we apply each of the equations (5)–(10) to the input, we get a model

for the output form, [vaʒit͡ɕ], as shown in Figure 8.6. Table 8.6 illustrates

the evaluation of the formulas. Note the changes which have taken place

in segment 3, which changes from a velar to an alveolar fricative.

(Rubach, 1984; Gussmann, 2007), but they are not described in this chapter.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

8.3. DISCUSSION 145

x

Formulas 1 2

voice(x) > >
sonorant(x) ⊥ >
continuant(x) ⊥ >
vocalic(x) ⊥ >
front(x) ⊥ >

before_front_vowel (x) > ⊥

φcontinuant(x) ⊥ >
φdorsal(x) ⊥ ⊥
φcoronal(x) > ⊥
φdel_rel(x) > ⊥

Table 8.5: Truth values for the transformation of /d͡ʒi/ to [d͡ʒi].

1 2 3 4 5

v a ʒ i t͡ɕ

voice
continuant vocalic

voice
coronal

continuant
front

vocalic del_rel
/ / / /

Figure 8.6: Word model for the output [vaʒit͡ɕ]

8.3 Discussion

Although saltation has been considered an unusual (even unexpected)

phonological process, it is nevertheless one which exists in multiple human

languages. Optimality Theory requires additional machinery to account

for saltation, like constraint conjunction. Even so, these analyses of the

pattern may overgenerate (Hayes and White, 2015). On the other hand,

the logical transduction presented here is quite simple, and similar in

form to the models used for non-saltatory processes. It follows that the

logical transduction presented here does not account for the typological

or learning differences attributed to saltative processes. Such differences

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

146 CHAPTER 8. SALTATION IN POLISH

x

Formulas 1 2 3 4 5

voice(x) > > > > ⊥
sonorant(x) ⊥ > ⊥ > ⊥
continuant(x) > > ⊥ > ⊥
vocalic(x) ⊥ > ⊥ > ⊥
front(x) ⊥ ⊥ ⊥ > ⊥

before_front_vowel (x) ⊥ ⊥ > ⊥ ⊥

φcontinuant(x) > > > > ⊥
φdorsal(x) ⊥ ⊥ ⊥ ⊥ ⊥
φcoronal(x) ⊥ ⊥ > ⊥ ⊥
φdel_rel(x) ⊥ ⊥ ⊥ ⊥ >

Table 8.6: Truth values for the transformation of /vagit͡ɕ/ to [vaʒit͡ɕ] ‘to

weigh’.

could be accounted for by other factors, such as the P-map (White, 2017),

suitably formalized.

In addition, the logic-based approach forces researchers to attend the

predictions and patterning made at the level of individual phonological

features. This provides another view into phonological systems, where a

crucial question becomes “What are the necessary and sufficient conditions

for a position to have a particular property (like continuancy)?”

8.4 Conclusion

This chapter analyzed velar palatalization in Polish with a logical transduc-

tion applying over word models. Polish velar palatalization is a saltative

process, meaning that an underlying sound undergoes a change to another

sound which is, impressionistically, more different than it ‘needs’ to be

to avoid being marked. The logical transduction and word models shown

here formalize the process without recourse to additional machinery.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 9

Palatalization and Harmony in
Lamba

Hyun Jin Hwangbo

This chapter provides a computational analysis of the following phonologi-

cal processes of Lamba: vowel harmony, palatalization, and nasalization.

The first part of the chapter presents the data and key phonological gener-

alizations. The data comes from Kenstowicz and Kisseberth (1979, 71-72).

The second part formalizes these generalizations in First Order logic using

model-theoretic representations, which include phonological features and

the successor relation. Two equivalent logical transductions are presented,

one of which introduces a technique to simulate the serial derivation of a

traditional rule-based analysis.

9.1 Data and phonology of Lamba

This section argues for particular underlying representations and phono-

logical processes in Lamba.

9.1.1 Vowel Harmony

The first data set in Table 9.1 illustrates vowel harmony. The neuter and

applied forms show alternations between [-ika]∼[-eka] and [-ila]∼[-ela],
respectively. As Table 9.1 demonstrates, the suffixes surface as [-ika] and

147

D
R
A
F
T

148 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

[-ila] when a vowel in the stem is one of [i, u, a] while the suffixes surface

as [-eka] and [-ela] when a vowel in the stem is either [e] or [o]. For

example, the suffix surfaces as [-ika] in [t͡ʃitika] ‘do (neuter)’ whereas the

suffix surfaces [-eka] in [t͡ʃeteka] ‘spy (neuter).’

Past Passive Neuter Applied Reciprocal Gloss

t͡ʃita t͡ʃitwa t͡ʃitika t͡ʃitila t͡ʃitana ‘do’

tula tulwa tulika tulia tulana ‘dig’

t͡ʃeta t͡ʃetwa t͡ʃeteka t͡ʃetela t͡ʃetana ‘spy’

soŋka soŋkwa soŋkeka soŋkela soŋkana ‘pay tax’

seka sekwa sekeka sekela sekana ‘laugh at’

poka pokwa pokeka pokela pokana ‘recieve’

pata patwa patika patila patana ‘scold’

Table 9.1: Vowel Harmony in neuter and applied suffixes in Lamba.

The past, passive and reciprocal suffixes show no alternations so it

follows their underlying forms are /-a, -wa, -ana/ respectively. For the

underlying forms of the neuter and the applied suffixes, there are two

hypotheses. The first hypothesis posits underlying forms /-eka/ and /-ela/,

respectively, and a phonological process transforms them to [-ika] and

[-ila] conditioned on the vowels [i, u, a]. However, this analysis cannot

be seen as a natural height assimilation because the conditioning vowels

have different heights. The second hypothesis posits the underlying forms

as /-ika/ and /-ila/, respectively, and a phonological process transforming

them to [-eka] and [-ela] conditioned on the vowels [e, o]. Such a process

can be understood as a height assimilation, where the high front vowel

/i/ lowers to the mid vowel [e] when the previous vowel is also mid. This

generalization is stated in Gen 9.1.

Generalization 9.1. Vowel Harmony:
Front high vowels /i/ become mid [e] if the previous vowel is a mid vowel

/e, o/.

9.1.2 Palatalization

The second data set in Table 9.2 shows alternations between [s]∼[ʃ] and
[k]∼[t͡ʃ] before the high front vowel [i] (e.g., [fisa]∼[fiʃika] ‘hide’ and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.1. DATA AND PHONOLOGY OF LAMBA 149

[fuka]∼[fut͡ʃika] ‘creep’).

Past Passive Neuter Applied Reciprocal Gloss

fisa fiswa fiʃika fiʃila fisana ‘hide’

lasa laswa laʃika laʃila lasana ‘wound’

masa maswa maʃika maʃila masana ‘plaster’

ʃika ʃikwa ʃit͡ʃika ʃit͡ʃila ʃikana ‘bury’

fuka fukwa fut͡ʃika fut͡ʃila fukana ‘creep’

kaka kakwa kat͡ʃika kat͡ʃila kakana ‘tie’

Table 9.2: Palatalization in Lamba before the high front vowel.

The underlying forms of stems exhibiting these alternations contain

/s/ and /k/ since this would imply a predictable and phonetically natu-

ral palatalization process before the high front vowel. If the underlying

forms of such stems contained /ʃ/ and /t͡ʃ/ that would imply a process

of depalatalization before any vowels except the high front vowel, which

is generally considered to be an unnatural class. The generalization of

palatalization is stated in Gen 9.2.

Generalization 9.2. Palatalization:
Underlying /s, k/ surface as [ʃ, t͡ʃ] respectively before the high front /i/.

Now consider the words in Table 9.3, where the stems end in a mid

vowel and /s/. No alternation of [s]∼[ʃ] is observed, presumably because
Vowel Harmony (Gen 9.1) removes the front high vowel which normally

conditions palatalization (Gen 9.2). In other words, in these examples,

vowel harmony can be said to bleed palatalization.

Past Passive Neuter Applied Reciprocal Gloss

t͡ʃesa t͡ʃeswa t͡ʃeseka t͡ʃesela t͡ʃesana ‘cut’

kosa koswa koseka kosela kosana ‘be strong’

Table 9.3: Vowel harmony and palatalization in Lamba

In grammars with serially ordered rules, this kind of interaction can be

modeled by ordering vowel harmony before palatalization. In grammars

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

150 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

with ranked constraints, this kind of interaction can be modeled by ranking

the constraints responsible for vowel harmony above the ones responsible

for palatalization.

Generalization 9.3. Relative Priority of Palatalization and Vowel Har-
mony:

Palatalization has less priority than vowel harmony.

Here, “priority” means “ordered earlier” in grammars with rules and

“ranked higher” in grammars with constraints.

Another way to capture the environments where palatalization does not

take place is to revise the palatalization generalization to specify that only

[s] or [k] sounds which do not follow mid vowels palatalize (Gen 9.4).

Generalization 9.4. Palatalization (alternate):
Underlying /s, k/ segments that are not proceeded by mid vowels surface

as [ʃ, t͡ʃ] before the high front /i/.

This generalization effectively introduces the vowel harmony environ-

ment into palatalization. While this introduces some redundancy, it has

the advantage of being a true statement.

Summarizing, it seems clear there is a palatalization process affecting

/s, k/ in Lamba. There are at least two ways to analyze it, however. One

way is with a broad generalization (Gen 9.2) which has lower priority

with respect to vowel harmony as expressed in Gen 9.3. Another way is to

provide a narrower generalization (Gen 9.4), which recapitulates to some

extent an aspect of the environment relevant to vowel harmony. Both

analyses are considered in the computational analysis later in this chapter.

9.1.3 Nasalization

The final data set in Table 9.4 presents two additional surface variants

of the applied suffix: [-ina]∼[-ena]. These variants only occur in stems
ending with a nasal [m, n, ɲ, ŋ].

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.1. DATA AND PHONOLOGY OF LAMBA 151

Past Passive Neuter Applied Reciprocal Gloss

ima imwa imika imina imana ‘rise’

puma pumwa pumika pumina pumana ‘flog’

mena menwa meneka menena menana ‘grow’

fweɲa fweɲwa fweɲeka fweɲena fweɲana ‘scratch’

pona ponwa poneka ponena ponana ‘fall’

ŋaŋa ŋaŋwa ŋaŋika ŋaŋina ŋaŋana ‘snigger’

Table 9.4: Nasalization of the lateral when the preceding consonant is

nasal.

The word [soŋk-ela] ‘pay tax (applied)’ shown in Table 9.1 makes clear

that the nasal cannot be any preceding consonant but must be the one

previous to the lateral.

Recall the applied suffix was originally analyzed as underlying /-ila/.

Together, with the data in Table 9.4 this would imply a nasalization process,

by which a lateral becomes a nasal stop if the previous consonant is a nasal.

In addition, this approach accounts for the variation between [-ina]∼[-ena]
by the aforementioned process of vowel harmony. In other words, vowel

harmony and nasalization operate independently.

The alternative hypothesis that the underlying form of the applied suffix

is /-ina/ would instead imply a lateralization process, whereby /n/ surfaces

as [l] if the previous consonant is not a nasal. This analysis is less natural

because it is neither an example of assimilation nor dissimilation.

Therefore, the best analysis is the first one considered which continues

to adopt the underlying form of the applied suffix as /-ila/, and introduce

a nasalization process. This process is expressed in Gen 9.5.

Generalization 9.5. Nasalization:
Lateral /l/ becomes a nasal [n] if the previous consonant is nasal.

9.1.4 Summary

So far, I have justified underlying representations and identified three

phonological processes in Lamba. First, high front vowels lower to mid

when the previous vowel is mid. Second, palatalization of /s, k/ occur

before high front vowels as long as the /s, k/ are not preceded by mid

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

152 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

vowels. Alternatively, this second generalization could be expressed more

simply as “/s, k/ palatalize before high front vowels” as long as it is also

stated that palatalization is bled by vowel harmony. Third, laterals become

nasal if the previous consonant is nasal.

9.2 Computational formalization of Lamba

The rest of the chapter presents model theoretic representations and two

logical transductions which give computational treatments of the phono-

logical analyses above. The representations use phonological features and

the successor relation. First Order logic is also used. Thus the analyses are

presented in the logical language FO(features,/).
The two transductions are the same when it comes to nasalization

and vowel harmony. The first transduction is faithful to the alternate

palatalization generalization (Gen 9.4). The second is more faithful to the

broader Palatalization generalization (Gen 9.2) and the generalization that

vowel harmony takes priority over palatalization (Gen 9.3). This second

analysis introduces a technique that allows one to simulate rule ordering

with logical transductions. The two transductions are equivalent, however,

in that they map the same inputs to the same outputs.

9.2.1 Representations

The word models for the underlying and surface representations are the

same. They contain the binary relation successor (/) and unary relations
for phonological features. Figure 9.1 presents the segments present in the

words in the Lamba datasets.

Table 9.5 presents a complete set of features sufficient for distinguishing

the surface inventory and for the present analysis. The features are privative

and not binary. For example, a segment x is continuant whenever stop(x)
evaluates to false. A segment x is non-continuant whenever stop(x)
evaluates to true. Similarly, a segment x is a vowel provided voc(x) is
true and non-vocalic when voc(x) is false. While additional features could
be included to be more faithful to the eventual phonetic implementation

(such as features for voice and consonantal), they are omitted here because

they are, strictly speaking, not necessary to account for the generalizations

provided in the previous section.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.2. COMPUTATIONAL FORMALIZATION OF LAMBA 153

Labial Coronal Velar

oral stop p t k

affricate t͡ʃ

fricative f s ʃ

nasal stop m n ɲ ŋ

lateral l

approximant w

Front Back

high i u

mid e o

low a

Figure 9.1: Consonantal and Vowel inventories of Lamba.

The signature for both the underlying and surface forms are shown in

Equation 9.1.

R = {voc, low, high, back, delrel, stop, nas, (9.1)

lat, appr, lab, cor, dist, dor, /}

All representations used throughout are these R-structures.

9.2.2 A Logical Transduction

The logical transduction in this section presents formulas which capture

the generalizations of nasalization, vowel harmony, and the alternate

palatalization generalization (Gen 9.4), in that order.

The domain formula, copy set, licensing formula, and successor formula

are defined as in (9.2), (9.3), (9.4), and (9.5), respectively.

φdomain
def
= true (9.2)

C
def
= {1} (9.3)

φlicense
def
= true (9.4)

φ/(x, y)
def
= x / y (9.5)

This ensures that the function applies to every input, that there is no

deletion, epenthesis, or rearrangement of positions in the input. The

portion of Lamba phonology studied here shows all changes are featural

changes, to be captured with the unary relations in R.
In particular, nasalization implicates changes to the features nasal,

lateral, and continuant; vowel harmony implicates changes to the feature

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

154 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

vocalic voc def
= {i ∈ D | ai ∈ {a,e,i,o,u}}

low low def
= {i ∈ D | ai = a}

high high def
= {i ∈ D | ai ∈ {i,u}}

back back def
= {i ∈ D | ai ∈ {o,u}}

delayed release delrel def
= {i ∈ D | ai = t͡ʃ}

non-continuant stop def
= {i ∈ D | ai ∈ {p,t,t͡ʃ,k,m,n,ŋ,ɲ}}

nasal nas def
= {i ∈ D | ai ∈ {m,n,ŋ,ɲ}}

lateral lat def
= {i ∈ D | ai = l}

approximant appr def
= {i ∈ D | ai = w}

labial lab def
= {i ∈ D | ai ∈ {p,f,m,w}}

coronal cor def
= {i ∈ D | ai ∈ {t,t͡ʃ,s,ʃ,n,ɲ,l}}

distributed dist def
= {i ∈ D | ai ∈ {t͡ʃ,ʃ,ɲ}}

dorsal dor def
= {i ∈ D | ai ∈ {k,ŋ}}

Table 9.5: Features and their interpretations for words w = a1 . . . an with
domain D = {1, 2, . . . n}.

high; and palatalization implicates changes to the features dorsal, coronal,

distributed, and delayed release. Unary relations not corresponding to

these features are never changed. This last fact is expressed in (9.6) below.

∀f ∈ {voc, low, back, appr, lab} : φf
def
= f(x) (9.6)

Nasalization

Nasals on the surface form are derived from underlyingly nasals or from

an underlyingly lateral whose previous consonant is a nasal (Gen 9.5). In

all the examples provided, the previous consonant is always separated

from the lateral by exactly one vowel. Therefore, this analysis adapts

that generalization to one where laterals following a nasal-vowel sequence

become nasalized.1 The user-defined predicate in (9.7) is a short hand for a

lateral in this environment. It follows that positions in the output structure

1If one wanted to describe the “previous consonant is a nasal” condition using First
Order logic, one would have to add general precedence to the signature R. Then one

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.2. COMPUTATIONAL FORMALIZATION OF LAMBA 155

which are nasals, laterals, and stops are defined with the predicates shown

below.

NVL (x)
def
= lat(x) ∧ (∃y, z)[nas(y) ∧ voc(z) ∧ y / z / x] (9.7)

φnas(x)
def
= nas(x) ∨ NVL (x) (9.8)

φlat(x)
def
= lat(x) ∧ ¬ NVL (x) (9.9)

φstop(x)
def
= stop(x) ∨ NVL (x) (9.10)

Vowel Harmony

Next consider vowel harmony. High vowels surface as high only when they

are underlyingly high and when they do not follow a mid-vowel-consonant

sequence. A user-defined predicate of the environment where a mid vowel

followed by a consonant and a high vowel is in (9.12). Since mid vowels

are neither high nor low, they are represented as negation of both high

and low as shown in (9.11). Thus, whether a vowel is high or not on the

surface can be defined as in (9.13).

MidV (x)
def
= voc(x) ∧ ¬high(x) ∧ ¬low(x) (9.11)

MidCHi (x)
def
= high(x)∧ (9.12)

(∃y, z)[MidV (y) ∧ ¬voc(z) ∧ y / z / x]

φhigh(x)
def
= high(x) ∧ ¬ MidCHi (x) (9.13)

The formulas provided so far correctly predict the output as [ponena]

as shown in Table 9.6. Figure 9.2 visualizes the R-structures of the input
/ponila/ and the output [ponena] ‘fall (applied).’ Observe the changes on

the second domain element in the output structure — namely, the deletion

of high and lateral, and the inclusion of nasal and stop.

could define previous_cons_is_nas(x) as ∃y[nas(y) ∧ ∀z[y < z < x → voc(z)]]. This

would make different predictions for hypothetical URs like /pemoila/.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

156 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

/p o n i l a/

x

Formulas 1 2 3 4 5 6

nas(x) ⊥ ⊥ > ⊥ ⊥ ⊥
lat(x) ⊥ ⊥ ⊥ ⊥ > ⊥
stop(x) > ⊥ > ⊥ ⊥ ⊥

NVL (x) ⊥ ⊥ ⊥ ⊥ > ⊥
φnas(x) ⊥ ⊥ > ⊥ > ⊥
φlat(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
φstop(x) > ⊥ > ⊥ > ⊥

high(x) ⊥ ⊥ ⊥ > ⊥ ⊥

MidV (x) ⊥ > ⊥ ⊥ ⊥ ⊥
MidCHi (x) ⊥ ⊥ ⊥ > ⊥ ⊥
φhigh(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 9.6: Truth table for the map /ponila/ to [ponena] ‘fall (applied)’.

1 2 3 4 5 6

lab
stop

back
voc

cor
nas
stop

high
voc

cor
lat

low
voc

p o n i l a

/ / / / /

1 2 3 4 5 6

lab
stop

back
voc

cor
nas
stop voc

cor
nas
stop

low
voc

p o n e n a

/ / / / /

Figure 9.2: Illustrating the input and output structures corresponding to

underlying /ponila/ surfacing as [ponena] ‘fall (applied)’.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.2. COMPUTATIONAL FORMALIZATION OF LAMBA 157

Palatalization

The alternate generalization of palatalization (Gen 9.4) states that an /s/

after a non-mid vowel and before a high front vowel [i] surfaces as [ʃ],

otherwise as [s]. Likewise, a dorsal sound /k/ after a non-mid vowel and

before a high front vowel surfaces as [t͡ʃ], and otherwise [k]. Together,

these changes affect the features distributed, delayed release, coronal and

dorsal. However, it will be helpful first to specify the environment where

palatalization occurs, which is shown in (9.17).

s (x)
def
= cor(x) ∧ ¬stop(x) ∧ ¬dist(x) ∧ ¬lat(x) ∧ ¬nas(x)

(9.14)

k (x)
def
= dor(x) ∧ ¬nas(x) (9.15)

i (x)
def
= high(x) ∧ ¬back(x) (9.16)

pal_env (x)
def
= (∃y, z)[z / x / y ∧ ¬ MidV (z) ∧ i (y)] (9.17)

When /s/ surfaces as [ʃ] the only feature that changes is distributed.

When /k/ surfaces as [t͡ʃ] the features coronal, dorsal, and distributed

change. The formula for the features distributed, coronal and dorsal are in

(9.18),(9.19) and (9.20), respectively.

φdist(x)
def
= dist(x) ∨ (pal_env (x) ∧ (s (x) ∨ k (x))) (9.18)

φdor(x)
def
= dor(x) ∧ (k (x) → ¬ pal_env (x)) (9.19)

φcor(x)
def
= cor(x) ∨ (k (x) ∧ pal_env (x)) (9.20)

Figure 9.3 visualizes the R-structures of the input /fisila/ ‘hide’ and
its output [fiʃila]. Observe the inclusion of distributed on the second
domain element in the output structure.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

158 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

1 2 3 4 5 6

lab
high
voc cor

high
voc

cor
lat

low
voc

f i s i l a

/ / / / /

1 2 3 4 5 6

lab
high
voc

cor
dist

high
voc

cor
lat

low
voc

f i ʃ i l a

/ / / / /

Figure 9.3: Illustrating the input and output structures corresponding to

underlying /fisila/ surfacing as [fiʃila] ‘hide (applied).’

Lastly, Figure 9.4 shows the input and output structures of the mapping

/kosila/ → [kosela] ‘be strong (applied).’ Domain element 4 will not

surface high due to (9.13). In addition, domain element 3 does not satisfy

φdist because its preceding vowel is mid (see formulas 9.18 and 9.17).

1 2 3 4 5 6

dor
stop

back
voc cor

high
voc

cor
lat

low
voc

k o s i l a

/ / / / /

1 2 3 4 5 6

dor
stop

back
voc cor voc

cor
lat

low
voc

k o s e l a

/ / / / /

Figure 9.4: Illustrating the input and output structures corresponding to

underlying /kosila/ surfacing as [kosela] ‘hide (applied).’

This concludes the first analysis of nasalization, vowel harmony, and

palatalization, effectively incorporating the vowel harmony environment

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.2. COMPUTATIONAL FORMALIZATION OF LAMBA 159

into palatalization.

9.2.3 Another Logical Transduction

The rest of this chapter provides another computational analysis akin to

the use of serially ordered rules. Recall that some may argue that the

correct account of palatalization is not the narrower generalization made

in Gen 9.4, but the broader one in Gen 9.2. The scope of this broader

generalization is contained by the application of vowel harmony (Gen 9.1)

before palatalization.

One way to accomplish this is simply to write logical transductions for

each of the three phonological processes and compose them. This takes

advantage of the fact that FO(/) is closed under composition (Courcelle and
Engelfriet, 2012). However, in this analysis, I pursue a different route, and

instead use the copyset to simulate this analysis. Each process occurs on a

single copy, whose formulas only refer to the previous copy. Finally, only

the last copy is licensed, which realizes the surface form. Essentially, the

copies act as intermediate representations, with the last copy corresponding

to the surface form.

The word models here have the signature as in (9.1) and are thus

the same R-structures as presented previously. As with the transduction
the domain formula asserts the transduction applies to any R-structures
representing underlying forms.

φdomain
def
= true (9.21)

C
def
= {1, 2, 3} (9.22)

φ1
license

def
= false (9.23)

φ2
license

def
= false (9.24)

φ3
license

def
= true (9.25)

φ(i,j)
/ (x, y)

def
=

{
x / y, i = j

false, i 6= j
(9.26)

The copy set has cardinality three, reflecting the three processes. Nasaliza-

tion will be defined on the first copy, vowel harmony on the second copy,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

160 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

and palatalization on the third copy.2 Because the copy set is of size three,

there are three licensing functions, one for each copy. Of these, only the

elements of third copy are licensed, the others are not part of the output

structure.

There are also a number of formulas for the successor relation. Recall

from Chapter 3 that φ
(i,j)
/ (x, y) is read as “the ith copy of x stands in the

successor relation to the jth copy of y.” Formula 9.26 is a shorthand for
each formula needed to define the successor relation where i, j ∈ C. When
i = j, ith copy of x will stands in the successor relation to the jth copy
of y if and only if x / y in the output. In all other cases, the ith copy of
x will not stand in the successor relation to the jth copy of y. The above
formulas essentially structure the output as shown in Figure 9.5, with the

unary relations defined below filling in the properties of each element.

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

/ / / / /

/ / / / /

/ / / / /

Figure 9.5: The effect of the copyset and the licensing and successor

formulas on the output structure of an input word of length six. Unlicensed

domain elements are grayed out. Element (x, y) refers to the yth copy of x.
Unary relations are omitted.

The formulas for the phonological features on the first copy are defined

2Since nasalization and vowel harmony are independent non-interacting processes,
they could both occur in a single copy. However, the separation of one copy per process
emphasizes the technique being introduced.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.2. COMPUTATIONAL FORMALIZATION OF LAMBA 161

below. These are defined the same way as in the previous section.

φ1
nas(x)

def
= nas(x) ∨ NVL (x) (9.27)

φ1
lat(x)

def
= lat(x) ∧ ¬ NVL (x) (9.28)

φ1
stop(x)

def
= stop(x) ∨ NVL (x) (9.29)

All other features f are defined with φ1
f(x)

def
= f(x). For example, φ1

high(x)
def
=

high(x) and φ1
dist(x)

def
= dist(x). This effectively realizes the output of the

nasalization process on the first copy.

The second copy realizes vowel harmony. To simulate the effects of

rule ordering, for each feature f, φ2
f(x) will not reference the input directly,

but instead the unary relations on the first copy. This takes advantage of

the fact that formulas like φ1
f(x) are essentially like user-defined predicates

available for use.

To illustrate, consider that in vowel harmony, only the feature high
changes. Therefore, for all other features f are defined with φ2

f(x)
def
=

f1(x). For instance, φ2
nas(x)

def
= nas1(x), which effectively propagates any

nasalization in the first copy to the second copy. The formulas for vowel

harmony are shown below and it will be instructive to compare them to

the formulas in (9.11), (9.12), and (9.13).

MidV2 (x)
def
= φ1

voc(x) ∧ ¬φ1
high(x) ∧ ¬φ1

low(x) (9.30)

MidCHi2 (x)
def
= φ1

high(x)∧ (9.31)

(∃y, z)[MidV2 (y) ∧ φ1
cons(z) ∧ φ(1,1)

/ (y, z) ∧ φ(1,1)
/ (z, x)]

φ2
high(x)

def
= voc1(x) ∧ high1(x) ∧ ¬ MidCHi2 (x) (9.32)

Finally we turn to palatalization. This transduction models the general-

ization in Gen 9.2, where /s, k/ palatalize provided they precede a high

front vowel. This generalization does not refer to the quality of the vowel

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

162 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

before /s, k/ as was the case with the alternate generalization in Gen 9.4.

s2 (x)
def
= φ2

cor(x) ∧ ¬φ2
stop(x) ∧ ¬φ2

dist(x) ∧ ¬φ2
lat(x) ∧ ¬φ2

nas(x)

(9.33)

k2 (x)
def
= φ2

dor(x) ∧ ¬φ2
nas(x) (9.34)

i2 (x)
def
= φ2

high(x) ∧ ¬φ2
back(x) (9.35)

pal_env2 (x)
def
= (∃y)[i2 (y) ∧ φ(2,2)

/ (x, y)] (9.36)

The formulas for the features distributed, coronal and dorsal are shown

below. Formula 9.39 for example says, “The third copy of x will be coronal
provided the second copy of x is coronal OR the second copy of x is the
velar stop that is in the palatal environment.” Again, it is instructive to

compare these formulas to the ones in (9.18), (9.19), and (9.20).

φ3
dist(x)

def
= φ2

dist(x) ∨ (pal_env2 (x) ∧ (s2 (x) ∨ k2 (x))) (9.37)

φ3
dor(x)

def
= φ2

dor(x) ∧ (k2 (x) → ¬ pal_env2 (x)) (9.38)

φ3
cor(x)

def
= φ2

cor(x) ∨ (k2 (x) ∧ pal_env2 (x)) (9.39)

Figure 9.6 visualizes how this logical transduction uses three copies to

construct the output structure for the input /ponila/ ‘fall (applied)’, whose

input structure is the same as the one shown in Figure 9.2.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.2. COMPUTATIONAL FORMALIZATION OF LAMBA 163

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

lab
stop

back
voc

cor
nas
stop

high
voc

cor
nas
stop

low
voc

p o n i n a

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

lab
stop

back
voc

cor
nas
stop voc

cor
nas
stop

low
voc

p o n e n a

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

lab
stop

back
voc

cor
nas
stop voc

cor
nas
stop

low
voc

p o n e n a

/ / / / /

/ / / / /

/ / / / /

Figure 9.6: The first, second and third copies illustrating the logical trans-

duction which maps /ponila/ to [ponena] ‘fall (applied).’

The next example is the word /fisila/ ‘hide (applied),’ whose input is

visualized in Figure 9.3. Figure 9.7 shows the first, second and third copies

in the construction of the output structure.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

164 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

lab
high
voc cor

high
voc

cor
lat

low
voc

f i s i l a

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

lab
high
voc cor

high
voc

cor
lat

low
voc

f i s i l a

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

lab
high
voc

cor
dist

high
voc

cor
lat

low
voc

f i ʃ i l a

/ / / / /

/ / / / /

/ / / / /

Figure 9.7: The first, second and third copies illustrating the logical trans-

duction which maps /fisila/ to [fiʃila] ‘hide.’

The last example considers the input /kosila/ ‘be strong (applied).’

Figure 9.8 shows the first, second and third copies in the construction of

the output structure. Since nasalization does not apply, the first copy is

faithful to the input structure. Observe that palatalization does not apply in

node (3,3) because the environment for palatalization considers the second

copy, and not the input structure directly (see formulas 9.36 and 9.35).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

9.3. CONCLUSION 165

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

dor
stop

back
voc cor

high
voc

cor
lat

low
voc

k o s i l a

1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

dor
stop

back
voc cor voc

cor
lat

low
voc

k o s e l a

1, 3 2, 3 3, 3 4, 3 5, 3 6, 3

dor
stop

back
voc cor voc

cor
lat

low
voc

k o s e l a

/ / / / /

/ / / / /

/ / / / /

Figure 9.8: The first, second and third copies illustrating the logical trans-

duction which maps /kosila/ to [kosela] ‘be strong (applied).’

9.3 Conclusion

To sum up, this chapter provides a phonological analysis of variations of

the pronunciations of the neuter and applied verbal forms in Lamba. Three

phonological processes, vowel harmony, palatalization, and nasalization,

were identified, with vowel harmony taking priority over palatalization.

This analysis was formalized using model theoretic representations and

formulas of First Order logic.

The interaction between vowel harmony and palatalization can be

expressed in different ways. One way, which keeps the three processes

independent of each other, essentially includes the triggering environment

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

166 CHAPTER 9. PALATALIZATION AND HARMONY IN LAMBA

for vowel harmony in the palatalization process as a blocking environment.

Another approach allows palatalization to apply more broadly, but only

after the application of vowel harmony. This latter approach is typical to

serial rule-based analyses, where it would be said that the rule for vowel

harmony bleeds the rule for palatalization.

This serial nature of this latter approach can be simulated with a single

logical transduction by way of the copy set. It was shown how the interme-

diate representations can be associated with different copies, all of but one

of which do not satisfy the licensing formulas. The elements of the copy

which is licensed correspond to the output of the transduction (and thus to

the output of the SPE-style grammar). In this way, this analysis illustrates

a general strategy for converting phonological grammars of ordered rules

into a single logical transduction.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 10

Obstruent devoicing and
g-deletion in Turkish

Kristina Strother-Garcia

10.1 Introduction

There are two alternations involving obstruents in Turkish: a widely-

attested process of obstruent devoicing, and a much more restricted process

of velar stop deletion, which I analyze as g-deletion. This chapter re-

views the basic facts concerning these alternations and presents a logical

transduction modeling these processes.

The two obstruent alternations described above are illustrated by the

following data from Eliasson (1985), with the transcriptions adapted to the

International Phonetic Alphabet.

167

D
R
A
F
T

168 CHAPTER 10. OBSTRUENT D-VOICING AND G-DELETION IN TURKISH

Table 10.1: Obstruent alternations in Turkish

Singular Plural 3rd Person Poss. Gloss

a. kitap kitap-lar kitab-i ‘book’

paket paket-ler paked-i ‘package’

renk renk-ler reng-i ‘color’

b. sap sap-lar sap-i ‘stalk’

at at-lar at-i ‘horse’

ek ek-ler ek-i ‘joint’

c. t͡ʃilek t͡ʃilek-lar t͡ʃile-i ‘strawberry’

gœk gœk-ler gœ-y ‘heaven’

Comparing the forms in Table 10.1(a) to those in 10.1(b), it appears

that voiceless obstruents alternate with their voiced counterparts in coda

position (e.g., [ki.tap] and [ki.tap.lar] vs. [ki.ta.bi] ‘book’). These alterna-

tions are easily accounted for if the final obstruents of the roots in Table

10.1(a) are underlyingly voiced, and are subject to a process of obstruent

coda devoicing. These data are not compatible with an obstruent voicing

process because it would incorrectly generate forms such as *[sab-i] ‘stalk’

and *[ad-i] ‘horse’ in Table 10.1(b).

Additionally, there is a [k∼ ∅] alternation in Table 10.1(c) e.g. [t͡ʃilek]
and [t͡ʃileklar] vs. [t͡ʃile-i] ‘strawberry’. Regardless of whether the final

velar obstruent in such roots are underlyingly voiced or voiceless, they are

expected to surface faithfully in the 3rd person possessive form because

they are syllabified as onsets: *[t͡ʃi.le.gi, t͡ʃi.le.ki]. Because [k] surfaces

in the 3rd person possessive form of ‘joint’ [e.ki] in Table 10.1(c), [k] is

clearly not banned in this environment.1 In contrast, [g] never surfaces

intervocalically.2

Taken together, these facts provide evidence that the roots in Ta-

ble 10.1(c) end in /g/, even though this phoneme never surfaces fully

faithfully in this position: /t͡ʃileg, t͡ʃileglar, t͡ʃilegi/. When it surfaces in

coda position, it is devoiced: [t͡ʃilek, t͡ʃileklar]. When it surfaces intervocal-

ically, it deletes: [t͡ʃilei]. By comparison, note that the syllable-final /g/ in

1Eliasson (1985), following Zimmer, argues for underlying /k/ and a k-deletion process
which does not apply to monosyllabic stems.
2Note [g] does contrast with [k] in in Turkish in other positions such as word-initially.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

10.2. COMPUTATIONAL ANALYSIS 169

[reng] ‘color’ does not delete because it follows a consonant.

I acknowledge that this phonological analysis omits some aspects of the

phonology of Turkish. For instance, Eliasson (1985) presents additional

data indicating that g-deletion is also conditioned by word size, syllable

weight, and morphological properties. In addition, other phonological

processes that apply to these forms, such as vowel harmony (compare 3rd

person possessive [reng-i] ‘color’ to [gœ-y] ‘heaven’), are not analyzed

in this chapter. Nonetheless, the simplifications made here help illus-

trate how logical transductions operate, especially when the phonological

generalizations involve deletion and syllable structure.

10.2 Computational Analysis

This section describes a logical transduction that models both obstruent

devoicing and g-deletion simultaneously.

10.2.1 Representations

This analysis assumes that phonological features are the primitive represen-

tational units of phonological words, upon which phonological processes

operate. Therefore, phonological features make up the unary relations in

the word models, at both the underlying and surface levels. In particular, I

make use of privative (rather than binary) features. Consequently, there is

no [−voice]; rather, a voiceless segment x satisfies the formula ¬voice(x).
The relational signature of the word models is in Equation 10.1 below.

R = {<, voc, voi, son, dor} ∪ F (10.1)

For the order relation, I use general precedence (<) because, as explained
below, it simplifies the logical transduction since deletion is involved. For

features, the following abbreviations have been used.

• voc is short for ‘vocalic’
• voi is short for ‘voice’
• son is short for ‘sonorant’
• dor is short for ‘dorsal’
• F is the set containing all the other phonological features for Turkish
which are otherwise irrelevant to this analysis.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

170 CHAPTER 10. OBSTRUENT D-VOICING AND G-DELETION IN TURKISH

10.2.2 Logical formalization

This section provides an analysis obstruent devoicing and g-deletion in

terms of First Order logic and the R-structures defined in the previous
section.

The domain formula is set to true so that the transduction applies to all

(R-structures of) underlying forms. Since no epenthesis is present in the
fragment of Turkish phonology under consideration, the copy set is set to

{1}.

φdom
def
= true (10.2)

C
def
= {1} (10.3)

Licensing and precedence formulas

The licensing formula, and the formula for precedence are provided next.

They are implicated by the g-deletion process. In particular, since an

intervocalic /g/ deletes, it must not be licensed by φlicense.

It can be useful to define predicates that correspond to the traditional

notion of phonemes. I provide such a predicate for /g/ below.

g (x)
def
= voi(x) ∧ dor(x) ∧ ¬son(x) (10.4)

Note that some properties typically associated with /g/ are left out (e.g.,

continuancy) because they are not relevant to the processes studied here.

Next, I identify which positions correspond to intervocalic /g/.

VgV (x)
def
= g (x) ∧ (∃w, y)[voc(w) ∧ voc(y) ∧ w / x / y] (10.5)

The predicate VgV (x) is true of all intervocalic /g/ positions in the input

structure.

Finally, the licensing formula can be stated as follows.

φlicense(x) = ¬ VgV (x) (10.6)

In other words, all positions not corresponding to intervocalic /g/ are

licensed in the surface structure. Positions corresponding to intervocalic

/g/, however, are not, and they will be deleted.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

10.2. COMPUTATIONAL ANALYSIS 171

To illustrate, consider the truth table in Table 10.2 illustrating the 3rd

person possessive form of ‘heaven’: /gœgy/→ [gœy].3

g œ g y

x

Formulas 1 2 3 4

voc(x) ⊥ > ⊥ >
g (x) > ⊥ > ⊥

VgV (x) ⊥ ⊥ > ⊥

φlicense(x) > > ⊥ >

Table 10.2: Truth values for the transformation of /gœgy/ → [gœy]

‘heaven.’

Clearly position 3 is the only one satisfying VgV , and thus is the only
position not satisfying φlicense.

The order relation < in the surface structures are defined next.

φ<(x, y)
def
= x < y (10.7)

This says, “position x precedes position y in the output if and only if
position x precedes position y in the input.” It follows from this definition
that φ<(2, 3) and φ<(3, 4) are true for the R-structure representing /gœgy/.
However, recall from Chapters 3 and 6 that the elements of the relations

in the output structure are only the ones whose components are licensed.

In other words, since position 3 is not licensed in the output structure,

(2,3) and (3,4) will not belong to the precedence relation (<) in the output
structure.

This “generate and filter” strategy can help simplify the formulas needed

to define a logical transduction, but care must be taken when using it. For

instance, if the signature included the successor relation (/) instead of the
precedence relation (<), the “generate and filter” strategy may fail. This
is because if one defines the φ/ faithfully then when the elements of the

3I assume the the 3rd person possessive suffix is /y/ in this example. As mentioned,
the chapter is ignoring vowel harmony.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

172 CHAPTER 10. OBSTRUENT D-VOICING AND G-DELETION IN TURKISH

relation containing unlicensed components are filtered out, one can be left

with a structure that does not correspond to any string.

For concreteness, consider the hypothetical formula for φ/ below, which

maintains that the successor relation in the output is faithful that in the

input. (I am also presuming the input and output signatures include (/)
but not (<).)

φ/(x, y)
def
= x / y (10.8)

While (1,2), (2,3), and (3,4) satisfy φ/, the successor relation in the out-

put structure only contains (1,2) since the others contain the unlicensed

component 3. Consequently, this structure does not order position 4 with

respect to positions 1 and 2 and it is not connected (cf. Chapter 5). This
structure is not a string.

One can use the successor relation, but one has to make sure to “stitch”

the licensed positions together. The definition below is one way to accom-

plish this for the Turkish pattern described here.

φsucc(x, y)
def
= (x / y ∨ (∃z[x / z / y ∧ VgV (z)]) (10.9)

Formula 10.9 is a disjunction of two terms. The first terms says position

y succeeds x in the output structure provided “y succeeds x in the input
structure.” The second term says position y succeeds x in the output
structure provided “there is another position z between y and x that is
an intervocalic /g/.” In this case, since z will be deleted, position y be
the successor of x in the output form. This first dijunct ensures (1,2),
(2,3), and (3,4) satisfy φ/, and the second disjunct ensures (2,4) satisfies φ/.

Since (1,2) and (2,4) are the only ones which do not contain an unlicensed

component, they make the successor relation in the output structure. This

is illustrated in Figure 10.1.

1 2 3 4

g œ g y

dor
son
voc dor

son
voc

/ / / → 1 2 3 4

g œ y

dor
son
voc dor

son
voc

/

/

/ /

Figure 10.1: Visualization of /gœg-y/→[gœ-y]. The only unary relations
shown are dor, son, and voc. Unlicensed domain elements, and their
associated relations, are grayed out.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

10.2. COMPUTATIONAL ANALYSIS 173

This issue directly relates to order-preservation, which was discussed

in Chapter 3.6. The transduction described here is in fact order-preserving.

In Chapter 3.6, a general solution to the problem of “stitching” together

the successor relation was provided, but it depended on the the precedence

relation. I hope this concrete example of the differences between the

successor and precedence relations when it comes to deletion has been

instructive and helps elucidate why knowing whether a transduction is

order-preserving or not is useful.

It should also be clearer now why I prefer using a signature with general

precedence instead of one with successor. Given that the logical transduc-

tions are defined in a way to filter out elements of relations with unlicensed

components, the formula for φ< in formula 10.7 is simpler than the one for

successor in formula 10.9. This is simply because with general precedence,

one does not have to worry about stitching the successor relation together

to maintain a connected structure.

Formulas for the features

The featural make-up for each segment in the string is determined by the

unary relations in the R-signature. When mapping (the R-structure of)
any Turkish word’s underlying form to (the R-structure of) its surface
form, most unary relations are preserved. In particular, only the relation

voi changes. For simplicity, I assume that all features not relevant to the
present analyses are preserved as well as indicated by the formula below.

φf(x)
def
= f(x) for all f ∈ F ∪ {voc, son, dor} (10.10)

Obstruent devoicing occurs only in coda position, so it will be useful to

define predicates that identify parts of the syllable. I assume that all vowels

(and only vowels) are syllabic nuclei. Onsets and codas can be identified

using the following predicates.

onset (x)
def
= ¬voc(x) ∧ (∃y)[voc(y) ∧ x / y) (10.11)

coda (x)
def
= ¬voc(x) ∧ ¬ onset (x) (10.12)

Formula (10.11) encodes the generalization that prevocalic consonants

(and glides) are onsets. Whereas complex onsets are not allowed in Turkish,

complex codas are. Two-segment codas are attested in the present data,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

174 CHAPTER 10. OBSTRUENT D-VOICING AND G-DELETION IN TURKISH

and there is no evidence for the limitations on complex coda formation.

Lacking such evidence, I assume that any non-vowel (consonant or glide)

that is not an onset must belong to a coda. This is formalized in (10.12),

although I make no distinction here between the first and subsequent

segments in a complex coda. Finally, observe that the successor predicate

is not a member of the signature primitive, but is instead a user-defined

precicate. I use the definition on page 53 in Chapter 2.

Next, the environment where devoicing occurs is defined.

codaD (x)
def
= coda (x) ∧ voi(x) ∧ ¬son(x) (10.13)

The predicate codaD (x) is true for any voiced obstruent in coda position.
This structure is banned in surface forms, meaning it cannot appear in any

output R-structure.
To repair a voiced obstruent in coda, its corresponding output position

must not satisfy φvoi(x).

φvoi(x)
def
= voi(x) ∧ ¬ codaD (x) (10.14)

Formula 10.14 prevents voiced obstruents in coda position from satisfy the

feature voi in surface forms. As such, they will be devoiced.
To illustrate, consider the truth table in Table 10.3 and Figure 10.2

illustrating the singular form of ‘color’: /reng/→ [renk].

r e n g

x

Formulas 1 2 3 4

voi(x) > > > >
son(x) > > > ⊥
voc(x) ⊥ > ⊥ ⊥
onset (x) > ⊥ ⊥ ⊥
coda (x) ⊥ ⊥ > >
codaD (x) ⊥ ⊥ ⊥ >

φvoi(x) > > > ⊥

Table 10.3: Truth values for the transformation of /reng/→ [renk] ‘color.’

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

10.3. CONCLUSION 175

1 2 3 4

r e n g

voi
son

voi
son
voc

voi
son

voi
dor

/ / / → 1 2 3 4

r e n k

voi
son

voi
son
voc

voi
son dor

/ / /

Figure 10.2: /reng/→[renk]

Observe that φvoi(4) is false because position 4 satisfies codaD . All

positions x not satisfying codaD are faithful to whether x satisfies voi(x)
in the input structure.

10.3 Conclusion

As shown in the previous section, the logical transduction proposed here

accurately predicts the surface forms attested in Table 10.1. This section

also provided an example of how the licensing formula can be used to

model deletion. It emphasized the fact that when segments delete, the

order relation needs to be defined in a way that is coherent. This is easy

in the case for the general precedence relation, but more care needs to be

taken for the successor relation.

This analysis made several simplifying assumptions in its account. De-

spite them, it is clear that a logical transduction expressed in FO(<) is
capable of modeling multiple phonological processes simultaneously to

account for aspects of Turkish phonology. Future work could expand the

analysis here to account for vowel harmony, and to reflect generalizations

that take into account morphological information, word size, and syllable

weight.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

176 CHAPTER 10. OBSTRUENT D-VOICING AND G-DELETION IN TURKISH

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 11

Cluster Reduction in Tibetan

Jeffrey Heinz and Kristina Strother-Garcia

This chapter provides a computational analysis of the variation in the

pronunciation of some Tibetan numbers.1 In Tibetan, the names for certain

numbers greater than ten are formed by concatenating the word for a

number less than ten with the word that means ‘ten.’ We refer to these

combinations as “compound numerals.” In particular, numbers from eleven

to nineteen are formed by prefixing [d͡ʒu] ‘ten’ to the number being added

to ten. For example, [d͡ʒuŋa] ‘fifteen’ has the number [ŋa] ‘five’ as the

first element of the compound, so it can be analyzed as [d͡ʒu-ŋa], literally

meaning ‘ten-five.’ To form multiples of ten, the root meaning ‘ten’ is

concatenated as a suffix to the number being multiplied by ten, as in

[ŋabd͡ʒu] ‘fifty’ (literally ‘five-ten’). These examples show that there is

some variation in pronunciation across different compound numerals, as

there is a [b] in the compound numeral for ‘fifty’ but not for ‘fifteen.’

Other such consonant∼zero alternations exist, and they are underlined in
Table 11.1. Alternations with zero are typically accounted for by either

attributing a process of epenethesis or deletion to the phonology.

1The “Tibetan Numeral Problem” is presented in Halle and Clements (1983, p. 105)
and Odden (2014, p. 112).

177

D
R
A
F
T

178 CHAPTER 11. CLUSTER REDUCTION IN TIBETAN

x 10 + x 10× x

d͡ʒig ‘one’ d͡ʒugd͡ʒig ‘eleven’

ʃi ‘four’ d͡ʒubʃi ‘fourteen’ ʃibd͡ʒu ‘forty’

ŋa ‘five’ d͡ʒuŋa ‘fifteen’ gubd͡ʒu ‘ninety

gu ‘nine’ d͡ʒurgu ‘nineteen’ ŋabd͡ʒu ‘fifty’

d͡ʒu ‘ten’

Table 11.1: Tibetan numbers and compound numerals.

11.1 Phonological Analysis

Consider first an approach based on epenthesis. We first observe that [b]

follows the first root and precedes [d͡ʒu] in all multiples of ten greater

than ten: [ʃibd͡ʒu] ‘forty,’ [ŋabd͡ʒu] ‘fifty,’ and [gubd͡ʒu] ‘ninety.’ In each

case, [b] is preceded by a vowel and followed by the affricate [d͡ʒ]—there

is no more specific generalization we can make about the environment

of this [b]. If this [b] does not appear in the underlying form of either

the root meaning ‘five’ or the root meaning ‘ten,’ one could propose a

phonological process which epenthesizes [b] between a vowel and the

affricate [d͡ʒ]. However, this process would incorrectly predict the surface

form [*d͡ʒubd͡ʒig] instead of [d͡ʒugd͡ʒig] ‘eleven.’

Furthermore, as Table 11.1 shows, the roots used to form other numbers

in the teens vary in pronunciation as well. ‘Fourteen’ is [d͡ʒubʃi] rather than

*[d͡ʒuʃi] and ‘nineteen’ is [d͡ʒurgu] rather than *[d͡ʒugu]. This variation is

not easily explained by a single process of epenthesis because the consonants

that appear in the compound numerals are not predictable based on the

environments. Although one may be able to conceive of multiple epenthetic

processes that could explain this variation, we argue there is a simpler

solution: the underlying forms of certain numerals contain a consonant

which is absent in their morphologically bare surface forms.

This latter hypothesis posits a deletion process targeting consonants.

There is still, however, more than one possible combination of underlying

forms. Reconsider the example above: [ŋabd͡ʒu] ‘fifty’ can either be mor-

phologically analyzed as /ŋab-d͡ʒu/ or /ŋa-bd͡ʒu/. We first consider the

ramifications of /b/ belonging to the underlying form of ‘five’ and then of

it belonging to the underlying form of ‘ten.’

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

11.1. PHONOLOGICAL ANALYSIS 179

If the underlying form of ‘ten’ were /d͡ʒu/ and the underlying form of

‘five’ were /ŋab/, one would reasonably conclude the underlying forms

of ‘four’ and ‘nine’ are /ʃib/ and /gub/, respectively, because this would

conform to the pattern observed in multiples of ten. Under this analysis,

one could account for the surface forms of the multiples of ten by positing a

word-final consonant deletion process. This accurately predicts the absence

of a word-final [b] in the morphologically bare surface forms and in the

surface forms for ‘fourteen’, ‘fifteen’, and ‘nineteen.’ It would also correctly

predict the word-internal [b] that appears in the surface forms for ‘forty’,

‘fifty’, and ‘ninety’.

However, the surface forms [d͡ʒig] ‘one’ and [d͡ʒugd͡ʒig] ‘eleven’ would

not be predicted because both have a word-final consonant, [g]. One could

modify this hypothesis to say only /b/ deletes word-finally, narrowing

the process’ scope. There is another problem with this analysis; it fails to

explain why the surface forms [d͡ʒubʃi] ‘fourteen’ and [d͡ʒurgu] ‘nineteen’

also include consonants not present in the underlying forms of the supposed

roots that make up these compound numerals.

On the other hand, if the underlying form of ‘ten’ were /bd͡ʒu/ and

the underlying form of ‘five’ were /ŋa/, the morphologically bare form

[d͡ʒu] ‘ten’ would be accounted for by a deletion process which targets the

first consonant of a word-initial consonant cluster. If ‘ten’ is underlying

/bd͡ʒu/ and the underlined consonants in Table 11.1 are present underlying,

then the underlying forms of the numbers between 11 and 19 are plausibly

/bd͡ʒu-gd͡ʒig/ ‘eleven’, /bd͡ʒu-bʃi/ ‘fourteen’, /bd͡ʒu-ŋa/ ‘fifteen’, and /bd͡ʒu-

rgu/ ‘nineteen.’ From this, one can deduce that the underlying forms for

the numbers less than ten are /gd͡ʒig/ ‘one,’ /bʃi/ ‘four,’ /ŋa/ ‘five,’ and

/rgu/ ‘nine.’ Furthermore, the surface variation among numerals and their

roots in compound numerals can be explained by the same word-initial

cluster simplification process already introduced. Hence /bʃi/ surfaces as

[ʃi] ‘four.’ This analysis accurately predicts the absence of word-initial

consonant clusters throughout the data, as well as the entire pattern of

consonant∼zero alternations seen in compound numerals. Because this
explanation is both accurate and economical (in the sense that it only

requires one phonological process to predict all observed variation in

surface forms), this analysis is preferred over the ones previously explored.

The theory of prosodic licensing (Ito, 1986; Itô, 1989) provides a reason

why initial consonant clusters may be simplified. Under this theory, extra-

syllabic segments fail to surface. In other words, segments which fail to be

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

180 CHAPTER 11. CLUSTER REDUCTION IN TIBETAN

incorporated into syllables are deleted, a process known as stray erasure

since the “stray” consonants are erased (McCarthy, 1979; Steriade, 1982;

Harris, 1983).

In what follows, we provide a computational formalization of these gen-

eralizations. In particular, the licensing formula provides a straightforward

way to implement the theory of prosodic licensing.

11.2 Representations

Underlying representations are analyzed in terms of a word model which

contains the binary successor relation (/) for order with a standard set of
phonological features F represented as unary relations. In this analysis, we
refer specifically to the features cons for ‘consonantal’ and voc for ‘vocalic.’
We do not specify other features in F and instead assume they are present
and sufficiently distinguish the transcribed speech sounds in Tibetan.

Per standard phonological theory, syllabic structure is only present

in surface forms, and not in underlying forms. Therefore, the surface

representations are analyzed with a word model that includes —like the

model for underlying forms—the binary successor relation (/) for order
and a standard set of phonological features F , but also includes—unlike
the model for underlying forms—unary relations describing syllabic roles

such as onset, coda, and nucleus.
The signatures of the underlying and surface models are shown in (11.1)

and (11.2), respectively.

U = {/} ∪ F (11.1)

S = {/, onset, coda, nucleus} ∪ F (11.2)

Next we specify the logical transduction that changes U-structures (under-
lying representations) to S-structures (surface representations).

11.3 Transformations

This section presents the ingredients necessary to define a logical transduc-

tion for consonant cluster reduction in Tibetan. The formulas for determin-

ing the output structures are defined in terms of the logical language FO(U).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

11.3. TRANSFORMATIONS 181

Specifically, this analysis enforces deletion of unsyllabified consonants

through the licensing formula, providing a faithful implementation to the

theory of prosodic licensing.

The domain of the transformation is any U-structure for any underlying
form.

ϕdom
def
= true (11.3)

For example, Figure 11.1 schematizes a valid input given by /gd͡ʒig/

‘one.’

1 2 3 4

g d͡ʒ i g

cons cons voc cons
/ / /

Figure 11.1: A visualization of the U-structure representing /gd͡ʒig/ ‘one.’
Only features cons and voc are shown.

Since the size of the domain of every output is no larger than the size

of the input, the copy set contains a single element.

C
def
= {1} (11.4)

Consequently this means the size of the domain of the output is maximally

the size of the input domain.

Next, Equation 11.5 defines the the binary successor relation in the

output form.

ϕ/(x, y)
def
= x / y (11.5)

Together the copy set and ϕ/ provide the structure shown in a ‘workspace’

in Figure 11.2.

1 2 3 4
/ / /

Figure 11.2: The binary relations that would be present in the output

structure if every domain element is licensed.

Next, for each unary relation in the S-signature, we need a formula
which identifies which elements have that property. Since no element

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

182 CHAPTER 11. CLUSTER REDUCTION IN TIBETAN

changes features, this is relatively straightforward for the relations that are

also present in the U-signature.

(∀ f ∈ F) φf(x)
def
= f(x) (11.6)

Equation 11.6 is actually several equations that are all similar in character,

which is why we bundle them together. Essentially it says that if an element

x in the input structure belongs to a unary relation f then its corresponding
element x also belongs to that unary relation in the output structure. In
other words, elements in the surface form (if they exist) carry the same

features they carried in the underlying form.

Of more interest are the unary relations which determine the syllabic

roles segments will play. These are defined next.

φnucleus(x)
def
= voc(x) (11.7)

φonset(x)
def
= cons(x) ∧ (∃y)[voc(y) ∧ x / y] (11.8)

φcoda(x)
def
= ¬φonset(x) ∧ cons(x) ∧ (∃y)[voc(y) ∧ y / x] (11.9)

Essentially, these equations guarantee that vowels will be nuclei, conso-

nants immediately preceding vowels will be onsets, and non-prevocalic

consonants immediately succeeding vowels will be codas. Table 11.2 illus-

trates how these formulas are evaluated with respect to the representation

of /gd͡ʒig/ ‘one.’

g d͡ʒ i g

x

Formulas 1 2 3 4

cons(x) > > ⊥ >
voc(x) ⊥ ⊥ > ⊥

φnucleus(x) ⊥ ⊥ > ⊥
φonset(x) ⊥ > ⊥ ⊥
φcoda(x) ⊥ ⊥ ⊥ >

Table 11.2: Truth values the syllabic roles given the U-structure for /gd͡ʒig/.

The remaining formula to be defined, the licensing formula φlicense(x),
specifies which of the possible elements in the workspace are actually

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

11.4. CONCLUSION 183

realized in the surface structure. Here this is simply those elements that

have syllabic roles.

φlicense(x)
def
= φnucleus(x) ∨ φonset(x) ∨ φcoda(x) (11.10)

Elements in the domain which are licensed are precisely those which have

some syllabic role. Clearly, every element x except for x = 1 makes
φlicense(x) true. Hence, in the running example, element 1 is not part of
the final model.

Together, formulas 11.3 to 11.10 define a transduction that transforms

U-structures (representations of underlying forms) to S-structures (repre-
sentations of surface forms). There is a domain formula ϕdom, a copyset C,
one formula of two free variables ϕ/(x, y), formulae of one free variable
for each unary relation in the S-signature, and finally one formula of one
free variable φlicense(x) which determines which of the possible elements
are actually realized.

Figure 11.3 illustrates the relational structure produced by the specified

transformation when given the representation of the input /gd͡ʒig/ ‘one’

shown in Figure 11.1.

1 2 3 4

d͡ʒ i g

cons
onset
cons

nucleus
voc

coda
cons

/ //

Figure 11.3: The relational structure produced by the input /d͡ʒig/ ‘one’

shown in Figure 11.1 under the transductions defined in Equations 11.3

through 11.10. Unlicensed elements and their associated relations are

grayed out.

11.4 Conclusion

The prosodic theory of licensing is of course not the only way to analyze

the alternations observed in Tibetan numerals. Another analysis could

have forgone the syllabic roles and simply licensed all positions except

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

184 CHAPTER 11. CLUSTER REDUCTION IN TIBETAN

word-initial consonants immediately succeeded by other consonants. Such

an analysis would also successfully account for the present data. These two

analyses however are not extensionally equivalent: the prosodic licensing

analysis predicts that if triple consonant clusters were to occur word-

internally in underlying forms, the middle consonant would delete (since it

would be the only one unsyllabified). However, this other proposal makes

no such prediction.

More generally, this case study shows how aspects of phonological

theories can be formalized and incorporated into logical transductions.

First, on the representation side, we specifically chose to make syllabic

roles parts of the output structure, and not parts of the input structure.

Second, we used these syllabic roles to license the segments that surface

faithfully.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 12

Autosegmental Representations
in Zigula and Shambaa

Adam Jardine

This chapter provides computational analyses of two common patterns in

tone, unbounded tone shift and unbounded tone spreading, using autoseg-

mental representations (Goldsmith, 1976). These patterns, exemplified

here by data from two Bantu languages, illustrate two common character-

istics of tone (see Yip, 2002). Unbounded tone shift in Zigula (Kenstowicz

and Kisseberth, 1990) exemplifies the ‘mobility’ of tonal units, or their

ability to move long distances. Unbounded tone spreading, exemplified

by data from Shambaa (Odden, 1982), illustrates the ability of a single

tonal unit to be associated to multiple vowels. This chapter shows how

MSO-definable transductions over autosegmental representations can in-

sightfully capture these phenomena. In all examples in this chapter, the

data have been converted to IPA from their original sources.

12.1 Zigula

We first turn to the distribution of tones in Zigula verbs (also known as Zigua

or Chizigula; Kenstowicz and Kisseberth, 1990), and argue that the correct

generalization is that a single underlying tone shifts to the penultimate

vowel. Zigula verb roots come in two flavors: toned and toneless, as can

be seen in the infinitive forms in Table 12.1. The following data are due to

185

D
R
A
F
T

186 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

Kenstowicz and Kisseberth (1990). Surface high tones are marked with an

acute accent on the vowel ([á]); low-toned vowels are unmarked.

ku-gulus-a ‘to chase’ ku-lombéz-a ‘to ask’

ku-damaɲ-a ‘to do’ ku-bindilíz-a ‘to finish’

ku-songoloz-a ‘to avoid ku-hangalasáɲ-a ‘to carry many

things at once’

Table 12.1: Verb roots in Zigula

The verbs in the left column in Table 12.1 are pronounced entirely with

a low tone, whereas the verbs in the right column all have a high tone on

the penultimate vowel. As the affixes are the same, we must conclude that

the roots on the right have an underlying high tone. However, there is a

restriction on the position of the tone: roots where a high tone appears

elsewhere in the infinitive form, such as the hypothetical *[ku-lómbez-a],

are not attested.

Furthermore, in toned roots a single high tone appears on the penulti-

mate vowel when the verb is extended to the right with toneless suffixes.

Table 12.2 shows two forms from Table 12.1 extended with verbal suffixes

[ez]/[iz] ‘for’ and [an] ‘each other’.1 The verb [ku-damaɲ-a] ‘to do’, which

ku-damaɲ-a ‘to do’ ku-lombéz-a ‘to ask’

ku-damaɲ-iz-a ‘to do for’ ku-lombez-éz-a ‘to ask for’

ku-damaɲ-iz-an-a ‘to do for ku-lombez-ez-án-a ‘to ask for

each other’ each other’

Table 12.2: Suffixes in Zigula

is pronounced with all low tones in the plain infinitive, also shows no high

tones in the suffixed forms [ku-damaɲ-iz-a] ‘to do for’ and [ku-damaɲ-iz-

an-a] ‘to do for each other’. In contrast, the verb [ku-lombéz-a] ‘to ask’,

which has a high tone on the penultimate vowel in the plain infinitive,

also has a single high tone on the penultimate vowel when the infinitive

is suffixed: [ku-lombez-éz-a] ‘to ask for’ and [ku-lombez-ez-án-a] ‘to ask

for each other’. As these suffixes do not induce a tone for the toneless

1The [ez]/[iz] allomorphy is due to vowel harmony, and will not be analyzed here.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.1. ZIGULA 187

root [damaɲ] ‘do’, we can reasonably assume that they do not carry a tone

underlyingly. Thus, the single high tone in the forms in the right column

must originate from the root [lombez]/[lombéz] ‘ask’. However, this tone

always appears on the penultimate vowel, regardless of whether it must

shift from its underlying root to a suffix vowel.

That this generalization extends to high tones from other morphemes

can be seen in toned prefixes. Table 12.3 gives data showing how the

pronunciation of toneless roots changes depending on their prefix.

ku-gulus-a ‘to chase’ ku-songoloz-a ‘to avoid’

na-gulus-a ‘I am chasing’ na-songoloz-a ‘I am avoiding’

a-gulús-a ‘He/she is chasing’ a-songolóz-a ‘He/she is avoiding’

Table 12.3: Prefixes in Zigula

As seen in the second and third rows, finiteness and person are indicated

by replacing the infinitive [ku] prefix with other prefixes, here [na] for the

first person and [a] for the third person. As established in Table 12.1 and

repeated here in Table 12.3, the roots [gulus] ‘chase’ and [songoloz] ‘to

avoid’ are not pronounced with any tone in the infinitive. This is also true

with the first person suffix: [na-gulus-a] ‘I am chasing’ and [na-songoloz-a]

‘I am avoiding’.

However, with the third person suffix, a high tone appears on the

penultimate vowel: [a-gulús-a] ‘He/she is chasing’ and [a-songolóz-a]

‘He/she is avoiding’. We could analyze this as a complex morphological

process, in which affixation of /a-/ ‘Finite-3sg’ also induces a high tone

in the penultimate vowel of the word. However, a more parsimonious

explanation is that /a-/ ‘Finite-3sg’, like toned verb roots, carries with

it a high tone, which is then subject to the same penultimate-tone shift

generalization as root tones. Of course, because affixes can carry tones,

it is possible to have more than one underlying high tone in a word, and

Kenstowicz and Kisseberth (1990) give a complete picture of the complex

interactions which occur among multiple underlying tones. For expositional

purposes, the discussion here will be restricted to forms with at most one

underlying high tone.

The Zigula data under consideration are thus most generally explained

by the following two propositions. One, morphemes may be toneless or

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

188 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

they may carry a high tone. Two, an underlying high tone shifts to the

penultimate vowel.

Generalization 12.1. Penultimate shift. An underlying high tone shifts
to the penultimate vowel in the word.

We can most directly express these generalizations with autosegmental

representations (Goldsmith, 1976), in which different kinds of phonological

units are arranged on different tiers, or distinct strings. Units on different

tiers can be associated with one another. In the particular case of Zigula, we

can posit that high tones exist on a tonal tier independent of the segments in

the word, and that in the output of the phonology they are then associated

to the penultimate vowel, as in the diagrams in Table 12.4. For example,

Underlying Form ku - gulus - a

H

ku - lomb e z - a

Surface Form ku - gulus - a

H

ku - lomb e z - a

‘to chase’ ‘to ask’

Underlying Form

H

a - gul u s - a

H

ku - lombez - ez - a n - a

Surface Form

H

a - gul u s - a

H

ku - lombez - ez - a n - a

‘he/she is chasing’ ‘to ask for each other’

Table 12.4: Autosegmental representations in Zigula

the underlying form of [ku-lombez-ez-án-a] ‘to ask for each other’ is thus

/ku-lombezH-ez-an-a/, to use the superscript H to indicate in-line that the

root /lombezH/ ‘ask’ contains an underlyingly unassociated H tone. As this

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.2. SHAMBAA 189

H resides on a tier by itself, it is able to move outside of its originating

morpheme. Why, then, does it shift to the penultimate vowel? Kenstowicz

and Kisseberth (1990) offer a metrical story: the final vowel is extrametrical,

leaving the penultimate vowel in a metrically prominent position. This

prominent position thus attracts the tone. I shall not dwell on this aspect

of the analysis, except to later note how extrametricality can be referred to

using MSO.

12.2 Shambaa

Autosegmental representations can similarly be invoked to insightfully

account for the patterning of verbs in Shambaa (Odden, 1982). Verbs in

Shambaa, like verbs in Zigula, can be either ‘toned’ or ‘toneless’. However,

in toned verbs in Shambaa, unlike those in Zigula, all vowels from the

beginning of the root to the penult are pronounced with a high tone.

Table 12.5 contrasts toneless verbs, illustrated with examples in the left

column, with toned verbs on the right. That the correct generalization is

ku-ʃuntʰ-a ‘to wash’ ku-táɣ-a ‘to buy’

ku-ɣoʃo-a ‘to do’ ku-táhík-a ‘to vomit’

ku-hand-a ‘to plant’ ku-fúmbátíʃ-a ‘to tie securely’

Table 12.5: Verb roots in Shambaa

that all vowels up to the penult are pronounced high, and not just all the

vowels on the root, can be seen in suffixed forms. When affixed to toneless

roots, the suffixes ‘for each other’ are pronounced [ij-an], with a low tone.

When affixed to toned roots, they are pronounced [íj-án], with a high tone.

The best explanation in difference in pronunciation of the tone in suffixes

ku-hand-a ‘to plant’ ku-fúmbátíʃ-a ‘to tie securely’

ku-hand-ij-an-a ‘to plant for ku-fúmbátíʃ-íj-án-a ‘to tie securely for

each other’ each other’

Table 12.6: Suffixes in Shambaa

in [ku-hand-ij-an-a] ‘to plant for each other’ and [ku-fúmbátíʃ-án-a] is thus

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

190 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

that it due to the contrast between [ku-hand-a] ‘to plant’ and [ku-fúmbátíʃ-

a] ‘to tie securely’—that is, the difference between toned and toneless verb

roots.

Furthermore, like in Zigula, verb roots are not the only class of mor-

pheme that can carry a tone. Table 12.7 shows how the pronunciation of

toneless verb roots changes when affixed with the object marker prefixes

[tʃí] ‘it’ and [ví] ‘them’.

Table 12.7: Prefixes in Shambaa

ku-ʃuntʰ-a ‘to wash’

ku-tʃí-ʃúntʰ-a ‘to wash it’

ku-ɣoʃo-a ‘to do’

ku-ví-ɣóʃó-a ‘to do them’

ku-ɣoʃo-a-ɣoʃo-a ‘to do repeatedly’

ku-tʃí-ɣóʃó-á-ɣóʃó-a ‘to do it repeatedly’

When prefixed only with the infinitive prefix [ku], [ku-ʃuntʰ-a] ‘to

wash’ and [ku-ɣoʃo-a] ‘to do’ are pronounced with all low-toned vowels,

as previously established. However, when prefixed with one of these

object markers, the forms exhibit the familiar pattern of all high-toned

vowels up to the penult, such as in [ku-ví-ɣóʃó-a] ‘to do them’. This is

illustrated most dramatically in the contrast between the reduplicated form

[ku-ɣoʃo-a-ɣoʃo-a] ‘to do repeatedly’ and the same form with an object

prefix, [ku-tʃí-ɣóʃó-á-ɣóʃó-a] ‘to do it repeatedly’.

The generalizations in the Shambaa data are thus as follows. Like in

Zigula, morphemes may be toneless or they may carry a high tone. In

contrast with Zigula, however, this tone manifests on every vowel from its

originating morpheme to the penultimate vowel in the word. Let us call

this unbounded spreading.

Generalization 12.2. Unbounded spreading. An underlying high tone
spreads to the penultimate vowel in the word.

Again, autosegmental representations present us with a direct way to

express this generalization. Morphemes which carry a tone can be analyzed

with a H tone underlyingly associated to their initial vowel. Unbounded

spreading (12.2) then associates this H tone with all vowels up to the penult.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.3. SUMMARY 191

Underlying Form ku - ɣoʃo - a

H

ku - fumbatiʃ - a

Surface Form ku - ɣoʃo - a

H

ku - fumbatiʃ - a

‘to do’ ‘to tie securely’

Underlying Form

H

ku - vi - ɣoʃo - a

H

ku - fumbatiʃ- ij - an - a

Surface Form

H

ku - vi - ɣoʃo - a

H

ku - fumbatiʃ- ij - an - a

‘to do them’ ‘to tie for each other’

Table 12.8: Autosegmental representations in Shambaa

This multiple association of a single tonal autosegment to multiple

vowels directly captures the generalization that, for example, all of the

high toned vowels in [ku-fúmbátíʃ-íj-án-a] ‘to tie for each other’ are the

result of the single H tone underlyingly associated to the root /fúmbatiʃ/

‘tie’ (where the accented /ú/ marks the underlying position of the H tone,

as is usual).

12.3 Summary

We have now seen two patterns from tonal phonology which are directly

captured through a change in autosegmental representations: penultimate

tone shift in Zigula, in which an H tone is unassociated in the underlying

form but associated to the penultimate vowel in the surface, and unbounded

tone spread in Shambaa, in which a H tone is associated to a single vowel in

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

192 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

the underlying representation but associated to multiple vowels in the sur-

face representation. The following shows how this change can be analyzed

using MSO transductions over relational models.

12.4 Representations

A relational model for autosegmental representations is much like a string

model, except that in addition to a relation indicating linear order there

is a binary relation ◦ for association. Equation (12.1) gives such a model,
where a standard set of segmental features F is augmented with a set T of
tones.

R = {/, ◦} ∪ T ∪ F (12.1)

For simplicity, the following examples consider a singleton set of tones

T = {H} and only the segmental features voc, cons ∈ F for identifying
vowels and consonants, respectively. Other features which distinguish the

inventories of these languages are presumed and not otherwise specifically

referenced.

Relational structures with the R-signature are general, and I wish to
make clear which R-structures are valid autosegmental representations. In
what follows, I provide a number of conditions which a R-structure must
satisfy to count as an autosegmental representation.

First, tones cannot carry features and vice versa. This means that for

all t ∈ T and for all f ∈ F , if x carries tone t then x does not carry feature
f, and vice versa. Formula 12.2 expresses this for a particular tone t and
feature f. The separation of all tonal properties from all featural properties
is expressed in the logical language MSO(R) in formula 12.3.

sepf,t
def
= (∀x)[(f(x) → ¬t(x)) ∧ (t(x) → ¬f(x))] (12.2)

sep def
=

∧
f∈F,t∈T

sepf,t (12.3)

Second, tones and segments appear on separate tiers. I define predicates

which isolate tones from the segments. Formula 12.4 groups together all

elements carrying some tone.

tone (x)
def
=

∨
t∈T

t(x) (12.4)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.4. REPRESENTATIONS 193

Similarly, Formula 12.5 groups together all elements carrying segmental

features.

segment (x)
def
=

∨
f∈F

f(x) (12.5)

The predicate same_tier (x, y) is true if and only if x and y are both tones

or both segments.

same_tier (x, y)
def
= (tone (x) ∧ tone (y))

∨ (segment (x) ∧ segment (y)) (12.6)

Note that it would be straightforward to extend same_tier (x, y) to any

finite number of such tier groupings. The following sentence then constrains

tier structure such that only like units can appear on a tier together:

good_tiers def
= (∀x, y)[x ≤ y → same_tier (x, y)] (12.7)

The sentence good_tiers uses the predicate ≤ , so it is important to be

clear about it. It is defined in formula 12.8 , where < is the transitive

closure of successor defined in formula 2.14 on page 47.2

x ≤ y
def
= x = y ∨ x < y (12.8)

As such, good_tiers ensures that the tiers are homogeneous, and excludes
structures in which, for example, a consonant precedes a tone.

Third, there must be a well-formed association between a tone and a

tone-bearing unit, or TBU. In Zigula and Shambaa, the phonological gener-

alizations referred to the tones of vowels, and not consonants. We thus

specify that vowels are the TBUs.

TBU (x)
def
= voc(x) (12.9)

2This chapter uses successor as the primitive binary relation for order, and thus requires
MSO logic to relate arbitrary elements under the general precedence relation. If general
precedence was the primitive binary relation for order, FO logic could have been used.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

194 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

It should be noted that, while this definition of TBU is satisfactory for

the current discussion, other units have been proposed as TBUs, such as

syllables and moras, and some researchers claim what counts as a TBU to

be language specific (for in-depth discussion see Yip 2002). Note, however,

that identifying a different TBU in the logical framework simply requires

replacing voc(x) in the definition for TBU (x) with a different predicate.

Regardless of the definition of TBU, the following defines well-formed

associations (WFAs) as those in which a tone is matched with a TBU:3

WFA (x, y)
def
= x ◦ y ∧ tone (x) ∧ TBU (y) (12.10)

Formula 12.11 then requires that all associations are of this type.

good_associations def
= (∀x, y)[x ◦ y → WFA (x, y)] (12.11)

For completeness, I also define one further constraint on well-formed

autosegmental representations, although it is not relevant to the current

discussion. The oft-posited No-Crossing Constraint (NCC; Goldsmith, 1976;

Hammond, 1988; Coleman and Local, 1991) states that pairs of associated

elements must precede each other; in other words, that association lines

cannot cross. Formally,

NCC def
= (∀x1, x2, y1, y2)[(x1 ◦ x2 ∧ y1 ◦ y2 ∧ x1 ≤ y1) → x2 ≤ y2]

(12.12)

This constraint is usually defined as a universal constraint on autosegmental

representations (beginning with their initial definition in Goldsmith 1976).

However, as the example tonal patterns given above only involve a single

tone, the NCC will not come into play in the examples below. For a

thorough discussion of the nature of the NCC, the reader is referred to

Coleman and Local (1991).

3This defines association as inherently directional; that is, a tone is associated to a TBU,
but not vice-versa. Association is often thought of as unordered (see, ex., Kornai, 1995).
However, it will simplify the formulas in our transduction to treat them as directional, as
any binary predicate referring to association between x and a y will only need to consider
the case in which x is a tone and y is a TBU (and not vice versa). This choice has no effect
on the function of the association relation.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.4. REPRESENTATIONS 195

At last, it is possible to say when an R-structures is an autosegmental
representation (ASR).

ASR def
= good_tiers ∧ good_associations ∧ NCC ∧ sep

(12.13)

It is useful to be able to take an arbitrary R-structure and be able to decide
if it is a valid autosegmental representation.

An example autosegmental representation that satisfies ASR is given
in Figure 12.1. This model corresponds to the autosegmental representa-

tion of the underlying form of Shambaa /ku-ví-ɣoʃo-a/ ‘to do them’ (c.f.

Table 12.8). (Note that morpheme boundaries are ignored.)

0

cons

1

voc

2

cons

3

voc

4

cons

5

voc

6

cons

7

voc

8

voc

9 H

/ / / / / / / /

o

Figure 12.1: A graph representing the autosegmental model of Shambaa

/ku-ví-ɣoʃo-a/ ‘to do them’. Note both the edges representing successor /
and association ◦.

The graph in Figure 12.1 has the usual directed edges representing the

successor relation / among segments. Additionally, there is an association
◦ between the domain element 9, which bears the H tone, and domain
element 3, which corresponds to the second vowel.

It is interesting to ask where conditions expressed by ASR are in

a theory of phonology. Are they universal constraints on surface well-

formedness? Are they constraints on underlying well-formedness? In the

latter cases, we could choose to refer to ASR in the domain formula

of any logical transduction, to ensure that processes only apply to valid

autosegmental representations. Another possibility is to assert that the

conditions expressed by ASR are axiomatic and “outside” the theory per
se. This last possibility may feel unsatisfying because one wonders whether

there are any limits as to what kinds of conditions could be axiomatic. I

cannot answer this deeper question at present, but it is worth pointing

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

196 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

out that the finiteness of R-structures, which is an implicit condition
on their well-formedness, cannot be stated with MSO logic. In other

words, attempts to limit conditions to the kinds of logical languages studied

here will be insufficient to ensure that R-structures only contain finitely
many elements. At present, I leave aside the important question of where

conditions like ASR “live” in a theory of phonology, but acknowledge their
utility for deciding whether a given R-structure is a valid autosegmental
representation or not.

12.5 Transformations

We can then define transductions that operate on these representations. We

begin with Zigula. Recall that in Zigula, a high tone shifts to the penultimate

vowel in the word, as is illustrated for /aH-gulus-a/→[a-gulús-a] ‘he/she is
chasing’ in Figure 12.2.

H

a - gulus - a →

H

a - gulus - a

‘he/she is chasing’

Figure 12.2: An example of high tone shift in Zigula

Following convention, I let the transduction apply to any R-structure.

ϕdom
def
= true (12.14)

As there is no epenthesis, the copy set is a singleton set: C
def
= {1}.

Furthermore, no domain element changes any feature or tone values, so

all the unary relations can be defined as shown below.

φf(x)
def
= f(x) (∀f ∈ F) (12.15)

φt(x)
def
= t(x) (∀t ∈ T) (12.16)

This is because, with autosegmental representations, the featural and tonal

representations of the domain elements are not changing, but only the

associations between them.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.5. TRANSFORMATIONS 197

Finally, since the Zigula generalization does not involve deletion, the

transformation preserves the successor relation.

ϕ/(x)
def
= x / y (12.17)

This leaves ϕ◦(x, y), the predicate which determines when the copies of
x and y are associated in the output structure. Informally, in Zigula, this is
when x is a H tone and y is the penultimate vowel in the word. I must first,
then, define predicates identifying the penultimate vowel. The predicate

in (12.18) defines relative order /V of vowels, ignoring consonants.

x /V y
def
= voc(x) ∧ voc(y) ∧ x ≤ y (12.18)

∧ (∀z)[(x ≤ z ≤ y) → ¬voc(z)]

In other words, x /V y iff x precedes y and no other vowels intervene.

The final vowel can then be defined as the vowel for which no other

vowel follows in the order /V .

finalV (x)
def
= voc(x) ∧ ¬(∃y)[x /V y] (12.19)

The penultimate vowel is then the vowel that precedes the final vowel with

respect to /V .

φpenultV(x)
def
= (∃y)[x /V y ∧ finalV (y)] (12.20)

The final definition for the penultimate shift transduction is then simple:

a H tone associates to the penultimate vowel.

ϕ◦(x, y)
def
= H(x) ∧ penultV (y) (12.21)

To illustrate how this obtains the correct output autosegmental repre-

sentation for penultimate shift in Zigula, Figure 12.3 gives the graphs for

the autosegmental transformation in Figure 12.2 for the form /aH-gulus-

a/→[a-gulús-a] ‘he/she is chasing’.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

198 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

0

voc

1

cons

2

voc

3

cons

4

voc

5

cons

6

voc

7 H

/ / / / / /

0

voc

1

cons

2

voc

3

cons

4

voc

5

cons

6

voc

7 H

/ / / / / /

o

Figure 12.3: Visualization of the transduction of the autosegmental repre-

sentations of Zigula /aH-gulus-a/→ [a-gulús-a] ‘he/she is chasing’.

All of the work in the transduction is done by ϕ◦(x, y): it identifies
elements 7 and 4 as the ones whose copies are to be associated in the
output structure because 7 is a H tone and 4 is the penultimate vowel. In
this way, the MSO transduction is entirely determined identifying by the

well-formed associations in the output structure.

This is also the case for unbounded spreading in Shambaa. Recall that

in Shambaa, an underlying H tone spreads up to the penultimate vowel, as

Figure 12.4 recalls for /ku-ví-ɣoʃo-a/→[ku-ví-ɣóʃó-a] ‘to do them’.

H

ku - vi - ɣoʃo - a →

H

ku - vi - ɣoʃo - a

‘to do them’

Figure 12.4: An example of unbounded spreading in Shambaa

The analysis for this as a MSO transduction is identical for that in

Zigula, save for the predicate ϕ◦(x, y). Instead, the predicate ϕ◦(x, y) as
defined below in (12.22) creates surface associations between the H tone

and all vowels—save the extrametrical final vowel—to the right of the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.5. TRANSFORMATIONS 199

vowel associated to this H in the input. Note that it uses several predicates

defined previously for ϕdom and the transduction in Zigula.

ϕ◦(x, y)
def
= WFA (x, y) ∧ (∃x1)[x ◦ x1 ∧ x1 ≤ y] (12.22)

∧ (∃y2)[penultV (y2) ∧ y ≤ y2]

The reference to WFA (x, y) ensures that any surface association is
well-formed (i.e. between a tone and TBU). The next part of the con-

junct, (∃x1)[x ◦ x1 ∧ x1 ≤ y], specifies that y must be equal to, or to the

right of, the position x1 to which x was originally associated. Finally,

(∃y2)[penultV (y2) ∧ y ≤ y2] specifies that y is either equal to, or is to the

left of, the penultimate vowel.

That this obtains the correct transduction is illustrated in Figure 12.5

corresponding to the mapping between the autosegmental representations

for /ku-ví-ɣoʃo-a/→[ku-ví-ɣóʃó-a] ‘to do them’.

0

cons

1

voc

2

cons

3

voc

4

cons

5

voc

6

cons

7

voc

8

voc

9 H

/ / / / / / / /

o

0

cons

1

voc

2

cons

3

voc

4

cons

5

voc

6

cons

7

voc

8

voc

9 H

/ / / / / / / /

o o o

Figure 12.5: Visualization of the transduction of the autosegmental repre-

sentation of Shambaa ‘he/she is chasing’/ku-ví-ɣoʃo-a/→[ku-ví-ɣóʃó-a] ‘to
do them’.

The associations are built as follows. That domain element 9, as the only

tone, satisfies the role of x in WFA (x, y) is clear. The potential TBU nodes
are 1, 3, 5, 7, and 8 (i.e., the voc positions). Out of these, only 3, 5, and 7
satisfy the role of y in the other conjunctions in ϕ◦. Position 3 satisfies the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

200 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

other conditions on y as it is the domain element to which 9 is associated,
and it is to the left of the penultimate vowel. So an association between 9
and 3 is drawn. Node 5 also satisfies these conditions because it is to the
right of 3 but to the left of the penult 7; node 7 satisfies them because it is
to the right of 3 and it is the penultimate vowel. So associations between 9
and 5 and between 9 and 7 are drawn. Associations are not drawn to nodes
1 and 8, because 1 is to the left of 3 (the originally associated vowel) and 8
is to the right of 7 (the penultimate vowel).

12.6 Discussion

Thus, in the analyses for both Zigula and Shambaa, the transduction is

defined in terms of well-formed surface associations. In Zigula, this involved

specifying that the only valid surface association is between a tone and the

penultimate vowel. In Shambaa, this involved specifying a range of vowels

in between the underlyingly associated vowel and the penult. In some ways,

this is similar to Yip (2002)’s Optimality-Theoretic analyses for similar

tonal processes, which also motivate the mapping between underlying and

surface autosegmental structures through the well-formedness of surface

associations. However, in OT, well-formedness is implemented through

competition among individual constraints. For example, both spreading and

shift to a penultimate vowel can be analyzed in OT through the interaction

of a Align-R constraint motivating the association of a H tone to as close to

the word as possible with a Non-finality constraint barring association to

the final vowel. The difference between spreading and shift is whether or

not a highly-ranked *Assoc constraint bans the addition of new association

lines. In contrast, in the MSO transductions defined in the present chapter,

these conditions on the creation of surface associations are stated directly

in the definition of ϕ◦.

There is one aspect of previous analyses we have not yet discussed with

respect to MSO. Recall that Kenstowicz and Kisseberth (1990) explain the

attraction of the tone to the penult via the extrametricality of the final

vowel, whereas the MSO definitions above directly refer to the penultimate

vowel. However, it is just as possible to create predicates which reference

whether or not vowels are extrametrical. First, the following formula

defines the ‘metrical’ vowels; i.e., those excluding the extrametrical final

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

12.6. DISCUSSION 201

vowel.

metrical (x)
def
= voc(x) ∧ ¬ finalV (x) (12.23)

Note that the above formula simply lists the conditions for being metrical—

to implement other language-specific conditions for extrametricality, one

only needs to add formula of the form ¬ϕ(x) (where ϕ(x) indicates the
property that qualifies a unit as extrametrical).

We can then rewrite the final definition given in (12.21) for the Zigula

penultimate shift transduction as the following: a H tone associates to the

last metrical vowel.

ϕ◦(x, y)
def
=H(x) ∧ metrical (y) (12.24)

∧ (∀z)[metrical (z) → ¬y /V z]

The reader can confirm with Figure 12.3 that this has the same effect as

the previous definition. A single association is drawn between domain

elements 7 and 4 because 7 carries the H tone and 4 is the last vowel to
satisfy metrical (x).

We can similarly recruit metrical (x) to define the surface association
relation in Shambaa unbounded spreading. Recall that in Shambaa, the

goal of the predicate φ◦(x, y) was to define the range of vowels to which
the H tone should associate. We can recast the definition in (12.22) in

metrical terms in the following way: the H tone associates to all metrical

vowels to the right of the originally associated vowel:

ϕ◦(x, y)
def
= WFA (x, y) ∧ (∃x1)[x ◦ x1 ∧ x1 ≤ y] ∧ metrical (y)]

(12.25)

The definition for ϕ◦ in (12.25) differs only from that in (12.22) in the

final conjunct. The original definition in (12.22) referred directly to the

penult and all vowels to the left of it. In (12.25), however, we simply need

only state that y is metrical. The reader can confirm that this defines the
same transduction by referring back to Figure 12.5: nodes 3, 5, and 7 are
the only metrical vowels to the right (or equal to) the originally associated

node 3. Node 8, by the definition of φmetrical(x), is extrametrical, and so is
not associated.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

202 CHAPTER 12. AUTOSEGMENTAL REPRESENTATIONS IN ZIGULA AND SHAMBAA

12.7 Summary

To conclude, this chapter has reviewed two tonal phenomena, penultimate

tone shift in Zigula and unbounded tone spreading in Shambaa, in which

the correct generalizations referred not to the changing of features and

segments, but to associations between units on independent tiers in autoseg-

mental representations. Specifically, these autosegmental representations

placed tonal units on a separate tier from segmental units.

These autosegmental representations were formalized as relational struc-

tures with an additional association relation. Constraints on well-formed

autosegmental representations were defined using the logical language

MSO(/, T,F). The definitions provided scale to any other language, or to
languages with multiple tiers.

Finally, we saw how MSO transductions could specify a change from

underlying forms to surface forms by directly stating the conditions on

association from tonal units to segmental units in surface forms. This

chapter could not possibly cover the vast range of tonal phenomena that

has been observed (see, e.g., Yip, 2002), but the analyses given here have

shown how some fundamental properties of tone can be captured with

MSO transductions over autosegmental representations.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 13

Compound Reduction in Signed
Phonology

Jonathan Rawski

Sign languages arise spontaneously in deaf communities, are acquired

during childhood through normal exposure without instruction, and exhibit

all of the facets and complexity found in spoken languages. Sandler and

Lillo-Martin (2006) and Brentari (2019) provide groundbreaking overviews.

Sign languages offer, as Sandler (1993) puts it, “a unique natural laboratory

for testing theories of linguistic universals and of cognitive organization.”

They give insight into the concrete contents of grammatical form, and

conditions on which aspects of grammar are amodal and which are tied to

the modality.

13.1 Model-Theoretic Representations of Signs

The model-theoretic perspective gives us a flexible position from which to

compare the representational content of spoken and signed phonological

words. One obvious strategy is to say that that the representation for signs

is essentially equivalent to that of spoken words, i.e. they are strings.

Virtually all models of sign phonology allow sequentiality, as a sequence

of static and dynamic segments (Liddell, 1984; Sandler, 1986; Liddell and

Johnson, 1989; Perlmutter, 1993; Newkirk, 1998), or a sequence of abstract

timing units where only the non-dynamic endpoints ultimately associate

203

D
R
A
F
T

204 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

(van der Hulst, 1993; Brentari, 1998).

While some sequential structure is acknowledged in almost all models of

signs, sign representations have increasingly been argued to be inherently

autosegmental in nature. Sandler (1986, 1989) demonstrated that hand

configurations can be independent morphemes (classifiers), and exhibit

autosegmental stability phonologically. She proposed the Hand Tier model,

which represents sequential Location (L) and Movement (M) segments

on a skeletal tier, allowing explicit reference to sequential information,

and represents Handshape Configuration (H) autosegmentally, where one

handshape characterizes the whole sign, in contrast to the one-per-segment

in the Move-Hold model. Autosegments for place of articulation (P) features

are a more recent innovation, seen in Brentari’s (1998) Prosodic Model

and in van der Hulst’s Dependency Phonology Model (van der Hulst, 1993,

1994). An image from Sandler and Lillo-Martin (2006) of a monosyllabic

sign in American Sign Language (ASL) and an autosegmental representation

of it with an expanded feature-geometry for Place is in Figure 13.1.

Figure 13.1: The ASL sign ‘IDEA’ (left) and its Hand Tier Model (right)

(Images copyright Wendy Sandler & Diane Lillo-Martin).

The computational model presented here is not intended to be exhaus-

tive nor definitive. It is simply sufficient to illustrate the applicability and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

13.1. MODEL-THEORETIC REPRESENTATIONS OF SIGNS 205

flexibility of model-theoretic representations for linguistic representation,

regardless of modality. The model-theoretic relational structure for repre-

senting signs I present distinguishes three tiers: a skeletal tier for Location

and Movement, a tier for Handshapes, and a tier for Places. I let L, M , H,
and P denote nonempty finite sets of Locations, Movements, Handshapes,
and Places, respectively. In what follows, I abstract away from particular

locations, movements, handshapes, and places and treat them as individual

units. They will be denoted with lowercase letters and subscripts, e.g.

l1, m1, h1, p1. For concreteness, one can consider that Locations include

unary relations such as proximal and contact; Movements include unary
relations such as path; Handshapes include unary relations such as open_B;
and Places include unary relations such as head and non_dominant_hand.
An example is given in the bottom of Figure 13.3 on page 209. In the

theory of sign language phonology, Handshapes and Places often have a

richer structure. One could include such detailed feature geometries by,

again, adding more relational structure.

Let S = L ∪M denoting properties carried by elements on the skeletal
tier. The skeletal tier is related to the handshape and location tiers via

association relations (cf. Chapter 12). The relation A associates elements
on the skeletal tier to the handshape tier, and the location relation loc
relates elements on the skeletal tier to specific elements on the Place tier.

While these are both association relations, they are included separately for

clarity. The general precedence relation is also included. Altogether these

yield the following relational signature.

R
def
= S ∪H ∪ P ∪ {A, loc, <} (13.1)

As an example, a R-structure representing a monosyllabic sign with
one place feature and one handshape feature is given in Figure 13.2.

As was the case with autosegmental representations (Chapter 12), not

any R-structure is a valid sign. To be a valid sign, R-structures need to sat-
isfy additional properties. These are generally analogous to the properties

that Jardine expressed in Chapter 12 for autosegmental representations

for tone: separability of the units into good tiers, well-formed associations,

and no violation of the no-crossing constraint.

sign_ASR def
= separability ∧ good_tiers ∧ good_associations ∧ NCC

(13.2)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

206 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

〈D ={1, 2, 3, 4, 5}
l1 ={1, 3}
m1 ={2}
h1 ={4}
p1 ={5}
. . .

<={〈1, 2〉, 〈1, 3〉, 〈2, 3〉}
A ={〈1, 4〉, 〈2, 4〉, 〈3, 4〉}

loc ={〈1, 5〉, 〈3, 5〉}〉

4

1 2 3

5

h1

l1 m1 l1

p1

< <

A A A

loc loc

Figure 13.2: Autosegmental Hand Tier word model of a monosyllabic

sign and a visualization. For all n 6= 1, unary relations ln ∈ L, mn ∈ M ,
hn ∈ H, and pn ∈ P equal the empty set and are omitted for readability.
Additionally, only some elements of the precedence relation are displayed

in the visualization for readability.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

13.2. COMPOUND REDUCTION 207

For completeness, the logical formulas for these four properties are spelled

out in an appendix to this chapter.

13.2 Compound Reduction

One salient property that emerges across sign languages concerns the

boundedness of the sign. Many have argued for a syllable-like unit in

sign languages, with movement corresponding to the syllable nucleus

(Brentari, 1990; Wilbur, 1982, 2011; Sandler, 1989; Perlmutter, 1993).

While internal movement resulting from a change in finger position or

palm orientation may coincide with a path movement from one location

to another, the simultaneous movements still constitute one syllable. Two

movements in succession are counted as two syllables. This means that

most monomorphemic words, and multimorphemic words are monosyl-

labic. This tendency, combined with the overwhelmingly nonconcatenative

nature of sign morphology, has resulted in what some call a “monosylla-

ble conspiracy” (Sandler and Lillo-Martin, 2006), with some using a CVC

template as a heuristic comparison with the monosyllabic LML sequences

(Perlmutter, 1993).

Also across sign languages, many lexicalized sign compounds undergo

a type of phonological reduction to preserve the monosyllabic character

of canonical signs (Frishberg, 1975). Compound reduction is an amalgam

of several processes. Often, sequential segments of both members of the

compound delete (Liddell, 1984; Liddell and Johnson, 1989), the hand

configuration of the first member also deletes, and the hand configuration

autosegment of the second member spreads to characterize the whole sur-

face compound (Sandler 1986; 1989). Other compounds reduce in different

ways. Some maintain all segments and both hand configurations. Others

reduce segmental structure only, maintaining two hand configurations

(though see Lepic (2015)).

As an example, consider the ASL compounds ‘FAINT’ (‘MIND’ + ‘DROP’)

and ‘BELIEVE’ (‘THINK’ + ‘MARRY’) as well as the Israeli Sign Language

compound ‘SURPRISED’ (‘THINK’ + ‘STOP’). These compounds are char-

acterized by the following processes:

1. regressive total handshape spreading from the second sign to the first,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

208 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

2. deletion of the initial location segments of both signs and the first

movement, and

3. coalescence of the signs such that place information is uniquely

specified for both L segments.

These are shown in Figure 13.3, along with Sandler (1989)’s Hand Tier

model analysis of the reduction of ASL ‘BELIEVE’. These generalizations

are the ones that will be formalized in the next section using first order

logic over R-structures.

13.3 Compound Reduction as a Logical Trans-

formation

This section presents a computational treatment of the compound reduction

process illustrated in Figure 13.3 using the aforementioned R-structures.
Recall that a logical transduction requires the following: a domain formula

φdom, a copy set C, one or more licensing formulas depending on the size of
the copy set, formulas with two free variables for each binary relation in

the model signature for output structures, and formulas of one free for each

unary relation in the model signature for output structures. Each of these

formulas is written in a logical language based on the model signature of

the input structure. Here I use First Order logic. For compound reduction,

both the relational structures for both inputs and outputs will be the same,

and use the signature R introduced above.
I assume the domain of the transformation is any R-structure.

φdom
def
= true (13.3)

Since the size of the domain of every output is no larger than the size

of the input we set the copy set to contain a single element.

C
def
= {1} (13.4)

This means the size of the domain of the output is maximally the size of

the input domain. The reduction itself will primarily be handled by the

licensing function defined later below.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

13.3. COMPOUND REDUCTION AS A LOGICAL TRANSFORMATION 209

Figure 13.3: Compound Reduction. Top: ASL MIND + DROP = FAINT;

Middle: ISL THINK+ STOP= SURPRISED; Bottom: ASL THINK+MARRY

= BELIEVE, with Hand Tier model of reduction (Images copyright Wendy

Sandler & Diane Lillo-Martin).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

210 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

Since elements of relations which include unlicensed components are

excluded from the output structure (see discussion in Chapter 10), all of

the unary relations in the output structure can be fixed to be the same as

they are in the input structure (13.5-13.7). This amounts to something

akin to an identity relation, enforcing faithfulness.

φs(x)
def
= s(x) (∀s ∈ S) (13.5)

φh(x)
def
= h(x) (∀h ∈ H) (13.6)

φp(x)
def
= p(x) (∀p ∈ P) (13.7)

Similarly, the binary relations for precedence and the location associa-

tion relation also can be preserved, since the only change to these relations

is the exclusion of those pairs which contain unlicensed elements.

x < y
def
= x < y (13.8)

φloc(x, y)
def
= loc(x, y) (13.9)

The next part of the mapping concerns handshape spreading, which is

handled by the association relation A. It will be useful to have predicates
identifying which tier an element of the domain belongs to, as well as ones

identifying particular positions in a sign. Formulas 13.10, 13.11, and 13.12

pick out elements on the skeletal, Handshape, and Place tiers, respectively.

S (x)
def
=

∨
s∈S

s(x) (13.10)

H (x)
def
=

∨
h∈H

h(x) (13.11)

P (x)
def
=

∨
p∈P

p(x) (13.12)

Predicates which pick out certain privileged positions in a sign are provided

below. These use the successor relation (/), which recall from Chapter 2

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

13.3. COMPOUND REDUCTION AS A LOGICAL TRANSFORMATION 211

(see formula 2.21 on page 53), can be defined with FO(<).

first (x)
def
= ¬(∃y)[y / x)] (13.13)

last (x)
def
= ¬(∃y)[x / y)] (13.14)

third (x)
def
= (∃y, z)[first (z) ∧ z / y / x] (13.15)

penult (x)
def
= (∃y)[last (y) ∧ x / y)] (13.16)

Now formula 13.17 states that every element on the skeletal tier is associ-

ated to the final handshape.

φA(x, y)
def
= S (x) ∧ H (y) ∧ last (y) (13.17)

The deletion of timing and handshape segments is handled by the

licensing function φlic(x), which specifies which potential domain elements
are actually present in the output structure. I specify licensing functions

for each tier, and then φlic itself. Formula 13.18 says that elements on the

skeletal tier are licensed if they are third, penultimate, or final element.

These elements help capture the coalescence of the reduced compound.

Formula 13.19 says that only the final handshape of the compound is

licensed. Formula 13.20 says elements on the place tier are licensed.

Formula 13.21 says that in general, an element is licensed only if it satisfies

one of these conditions.

licS (x)
def
= S (x) ∧ (third (x) ∨ penult (x) ∨ last (x)) (13.18)

licH (x)
def
= H (x) ∧ last (x) (13.19)

licP (x)
def
= P (x) (13.20)

φlic(x)
def
= licS (x) ∨ licH (x) ∨ licP (x) (13.21)

To illustrate how this logical specification works, I show how it ap-

plies to the mapping to the model of the ASL compound BELIEVE (THINK

+ MARRY) under the Hand tier model signature R, which is shown in
Figure 13.3. In this figure, the unary relations h1 and h2 are arbitrary

Handshapes in H. Similarly, p1 and p2 are arbitrary Places in P . Table 13.1
shows how the predicates relevant to the license formula are evaluated.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

212 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

7 8

1 2 3 4 5 6

9 10

7 8

1 2 3 4 5 6

9 10

l1 m1 l2 l3 m2 l4

h1 h2

p1 p2

l1 m1 l2

l3

m2 l4

h1 h2

p1 p2

<

<

A

loc

<

A
<

A

loc

<

A

loc

<

A A

loc
<

<

<

A

loc

<

A
<

<

A

loc

<

A

loc

<

A A

loc
<

Figure 13.4: Visual of Input (top) and Output (bottom) R-structures for
compound reduction of ASL BELIEVE (THINK+MARRY). Unlicensed el-

ements and their associated relational elements are dashed and in gray.

Only some elements of the precedence relation are shown for readability.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

13.4. DISCUSSION 213

x

Formulas 1 2 3 4 5 6 7 8 9 10

S (x) > > > > > > ⊥ ⊥ ⊥ ⊥
H (x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > > ⊥ ⊥
P (x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > >

third (x) ⊥ ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
penult (x) ⊥ ⊥ ⊥ ⊥ > ⊥ > ⊥ > ⊥

last (x) ⊥ ⊥ ⊥ > ⊥ > ⊥ > ⊥ >

licS (x) ⊥ ⊥ > ⊥ > > ⊥ ⊥ ⊥ ⊥
licH (x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > ⊥ ⊥
licP (x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > >

φlic(x) ⊥ ⊥ > ⊥ > > ⊥ > > >

Table 13.1: Evaluating the licensing function for compound reduction.

13.4 Discussion

The logical transduction gets its power by factoring the process into its

necessary parts, which are provided by the signature of the relational model.

For example, in this transduction, the fact that handshape spreading and

segment deletion are independent is captured via the association relation

in the output structure φA on the licensing formula φlic, which picks out

different segments on the skeletal and Handshape tier are not deleted. This

factorization allows one to capture the fact that in compound reduction

cross-linguistically, these parts of the process can vary.

For example, in the ASL compound GOOD-NIGHT (GOOD + NIGHT)

(Figure 13.5), the second handshape still spreads, but it is the first L

of the first member of the compound and the second L of the second

member of the compound which survive. Handling reductions of this

flavor involves merely changing the licensing function, while the rest of the

transduction remains unchanged. Another example: hand configuration

assimilationmay take place regardless of whether or not the compound loses

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

214 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

Figure 13.5: ASL GOOD (left), NIGHT (middle), and the compound GOOD-

NIGHT (right). Illustration from Liddell and Johnson (1986)

segments. Total hand configuration assimilation occurs on the reduced

monosyllabic ASL compound HUSBAND (MAN + MARRY) and on the

unreduced disyllabic compound OVERSLEEP (SLEEP+SUNRISE) (Liddell

and Johnson, 1986).

Finally, while there are many more types of compound reduction, involv-

ing partial handshape assimilation, and/or deletion of different elements, I

have argued that these and other sign language processes inhabit the same

complexity class as phonological processes in spoken language (Rawski,

2017); in particular, the Input Strictly Local class (Chandlee and Heinz,

2018). Chandlee and Lindell in Chapter 22 provide a logical characteriza-

tion of this class and Strother-Garcia (2018a) and Chandlee and Jardine

(2019a) use this logical characterization to investigate the computational

complexity of nonlinear representations in spoken language phonology

such as syllable structure and autosegmental representations, respectively.

Conducting a similar analysis for sign language phonology is an important

area of future research.

13.5 Conclusion

This chapter shows how logical and model-theoretic methods can fruitfully

be applied to the study of sign language phonology. Many signed languages

include processes which reduce compounds to single “syllables.” One such

process in ASL was analyzed using first order logic over representations

recognizing three distinct tiers which related properties designating the

location, movement, handshape, and place of manual signs. Future work

can further investigate and articulate the rich representational structures

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

13.5. CONCLUSION 215

that have been posited (see (Brentari, 2019) for a recent review), as well as

more closely examine the kinds of logical languages necessary and sufficient

for describing all aspects of sign language phonology.

Appendix

This appendix defines the four predicates separability , good_tiers ,

good_associations , NCC identifying thoseR-structures which represent
signs.

seps,h,p
def
= (∀x)[(s(x) → (¬h(x) ∧ ¬p(x)))

∧ (h(x) → (¬s(x) ∧ ¬p(x)))
∧ (p(x) → (¬h(x) ∧ ¬s(x)))]

(13.22)

separability def
=

∧
s∈S, h∈H, p∈P

sep
s,h,p

(13.23)

same_tier (x, y)
def
= (S (x) ∧ S (y))

∨ (H (x) ∧ H (y))

∨ (P (x) ∧ P (y)) (13.24)

good_tiers def
= (∀x, y)[x < y → same_tier (x, y)] (13.25)

WFA (x, y)
def
= (A(x, y) ∧ S (x) ∧ H (y))

∨ (loc(x, y) ∧ S (x) ∧ P (y)) (13.26)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

216 CHAPTER 13. COMPOUND REDUCTION IN SIGNED PHONOLOGY

good_associations def
= (∀x, y)[(A(x, y) ∨ loc(x, y)) → WFA (x, y)]

(13.27)

x ≤ y
def
= x = y ∨ x < y (13.28)

NCC def
= (∀x1, x2, y1, y2)∧

R∈{A,loc}

[(R(x1, x2) ∧R(y1, y2) ∧ x1 ≤ y1) → x2 ≤ y2]

(13.29)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 14

Focus and Verb Movement in
Hungarian

Mai Ha Vu

This chapter gives a logical formalization of left periphery movement in

Hungarian, specifically of focus and verb movement. In this way, this chap-

ter shows that the methods presented earlier in the context of phonological

analysis can also be applied to other linguistics domains as well.

There are several proposals accounting for Hungarian word order that

differ from each other in details such as the underlying tree structure and

the specific functional projections involved (Brody, 1990; Puskás, 2000; É.

Kiss, 2002). In order to give a simple illustration of formalizing syntactic

processes with logical transductions, I adopt the early account by Brody

(1990) that argues for focus movement to specifier of FocusP, and verb

movement to Focus0.

The current analysis assumes familiarity with traditional concepts of

generative syntax, such as functional projections, as well as phrasal and

head movement. Specifically, I follow Brody’s (1990) analysis in assuming

X-bar theoretic syntactic structures (Stowell, 1981). The logical transduc-

tion maps from an underlying base-generated tree to a surface tree. The

base-generated tree is unorthodox in that it already contains all nodes

of the final tree derivation, and so no new node is built as the result of

movement. The graph transduction provided in this chapter thus solely

illustrates the displacement of lexical items from one tree node to another,

and not other parts of the derivation. Nevertheless, this simple illustration

217

D
R
A
F
T

218 CHAPTER 14. FOCUS AND VERB MOVEMENT IN HUNGARIAN

suffices to show that the logical formalization method itself ought to be

applicable to a wider array of other syntactic processes, structures and

assumptions.

The chapter is organized as follows. Section 14.1 gives the syntactic

analysis to Hungarian focus and verb movement. Section 14.2 provides

a brief introduction to tree models. Section 14.3 formally describes left

periphery movement in Hungarian on the tree models defined in Section

14.2. Section 14.4 concludes.

14.1 Syntactic analysis

The consensus in the Hungarian syntax literature is that Hungarian word

order is determined by information structure (Horvath, 1976; É. Kiss, 1981),

specifically that the word order is Topic-Focus-Verb in the left periphery

as shown in (14.1), where focused elements are indicated with capital

letters. To account for this order, topic and focus are assumed to be in

their relevant functional projections, TopicP and FocusP. While there are

disagreements on whether these functional projections are to be found in

the CP or IP (É. Kiss, 2002; Puskás, 2000), the current analysis does not

hinge on this decision. I follow the position of É. Kiss (2002) and Brody

(1990) that FocusP immediately scopes over the VP.

(1) [Topic János]

John.NOM

[Focus ”MARIT]

MARY.ACC

szereti.

loves

‘John loves MARY.’

There is also a general agreement that the Topic-Focus-Verb order is

derived by movement, rather than base-generated by phrase-structure rules.

The evidence is that all information structure is optional in Hungarian. In

the absence of topic or focus, sentences are verb initial as shown in (2).

For the rest of this chapter, I restrict my discussion to the focus and verb.

(2) Szereti

loves

János

John.NOM

Marit.

Mary.ACC

‘John loves Mary.’

According to Brody (1990), the focused constituent moves to Spec-

FocusP, and the verb moves to Focus0 as shown in Figure 14.1. Verb

movement is evident from the position of the verbal particle in relation

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

14.1. SYNTACTIC ANALYSIS 219

to the verb in the presence of focus. In a sentence containing focus, the

particle is always post-verbal (3b), while in sentences without focus, the

particle is pre-verbal (3a). This fact indicates that the verb moves to a

higher position than the particle when focus is present.

(3) a. Kati

Kati.NOM

fel

PRT

olvasta

read

a

the

verseket.

poems.ACC

‘Kate read the poems aloud.’

b. A

the

VERSEKET

POEMS.ACC

olvasta

read

fel

PRT

Kati.

Kati.NOM

‘It was the POEMS that Kate read aloud.’

c. * A

the

VERSEKET

POEMS.ACC

fel

PRT

olvasta

read

Kati.

Kati.NOM

‘It was the POEMS that Kate read aloud.’

Taken altogether, I conclude the tree transformation illustrated in Figure

14.1 for the derivation of (4) is the same as the one without the verbal

particle (3b). I follow É. Kiss (2002) in assuming that the Hungarian VP

has a flat structure. Note that the input to the transduction consists of a

tree which has already been assembled, and the transduction presented in

the next section only explicates the movement operations.

(4) VERSEKET

POEMS.ACC

olvasott

read.PST

Kati.

Kate.NOM

‘It was the POEMS that Kate read.’

FocusP

Focus’

VP

DP

Kati

DPfoc

VERSEKET

poems

V

olvasott

read

Focus

FocusSpec
⇒

FocusP

Focus’

VP

DP

Kati

tDPtV

V

olvasott

read

DPfoc

VERSEKET

the poems

Figure 14.1: Base tree and derived tree illustrating focus and verb move-

ment in Hungarian.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

220 CHAPTER 14. FOCUS AND VERB MOVEMENT IN HUNGARIAN

14.2 Representations

To formally define syntactic structures and processes, I use the model-

theoretic signature T in Equation 14.1. Its main difference from the model-
theoretic representations of strings used for most phonological processes is

that it contains two binary relations, one for dominance (δ) and one for
successor (/), and a set of syntactic features F , which are unary relations.

T = {δ, /} ∪ F (14.1)

Readers are referred to Rogers (2003) for technical background, and to

Frank and Vijay-Shanker (2001) for a model-theoretic structures for syntax

which uses c-command as a primitive relation in the signature.

The relevant syntactic features are listed in (5). Each domain element

in a T-structure can have multiple features. Structural features indicate
the role a node in a tree plays with respect to its X-bar structure, whether

they are a head, phrase, bar, or specifier. Category features correspond to

familiar syntactic categories, such as verb, determiner, and focus. Lastly,

nodes can also bear properties indicating whether they are traces and

whether they are focused.

(5) a. Structural features: phrase, head, bar, specifier

b. Category features: Focus, V, D

c. Other: trace, focused

The features listed in (5) are the unary relations in F that I will be using.

Below I define a number of predicates corresponding to the node labels

of the trees in Figure 14.1. Figure 14.2 visualizes the T-structure corre-
sponding to the input tree in Figure 14.1. Each node is a domain element

indicated with an integer and labeled with the shorthand labels listed in

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

14.2. REPRESENTATIONS 221

(14.2). Dominance relations are shown as edges between the nodes.

FP (x)
def
= Focus(x) ∧ phrase(x) (14.2)

FS (x)
def
= Focus(x) ∧ specifier(x) (14.3)

F (x)
def
= Focus(x) ∧ bar(x) (14.4)

FH (x)
def
= Focus(x) ∧ head(x) (14.5)

VP (x)
def
= V(x) ∧ phrase(x) (14.6)

VH (x)
def
= V(x) ∧ head(x) (14.7)

DP (x)
def
= D(x) ∧ phrase(x) (14.8)

DPfoc (x)
def
= DP(x) ∧ focused(x) (14.9)

1

FP

2

FS

3

F

4

FH

5

VP

6

VH

7

DPfoc

8

DP

δ

δ

δ

δ

δ δ

δ

Figure 14.2: Model of input tree in Figure 14.1. The successor relation

among siblings is omitted for readability.

Similarly, the model-theoretic representation of the derived tree in

Figure 14.1 can be given in terms of the primitive relations in the T-
signature. As above, I define additional predicates for the conjunctions of

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

222 CHAPTER 14. FOCUS AND VERB MOVEMENT IN HUNGARIAN

features that are relevant for this structure.

DPfoc (x)
def
= DP (x) ∧ specifier(x) ∧ Focus(x) ∧ focused(x) (14.10)

Vfoc (x)
def
= VH (x) ∧ Focus(x) (14.11)

tV (x)
def
= VH (x) ∧ trace(x) (14.12)

tDP (x)
def
= DP (x) ∧ focused(x) ∧ trace(x) (14.13)

Figure 14.3 shows the T-structure corresponding to the derived tree in
Figure 14.1.

1

FP

2

DPfoc

3

F

4

Vfoc

5

VP

6

tV

7

tDP

8

DP

δ

δ

δ

δ

δ δ

δ

Figure 14.3: Model of the output tree in Figure 14.1. The successor relation

among siblings is omitted for readability.

I also wish to explicate the basic Hungarian phrase structure tree for-

mally by stating that trees follow a basic X-bar structure and that FocusP

selects for VP. To accomplish this, it will be helpful to make use of ad-

ditional concepts such as sisterhood, the root of a tree, and matching

categories. I first define the ‘sister’ relationship in trees: two nodes are

sisters if there is a node that immediately dominates both of them.

sister (x, y)
def
= (∃z)[δ(z, x) ∧ δ(z, y)] (14.14)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

14.2. REPRESENTATIONS 223

Next, roots are nodes that do not have a parent.

root (x)
def
= ¬(∃y)[δ(y, x)] (14.15)

Finally, two nodes match in category if they have the same category feature.

same_cat (x, y)
def
= (Focus(x) ∧ Focus(y)) ∨ (V(x) ∧ V(y)) ∨ (D(x) ∧ D(y))

(14.16)

I now define X-bar structure in Hungarian: every phrase node dominates

a specifier and bar node, and the bar node dominates a head node. The

category feature of all those nodes match. Because of the flat VP structure,

the X-bar structure does not apply to verb phrases.

Xbar def
= (∀x)(∃y, z, w)[(¬ VP (x) ∧ phrase(x)) →

(δ(x, y) ∧ same_cat (x, y) ∧ specifier(y)

∧ δ(x, z) ∧ same_cat (x, z) ∧ bar(z)

∧ δ(z, w) ∧ same_cat (x,w) ∧ head(w))] (14.17)

It is also the case that the head of Focus selects for VP.

focus_select def
= (∀x)[FH (x) → ∃(y)[sister (x, y) ∧ VP (y)]]

(14.18)

Taken all this together, I define Hungarian phrase structure trees as

follows: the tree is rooted by a FP node, it follows X-bar structure, and
focus selects for VP.

HuPST def
= (∃x)[root (x) ∧ FP (x)]

∧ Xbar ∧ focus_select (14.19)

With these representations in place, it remains to formalize the trans-

formation that converts the input the tree visualized in Figure 14.2 to the

output tree visualized in Figure 14.3.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

224 CHAPTER 14. FOCUS AND VERB MOVEMENT IN HUNGARIAN

14.3 Logical transduction

Here I describe the tree-to-tree mapping in (14.1) in terms of a MSO logical

transduction. Because the structure of the tree does not change, only one

copy set of the nodes is needed.

C = {1} (14.20)

The domain and licensing formulas are set to true.
The dominance and successor relations stay the same.

φδ(x, y)
def
= δ(x, y) (14.21)

φ/(x, y)
def
= / (x, y) (14.22)

The unary relations phrase, specifier, bar, head, and Focus also do
not change in the transduction.

φphrase(x)
def
= phrase(x) (14.23)

φspecifier(x)
def
= specifier(x) (14.24)

φbar(x)
def
= bar(x) (14.25)

φhead(x)
def
= head(x) (14.26)

φFocus(x)
def
= Focus(x) (14.27)

On the other hand, the unary relations V, D, focused, and trace can
change between an input and output structure, depending in part on

whether there is a focused constituent within the VP. I define the focus? (X)
predicate to check for focused constituents within the VP. I will assume

here that all focused constituents are DP.

focus? (X)
def
= (∃x, y ∈ X)[δ(x, y) ∧ VP(x) ∧ focused(y)] (14.28)

A node in the output tree is V either if it was already a V in the input tree,

or if it was a Focus head and there is a focused element in the sentence.

φV(x)
def
= V(x) ∨ ((∃X)[focus? (X)] ∧ FH (x))

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

14.4. CONCLUSION 225

A node in the output tree is D if it was a D in the input tree or if it was a

Focus specifier and there is a focused element in the sentence.

φD(x)
def
= D(x) ∨ ((∃X)[focus? (X)] ∧ FS (x)) (14.29)

Nodes in the output tree are focused if they satisfy an analogous situation.

φfocused(x)
def
= focused(x) ∨ ((∃X)[focus? (X)] ∧ FS (x)) (14.30)

Finally, nodes in the output tree are traces, if the original lexical item

moved out from there. This occurs when there was a focused element in

the sentence, focused DPs and verbs get labeled with trace.

φtrace(x)
def
= focus? (X) ∧ (DPfoc (x) ∨ VH (x)) (14.31)

Table 14.1 shows aspects of the computation for the unary relations

V, D, focused, and trace for domain elements 2, 4, 6, and 7 in the output
tree in Figure 14.3. Observe that in the input structure in Figure 14.2,

focus? ({5, 2}) evaluates to true.

14.4 Conclusion

In this chapter, I have described focus and verb movement in Hungarian

using model-theoretic representations and a logical transductions, based

on the analysis by Brody (1990). In order to adequately describe the trans-

duction, monadic second order (MSO) logic was used. The transduction

relied on some unorthodox assumptions, such as a fully built input tree.

This assumption was crucial for the current analysis. If this were not the

case, the copy set would have to be larger than one to allow for the output

structures to be larger than the input structure. However, any particular

choice for the copy set effectively limits the number of times a lexical item

can potentially move. If a lexical item can move an unboundedly many

times then there could be no copy set large enough. This issue also arises in

Chapters 20 and 21 in the context of the phonological cycle as well as the

linearization of reduplicative morphemes under certain representational

assumptions.

An alternative without such nonstandard assumptions would have been

to use the Minimalist Grammars formalism (Stabler, 1997). In that case,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

226 CHAPTER 14. FOCUS AND VERB MOVEMENT IN HUNGARIAN

x

Formulas 2 4 6 7

D(x) ⊥ ⊥ ⊥ >
V(x) ⊥ ⊥ > ⊥
Focus(x) > > ⊥ ⊥

head(x) ⊥ > > ⊥
phrase(x) ⊥ ⊥ ⊥ >
specifer(x) > ⊥ ⊥ ⊥
focused(x) ⊥ ⊥ ⊥ >

DPfoc (x) ⊥ ⊥ ⊥ >
VH (x) ⊥ ⊥ > ⊥
FH (x) ⊥ > ⊥ ⊥
FS (x) > ⊥ ⊥ ⊥

φD(x) > ⊥ ⊥ >
φV(x) ⊥ > > ⊥
φfocused(x) > ⊥ ⊥ >
φtrace(x) ⊥ ⊥ > >

Table 14.1: Computing φD(x), φV(x), φfocused(x), andφtrace(x) given the
input structure in Figure 14.2.

only syntactic derivational features would be given with each lexical item,

and every merge and move would be motivated by these features. All

syntactic processes in the Minimalist Grammars (MGs) framework can

be described in terms of MSO logical constraints on the derivation itself

(Graf, 2013). Still, an additional mapping is needed from a derivation

tree to a derived tree to yield the surface sentence string. It could be

interesting future work to examine the complexity of a logical tree-to-tree

transductions between a derivation tree and a derived tree in the MGs

framework.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Part III

Theoretical Contributions

227

D
R
A
F
T

D
R
A
F
T

Chapter 15

Syllable Structure and the
Sonority Sequencing Principle

Kristina Strother-Garcia

15.1 Introduction

This chapter1 examines well-formedness constraints as they pertain to

syllable structure in light of Chapter 5, which argued that constraints like

*NT and *N..L can actually be expressed with logical languages weaker than

first-order logic. Those logical languages included propositional logic, and a

restricted form of propositional logic referred to as conjunction of negative

literals (CNL). This chapter argues that this restricted propositional logic

is sufficient to describe constraints which determine the language-specific

well-formedness of syllabic structures constituting words across languages.

This is important because it means deciding whether such a structure is

well-formed amounts to a series of local decisions and therefore recourse

to global optimization is unnecessary.

Recall from Chapter 5, that a propositional logic can be defined in terms

of the factors of relational structures. Each factor picks out a connected
structure. For example, in the context of syllable structure, consider the

two factors Cons and Ccod shown in Figure 15.1. The factors in Figure 15.1

present the necessary and sufficient components of structures that con-

tain complex onsets (left) and complex codas (right). In the figure, the

1This chapter is essentially an updated version of Strother-Garcia (2019, Chapter 5).

229

D
R
A
F
T

230 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

1

ons

2

cons

3

cons

Cons
def
=

δ δ

/

1

nuc

2

voc

3

voc

Cnuc
def
=

δ δ

/

1

cod

2

cons

3

cons

Ccod
def
=

δ δ

/

Figure 15.1: Factors for complex onsets (left), complex nuclei (center), and

complex codas (right).

symbol / denotes the successor relation, and δ indicates the dominance
relation. (Syllabic relational structures are formalized in the next section.)

Factors like the ones in Figure 15.1 constitute the atoms (the ‘literals’) of a

propositional logic.

The interpretation of a factor S in this logical language is all the rela-
tional structures containing S. Consequently, if one wishes to characterize
a language without complex syllable margins, the logical sentence below

suffices.

∗ComplexMargin def
= ¬Cons ∧ ¬Ccod (15.1)

Recall from Chapter 5, that negation is interpreted as the complement.

Thus ¬Cons is interpreted at the set of all structures which do not contain a

complex onset. Similarly, ¬Ccod is interpreted at the set of all structures

which do not contain a complex coda. Their conjunction thus picks out all

structures which do not contain a complex syllable margin.

A sentence of propositional logic is a conjunction of negative literals

provided that it is a conjunction of terms ¬F1 ∧ . . . ∧ ¬Fn where each Fi is

a factor. The ∗ComplexMargin is a conjunction of negative literals.
This chapter examines language-universal and language-specific aspects

of syllable-structure, and observes that they are expressible in CNL logic

over syllabic representations. This kind of analysis has been applied to

tonal mapping (Jardine, 2017) and to other aspects of phonotactics (Rogers

and Lambert, 2019b).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.2. UNIVERSAL PRINCIPLES OF SYLLABLE STRUCTURE 231

In the remainder of this chapter, I first present a model-theoretic rep-

resentations of the syllable and discuss universal principles of syllable

structure discussed and analyzed by Clements and Keyser (1983) and

(Davis, 1988). I express these principles with logic. Next I review the four

major language types based on CV typology as treated in OT by Prince

and Smolensky (2004). I present factors within a CNL logic sufficient to

characterize this four-way typology. Moving beyond the simplest CV-type

structures, I also describe the formation of complex syllable margins, re-

lying on a logical formulation of the Sonority Sequencing Principle (SSP).

Some implications of this result are discussed in the conclusion to this

chapter.

15.2 Universal Principles of Syllable Structure

Clements and Keyser (1983) argue for three levels of syllable structure:

a syllabic tier, a CV tier and a segmental tier, which are organized hier-

archically. While Clements and Keyser recognize the syllabic constituent

nucleus, they argue that the the constituent categories onset and coda are

unnecessary in part because they can be derived from other information

from their model. In contrast, (Davis, 1988) argues for the primacy of

syllabic constituents onset, nucleus and coda. Such categories likewise

played a prominent role for constraint-based theories of phonology such

as Optimality Theory (Prince and Smolensky, 2004). Goldsmith (2011)

provides an overview of theories and representations of the syllable.

This chapter considers a representational theory of the syllable recog-

nizing the following the three levels: a syllabic tier, a tier for syllabic roles

(onset, nucleus, coda), and a segmental tier. For example, the English word

plenty [plɛnti] would have the following syllabic representation.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

232 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

p l ɛ n t i

ons nuc cod ons nuc

σ σ

Figure 15.2: A syllabic representation of the English word plenty.

One goal is define the universal constraints on syllabic representations

using relational structures and sentences in logical language. A relational

model for syllabic representations is much like an autosegmental model

(see Chapter 12). Equation (15.2) provides a model signature, where / is
the successor relation, δ is a binary dominance relation, F is a set of unary
relations for standard segmental features, S is a of unary relations for the
syllabic roles ons, nuc, cod,, B is the set of two unary relations indicating
the word boundary symbols o,n, and finally σ is the unary relation for
elements at the topmost level of the syllabic structure.

R = {/, δ} ∪ F ∪ S ∪B ∪ {σ} (15.2)

As an example, Figure 15.3 presents the R-structure for the English
word plenty. (This figure does not show the word boundary symbols, but

they are present at each level of structure.)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.2. UNIVERSAL PRINCIPLES OF SYLLABLE STRUCTURE 233

8

cons

9

cons

10

voc

11

cons

12

cons

13

voc

3

ons
4

nuc
5

cod
6

ons
7

nuc

1

σ

2

σ

/ / / / /

/ / / /

/

δ
δ

δ δ
δ

δ
δ δ δ δ δ

Figure 15.3: The R-structure for the English word plenty, with only the
consonantal and vocalic features shown for the segments. Word boundaries

are not shown, but are present at each level of structure.

Like autosegmental representations (Chapter 12) it is not the case that

any arbitrary assignment of domain elements to the relations in R con-
stitutes a well-formed syllable structure. It is important that there are

three distinct tiers, whose elements are related by the / relation. It is
also important that the unary relations not in B only pertain to exactly
one of these levels. Here, the relation σ pertains to the highest level, the
relations in S pertain to the middle tier, and the relations in F pertain
to the lowest level, the segmental tier. The dominance relation occurs

only between adjacent levels. Finally, every syllable must dominate some

nucleus, and every position on the syllable role tier must dominate some

segment and be dominated by some syllable. Logical sentences establishing

these conditions on well-formedness are provided in the appendix.

There are additional universals of syllable structure. For example, the

strings that compose the middle tier with the syllabic roles form a strictly

2-local language. In particular, the following 2-factors are forbidden:

oc,on, cc, cn, oc, oo, on, where c indicates a coda position, n a nucleus
position, and o an onset position. The constraint on cn sequences follows
from the principle of syllabification that onset formation is prioritized over

coda formation. If a lower-sonorous position x precedes a nucleus position,
then x must be an onset.

Additional syllable structure limits the number of roles elements on the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

234 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

syllabic tier can dominate. I will let the reader work out the details for

themselves, but syllables with two onsets, two codas, two nuclei, with a

nucleus followed by an onset, and so on, are forbidden.

It follows that syllables have one of the four basic structures shown

in Figure 15.4. There are two observations worth mentioning. First, the

1

σ

2

nuc

N
def
=

δ

2

ons

3

nuc

1

σ

ON
def
=

δ
δ

/
2

nuc

3

cod

1

σ

NC
def
=

δ
δ

/

2

ons

3

nuc

4

cod

1

σ

ONC
def
= δ δ

δ

/ /

Figure 15.4: The four permissible syllable structures.

structure N is contained within the structures ON, NC, and ONC. This

follows from the requirement that every word contain at least one syllable

and each syllable contains exactly one nucleus (see appendix). Second, it

is not the case that any of these syllable structures can be “concatenated”

with each other to form well-formed words. For example, while NC is a

valid structure for a word, concatenating NC with itself to yield a structure

like NC · NC would not be a valid word because it violates the ban on cn
sequences in the syllable role tier.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.3. BASIC CV TYPOLOGY 235

15.3 Basic CV Typology

Basic CV typology refers to the a four-way typology of syllable types

occurring in languages which can be derived from two principles: (1)

that onsets be required and (2) that codas be forbidden (Jakobson, 1962;

McCarthy, 1979; Clements and Keyser, 1983; Blevins, 1995). This typology

assumes that complex syllable margins and complex nuclei are forbidden,

and thus only syllables with a single C or V in each syllabic position are

considered. In the context of the propositional logical language based on

factors of R-structures, this means sentences conjoined with the sentence
¬Cons∧¬Cnuc∧¬Ccod (Figure 15.1). Syllables with complex syllable margins

are discussed in §15.4. Syllables with complex syllable nuclei are left for

future research.

15.3.1 The Typology

If a given language requires onsets and forbids codas, the only acceptable

syllable type will be CV.2 If codas are forbidden and onsets are not required,

syllables may take the form V or CV. Requiring onsets and allowing codas

yields CV and CVC syllables. Finally, when onsets are not required and

codas are not forbidden, V, CV, VC, and CVC syllables will all be grammati-

cal. It is possible to place these syllable types in one-to-one correspondence

with the structures shown in Figure 15.4 since complex onsets, nuclei, and

codas are not under consideration. It follows that there 24 logically possible
subsets of these four syllable types. Nonetheless, languages with simple

syllable margins have only been identified with only four of these logically

possible subsets, as summarized in Table 15.1.

2Technically, C denotes a domain element x satisfying cons(x). Here we make no
distinction between cons(x) and ¬voc(x) and so glides are grouped with consonants.
Atypical syllable structures (e.g., complex nuclei, syllabic consonants) are beyond the
scope of this chapter, and would be interesting to study in future research.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

236 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

Onsets Required Onsets Not Required

Codas Forbidden CV V, CV

Codas Not Forbidden CV, CVC V, CV, VC, CVC

Table 15.1: Basic typology of syllable structures.

With the basic CV typology made clear, I now demonstrate how it can

be accounted for using a conjunction of negative literals, where the literals

are the factors of R-structures of the kind discussed in §15.2.

15.3.2 Analysis of the Typology

It is straightforward to identify R-structures for syllables with onsets or
codas. These are just factors of size 1, banning any element satisfying ons
and cod, respectively. Following the notation introduced in §15.2, I will
refer to these factors as o and c respectively. As positive factors, o and c
pick out all and only those R-structures with at least one onset or coda,
respectively. The negative literals ¬o and ¬c pick out all and only those
R-structures with no onsets or codas, respectively. This means that it is
straightforward to implement a ban on codas with the negative literal ¬c.
Interestingly, the positive literal o also fails to capture the essence of

the generalization “All syllables have onsets.” To see why, consider the

expression in first order logic which corresponds to the positive literal

Onset shown in Equation 15.3.

∃x[ons(x)] (15.3)

Since words can have more than one syllable, this sentence does not capture

the generalization that “All syllables have onsets.” It just requires that

there exist a single syllable with an onset. Any onset effectively licenses

the whole word (with respect to this factor), even if other syllables do not

have onsets.

In first order logic, one way to express the generalization that “All

syllables have onsets” is shown in Equation 15.4.

∀x[syl(x) → (∃y[ons(y) ∧ δ(x, y)]] (15.4)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.3. BASIC CV TYPOLOGY 237

I am interested in whether or not this generalization can be described in

terms of a conjunction of negative literals, where the literals are factors of

R-structures. In what follows I show that it can be.
Onsets precede nuclei in syllables. Equivalently, this means that nuclei

in syllables cannot be preceded by the word boundary, by another nucleus,

or by a coda. In other words, banning the 2-factors on, nn, cn on the
syllable role tier has the effect that onsets must always precede nuclei.

Since each syllable has exactly one nucleus this means that every syllable

will have an onset.

§15.2 posited that forbidding the 2-factor cn was a universal. Therefore
the language-specific generalization “all syllables have onsets” comes down

to the conjunction of negative literals ¬o n ∧ ¬nn.
It follows that the four way typology is described with the following

conjunctions of negative literals shown below. Letting NoCoda =¬c and
Onset =¬ o n ∧ ¬nn, Table 15.2 shows the conjunctions of negative
literals which give raise to the basic CV typology.

sentence allowable syllables

NoCoda ∧ Onset CV

NoCoda V, CV

Onset CV, CVC

true V, CV, VC, CVC

Table 15.2: Basic typology of syllable structures.

Of course the complex nature of the predicate Onset raises the ques-
tion whether its component parts ¬ o n and ¬nn ever assert themselves
independently. If they did, then we would expect to find languages which

forbid onsets word-initially but admit them word-internally (satisfying

¬o n but not ¬nn). Similarly, we would expect to find languages which
forbid onsets word-internally but admit them word-initially (satisfying ¬nn
but not ¬o n).
This turns out to be exactly the case. In the introduction to her article,

Flack (2009) writes “Word-initial syllables in Axininca Campa may either

have onsets or be onsetless, but onsets are required in all non-initial syllables

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

238 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

(Payne 1981, McCarthy & Prince 1993)” and that “Initial syllables in Madi

must have onsets, while medial syllables may have onsets or be onsetless

(Tucker 1967).”

Flack (2009) also points out codas show analogous cross-linguistic

effects. She writes “Similarly in Kamaiurá, codas are permitted only in

word-final syllables (Everett & Seki 1985, McCarthy & Prince 1986)” and

that “in Chamicuro, codas are banned in word-final syllables but may occur

non-finally (Parker 2001: 365–366).” In the context of the analysis being

presented here, this means that Kamaiurá and Chamicuro, codas are allowed

somewhere and so the factor c is not forbidden. Forbidding the word-final
codas is expressed by the 2-factor cn and forbidding word-internal codas
is effectively expressed by the 2-factor co. (Recall that the 2-factor cn is
universally banned.) It follows that in Kamaiurá and Chamicuro, one of

these 2-factors, but not the other is banned.

One might reasonably ask whether one expects the logically possible

constraint ¬o (“No Onset”) to also appear independently. This is an excel-
lent question, but it is not unique to the analysis presented here. It is an

important issue for OT as well, as I explain in §15.3.3 below.

To conclude this section, the basic CV typology follows simply from

the the conjunction of negative factors. While there is no single factor

requiring onsets, the two factors which together require onsets for every

syllable appear to operate independently across languages.

15.3.3 Comparison to OT

It is instructive to compare the analysis above to the one offered by Opti-

mality Theory. In OT, (Prince and Smolensky, 2004) arrive at the basic CV

typology language types by examining the interactions of two markedness

constraints, Onset and NoCoda, and two faithfulness constraints, Parse

and Fill. The markedness constraints straightforwardly implement the two

principles driving the four-way typology described above. The faithfulness

constraints enforce a one-to-one relation between underlying segments and

syllabic positions. All four constraints are given below.

1. OT constraints from Prince and Smolensky (2004, pp. 93-95).

(a) Onset: A syllable must have an onset.
(b) NoCoda: A syllable must not have a coda.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.3. BASIC CV TYPOLOGY 239

(c) Parse: Underlying segments must be parsed into syllable struc-
ture.

(d) Fill: Syllable positions must be filled with underlying segments.

In accordance with the OT tenant that all languages share a universal

set of violable constraints (CON), Prince and Smolensky (2004) generate

the four basic syllable typologies by reordering (1a) through (1d). Even

though there are 24 logically possible constraint rankings, only four unique

typologies emerge, the ones shown in Table 15.1.

There are two points worth mentioning. The first is that this result

obtains only if the logically possible constraints NoOnset and Coda are

excluded from CON. If these constraints are included in CON then the

factorial typology expands to include languages which forbid onsets and

require codas.

The second point is that ranking Onset and NoCoda relative to the

faithfulness constraints determines whether they are active or not in the

language. If they are ranked above the faithfulness constraints, they are

active and onsets will be required and codas forbidden. If they are ranked

below some faithfulness constraint then they can be considered inactive,

and onsets will not be required and codas will not be forbidden. In terms

of sentences of propositional logic, whether a constraint is active or not

means whether or not it is included as a term in the conjunction of negative

literals.

The third point is that EVAL computes a global evaluation over can-

didates to determine the optimal form. However, the logical analysis

makes clear not such global computation is necessary for determining well-

formedness. The presence or absence of each factor is a local computation,

and those local computations are fed directly into a propositional sentence

for evaluation.

In sum, the logical analysis of the basic CV typology distills the the is-

sues to their core. That onsets are required and codas forbidden is captured

exactly by the terms Onset and ¬ Coda , which are merely conjunc-
tions of negative literals. The fact that the typology is what it is derives

from the availability of these constraints in a theory of language and the

non-availability of logically possible constraints like Coda and ¬ Onset .
Accounting for this asymmetry is as much an issue for OT as it is for the

present analysis. Whatever explanation is forthcoming will likely not neces-

sarily follow the formal structure of these theory, but from factors external

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

240 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

to it. Finally, the four-way typological distinctions have been shown to be

derived without global optimization; inviolable constraints work at least

as well as violable ones in this regard. I conclude that in this simple corner

of phonology, when it comes to accounting for the basic CV typology, the

above analysis fares no worse than OT.

There are many other arguments for OT which are not addressed here.

For example, the OT analysis not only determines which surface sequences

are well-formed, it provides a mapping from an underlying sequence of Cs

and Vs to well-formed, parsed syllable structure. In contrast, the analysis

presented here only focuses on well-formedness. However, I have argued

elsewhere that logical transductions of the kinds presented in Chapter 3

provide similar insights into the process of syllabification itself (Strother-

Garcia, 2018a, 2019). The primary conclusion of that work is that, even

for the complex cases of syllabification found in for Imdlawn Tashlhiyt

Berber and Moroccan Arabic, the necessary computations are local, and

global optimization is unnecessary.

15.4 Complex Onsets and Codas

I now expand the analysis in the previous section to account for complex

syllable margins. My approach is to formalize the Sonority Sequencing

Principle (SSP) as a conjunction of forbidden factors.

Sievers (1881) wrote one of the first versions of the SSP (also called

the Sonority Sequencing Generalization or SSG), observing that sonority

generally rises between a given segment and the sonority peak of its syllable.

This principle has been reiterated in one form or another bymany influential

linguists (e.g. Saussure, 1916; Hooper, 1976; Selkirk, 1984; Clements, 1990).

While there is a great deal of disagreement regarding the psychological and

physiological realizations of sonority, some principles are generally agreed

upon. Namely, vowels are more sonorous than sonorant consonants (glides,

liquids, and nasals), which are in turn more sonorous than obstruents

(fricatives, affricates, and stops). Finer distinctions between members of

these three natural classes are more contentious, but the exact details of

the sonority hierarchy do not matter for the purposes of this chapter. It is

also worth noting that many languages allow SSP violations, so this is not

a universal principle in its most strict interpretation.

In what follows, I define binary sonority relations that encode the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.4. COMPLEX ONSETS AND CODAS 241

relative sonority of two segments. I then introduce two factors, which

when included as negative literals, enforce a certain version of the SSP.

15.4.1 Sonority Relations

I assume there is some known sonority hierarchy (either for a given lan-

guage or more universally) such that, for every pair of phonemes, it is

known whether or not one is less sonorous than the other. If position x
is less sonorous than position y, I write <s(x, y) or, equivalently, x<s y.
It is a useful exercise for the reader to derive this sonority relation from

the relations in the R-signature. In accordance with the traditional notion
of lesser sonority, this binary relation <s is irreflexive, asymmetric, and

transitive.

Given these properties of <s, it is simple to define a relation =s to

represent equal sonority.

=s(x, y)
def
= ¬<s(x, y) ∧ ¬<s(y, x) (15.5)

Essentially, two positions x and y are equally sonorous iff x is not less
sonorous than y and y is not less sonorous than x.
Similarly, I define the relation ≤s to represent equal or lesser sonority.

≤s(x, y)
def
= <s(x, y) ∨=s(y, x) (15.6)

This equation says the position x is equally or less sonorous than position
y iff x is less sonorous than y or x and y are equally sonorous.
I also define the relation >s to represent greater sonority.

>s(x, y)
def
= ¬≤s(x, y) (15.7)

Position x is more sonorous than position y iff x is not equally or less
sonorous than y.
In this analysis, the relations <s,=s, and >s are atomic predicates to be

included in the signature of R-structures. I discuss this and other issues
around whether these relations are atomic or derived after presenting the

bulk of the analysis.

Figure 15.5 presents an example of a R-structure for the word blink

[blɪnk]. In this figure, the sonority relations are shown only for on the

segmental tier for positions x, x+ 1. For the sonority sequencing principle,
these are the only sonority relations that matter. Position 4 is less sonorous

than position 5, and position 7 is more sonorous than position 8.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

242 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

1

ons

4

b

5

l

6

ɪ

7

n

8

k

2

nuc

3

cod

δ
δ

δ δ δ

/

<s

/

<s

/

>s

/

>s

Figure 15.5: A R-structure for the word [blɪnk] with sonority relations
illustrated from left to right.

15.4.2 Constraints on Sonority Sequencing

The SSP can be understood in different ways with respect to successive

positions of equal sonority. Some languages allow equally sonorous conso-

nants in a complex onset/coda, meaning that a strict rise in sonority from

the syllable boundaries to the nucleus is not required. Here, I analyze the

the SSP in this way.

To enforce this version of the SSP, it suffices to ban two factors: first,

an onset segment must not be more sonorous than its successor; second,

a coda segment must not be more sonorous than its predecessor. These

factors are shown in Figure 15.6. It follows that the non-strict version of

1

ons

2 3

SS_Ons def=

δ

/

>s

1

cod

32

SS_Cod def=

δ

/

<s

Figure 15.6: Sonority Sequencing factors for Onsets (left) and Codas (right).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.4. COMPLEX ONSETS AND CODAS 243

the SSP follows from the conjunction shown in Equation 15.8.

SSP def= ¬SS_Ons ∧ ¬SS_Cod (15.8)

These constraints are mirror images of each other.

To illustrate how these factors enforce the SSP, consider the forbidden

factor SS_Ons. It applies in two situations. For one, it forbids an onset from
being more sonorous than a nucleus immediately following it. Figure 15.7

illustrates such a structure, an onset w with a nucleic s . The banned
structure SS_Ons is bolded.

1

ons

2

ons

3

w

4

s

δ δ

/

/

>s

Figure 15.7: An onset followed by a nucleus of lesser sonority.

Importantly, SS_Ons also bans a left-to-right fall in sonority among seg-
ments within a complex onset. Consider the nonce word blick [blɪk], which

native English-speakers generally agree is a viable (though unattested)

word in English (Chomsky and Halle, 1965). Reversing the order of the

onset segments yields lbick [lbɪk], which is clearly not acceptable as an

English word. One explanation for this is that blick satisfies the SSP while

lbick does not. Figure 15.8 illustrates the R-structure of [lbɪk]. The bolded
structure precisely matches the forbidden factor SS_Ons.
In contrast, Figures 15.9 illustrates the R-structure for the word blick

[blɪk]. This structure satisfies SS_Ons because it does not contain the banned
factor. Crucially, the first segment b in [blɪk] is less sonorous than its

successor l .
Forbidding the factor SS_Cod has the same kind of effects as forbidding

SS_Ons. I leave it to the reader to confirm this by considering R-structures
which satisfy the expression ¬SS_Cod, and which do not satisfy it.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

244 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

1

ons

4

l

5

b

6

ɪ

7

k

2

nuc

3

cod

δ
δ

δ δ

/ /

/

>s

/

<s

/

>s

Figure 15.8: The R-structure of [lbɪk] with the forbidden factor SS_Ons
bolded. Word boundaries and the syllable domain element omitted.

1

ons

4

b

5

l

6

ɪ

7

k

2

nuc

3

cod

δ
δ

δ δ

/ /

/

<s

/

<s

/

>s

Figure 15.9: The R-structure of [lbɪk] with the forbidden factor SS_Ons
bolded. Word boundaries and the syllable domain element omitted.

This section analyzed a version of the SSP that forbids falling sonority

from the syllable boundaries to the nucleus. This generalization is expressed

in Equation 15.8, which effectively forbids two factors: one where onset

elements are succeeded by a less sonorous position, and one where coda

elements are preceded by a less sonorous position.

A key assumption in obtaining this result was that the sonority relations

are part of the signature. It makes sense then to ask whether this position

is reasonable. As discussed in Chapter 2, this amounts to a decision as

to whether sonority relations are included in the primitive psychological

units that make up mental representations of words. If they are, then it is

appropriate to include in the R-signature. In this regard, it is important
to note that while the sonority relation was defined for any two positions

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.5. CONCLUSION 245

x and y, the only sonority relations that matter for this analysis are those
when x and y are adjacent. Given that sonority relations from adjacent
positions essentially encodes a difference (e.g. a rate of change) in the

sonority between successive positions, I do not think it is too far-fetched to

hypothesize that they possess a degree of psychological reality.

15.5 Conclusion

Drawing on propositional logic and model-theoretic representations of

syllable structure, I developed a new way of deriving Jakobson’s (1962)

typology. I showed that the well-formedness of various language specific

constraints on both simple and complex syllable margins can be expressed

simply by forbidding finitely many syllabic structures. The language-

specific principles that determine the exact size and structure of complex

syllabic margins in each language (beyond the scope of the SSP) remain to

be described. Complex nuclei, ambisyllabic, and extra-syllabic segments

are also important areas for future research. While there are many syl-

labic structures not covered here, I have provided the groundwork for a

computational model of syllable structure.

This chapter has not treated the process of syllabification itself, and

I refer readers to (Strother-Garcia, 2018a) and (Strother-Garcia, 2019,

Chapter 7) for explicit accounts of the syllabification processes in Imdlawn

Tashlhiyt Berber and Moroccan Arabic, respectively. In those analyses,

logical transductions of the kind presented in Chapter 3 were provided.

Furthermore, those transductions were shown to be Quantifier-Free, which

means that the process of syllabification process itself is local in a particular

way (see Chapter 22).

Altogether these results indicate that computing the well-formedness

of syllable structures and the syllabification process itself do not require

globally optimizing over ranked inviolable constraints, and that, at least in

the context of the syllable, computations are local.

Appendix

This appendix provides the logical formulas and sentences that explain

which R-structures form multilinear syllabic structures.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

246 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

To create three distinct tiers, it is important that the relevant properties

are only present on the appropriate tier.

sepf,s
def
= (∀x)[(f(x) → ¬t(x)) ∧ (s(x) → ¬s(x))] (15.9)

sep def
=

∧
f∈F,s∈S

sepf,t

∧
f∈F

sepf,σ

∧
f∈S

sepf,σ (15.10)

Likewise it is important that elements of each tier refer only to certain

properties. Formula 15.11 groups together all the segmental elements.

segment (x)
def
=

∨
f∈F

f(x) (15.11)

Similarly, Formula 15.12 groups together all elements carrying syllabic

roles.

role (x)
def
=

∨
s∈S

s(x) (15.12)

The predicate same_tier (x, y) is true if and only if x and y are both

segments, syllabic roles, or σ.

same_tier (x, y)
def
= (role (x) ∧ role (y))

∨ (segment (x) ∧ segment (y))

∨ (σ(x) ∧ σ(y)) (15.13)

The sentence below constrains syllabic representations to structures in

which tier only contain like units.

good_tiers def
= (∀x, y)[same_tier (x, y) ↔ (x ≤ y ∨ y ≤ x)] (15.14)

It is also important that the dominance relations between tiers are the

expected ones. In particular, the only dominance relations allowed are

ones between σ elements and role elements as well as between role elements
and segmental elements. The predicate WFD (x, y) determines whether

(x, y) a dominance relation is well-formed.

WFD (x, y)
def
= xδy → ((σ(x) ∧ role (y)) ∨ (role (x) ∧ segment (y)))

(15.15)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

15.5. CONCLUSION 247

Formula 15.16 then requires that all associations are of this type.

good_dom def
= (∀x, y)[xδy → WFD (x, y)] (15.16)

Formula 15.17 requires every domain element satisfying σ to dominate
some nucleus and every domain elements satisfying a syllable role to

dominate some segment.

syl_dom def
= (∀x[(σ(x) =⇒ ∃y[nuc(y) ∧ xδy])

∧ role (x) =⇒ ∃y[segment(y) ∧ xδy])] (15.17)

Putting this altogether, R-structures which can be said to be legitimate
syllabic representations must satisfy Equation 15.18.

SylR def
= sep ∧ good_tiers ∧ good_dom ∧ syl_dom (15.18)

We observe that these three predicates have the same function for autoseg-

mental representations (Chapter 12). They establish a multilinear structure

whose elements on distinct tiers are related to each other via some kind of

association relation (here dominance). Other universal aspects of syllable

structure are discussed in §15.2.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

248 CHAPTER 15. SYLLABLE STRUCTURE AND THE SSP

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 16

Primitive Constraints for
Nonlexical Stress Patterns

Dakotah Lambert

This chapter explores the kinds of patterns that characterize word-stress.

These patterns are built from constraints at the syllable level, restrictions

on what kinds of stressed and unstressed syllables can cooccur and in which

configurations. Unlike the constraints of Optimality Theory where analysis

begins with a universal set of violable constraints (Prince and Smolensky,

2004), the constraints discussed here are language-specific unviolated

descriptions of the surface structure. Thus, universality is neither assumed

by, nor encoded in, the grammar. Nonetheless, this formalism allows for

easy verification of putative universals.

This chapter makes the following contributions. First, it discusses

some principles of formal description in terms of propositional logic. For

example, in §16.2, the principle that accurate descriptions need to be

complete often necessitates explicit reference to universal constraints that

may otherwise go unmentioned. Another important point raised in that

section is that there can be more than one accurate formal description of a

given pattern, even when restricted to a particular kind of propositional

logic. This naturally leads to the question of which such description is to be

preferred, which is closely related to the problem of abductive reasoning

and inference (Rawski, 2021). In §16.3 automatic methods are discussed

as a way to ameliorate some of these issues. In terms of linguistic typology,

the primary finding is that non-lexical stress patterns can be expressed with

249

D
R
A
F
T

250 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

a propositional logic using successor-based and precedence-based factors.

§16.1 begins with a discussion of what word-stress is and presents a

basic feature system to encode it. Then §16.2 describes a principled way to

derive a precise description of the surface forms in question. Many patterns

admit several extensionally equivalent grammars, but because all stress

patterns are regular, they have a normal form as a forward-deterministic,

trim, minimal finite-state acceptor (Heinz, 2009). An automatic method of

extracting some of the simplest kinds of constraints from these acceptors

(Rogers and Lambert, 2019a) appears in §16.3.

16.1 The Phonotactics of Stress

Word-stress refers to phonological marking of one or more prominent

syllables within the scope of a single word (van der Hulst, 2014). The most

prominent among these are said to bear primary stress, while the least are

called unstressed. If there is a perceptually clear third level between these

two, it is a secondary stress. The particular markers of stress may be any

of loudness, pitch, or duration, but we abstract away from these phonetics

properties.

An important aspect of stress patterning is syllable weight. This is a

language-specific categorization of syllables into different classes, generally

based on characteristics such as vowel quality or quantity, or the presence

or absence of a coda. The languages studied here consist of those in

the StressTyp2 database1 compiled by Goedemans et al. (2015) that have

associated finite-state acceptors and prose descriptions; of these languages,

none distinguish more than five weights. In this chapter, no example will

use more than two: light and heavy.

These features combine to form a (finite) inventory of syllable types.

Syllables are either light or heavy, and they either have zero stress, sec-

ondary stress, or primary stress. This can be formalized with the following

model-theoretic structure, which also include word boundaries.

R = {light, heavy, primary, secondary, none,o,n, /, <} (16.1)

I include both the successor and precedence relations in order to consider

factors using either order relation.

1Available at http://st2.ullet.net/.

September 23, 2024 © Jeffrey Heinz

http://st2.ullet.net/

D
R
A
F
T

16.1. THE PHONOTACTICS OF STRESS 251

Table 16.1 presents notation that will be used to indicate factors of

R-structures of size 1. For example, the symbol L denotes a single domain
element satisfying the atomic formulas light and none, symbol ˈH denotes
a single domain element satisfying the atomic formulas primary and heavy,
symbol ×L denotes a single domain element satisfying the atomic formula

light, symbol ˌσ denotes a single domain element satisfying the atomic for-
mula secondary, and symbol ×σ denotes any single non-boundary domain
element. I will also use the symbols o and n to denote domain elements
representing word boundaries.

syllable stress

weight none secondary primary unspecified

light L ˌL ˈL ×L

heavy H ˌH ˈH ×H

unspecified σ ˌσ ˈσ ×σ

Table 16.1: Notation for factors of R-structures of size 1.

To refer to factors larger than size 1, I use the following notation for

the order relations. Two factors x, y of size 1 related by the successor
relation will be expressed with concatenation as xy, and two elements
related by the precedence relation will be expressed with “. .” as x . . y.
Figure 16.1 illustrates two factors of size 2 and the notation used for them.

In Figure 16.1, the factor ×L×L picks out structures with two adjacent light

syllables, irrespective of their stress levels. The factor ˌσ . . ˌσ picks out
structures with two primary stressed syllables, irrespective of their syllable

weight.

1 2×L×L =

light light

/
1 2ˌσ . . ˌσ =

primary primary

<

Figure 16.1: Example factors of size 2.

With this notation in place, it is straightforward to use a propositional

logic over factors of R-structures as described in Chapter 5. In fact one of
the primary conclusions of this chapter is that virtually all nonlexical stress

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

252 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

patterns in the world’s languages can be expressed with a propositional

logic over factors of R-structures. Indeed, with few exceptions most of
them belong to a restricted propositional logic such as the conjunction of

negative literals.

This text adopts a Socratic approach to describing stress patterns. As

such, individual stress patterns will be described multiple ways throughout,

and descriptions will be modified as important considerations are intro-

duced. The final complete version of each stress pattern will be indicated

with a star: F.

16.2 Multifaceted Descriptive Methodology

An initial description of a pattern need not be the simplest possible, only

accurate. A simpler equivalent description can be constructed later. For a

concrete example, let us consider the stress pattern of Khmer (Cambodian)

as described in StressTyp2:

1. (a) In words of all sizes, primary stress falls on the final syllable.

(b) In words of all sizes, secondary stress falls on all heavy syllables.

(c) Light syllables occur only immediately following heavy syllables.

(d) Light monosyllables do not occur.

The constraints described by (1a) and (1d) are trivial to write with

propositional logic: ˈσn and ¬o×Ln, respectively. For (1b) one must ask
what this truly means. If the final syllable of a word is heavy, does it bear

primary or secondary stress? As evidenced by words such as [âɗɑŋˈhaəm]
(“breath”) a final heavy syllable bears primary stress. In other words,

constraint (1b) states a restriction on the alphabet, where heavy syllables

are never unstressed and light syllables never have secondary stress: ¬H ∧
¬ˌL. Finally, (1c) splits into two constraints: ¬o×L∧¬×L×L. Then it seems

that a reasonable description of this stress pattern is given by the following

locally testable expression shown in Equation 16.2.

ˈσn ∧ ¬o×Ln ∧ ¬H ∧ ¬ˌL ∧ ¬o×L ∧ ¬×L×L. (16.2)

This expression can be converted to a finite-state automaton. I used the

Language Toolkit software and its associated program plebby (Lambert,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.2. MULTIFACETED DESCRIPTIVE METHODOLOGY 253

1 2

3 4

ˌH

ˈH

L

ˌH

ˈH
ˈLL

ˌH

ˈH

ˈL

ˌH

ˈH

Figure 16.2: An initial attempt to describe the stress pattern of Khmer.

1

2

3

ˌH

ˈH
L

ˌH

ˈσ

Figure 16.3: The stress pattern of Khmer as described in StressTyp2.

2024).2 The result is shown in Figure 16.2. I compared this automaton

against the one provided in the StressTyp2 database to verify that they are

isomorphic. But they are not! The true description is shown in Figure 16.3.

What happened?

16.2.1 Universal Constraints

Some constraints are so widespread that one may not even think to mention

them. The automaton of Figure 16.2 generates every word that the correct

pattern does, but it also includes several illicit words such as those of the

form ˌHˈHˈH. One commonly proposed universal constraint is that each

word contains one and only one syllable with primary stress (Hyman, 2009).

Hyman further suggests that this be split into two constraints: obligatori-

ness, requiring each word to contain some syllable with primary stress, and

culminativity, prohibiting multiple such syllables. Obligatoriness is cov-

ered by (1a), but culminativity must be added to the description: ¬ˈσ . . ˈσ.

2Available at https://hackage.haskell.org/package/language-toolkit.

September 23, 2024 © Jeffrey Heinz

https://hackage.haskell.org/package/language-toolkit

D
R
A
F
T

254 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

Equation 16.3 shows the updated description.

ˈσn ∧ ¬o×Ln ∧ ¬H ∧ ¬ˌL ∧ ¬o×L ∧ ¬×L×L ∧ ¬ˈσ . . ˈσ. (16.3)

When the logical expression in Equation 16.3 is converted to an automaton,

we obtain the expected result, shown in Figure 16.3.

An important lesson in this exercise is that a complete formal description

of a pattern must account for not only those constraints that differentiate it

from others, but also the atmosphere of putative universals in which it sits.

16.2.2 Identifying Differences with Differences

The previous discussion focused on descriptions that are incomplete due to

the existence of unstated, implied constraints, but this is not the only pos-

sible source of incompleteness. There are two ways in which a description

of a formal language can fail to capture the truth: it might forbid words

that are in fact allowed, or it might allow words that are in fact forbidden.

Both may even be true at the same time.

The following discussion assumes that both the set to be described, L,
and its proposed description, G, are regular, so that equality is decidable
and the Boolean operations are computable. Any descriptionGwith respect
to L can be written as G ≡ (L ∪ A)−B, where A ⊆ {L is the set of words
improperly allowed, and B ⊆ L is the set of improperly forbidden words.
Figure 16.4 illustrates. Ideally A and B are both empty.

L

B

A

Figure 16.4: The extension of a description G (shaded) for a language L.

It follows then that L−G = B. In other words, L−G is exactly the set
of words that were forbidden that should have been allowed. If this set is

not empty, constraints should be removed from G until it is. Removal of
as few constraints as possible is preferred. In the example of Khmer given

above, no extra constraints were supplied, but one could imagine any of

a myriad of constraints accidentally being applied. Once B is empty, the
extension of G is a superset of L.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.2. MULTIFACETED DESCRIPTIVE METHODOLOGY 255

1

2

3

4

5

6

ˌH

ˈH

L

ˌH

ˈH

ˈL

ˌH

L

ˈH

ˈL

ˌH
ˈH

ˌH

L

ˈH

ˈLˌH
ˈH

Figure 16.5: Strings that witness that the original description of the stress

pattern of Khmer in Equation 16.2 was an overestimate.

On the other hand, G− L = A. In other words, G− L is exactly the set
of words that were allowed while they should have been forbidden. The

necessary constraints to complete the description are then those that forbid

these words. Interestingly, a constraint may forbid more than just elements

of A, so long as it only forbids elements of {L. Consider the case where L
is the stress pattern of Khmer and G is the initial guess for its grammar in
Equation 16.2, the version that did not account for culminativity whose

associated automaton is in Figure 16.2. The difference G− L is shown in
Figure 16.5, and it appears fairly complicated. Rather than attempting to

describe exactly these forms, the culminativity constraint brings simplicity

by overlapping with other constraints and ruling out more.

Sometimes the result of differentiating some superset of G from some
superset of L is sufficient. The downward closure (called the subsequence

closure by Rogers and Lambert 2019a) is one kind of superset that has

proven useful in separability problems (Zetzsche, 2018). The downward

closure of a stringset X, written ↓X, is the set of all strings formed by
deleting zero or more symbols from strings in X. The set formed from
↓G− ↓L (shown in Figure 16.6) is much easier to describe: it is the set of
strings that contain a syllable with primary stress followed by any other

syllable. The corresponding constraint is ¬ˈσ×σ. Conjoining this constraint
to Equation 16.2 yields the equation below.

ˈσn ∧ ¬o×Ln ∧ ¬H ∧ ¬ˌL ∧ ¬o×L ∧ ¬×L×L ∧ ¬ˈσ×σ. (16.4)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

256 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

1 2 3

L,ˌH

ˈσ X

X

Figure 16.6: A difference of downward closures, X = {L, ˈL, ˌH, ˈH}.

The automaton obtained from the logical expression in Equation 16.4

is also equivalent to the expected result shown in Figure 16.3. This form

of the expression makes no explicit mention of culminativity, but that

constraint is entailed by the ones that are present.

16.2.3 Simplifying Descriptions

At this point two different complete descriptions of the Khmer stress pattern

have been shown. Equation 16.3 uses factors with the successor relation

and one factor with the precedence relation. Equation 16.4 uses factors with

only the successor relation. Is there a way to find a simplest description?

Of course this depends on what simple means. This question has also

been studied in the context of learning well-formedness patterns, where

abductive principles are used to prefer certain descriptions over others

(Rawski, 2021). One principle is to prefer more general constraints, and to

simplify a description when a more general constraint subsumes a more

specific one.

In the two aforementioned equations, both contain redundancy that

can be eliminated: if o×L is forbidden, then of course o×Ln must also be
forbidden, so the latter constraint can be removed. This is almost a strictly

local description. The only part getting in the way of this is the required

ˈσn constraint. But requiring strings to end with a specific symbol is the
same as forbidding ending any other way:

ˈσn ≡ ¬on ∧ ¬σn ∧ ¬ˌσn (16.5)

By removing the redundancy and making this replacement, a final form

of the description emerges, both simple and complete, as shown in Equa-

tion 16.6. If desired, the constraints forbidding single symbols can also be

removed by choosing an appropriate alphabet that does not contain those

symbols.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.3. PARTIAL FACTORING OF REGULAR PATTERNS 257

F ¬on ∧ ¬σn ∧ ¬ˌσn ∧ ¬H ∧ ¬ˌL ∧ ¬o×L ∧ ¬×L×L ∧ ¬ˈσ×σ (16.6)

In general, a constraint can be excluded if it is guaranteed by the set

of remaining constraints. A mechanism capable of generating finite-state

acceptors from these expressions can systematically test for this condition

and return formulas with less redundancy. However, proposing different

constraints entirely is not always possible.

Finally, Equation 16.6 is a conjunction of negative literals, and all the

literals are factors using the successor relation. Therefore, as discussed in

Chapter 5, the stress pattern of Khmer is a strictly local pattern.

The next section details some methods for automatically extracting

constraints from a given automaton.

16.3 Partial Factoring of Regular Patterns

Some kinds of constraints can be extracted algorithmically from formal

descriptions of a pattern. While the last section developed a description

of the stress pattern of Khmer in a propositional logic beginning with a

prose description, this section will discuss some techniques for developing

a description of stress patterns in a propositional logic beginning with a

formal description in terms of a finite-state automaton. What follows is a

compressed and reordered discussion of the methods used by Rogers and

Lambert (2019a), slightly expanded with new results.

16.3.1 Strictly Piecewise Constraints: Factoring via Down-

ward Closures

Heinz (2014) draws attention to the role strictly piecewise languages can

play in describing stress patterns. The strictly piecewise stringsets are

exactly those that are closed under deletion of symbols (Rogers et al.,

2010). The downward closure of a set is then its smallest strictly piecewise

superset.

Zetzsche (2018) points out that downward closures are effectively con-

structible from several classes, including higher-order push-down automata

and recursive schemes. This section however will address only construction

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

258 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

1

2

3

4

ˈL

L
ˈHL

L
ˈH

σ

1

2

3

4

ˈL,ε

L,ε
ˈH,εL

L
ˈH,ε

σ

1

2

3

4

ˈL

L
H,ˈHL

L
H,ˈH

σ

Figure 16.7: Constructing the downward closure of the stress pattern of

Amele. At left is the stress pattern itself. In the center is the nondetermin-

istic automaton constructed for the downward closure. And at right is the

deterministic version of the same.

from finite-state acceptors representing regular stringsets. In particular,

the finite-state automaton representation of a regular language admits an

efficient construction of the downward closure, linear time in the number

of edges of the automaton: simply add an empty transition in parallel with

every existing edge. Loops from a state to itself can be ignored in this

process, as reachability via the empty string is already guaranteed in that

case. The powerset construction of Rabin and Scott (1959) is one way to

obtain determinism again if that is necessary.

Figure 16.7 demonstrates this on the stress pattern of Amele as described

in StressTyp2. This stress pattern is an example of a “leftmost heavy

otherwise leftmost” unbounded stress pattern, where stress falls on the

leftmost heavy syllable in words with heavy syllables and on the initial

syllable in words without heavy syllables.

Every subsequence that appears in ↓X also appears in X and vice-versa,
so the two sets have the same set of forbidden subsequences. However, the

downward closure is strictly piecewise. Given a representation of ↓X as a
complete, minimal, deterministic automaton whose nonaccepting sink, if

any, is labeled ⊥, a sufficient set of forbidden factors is the set of strings
that label acyclic paths from the initial state to ⊥ (Rogers and Lambert,
2019a). For the stress pattern of Amele, the resulting constraints are shown

in Equation 16.7. (As there is no secondary stress, edges labeled “H,ˈH” are

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.3. PARTIAL FACTORING OF REGULAR PATTERNS 259

1 σ

Figure 16.8: What remains once the stress pattern of Amele is subtracted

from its own downward closure.

simplified to ×H.)

¬ˌσ ∧ ¬L . . ˈL ∧ ¬L . . ×H . . ˈσ ∧ ¬ˈL . . ˈL ∧ ¬ˈL . . ×H ∧ ¬×H . . ˈσ (16.7)

Some of these can be grouped for simplicity. With no secondary stress and

with ¬L . . ˈL, ¬ˈL . . ˈL, and ¬×H . . ˈσ, the overall effect is that no syllable
precedes a stressed light syllable: ¬×σ . . ˈL. Further, because the final
conjunct (¬×H . . ˈσ) states that primary stress cannot appear after a heavy
syllable, the earlier conjunct forbidding L . .×H . . ˈσ is redundant and can be
removed. After combining the constraints on light syllables with primary

stress and filtering away the redundant constraints, the result is a smaller

description as shown in Equation 16.8.

¬ˌσ ∧ ¬×σ . . ˈL ∧ ¬ˈL . . ×H ∧ ¬×H . . ˈσ (16.8)

But this is only a description of the downward closure. Again we can

identify the differences with differences: if L is the actual stress pattern
of Amele, then ↓L − L is the set of strings that are improperly accepted
by ↓L. This difference, which can be computed, is shown in Figure 16.8.
It says that the improperly accepted strings are those which contain only

unstressed syllables. To avoid accepting these, some stress must be required,

and alongside the fact that secondary stress does not appear, the result

is obligatoriness: primary stress is required. This is the complement of a

strictly piecewise pattern: ˈσ. Adding this yields Equation 16.9.

F ˈσ ∧ ¬ˌσ ∧ ¬×σ . . ˈL ∧ ¬ˈL . . ×H ∧ ¬×H . . ˈσ (16.9)

This description is equivalent the automaton provided, as can be veri-

fied by the Language Toolkit software. It is also equivalent to the prose

description from StressTyp2: “In words of all sizes, primary stress falls on

the left-most heavy syllable, else on the initial syllable.” In this case, the

formal logical description was devised only using the description of the

finite-state automaton, without consulting the prose description.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

260 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

{1, 2, 3}

{1}

{2}

{3}

∅

L

ˌH

ˈσ

ˌH

ˈH

×L

L

ˌH

ˈσ
×σ

×σ

Figure 16.9: The powerset graph for Khmer.

16.3.2 Strictly Local Constraints: The Powerset Graph

Unlike the strictly piecewise constraints, strictly local constraints are not

derived solely from finite-state acceptors. Rather they can be derived from

the powerset graph, which is essentially the same powerset construction

as used in determinization, except that the initial state from which it

builds is the set of all states. For instance, Figure 16.9 shows the powerset

graph of Khmer. The strictly local stringsets are those for which the

powerset graph contains no cycles that include states labeled by a set

containing more than a single element (Caron, 2000). In Figure 16.9, every

cycle only encounters states which are labeled by a single element. Thus,

Khmer is strictly local, an observation made previously because its logical

description was a conjunction of negative literals where the factors were

based on the successor relation. Notice that while neither obligatoriness

nor culminativity can explicitly included in such a description (as they are

not strictly local constraints), both are guaranteed by the interactions of

the constraints that do appear.

A strictly local grammar is composed of four components: free forbid-

den factors (which cannot occur anywhere), forbidden suffixes, forbidden

prefixes, and forbidden words. How each of these can be identified from

the powerset graph is taken in turn.

Free Forbidden Factors

A sufficient set of free forbidden factors is the set of strings that label

acyclic paths from the initial state (labeled by the set of all states) to the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.3. PARTIAL FACTORING OF REGULAR PATTERNS 261

state labeled by the empty set. In general, the result will include several

redundant factors; for example in the Khmer example here, both L×L and

ˌHL×L label such paths, but if the former is forbidden then so too must be

the latter. The two nonredundant constraints are ¬L×L and ¬ˈσ×σ. The ¬H
and ¬ˌL constraints are not included simply because these syllable types
were not included in the universe of available symbols. Aside from that

detail, these represent exactly the nonanchored forbidden factors from the

final description of Khmer.

Forbidden Suffixes

The forbidden suffixes are computed in exactly the same way, except that

the paths are not to the state labeled by the empty set, but instead to states

labeled by non-empty sets that contain no accepting state. While the state

labeled by the empty set also contains no accepting state, it is redundant to

consider free forbidden factors as forbidden suffixes, so this state is omitted.

In this case, the set of accepting states is {3}, so the relevant paths are
those that end in states {1} and {2}. Exactly as expected, we find two such
paths that are not redundant: ¬Ln and ¬ˌHn. There are other paths that
produce more forbidden suffixes, such as ¬LˌHn, but they are redundant
due to containing a shorter forbidden suffix, such as ¬ˌHn in this example.

Forbidden Prefixes

The forbidden prefixes of a stringset are merely the forbidden suffixes

of its reversal. Construct the reversal of an automaton by swapping the

directionality of its edges and exchanging the sets of initial and final states.

Then, after canonicalizing the result and constructing the new powerset

graph, one can verify that ¬o×L is the only non-redundant forbidden prefix

that appears.

Forbidden Words

Unlike the other components, the forbidden words are computed from the

automaton itself. Let k be the maximum of the number of states in the
automaton, the length of the longest free forbidden factor, and one more

than the length of the longest forbidden prefix or suffix. Any word of length

at most k− 2 that is not accepted by the automaton constitutes a forbidden

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

262 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

word. These can be computed by a bounded depth- or breadth-first search

on the automaton itself. The only nonredundant constraint discovered in

this way is ¬on. And at this point, each of the constraints of Khmer has
been automatically extracted.

Extraction from non-Strictly Local Regular Languages

For a stringset that is not strictly local, all of these methods will still work

but some constraints may be missed. In fact, if a stringset is not strictly local

then there are infinitely many forbidden factors. If the powerset graphs are

first made reverse-deterministic, i.e. it is reversed, determinized, and then

reversed again, then a larger set of constraints will be collected, resulting in

a smaller, tighter superset. This reverse-determinism results in each state

being labeled not by a set of states but by a set of sets of states; any set

containing the set of all states is treated as such. From this point, extraction

proceeds as normal. If a strictly local approximation of the original is

desired, it can be constructed from the extracted grammar.

As shown with Amele in the discussion of piecewise constraints, the

difference between the overestimating approximation and the original may

be factorable. If this is the case, then a more complete factorization is

made by accounting for this difference.

16.3.3 Tier-based Strictly Local: Extending SL Results

The tier-based strictly local languages are factored in exactly the same

way as their non-tier-based counterparts, with one exception. As shown

by Lambert and Rogers (2020), the nonsalient symbols are all those that

label self-loops on every state. These symbols must be discarded prior to

factoring. See also Lambert (2023).

Many stringsets that include tier-based constraints also include others

that may interact in such a way that the relevant tier of salient symbols

is obscured. For instance, the one-stress constraint (Hyman, 2009) is

strictly local over the primary-stress tier, but if a language includes both

this constraint and a stress-alternation requirement, then all symbols are

relevant to the pattern as a whole.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.4. DISCUSSION 263

16.4 Discussion

The pattern building and factorization methods shown in this chapter have

all been implemented in an open-source tool by the present author: The

Language Toolkit (Lambert, 2024). It has three three components relevant

to the methods discussed here: a Haskell library (LTK) with which other
programs can use these tools, an interactive environment (plebby) for
constructing and comparing formal descriptions, and a batch processor for

factoring patterns (factorize).
Rogers and Lambert (2019a) factored the 106 lects in the StressTyp2

database that have finite-state acceptors associated with them with the

automatic methods described in this chapter. Of these, 81 (76.4%) were

strictly local with factor widths ranging from 2 to 6. Beyond these, 17 more

lects (for a total of 92.5%) were able to be automatically factored into a

combination of a strictly local part, a strictly piecewise part, and a part

whose complement is strictly local. The latter is often merely obligatory

stress, which can be captured with tier-based strict locality as well. Two

more were properly regular, due to a hidden alternation pattern reminiscent

of the phonological foot. And finally the six remaining subregular patterns

were determined to require constraints of the form “if x occurs, ending on y
is forbidden”. This locally testable constraint is also strictly piecewise-local.

This lends credence to the hypothesis that stress, and possibly phonotac-

tics more broadly, is contained within the (co)strict classes of the subregular

hierarchy. The only two patterns in the database that would provide coun-

terexamples to this are stress alternation patterns in which secondary stress

does not surface. This appears in descriptions of Cyrenaican Bedouin Ara-

bic and Negev Bedouin Arabic. If it could be shown that some form of

secondary stress does in fact surface (cf. Becker, 2022), then the pressure

would be off.

The only syllable type that appears in every lect is the unstressed light

syllable. When considering constraints only in their fully grounded forms

(where all sets have been multiplied out into separate constraints) there

were:

• 904 distinct free forbidden factors of width at least 2,

• 35 distinct forbidden prefixes,

• 230 distinct forbidden suffixes,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

264 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

• 44 distinct forbidden words, and

• 126 distinct forbidden subsequences.

No pattern requires a factor width of more than 6, while most require

only between 2 and 4. This is a large number of factors, but applying the

strategies of Chandlee et al. (2019) might reduce this to a more manageable

set.

A constraint is satisfied by a pattern if it is redundant given the latter.

Using this, it is possible to determine whether putative universals are

indeed universal. For instance, the one-stress constraint as separated

into obligatoriness and culminativity was tested. While culminativity was

satisfied by every lect in the database and may truly be universal, neither

Seneca nor Cayuga satisfy obligatoriness. Hyman (2009) confirms this.

This work thus demonstrates the utility of formal descriptions in classi-

fying and comparing languages and in verifying universality of constraints.

It provides both motivation and means for working with these descriptions.

16.5 Conclusion

This chapter studied the extent to which non-lexical stress patterns can

be described with propositional logics. It showed how such descriptions

can arise from careful analysis of a prose description, and by automatic

methods from a formal description, such as those provided by finite-state

automata. Along the way, I discussed general principles and methods for

choosing among possible constraints.

It is striking that with apart from a couple of examples meriting fur-

ther study, all of the patterns can be expressed with propositional logic.

Furthermore, nearly all of those can be expressed with a conjunction of

negative literals, modulo the positive literal requiring words to contain a

primary stress (obligatoriness). Altogether, this work supports the hypoth-

esis that well-formedness of phonological representations can be decided

with computations that do not rise to the level of first-order logic.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

16.5. CONCLUSION 265

Acknowledgments

This chapter is based heavily on work done with James Rogers, which

itself was built on the work of many others. The author would especially

like to extend thanks to the alumni of Earlham College who during their

time there kept the Theory Group alive, as well as to Jeff Heinz and his

students and colleagues from both the University of Delaware and Stony

Brook University.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

266 CHAPTER 16. PRIMITIVE CONSTRAINTS FOR NONLEXICAL STRESS PATTERNS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 17

A Formal Analysis of
Correspondence Theory

Amanda Payne and Mai Ha Vu

17.1 Introduction

An influential version of Optimality Theory (OT) adopts Correspondence

Theory (McCarthy and Prince, 1995), which explicitly invokes a corre-

spondence relation between the elements in an Underlying Representation

(UR) and Surface Representation (SR). This relation allows Correspondence

Theory to define a number of faithfulness constraints which help account

for a variety of segmental and prosodic phenomena. It follows that under-

standing Correspondence Theory in light of computational complexity is

important. For instance, if it is within a manageable level of computational

complexity, it would lend credence to OT being a psychologically plausible

phonological theory.

This chapter provides a computational analysis of the complexity of

Correspondence Theory. This analysis is stated in terms of Monadic Second

Order (MSO) logic and First Order (FO) logic. We assume some familiar-

ity with these logics and in particular the fact that MSO logic is strictly

more powerful than FO logic. For example, it is known that MSO logic

over a vocabulary for strings with the precedence relation defines exactly

the regular stringsets (Büchi, 1960), which are the same as the stringsets

recognizable by a finite-state automaton (FSA). On the other hand, as dis-

267

D
R
A
F
T

268 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

cussed in Chapter 2, FO logic over the same vocabulary defines exactly the

star-free stringsets (McNaughton and Papert, 1971). It is no accident that

the star-free formal languages are a proper subset of the regular languages;

the logic underlying the former is more powerful than the logic underlying

the latter.

We begin the analysis of Correspondence Theory with the function in

OT that generates candidates, the GEN function. We study two different

interpretations of GEN: 1) as a function that maps an arbitrary underlying

phonological form to an infinite set of UR-SR pairs, each of which stands

in a correspondence relation and 2) as a representation of this infinite set of

UR-SR pairs, each of which is in a correspondence relation, obtained from

a given UR.

We first find that the GEN function is not MSO-definable. One inter-

pretation of this result is that Correspondence Theory is more powerful

than the rest of phonological theory, since phonological constraints and

maps have been argued to be within the regular region (Kaplan and Kay,

1994) and MSO-definability is associated with this region. This is in line

with previous studies that have shown that OT at its full capacity is not

finite-state, and therefore it is not regular (Frank and Satta, 1998). Second,

we show that the formal language consisting of the UR-SR Correspondence-

theoretic candidates for a given underlying representation is FO-definable.

In other words, we can characterize the output by GEN for a given UR with

FO logic. This result is quite distinct from the first one, and highlights the

importance of careful interpretation of complexity results.

Finally, we present evidence from case studies that the optimal can-

didate from a given UR can be determined with FO-definable, language-

specific, inviolable constraints, without recourse to optimization. Moreover,

these case studies tentatively suggest that even weaker logics may be suf-

ficient here, which is inline with the research program that argues that

phonological patterns are subregular (Chandlee, 2014; Lai, 2015; Jardine,

2016; Payne, 2017; Luo, 2017; Heinz, 2018; Strother-Garcia, 2018a, 2019;

Dolatian, 2020a; Rawski, 2021; Lambert, 2022).

One way to interpret this result is that reliance on language-specific,

inviolable constraints obviates the need for optimization without increasing

computational complexity. However, we acknowledge that validity of this

interpretation only extends insofar as the case studies are representative of

phonological phenomena generally.

In sum, our work shows that the representations promoted in Correspon-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.2. BACKGROUND TO OPTIMALITY THEORY 269

dence Theory–that elements in the UR correspond to elements in the SR–are

fairly restrictive computationally, but that generating the set of candidates

for an arbitrary UR is not. On the other hand, a description of the output

of the GEN function for a given UR is something that can be described with

first-order logic. Moreover, we show that it is possible to pick the correct

SR for a given UR simply using language-specific, inviolable constraints

instead of the violable, ranked constraints used in OT.

Our approach is similar in spirit to Potts and Pullum (2002), which uses

logic to formalize constraints. The major difference is that our third result

suggests the complexity stays low even with language-specific, inviolable

constraints, cf. Scobbie et al. (1996); Jardine (2017) and Chapters 15

and 16, this volume. In this regard, our analysis suggests that there is merit

to the representations invoked in Correspondence Theory beyond the role

they play in Optimality Theory.

The remainder of this chapter is organized as follows. §17.3 presents

the first two results, that traditional Correspondence Theory’s GEN function

is not MSO-definable but that the input-output candidates from a given

input are MSO-definable, and in fact, FO-definable. In §17.4 we provide

an FO-definable schema for phonological correspondences and illustrate it

with some case studies meant to showcase its flexibility. §17.5 concludes

with some additional discussion.

17.2 Background to Optimality Theory

Phonological theories seek to study the nature of URs, their corresponding

SRs, and the process that ‘transforms’ URs into their corresponding SRs. This

chapter focuses on the Correspondence-theoretic version of OT (McCarthy

and Prince, 1995). The transformational component of a phonological

grammar in OT is formalized with two components, GEN and EVAL. GEN is

the function that generates all possible UR-SR candidates for any given UR,

where elements of the UR and SR are in correspondence relations to each

other, and EVAL is the function that chooses the correct UR-SR candidate

via optimization.

We illustrate them with a simple phonological example, final devoicing,

which specifies that final stops must be voiceless. This means that for an

arbitrary UR, such as /kad/, the correct SR should be [kat]. Applying

GEN to /kad/, GEN(/kad/) would generate a set of UR-SR candidates,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

270 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

such as (/kad/, [kat], R) or (/kad/, [kad], R), where R represents the
correspondence relations between the UR /kad/ and the SRs [kat] or [kad].

We will come back to a more formal definition of GEN in the next section.

EVAL then takes the set of candidates generated by GEN, and selects the

optimal UR-SR candidate based on the grammar, which is a series of ranked

constraints. The general idea is that the optimal candidate is the one that

violates the highest ranked constraints the least.

For languages with word-final devoicing, the relevant constraints are

Ident[voice], which stipulates that every SR segment has to be identical

in voicing to its corresponding UR segment, and *[−sonorant,+voice]]wd,

which is violated whenever there is a voiced obstruent in word-final

position. For EVAL to pick the correct SR in a language with a word-

final devoicing rule, *[−sonorant,+voice]]]wd must be ranked higher than

Ident[voice] as shown in Table 17.1. A complete analysis of course re-

*[−sonorant,+voice]]wd Ident[voice]

a. /kad/,[kad] ∗
b. + /kad/,[kat] ∗

Table 17.1: OT tableau for word-final devoicing given the UR /kad/,

*[−sonorant,+voice]]wd must outrank Ident.

quires discussion of additional candidates and constraints (see Chapter 1.3).

For example, GEN also generates a candidate (/kad/, [kan], R), which
violates Ident[nasal], the constraint that stipulates that every SR segment

has to be identical in nasality to its corresponding UR segment. In this

analysis, Ident[nasal] outranks Ident[voice].

In the next section we formalize GEN as a function based on McCarthy

and Prince (1995), provide an alternative way to interpret GEN, and then

analyze both interpretations in terms of their computational and logical

complexity.

17.3 Correspondence Theory

McCarthy and Prince (1995) characterize GEN as a function which maps

an underlying form A to a set of ordered triples. Each triple is a candidate.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.3. CORRESPONDENCE THEORY 271

The first element of the triple is the underlying form as a string. The

second element is the surface form as a string. The third element is the

correspondence relation which relates elements in the underlying string to

elements in the surface string. An example is given in 17.1.

Gen(/abc/) →{(/abc/, [abc],R1),

(/abc/, [abcd],R2),

(/abc/, [abcd],R3), . . .}
(17.1)

Mathematically, each R is a subset of N ×M where N = {1, 2, . . . n}
with n the length of the UR and M = {1, 2, . . .m} with m the length of the
SR. In classic Optimality Theory, the set of candidates is infinite in size

because there is no upper bound on the length of the output string. Of

course, candidates whose output strings have many epenthesized segments

are typically harmonically bounded and would not be selected as the

optimal candidate.

17.3.1 Representing Candidates

We model candidates with relational structures (Chapter 2). This approach

has its roots in finite model theory (Enderton, 2001; Hedman, 2004; Cour-

celle and Engelfriet, 2012). We call these relational structures correspon-

dence structures.

To model Correspondence Theory, we only need unary and binary

relations in the signature of the model. These correspondence structures

extend the relational structures for words, so we begin with those.

As discussed in Chapter 2, there are multiple models for words. Two

important choices are the order relation, and whether the unary relations

designate individual segments or properties of those segments. In this

chapter we use the precedence relation (<) for order, and observe that
the successor relation is FO-definable from precedence as shown in Equa-

tion 17.2.

(x C y) = x < y ∧ ¬(∃z)[x < z ∧ z < y] (17.2)

Regarding the unary relations which indicate the make-up of a phonological

segment, one possibility is to have a unary relation for each symbol in the

string. Thus, if a is a symbol in a string, there would be a unary relation a
and elements in the domain could stand in this relation to indicate they

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

272 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

represent such symbols. Another, more phonologically motivated approach

is to let the unary relations stand for phonological features. In this approach,

the unary relations indicate phonetic properties such as voicing, place and

manner. In this chapter, we generally adopt the feature-based approach.

In our examples we use the basic phonetic properties, as was the case in

Chapter 2 (2.5) with the same caveat that we are not expressing a belief

that this is the ‘right’ system of features. It is merely convenient for us to

explain our main points which do not depend on the specifics of the feature

system. While we adopt the unary relations as features, we also avail

ourselves of segments as needed (for example in diagrams). The primary

reason for this is convenience, but it is also worth reminding readers that

predicates for features are FO-definable from segments and that predicates

for segments are FO-definable from features as discussed in Chapter 2.

To model correspondence structures, we need only add two more unary

relations and one more binary relation. These unary relations indicate

whether the node belongs to the underlying string (u) or the surface string
(s). The binary indicates whether two domain elements stand in the corre-
spondence relation (c).
Relational structures can be displayed visually as graphs where the

domain elements are nodes of the graph. In a departure from the way these

diagrams are displayed in other chapters, the unary relations denoting the

properties of each domain element are expressed as labels of the nodes

themselves. In particular, we label nodes with symbols denoting phonolog-

ical segments which carry a u or s subscript denoting whether it belongs
to the UR or SR, respectively. The indices for the domain elements are

displayed adjacent to the nodes. Binary relations between elements in the

structure are drawn as edges connecting nodes, and these edges are labeled

to indicate which relation it represents.

We illustrate relational structures with three UR-SR candidates in Fig-

ures 17.1-17.3 below. The candidate in Figure 17.1 violates Max (every

UR segment has to have a corresponding SR segment). The candidate in

Figure 17.2 violates Integrity (each SR segment must correspond to at

most one UR segment), Uniformity (each SR segment must correspond

to at most one UR segment), and Ident. The candidate in Figure 17.3

violates Dep (every SR segment has to have a corresponding UR segment),

and Ident.

Note that in the interest of readability, instead of precedence, we use

the edges in the graphs to show the successor relation.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.3. CORRESPONDENCE THEORY 273

au
1

bu
2

cu
3

as
4

bs
5

/ /

/

c c

Figure 17.1: A candidate that violates the Max constraint, as the segment

‘c’ in the UR has no correspondent in the SR.

au
1

bu
2

cu
3

as
4

bs
5

cs
6

/ /

/ /

c ccc

Figure 17.2: A candidate that violates the Integrity and Uniformity

constraints, as the ‘b’ segment in the UR corresponds to two segments in

the SR, and the ‘c’ segment in the SR corresponds to two segments in the

UR.

17.3.2 The GEN function

The GEN function is not MSO-definable. The core reason is stated in

Courcelle and Engelfriet (2012) as Fact 1.37, where U is an arbitrary
input string and S is a set of candidates: “For every monadic second-order
transduction f there exists an integer k such that, if f transforms a relational
structure U into a relational structure S, then |S| ≤ k · |U |.”
In other words, the size of the relational structure must be bounded

by some integer k × n, where n is the size of the input and k is fixed in
advance. Here we do not explicitly provide a relational structure for a set

of candidates, but we do not need to. Since there is no upper bound on

the length of the surface string in a candidate, there will always be some

candidate larger than k × n and hence any set containing it will also be
too large. Consequently, the output of GEN must be finite in size for it to

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

274 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

au
1

bu
2

as
3

bs
4

cs
5

/

/ /

c c

Figure 17.3: A candidate that violates the Dep and Ident constraints, as

the ‘b’ segment in the SR does not have a corresponding segment in the UR,

and the ‘b’ segment in the UR corresponds to a segment in the UR which is

not ‘b.’

be an MSO definable function. But since the set of candidates output by

GEN in classic OT is generally assumed to be infinite in size, it cannot be

described with any MSO-definable function.

To illustrate, consider that segments in the UR can have zero, one, or

multiple corresponding segments in the SR, and these segments may or

may not be identical. Without constraints on GEN, there is no bound on

the size of the SR. Some example candidates are shown in Equation 17.3.

/a1b2c3/ → a1b2
/a1b2c3/ → a1b2axc3
/a1b2c3/ → d1b2c3
/a1b2c3/ → a1b2c3cxcxcx

(17.3)

The subscript x indicates that there is no correspondent in the input. This
lack of correspondence could happen for any number of segments, though

with increasing numbers of new segments the form may be quite phonolog-

ically unnatural. Such candidates, like a1b2c3cxcxcx, will typically violate

too many faithfulness constraints to ever surface. Nevertheless, because

GEN generates all candidates, its output ends up being a single set of an

unbounded number of candidates; this makes its output arbitrarily large.

What does this result mean for phonological theory? There are four

possibilities.

The first approach is to conceive of GEN not as a function from un-

derlying strings to candidates, but instead as a function from underlying

strings to contenders. The contenders are the non-harmonically bounded

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.3. CORRESPONDENCE THEORY 275

candidates. Riggle (2004) shows that the contenders typically form a finite

set. So, it may be the case that GEN as a function from underlying strings

to contenders is MSO-definable.

The second approach is to take this result as a reason to reject classic

OT, in favor of an alternative theory like Harmonic Serialism (McCarthy,

2008b) where GEN is a function which maps an underlying string w to a set
of candidates, each of which differs at most minimally from w. Restricting
GEN in this way might also make it an MSO-definable function. Hao (2019)

and Lamont’s (2022a) computational analyses of harmonic serialism may

shed some light into this question.

The third is that instead of analyzing GEN as a function, we should

analyze it as a relation. Although GEN is not a MSO-definable function, it

may be a MSO-definable relation. One way to approach this from a model

theoretic perspective may be with infinite structures (Benedikt et al., 2001).

Finally, the fourth is to characterize the infinite set of candidates that is

output by a GEN relation. This is the approach we take in the next section,

and show that this set is FO-definable.

To summarize, it is interesting to observe that GEN is not a MSO-

definable function, and there are several alternatives worth pursuing.

17.3.3 The set of candidates for a given input

In this section we show that if one fixes a particular UR string such as

/kætz/, then for this UR, one can provide finitely many sentences in FO

logic which are satisfied by all and only the possible UR-SR candidates of

that UR. Only five logical statements are needed to describe the infinite

set of possible candidates for a given UR. The logical statements, listed in

17.4-17.8, are all described with FO-logic over the relational structures

described earlier. Each statement is explained further below. We present

the statements first specifically for the UR /kætz/ and then generalize

afterwards.

Equation 17.4 says that the precedence relation can only hold between

elements on the same tier.

(∀x, y)
[
x < y → [u(x) ∧ u(y)] ∨ [s(x) ∧ s(y)]

]
(17.4)

Equation 17.5 says that correspondence only occurs between elements of

different tiers.

(∀x, y)
[
c(x, y) → (u(x) ∧ s(y))

]
(17.5)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

276 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

Equation 17.6 says domain elements are either on the UR or SR tier.

(∀x)[u(x) ∨ s(x) ∧ ¬[u(x) ∧ s(x)]] (17.6)

Equation 17.7 says that elements on the SR tier form a string.

(∀x, y)[[s(x) ∧ s(y)] → [x < y ∨ y < x]] (17.7)

The last equation says that the UR is /kætz/.

(∃w, x, y, z)[w < x ∧ w < y ∧ w < z ∧ x < y ∧ x < z ∧ y < z

∧u(w) ∧ u(x) ∧ u(y) ∧ u(z)
∧k(w) ∧ æ(x) ∧ t(y) ∧ z(z)]

(17.8)

Equation 17.4 says that precedence relationships can only be between

nodes that belong to the same ‘tier’, i.e. there cannot be precedence between

an underlying and a surface node. Conversely, correspondence edges can

only be between nodes that are on different tiers (17.5). All nodes have to

either belong to the UR or the SR, so they cannot be both or neither (17.6).

The surface tier has to form a string, where the definition of a string is a set

of nodes where the precedence relation establishes a linear order (17.7).

Lastly, we need a fixed input string and Equation 17.8 provides this. In

this example, the input string is the word /kætz/, and it is defined segment

by segment.

The graph in Figure 17.4 shows an example of an UR-SR candidate

which satisfies these five constraints. There are arbitrarily many other

UR-SR candidates that would also do, each of which would have /kætz/ as

its UR. Again, for readability, we show the graph with successor relations

instead of precedence relations. (Note that this is not the optimal candidate,

as we would expect [kæts] to surface, and not [jæz].)

In summary, every relational structure which satisfies the statements

17.4-17.8 is a valid candidate for the underlying string /kætz/.

Equations 17.4-17.7 are the same for any given UR. Only Equation 17.8

depends on the UR. Generally, for any given underlying stringw = a1a2 . . . an
the fifth statement can be written as follows.

(∃x1, x2 . . . xn)
[∧
i<j

xi < xj
∧

1≤i≤n

ai(xi)
∧

1≤i≤n

u(xi)
]

(17.9)

Equation 17.9 is an abstract template to define a specific string. In

17.9,
∧
(xi < xj)1≤i<j≤n stands for the conjunction of statements xi < xj,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.4. PHONOLOGICAL MAPS FROM FO-CONSTRAINTS OVER CORRESPONDENCE
STRUCTURES 277

ku
1

æu
2

tu
3

zu
4

js
5

æs
6

zs
7

/ / /

/ /

c c c

Figure 17.4: A candidate that satisfies all constraints in 17.4 to 17.8.

and says that every node with a lower index precedes every node with a

higher index; this guarantees that the nodes form a string shape. Similarly,∧
(ai(xi))1≤i≤n means a conjunction of n statements; for each i between 1
and n inclusive, the ith statement says xi stands in the unary relation ai;
that is every ith node is labeled ai. Finally,

∧
(u(xi))1≤i≤n means each node

stands in the unary relation which indicates it is an underlying element.

So far, this analysis has provided the language of all possible UR-SR

candidate pairs for a given UR. However, only one of the candidates is

selected whose SR is pronounced. In classic OT, the choice of winner is

done by the EVAL function, which is universal. In the next section, we

consider language-specific EVAL functions, which are defined in terms of

language-specific constraints on the well-formedness of correspondence

structures. We specifically will deal with examples for simple, common

phonological mappings.

17.4 Phonological Maps from FO-constraints

over Correspondence Structures

Here we introduce a non-optimizing way for picking the correct candidate.

We define language-specific, inviolable FO-constraints that ‘filter out’ UR-

SR candidates. In other words, instead of comparing possible candidates

to each other to find the optimal one, the candidates are simply evaluated

against a set of inviolable constraints. In the end, only the candidate which

satisfies all of these language-specific constraints is selected.

In what follows, we illustrate this approach with examples from phonol-

ogy that motivated the different faithfulness constraints in Optimality

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

278 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

Theory. In particular, we present language-specific inviolable constraints

that would give rise to processes for assimilation, epenthesis, deletion,

metathesis, fission, and coalescence.

17.4.1 Assimilation

We show how assimilation can be accounted for with the example of English

obstruent devoicing. The generalization is that voiced obstruents become

voiceless after voiceless sounds. The desired output for the input /kætz/ is

shown in Figure 17.5 – which is the same as the optimal candidate selected

by EVAL under a classic OT analysis. In order to state the constraints in

ku
1

æu
2

tu
3

zu
4

ks
5

æs
6

ts
7

ss
8

/ / /

/ / /

c c c c

Figure 17.5: The optimal UR-SR candidate for the input /kætz/.

FO-logic, we utilize two predicates: TD (x, y) (17.10) identifies a pair of
segments where a voiceless sound is followed by a voiced obstruent, and

TT (x, y) (17.11) identifies a pair of segments where a voiceless sound is
followed by a voiceless obstruent within a string.

TD (x, y)
def
= x C y ∧ voiceless(x) ∧ voiced(y) ∧ obstruent(y) (17.10)

TT (x, y)
def
= x C y∧voiceless(x)∧voiceless(y)∧obstruent(y) (17.11)

The devoicing process can be stated in part with an FO-definable con-

straint using the implication in Equation 17.12: if the underlying segment

is a voiceless sound followed by a voiceless obstruent, then they have to

be in correspondence with a voiceless segment and voiceless obstruent,

respectively.

(∀x1, y1, x2, y2)[(TD (x1, y1) ∧ u(x1) ∧ c(x1, x2)) → TT (x2, y2)] (17.12)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.4. FO-CONSTRAINTS OVER CORRESPONDENCE STRUCTURES 279

For the devoicing example in Figure 17.5, the variables in Equation 17.12

are satisfied when x1 = 3, y1 = 4, x2 = 7,and y2 = 8.
As in OT, additional constraints are needed to ensure other candidates

are disallowed. For example, equations defining constraints similar to

Uniformity (17.13), Integrity (17.14), Linearity (17.15), Max (17.16),

and Dep (17.17) are shown below.

Uniformity def
= (∀x, y, z)

[
(u(x) ∧ c(x, y) ∧ c(x, z)) → y = z

]
(17.13)

Integrity def
= (∀x, y, z)

[
(s(y) ∧ c(x, y) ∧ c(z, y)) → x = z

]
(17.14)

Linearity def
=(∀x1, x2)

[
(u(x1) ∧ u(x2) ∧ x1 < x2 ∧ c(x1, y1) ∧ c(x2, y2))

→ y1 < y2
]

(17.15)

Max def
= (∀x)(∃y)

[
u(x) → c(x, y)

]
(17.16)

Dep def
= (∀x)(∃y)

[
s(x) → c(y, x)

]
(17.17)

We additionally need constraints like Ident[F] for each feature F except

for the features voiced and voiceless. The general form of the constraint for

a feature F which is faithful everywhere is shown in 17.18.

Ident[F] def
= (∀x, y)

[
(u(x) ∧ F(x) ∧ c(x, y)) → F(y)

]
(17.18)

In the example of English obstruent devoicing, the feature coronal is faithful

everywhere. The structure in Figure 17.5 above satisfies 17.18. There are

two relevant cases: when x = 3 and y = 7 and when x = 4 and y = 8. In
both instances the y element satisfies coronal as 17.18 demands.
As for the features voiced and voiceless, they must be faithful every-

where except the devoicing environment identified above. In OT, this is

accomplished with language-specific constraint rankings, but in the declar-

ative approach here, such environments are specified in language-specific

constraints.

(∀x, y)
[(

u(x) ∧ voiced(x) ∧ c(x, y) ∧ ¬(∃z)[TD (z, x)]
)
→ voiced(y)

]
(17.19)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

280 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

The language-specific, inviolable constraint in Equation 17.19 completes

the analysis of the devoicing.

It might be possible to describe the same desired candidate as a con-

junction of banned substructures. This would be similar to Jardine’s (2017)

analysis of tonal mapping, Chapter 15’s analysis of syllable structure, and

Chapter 16’s analysis of non-lexical stress patterns. If so, it would in-

dicate that the logical power needed to state the constraints is actually

more restrictive than FO-logic. For instance, the constraint expressed by

Equation 17.20 prevents the fully faithful candidate from being selected.

¬(∃x1, x2, y1, y2)[TD (x1, y1) ∧ u(x1) ∧ c(x1, y1) ∧ TD (y1, y2)] (17.20)

This constraint can also be expressed in a propositional logic (see Chapter 5)

as a factor of a correspondence structure. Figure 17.6 shows a candidate at

left and this factor at right. The highlighted part in the candidate shows

where the constraint in Equation 17.20 is violated (or equivalently where it

matches the banned factor). Several other constraints that forbid different

ku
1

æu
2

tu
3

zu
4

ks
5

æs
6

ts
7

zs
8

/ / /

/ / /

c c c c

1 2

3 4

voiceless
voiced

obstruent

voiceless voiced
obstruent

/

c

/

c

Figure 17.6: Illustration of a banned candidate that violates constraint in

17.20. Equivalently, the candidate contains the forbidden factor shown at

right.

types of substructures would of course also be required to ensure that the

candidate in Figure 17.5 is the only one that does not contain any forbidden

substructures.

It is an open question whether assimilation and every other phono-

logical process can be approached in this way. In this chapter, we leave

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.4. FO-CONSTRAINTS OVER CORRESPONDENCE STRUCTURES 281

this question for future research and continue to express the language-

specific constraints on correspondence structures in FO logic following the

conditional-style above for the remainder of the case studies.

17.4.2 Epenthesis

One example of epenthesis is Hungarian [j]-insertion to prevent vowel

hiatus (Siptar, 2005). We identify the first vowel in the conditioning

environment for this process in Equation 17.21: it is the vowel that is

succeeded by another vowel.

VV (x)
def
= (∃y)[x / y ∧ vocalic(x) ∧ vocalic(y)] (17.21)

Then the constraint in Equation 17.22 simply states that when there is

a VV sequence in the underlying string, there must be a [j] element in

the surface string that intervenes between the correspondents of the two

underlying vowels. This is also true the other way around: if there is a [j]

on the surface without a corresponding underlying element, then it must

be the case that underlyingly, there was vowel hiatus.

j_insertion def
=(∀x)

[(
VV (x) ∧ u(x)

)
↔ (∃y, z)

[
c(x, y)

∧ y / z ∧ j(z) ∧ ¬(∃w)[c(w, z)]
]] (17.22)

The candidate with the correct SR for the UR /fiu/ is shown in Fig-

ure 17.7. Additional constraints are necessary to ensure the rest of the

fu
1

iu
2

uu
3

fs
4

is
5

js
6

us
7

/ /

/ / /

c c c

Figure 17.7: Candidate for the UR /fiu/ that satisfies the constraint in

17.22 by j-epenthesis between the vowels.

surface string is faithful. In particular, the constraints Uniformity ,

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

282 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

Integrity , Linearity , Max , and Ident[F] in Equations 17.13-17.16

and Equation 17.18 also apply. Observe that the constraint j_insertion

in Equation 17.22 replaces the constraint Dep (Equation 17.17), which
banned epenthesis. Here epenthesis is only permitted in the particular

environment specified in Equation 17.22.

17.4.3 Deletion

Tibetan consonant cluster simplification (Halle and Clements, 1983) was

studied in Chapter 11. We use it as our example deletion process. The

generalization depends on syllable structure, as consonant deletion only

applies in onset clusters. We only focus on word initial consonant clusters.

Again, we define word initial consonant clusters very similarly to vowel

hiatus in Equation 17.23. They are two successive elements that are both

consonants, which are not preceded by any other element.

#CC (x)
def
= (∃y)

[
x / y ∧ consonant(x) ∧ consonant(y)

∧ ¬(∃z)[z / x]
] (17.23)

The next constraint in Equation 17.24 is stated as a biconditional. If there

is a consonant cluster in the underlying string then there is no element in

the surface string which corresponds to the first underlying consonant. The

converse is also true: if there is an element in the underlying form that has

no correspondent in the surface, it must be the case that the underlying

element is the first consonant in the cluster.

C_deletion def
= (∀x)

[
#CC (x) ∧ u(x) ↔ ¬(∃y)[c(x, y)]

]
(17.24)

Figure 17.8 shows the correct candidate. Note that the underlying /b/

at position 4 does not satisfy the predicate #CC because it is not word-
initial. As before, the candidate with the correct surface form has to

satisfy other faithfulness constraints given by Uniformity , Integrity ,

linearity , Dep , and Ident[F] . The constraint Max (Equation 17.16),

is replaced by C_deletion (Equation 17.24), which only allows deletion
in the conditioning environment.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.4. FO-CONSTRAINTS OVER CORRESPONDENCE STRUCTURES 283

bu
1

dʒu
2

uu
3

bu
4

ʃu
5

iu
6

dʒs
7

us
8

bs
9

ʃs
10

is
11

/ / / / /

/ / / /

c c c c c

Figure 17.8: Candidate for the UR /bdʒubʃi/ that satisfies the constraint in

17.24 by deleting the first consonant in the onset consonant cluster.

17.4.4 Metathesis

An example of bounded metathesis can be found in Rotuman (Schmidt,

2003). A simplified description of the phenomenon is that in some types of

roots, word-final consonant-vowel sequences in the UR surface as vowel-

consonant sequences. For example the UR /hosa/ surfaces as [hoas] in the

language.

To describe this process, we first identify the first segment in the environ-

ment that triggers metathesis. This environment is a word-final consonant-

vowel sequence: two successive elements where the first one is a consonant

followed by a vowel, and there is no element following them, as in Equa-

tion 17.25.

CV# (x)
def
= (∃y)

[
x / y ∧ consonant(x) ∧ vowel(y) ∧ ¬(∃z)[y / z]

]
(17.25)

Then we state the constraint as follows. If there is a consonant-vowel

sequence word-finally in the UR, then in the SR the element corresponding

to the consonant succeeds the element corresponding to the vowel.

CV_metathesis def
=(∀x, y)

[
[CV# (x) ∧ u(x) ∧ xC y] →

(∃u, v)[c(x, v) ∧ c(y, u) ∧ uC v]
] (17.26)

Figure 17.9 shows the correct candidate.

As before, the other faithfulness constraints, except for Linearity ,
must also be satisfied in order to filter out the wrong candidates. They are all

important, but we note that Ident[F] , for all features F (Equation 17.18),

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

284 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

hu
1

ou
2

su
3

au
4

hs
5

os
6

as
7

ss
8

/ / /

/ / /

c c c c

Figure 17.9: The candidate for the UR /hosa/ that satisfies the constraint

in 17.26 by undergoing metathesis.

ensures that the elements corresponding to each other in the UR and

SR remain the same. In addition, Uniformity (Equation 17.13) and

Integrity (Equation 17.14) make sure that each element in the UR

corresponds to at most one other element in the SR, and vice versa.

17.4.5 Fission

Fission is a phonological process when one segment in the UR surfaces

as multiple segments in the SR. An example of fission can be found in

Tlachichilco Tepehua (Watters, 1988). In this language, underlying /p/ in

the coda position surfaces as [wk]. For example, /ʃap.ɬi/ ‘X panted (perf.)’

surfaces as [ʃawk.ɬi].

To simplify our description of this process, we will assume that the

positions in the UR are also identified with syllabic roles such as onset,

nucleus, and coda. For example, coda (x) would mean that position x
is a coda. Readers are referred to Chapter 15 and Strother-Garcia (2019)

for more details on model theoretic approaches to syllable structure and

syllabification.

First, we define the condition that triggers fission in 17.27. Simply put,

a p]coda(x) is true if position x is labeled p and is in a coda position.

p]coda (x)
def
= p (x) ∧ coda (x) (17.27)

We then state the constraint to enforce fission 17.28 as follows. If there is

a /p/ in the coda position in the UR, then it corresponds to two segments

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.4. FO-CONSTRAINTS OVER CORRESPONDENCE STRUCTURES 285

in the SR. These two segments are [w] and [k], and [w] precedes [k].

p_fission def
=(∀x)

[
[p]coda (x) ∧ u(x)] ↔ (∃y, z)[c(x, y)

∧ c(x, z) ∧ y C z ∧ w(y) ∧ k(z)]
] (17.28)

Figure 17.10 shows the correct candidate. We indicated whether a seg-

ment is an onset, nucleus, or coda in the superscript. As with the previous

ʃos
6

ans
7

wcs
8

kcs
9

ɬos
10

ins
11

ʃou
1

anu
2

pcu
3

ɬou
4

inu
5

/ / / /

/ / / / /

c c c c c c

Figure 17.10: The candidate for UR /ʃapɬi/ that satisfies the constraint in

17.28, by fissioning coda /p/ in the UR into [wk] in the SR.

examples, the faithfulness constraints stated in Ident[F] , Integrity ,

Linearity , Max , and Dep also must be satisfied to rule out incorrect
candidates.

The constraint Uniformity will not be satisfied in general. However,
it must be satisfied everywhere except when there is a coda /p/. In that

case, p_fission must be satisfied instead. Abstractly, this situation can
be expressed in propositional logic as follows: P → Q ∧negP → R. In
other words, if P is true then Q must be true and if P is not true then R
must be true. This idea can be expressed in first-order logic as shown in

Equation 17.29.

(∀x)[
(

p]coda (x) → p_fission
)
∧
(
¬ p]coda (x) → Uniformity(x)

)
(17.29)

The predicate Uniformity(x) is the same as Uniformity except that
the x argument has already been saturated. For concreteness, it is shown
below.

Uniformity(x) def
= (∀y, z)

[
(u(x) ∧ c(x, y) ∧ c(x, z)) → y = z

]
(17.30)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

286 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

17.4.6 Coalescence

Coalescence is the process where two segments in the UR surface as one

segment in the SR. One example of coalescence is found in Indonesian

(Lapoliwa, 1981). When the prefix /məŋ-/ is attached to a root that begins

with a voiceless stop, the nasal at the end of the prefix coalesces with the

voiceless stop. The resulting segment on the surface is a nasal with the

place of articulation of the stop (6).

(6) a. /məŋpak/→ [məmak] ‘to pack’
b. /məŋtik/→ [mənik] ‘to type’
c. /məŋkasih/→ [məŋasih] ‘to give’

We first define the conditioning environment for coalescence as a nasal

followed by a voiceless stop, shown in Equation 17.31.

NT (x)
def
= (∃y)[xC y ∧ nasal(x)∧ voiceless(y)∧ obstruent(y)] (17.31)

The constraints which enforce coalescence are shown in Equations 17.32

through 17.34. If there is a nasal followed by a voiceless obstruent in the

UR, then both correspond to one segment in the SR, and this segment is a

nasal and matches the place of articulation of the stop that it corresponds

to. Conversely, if there is a segment in the SR that has two correspondents

in the UR, it must be because the condition stated in 17.31 holds in the

UR. The three statements in 17.32-17.34 only differ regarding the place of

articulation of the stop in the UR.1

N_lab_coalescence def
= (∀x, y)

[(
NT (x) ∧ xC y ∧ u(x) ∧ labial(y)

)
↔

(∃z)[c(x, z) ∧ c(y, z) ∧ nasal(z) ∧ labial(z)]
]

(17.32)

N_alv_coalescence def
= (∀x, y)

[(
NT (x) ∧ xC y ∧ u(x) ∧ alveolar(y)

)
↔

(∃z)[c(x, z) ∧ c(y, z) ∧ nasal(z) ∧ alveolar(z)]
]

(17.33)

1It may be possible to combine and simplify these statements with a model-theoretic
approach to features that includes functions, and not only relations, in the signature.
In that case, one could write place(x) = place(y) to indicate that the place values of
positions x and y must be the same. See Chapter 22 and Chandlee and Jardine (2021) for
examples of model-theoretic representations with functions in their signature.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.5. CONCLUSION 287

N_dor_coalescence def
= (∀x, y)

[(
NT (x) ∧ xC y ∧ u(x) ∧ dorsal(y)

)
↔

(∃z)[c(x, z) ∧ c(y, z) ∧ nasal(z) ∧ dorsal(z)]
]

(17.34)

Figure 17.11 illustrates the correct candidate for the UR /məŋpak/.

mu

1

əu
2

ŋu
3

pu
4

au
5

ku
6

ms

7

əs
8

ms

9

as
10

ks
11

/ / / / /

/ / / /

c c c c c c

Figure 17.11: The candidate for the UR /məŋpak/ which coalesces /ŋ/ and

/p/ to a [m] in the SR. It satisfies the constraints in 17.32-17.34.

The correct candidate must also satisfy the faithfulness constraints

stated in Ident , Uniformity , Linearity , Max , and Dep . The

constraint Integrity must be satisfied for all positions x except when

NT (x) ∧ u(x) is true. In that case, the constraints N_lab_coalescence ,

N_alv_coalescence , and N_dor_coalescence must be satisfied instead.
The reader is invited to write out the logical formulas expressing this,

following the fission example above.

17.5 Conclusion

This chapter has provided an analysis of the role of GEN, EVAL, and

Correspondence Theory in OT and phonological theory more generally.

The core of the analysis depends on correspondence structures, which find

new expression as relational structures in model-theoretic terms.

Like autosegmental representations (Chapter 12) and syllable structure

(Chapter 15), correspondence structures are multilinear structures. That

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

288 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

is, they contain multiple levels, each level is a sequence, and there are

relations between each level. While the similarities in the first-order logical

expressions defining these different structures should not be overlooked, it

is not the case that they are all the same. For example, tonal association

and syllable dominance do not violate the no-crossing constraint. But

correspondence structures may violate it as seen in the metathesis example

above.

With correspondence structures in hand, it was shown that the GEN

function is not MSO-definable. This result means that researchers in OT

should study the MSO-definability of GEN as a relation, GEN as a function

which maps underlying strings to contenders, or GEN as it is conceived in

Harmonic Serialism.

Two other important facts were shown. First, the infinite set of can-

didates for a given UR is MSO-definable as a language, and in fact is

FO-definable. Second, we showed that common processes in phonology

can be understood as satisfying language-specific, FO logical constraints

over correspondence structures. These analyses do not rely on optimization.

They are declarative in the sense that every constraint is inviolable. For

example, in a language where the SRs are always fully faithful to the URs,

the standard faithfulness constraints in Correspondence Theory would all

have to be satisfied. In a language that is not always fully faithful to URs,

one or more than one of them, will be replaced by constraints that carve

out exceptions to them.

In the OT literature, such constraints bear a strong resemblance to

two-level constraints (Kager, 1999, pp.378-381). These were rejected in

OT for several theoretical reasons: they are too stipulative, they inappro-

priately mingle marked structures and repairs, and they are insufficiently

phonetically grounded. Nonetheless, it is the case, at least for the sim-

ple, common examples studied here, that the right candidate for a given

UR can be determined through the satisfaction of statements of FO logic

over correspondence structures. Some of these FO statements can be

thought of as generating possible candidates (Equations 17.4-17.9) and the

faithfulness constraints can be thought of as filtering out the wrong ones

(Equations 17.13-17.18). If this result extends to more complex phonolo-

gies, then the fact of FO-satisfiability of candidate selection for a given

UR is not something that cannot be accounted for by Optimality Theory.

This is because global optimization is known to be more powerful than

first-order logic (Frank and Satta, 1998; Riggle, 2004; Gerdemann and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

17.5. CONCLUSION 289

Hulden, 2012; Heinz and Lai, 2013; Chandlee et al., 2018; Lamont, 2021,

2022b; Hao, 2024). While the constraints are language-specific, this issue

is less important if the language-specific constraints can be learned, and

there is promising work in this direction (Strother-Garcia et al., 2017; Vu

et al., 2018; Chandlee et al., 2019; Lambert et al., 2021; Rawski, 2021;

Payne, 2024). Furthermore, the complete independence of repairs from

marked structures is not without issues (Blumenfeld, 2006). As for phonetic

groundedness, some cases may be captured with the right representations

(see Chapters 18 and 19). In sum, we conclude it is premature to reject con-

straints over correspondence structures of the sort that we have investigated

here.

Our analysis is not comprehensive in the sense that there are many

unanswered questions worth pursuing. First and foremost, the examples we

considered were simple, and it would be valuable to investigate more com-

plex processes. Future work could also examine long-distance phonological

processes such as dissimilation, vowel harmony, and consonantal harmony.

Finally, it is also of interest to know the extent to which phonological maps

can be expressed with more restrictive logics (such as the conjunction of

forbidden substructures) using the correspondence structures discussed

here.

Overall this work indicates that Correspondence Theory may have a

substantial role to play in phonological theory beyond the framework of

Optimality Theory.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

290 CHAPTER 17. A FORMAL ANALYSIS OF CORRESPONDENCE THEORY

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 18

Phonetically Grounded
Phonological Representations

Curt Sebastian

18.1 Introduction

The aim of this chapter is to create a means by which phonetic information

– mainly in the form of implicational hierarchies – may be incorporated into

the phonological component as a set of surface restrictions characterized

by logical formulas over phonological representations. The investigation

is motivated by the work presented in several chapters of Phonetically

Based Phonology (Hayes et al., 2004), which proceeds from the view that

“phonological constraints can be rooted in phonetic knowledge (Kingston and

Diehl 1994), the speakers’ partial understanding of the conditions under

which speech is produced and perceived” (emphasis in original, p. 1). The

book argues that Optimality Theory is ideally suited to incorporate the

phonetically based markedness. In Hayes et al. (2004), each contributor

provides an in-depth analysis of one or more phonetic properties, and the

way it putitatively manifests in cross-linguistically. The products of these

investigations often describes how the specific phonetic parameters can be

interpreted as a set of markedness constraints that, when combined with

the appropriate faithfulness constraints give rise to factorial typologies that

are argued to match known cross-linguistic variation.

This chapter argues that the same insights that phonetic-based marked-

291

D
R
A
F
T

292 CHAPTER 18. PHONETICALLY GROUNDED PHONOLOGICAL REPRESENTATIONS

ness bring to Optimality Theory can also be expressed as language-specific,

inviolable constraints over phonetically-grounded representations, and that

such grammars also account for the observed typological variation. It

follows that it may not be necessary for practitioners of phonetically-based

phonology to conduct their analyses within the framework of Optimality

Theory or its variants. Instead they may consider an alternative analysis,

along the lines of what is proposed here.

The analysis in this chapter focuses on the implicational hierarchy

created by Hayes and Steriade (2004) to represent voicing difficulty in

obstruents. Voicing difficulty is a characterization of the degree of physical

difficulty in reconciling the various articulatory gestures and strategies em-

ployed to produce the ‘active oral tract expansion…necessary to maintain

airflow in an obstruent’ (Hayes and Steriade, 2004, p. 8). The phonetic

explanation is very involved, but for the purposes of this chapter, it will

suffice to say that while ‘voicing difficulty’ is the result of the interaction

of numerous phonetic variables. Hayes and Steriade reduce the process to

the intersection of two parameters: duration of the oral closure, and the

size of the oral cavity during closure (as a result of place of articulation).

From these parameters, they generate the following implicational hierarchy

to represent the phonetic difficulty of maintaining voicing in obstruents

shown below.

(7) Hierarchy of phonetic difficulty for obstruent voicing from least

difficult [b] to most difficult [gː].

b < d < g < bː < dː < gː

From this hierarchy, Hayes and Steriade derive a fixed ranking of

markedness constraints shown below.

(8) Fixed ranking of markedness constraints derived from (7).

*gː � *dː � *bː � *g � *d � *b

When the faithfulness constraint Ident(voice) is added to this constraint

set, the resulting factorial typology exhibits an implicational hierarchy.

The existence of any one of the six obstruents under discussion implies the

existence of the obstruents which are less difficult (so members to its left

in (7)). For example, if a language contains [bː] then the singletons [g d b]

will also be present in the language, but not necessarily the geminates

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

18.2. INCORPORATING PHONETIC FACT INTO LOGICAL FORMALISM 293

[dː gː]. This is because if [bː] surfaces in the language, Ident(voice) must

be ranked above the markedness constraint *bː. Since the ranking in (8)
is fixed for all languages, Ident(voice) will also be ranked above the

constraints *gː, *dː, and *bː.

More generally, the ranking of Ident(voice) with respect to the fixed

ranking in (8) divides the scale of voiced obstruents into two groups. Letting

x be a variable over the voiced obstruents, it follows that if *x is ranked
below Ident(voice) then [x] will surface in the language, but if *x is
ranked above Ident(voice) then [x] will not surface in the language.

Consequently, their analysis predicts that there will be languages whose

set of voiced obstruents are exactly one of: [] (no voiced obstruents), [b],

[b d], [b d g], [b d g bː], [b d g bː dː], and [b d g bː dː gː], depending on

precisely where Ident(voice) is ranked with respect to the markedness

constraints. Hayes and Steriade report languages which exhibit each of

these sets of voiced obstruents.

In this chapter, I show that the same typological variation follows from

the same phonetic insights using a grammar of inviolable constraints. In

particular, the grammar is comprised of a set of forbidden factors, where

the factors are model-theoretic structures which encode representations of

phonetic difficulty directly. In the parlance of Chapter 5, this means that

the grammars are a restricted form of propositional logic; specifically, they

are conjunctions of negative literals. In fact, in order to account for the

typological variation above, it is sufficient that the grammars contain only

a single factor.

18.2 Incorporating Phonetic Fact into Logical

Formalism

Hayes and Steriade (2004, p. 7) provide a schema, that is a series of steps,

that lead from phonetic facts to cross-linguistic variation in sound patterns,

which is reproduced below.

(9) a. Facts of phonetic difficulty

b. Speaker’s implicit knowledge of the facts in (a)

c. Grammatical constraints induced from the knowledge in (b)

d. Sound patterns reflecting the activity of the constraints in (c)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

294 CHAPTER 18. PHONETICALLY GROUNDED PHONOLOGICAL REPRESENTATIONS

For them, the term ‘constraints’ here ultimately means OT constraints,

which are ranked and violable. However, I maintain that OT constraints

are not an essential component for the steps outlined above. The paradigm

created by the four statements above does not change under the general

interpretation of constraint as some kind of grammatical restriction. In

other words, the schema they envision is available to any theoretical

approach provided it is clear how the grammars in (c) are derived from

(b), and how a theory of such grammars generates a typology (d).

There is a challenge inherent in incorporating the information provided

by implicational hierarchies into phonology using the logic and model

theory. Hierarchies like the voicing scale do not make statements about

individual segments; they use scales of individual segments to make state-

ments about cross-linguistic generalizations, and, in this way, about the

alphabets of individual languages. The method by which an individual

segment in a string may be assessed by a phonetically-based markedness

hierarchy using model theory and logic is not intuitively obvious. For

instance, the voicing difficulty scale above relates the claim that if the

geminate [bː] occurs in a language then singletons [b d g] should also occur.

How would a logical formalism capture and implement such a hierarchy

in the form of constraints on representations, using only abstract implica-

tional data? And how would a logical formalism capture and implement

a constraint on the instantiation of a particular voiced obstruent itself,

without accessing the alphabet of language in question.

This state of affairs gives rise to two difficulties. The first takes the form

a question: How can an abstract representation of phonetic facts like the

scale in (7) be characterized with constraints on an individual segments?

The second leads to this conclusion: in some sense, implicational hierarchies

constitute ‘meta-constraints’ on the phonology of languages. They are broad

statements about the structure of phonologies across languages. This raises

the question of whether the implementation of these meta-constraints can

be characterized by logical formalisms and representations? The initial

question is addressed in §18.3. The follow-up is addressed in the discussion.

18.3 Representing Phonetic Difficulty

This section demonstrates one way scales of phonetic difficulty (the diffi-

culty of voicing obstruents in this case) can be incorporated into phonologi-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

18.3. REPRESENTING PHONETIC DIFFICULTY 295

cal representations using model theory. The critical insight of this chapter is

that implicational hierarchies derived from phonetically-motivated marked-

ness scales can be represented with zero or more ‘particles’ which can be

thought of as discrete tokens measuring some quantity of phonetic infor-

mation. The number of discrete tokens increases as the relevant phonetic

measurement increases.

For the scale for phonetic difficulty of voicing (7), the number of tokens

increases with difficulty. For instance, the segment [b] would carry one

token, [d] would carry two tokens, [g] would carry three tokens and so

on. The number of tokens should increase incrementally as the level of

voicing difficulty encompassing the entire scale. Model theoretically, these

phonetic particles will be elements of the domain which are associated to

the appropriate segmental position, which itself is an another element of

the domain.

Specifically, in addition to the unary relations such as sonorant, voice,
long, coronal, labial, and dorsal, there is an additional unary relation
difficulty, which is only satisfied by domain elements indicating these
phonetic particles. A binary relation α associates these tokens to domain el-
ements satisfying ¬sonorant∧voice. The model signature in Equation 18.1
where F is a set of features consonants and vowels, including the ones
previously mentioned.

R = {difficulty, /, α} ∪ F (18.1)

Figure 18.1 illustrates R-structures representing the voiced obstruents
[b d g bː dː gː]. In the figure, I abbreviate difficulty with diff.

Figure 18.2 presents a graphical representation of the word [bːod] with

these representations. The proposed representation is not unlike an au-

tosegmental tier. There is a central, skeletal tier where the positions of

the segments making up the words are ordered. A distinct level of repre-

sentation is given to the particles indicating phonetic difficulty. However,

unlike a tonal tier (see Chapter 12) or a syllabic tier (see Chapter 15), the

elements on this tier need not be ordered, only associated to positions on

the skeletal tier.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

296 CHAPTER 18. PHONETICALLY GROUNDED PHONOLOGICAL REPRESENTATIONS

1

2 2

1

3 2 3 4

1

2 3 4 5

1

b

lab

d

cor

g

dor

bː

lab, long

diff diff diff diff diff diff diff diff diff diff

α α α α α α α α α α

2 3 4 5 6

1

2 3 4 5 6 7

1

dː

cor, long

gː

dor, long

diff diff diff diff diff diff diff diff diff diff diff

α α α α α α α α α α α

Figure 18.1: Visualization of the R-structures of the segments
[b, d, g, bː, dː, gː] with phonetic difficulty as part of the representation.

Each domain element 1 also satsfies other features, e.g. voiced and stop
(not shown).

18.4 Constraints on Phonetic Difficulty

With these representations in place, one can use propositional logic over

factors of R-structures as described in Chapter 5. In particular we are
interested in factors that identify segments carrying tokens of phonetic

difficulty. Figure 18.3 defines 6 factors that identify positions with different

degrees of phonetic difficulty. An important observation is that these

factors are nested. In other words, 1D is contained within 2D, which itself

is contained within 3D and so on. Similarly, the factor 4D contains the

factors 3D, 2D, and 1D.

How are these factors interpreted in within a propositional logic? Recall

from Chapter 5 that the extension of a factor f is all the R-structures that
contain the factor f . It follows that the propositional sentence 4D would
be interpreted as all words containing a position which has four particle

of phonetic difficulty. When it comes to numbers, the English language

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

18.4. CONSTRAINTS ON PHONETIC DIFFICULTY 297

1

bː

long
lab
stop
cons

4

diff

5

diff

6

diff

7

diff

2

o

back
mid
voc

3

d

dor
stop
cons

8

diff

9

diff

/ /

α αα α α α

Figure 18.2: The R-structure of the hypothetical word [bːod].

can be ambiguous so let’s be clear that this does not mean “exactly four

particles of phonetic difficulty,” but “at least fours particle of phonetic

difficulty.” This is because the factors are contained within in each other

as mentioned above. For example, the R-structure of the word [bːod] in
Figure 18.2 satisfies the sentence 4D but the R-structure of the word [bod]
would not.

Conversely, the propositional sentence ¬4D would be interpreted as
all words which do not contain a position which has four particles of

phonetic difficulty. Again, because the factors are contained within in each

other, this does not mean “exactly four particles of phonetic difficulty,”

but “at least four particles of phonetic difficulty.” Thus not only would the

sentence ¬4D not be satisfied by R-structure of the word [bːod], it is also
not satisfied by by R-structures for the word [dːod] and [gːod] because
those structures contain the factor 4D as well.

Recall from Hayes and Steriade (2004), that there were seven kinds of

languages in the typology of languages with voiced obstruents: [] (no voiced

obstruents), [b], [b d], [b d g], [b d g bː], [b d g bː dː], and [b d g bː dː gː].

With factors like the ones shown in Figure 18.3, these languages are gener-

ated with the sentences of propositional logic shown in Table 18.1.

Under the current analysis, the constraints effectively impose a thresh-

old of phonetic difficulty for individual languages. The implicational

hierarchy that was obtained in Optimality Theory via a fixed ranking of

constraints is accomplished here representationally via containment. In

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

298 CHAPTER 18. PHONETICALLY GROUNDED PHONOLOGICAL REPRESENTATIONS

1

2 2

1

3 2 3 4

1

2 3 4 5

1

1D
def
= 2D

def
= 3D

def
= 4D

def
=

diff diff diff diff diff diff diff diff diff diff

α α α α α α α α α α

2 3 4 5 6

1

2 3 4 5 6 7

1

5D
def
= 6D

def
=

diff diff diff diff diff diff diff diff diff diff diff

α α α α α α α α α α α

Figure 18.3: Factors 1D, 2D, 3D, 4D, 5D, 6D.

this way, this analysis provides a straight line from the phonetic insight that

voiced obstruents are ordered by degree of difficulty through the grammars

proposed here to the putative typology which reflects that those degrees of

difficulty provide cutoffs for the inventory of voiced obstruents along that

scale (see the schema in (9)). It is also striking that this can be achieved

with grammars that are the conjunctions of negative literals; indeed, with

grammars containing a single negative literal.

18.5 Discussion

There are several aspects of the analysis that warrant further discussion.

First, one may wonder why the sentence true in Table 18.1 is given
instead of the sentence ¬7D. There is no particular reason other than that
the factor ¬7D has not been formally defined. Of course one could define
it and then the sentence true and ¬7D would be extensionally equivalent
as far as voiced obstruents are concerned.

A related question concerns the extension of sentences like ¬2D∧¬4D.
Since 4D contains 2D, this expression is redundant and its extension is

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

18.5. DISCUSSION 299

Sentence Voiced obstruents

¬1D []

¬2D [b]

¬3D [b d]

¬4D [b d g]

¬5D [b d g bː]

¬6D [b d g bː dː]

true [b d g bː dː gː]

Table 18.1: Grammars yielding the typology voiced obstruents.

equivalent to ¬2D. It follows that in the same way there are many rankings
of constraints in OT that yield the same language, there are many sentences

of propositional logic over R-structures which are extensionally equivalent.
In general, a sentence ¬nD∧¬mD will be extensionally equivalent ¬nD if
and only if n < m.

A third question has to do with ensuring that the proposed formalism

does not yield unwanted inventories such as [g bː dː gː]. I address this

question in two parts. First, if the only constraints under consideration are

the ones shown above, then it should be clear that obtaining an inventory

like [g bː dː gː] is not possible because the factor that effectively forbids

[b] will also forbid [d g bː dː gː].

The second part regards other constraints that may be in the system. For

example, nothing in principle prevents there from being factors which pick

out [b] and [d] as shown in Figure 18.4. The sentence ¬b∧¬d would yield

1 1

b
def
=

lab
stop
voice
short

d
def
=

cor
stop
voice
short

Figure 18.4: Factors b and d.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

300 CHAPTER 18. PHONETICALLY GROUNDED PHONOLOGICAL REPRESENTATIONS

the unwanted inventory [d g bː dː gː] because no constraints on phonetic

difficulty are expressed, only constraints on particular combinations of

features.

However, the point of phonetically-grounded phonology is that con-

straints are not formed with arbitrary combinations of features. Therefore,

a theory of phonetically-grounded phonology which utilizes the kind of

representations and logical formalism here must rule out sentences like

¬b ∧ ¬d on the grounds that they contain literals which have no phonetic
grounding. There could be many ways to operationalize this. One way

would be to indicate which relations in the model-theoretic signature are

phonetically relevant, and to only allow sentences with factors containing

those relations. Another way would be to implicate phonetic difficulty with

position identity. This is the case for Hayes and Steriade (2004) because

the OT constraints against these segments (*b and *d) are placed in a fixed
hierarchy and not allowed to be freely ranked. Presumably, they would

not allow a constraint such as *[−son,−long,−dorsal,+voice] to be freely
ranked, which would similarly disrupt their typology.

I leave for future research the question of how best to operationalize

phonetic-groundedness using the logical and representational methods

employed here. I have made the central point that the vehicle for the

phonetic-grounding of constraints offered here accomplishes the same

goals as the analysis in Hayes and Steriade (2004). A broader point is that

while the representations invoked viaR-structures and the logical language
used to express constraints help us understand the nature of phonological

constraints, they are not necessarily an exhaustive theory of it.

18.6 Conclusion

Discrete phonetic tokens, in the form of ‘phonetic difficulty particles’ are

a viable means of phonetically-grounding constraints via phonological

representations and propositional logic. These representations faithfully

represent the values of the voicing difficulty scale and constraints over such

representations express the threshold of difficulty the speaker of a language

is willing to tolerate. In this way, the phonetic facts are functionally realized

in phonological representation.

This analysis suggests lines of further inquiry to me. The first is the

question posed in the introduction about the feasibility of characterizing

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

18.6. CONCLUSION 301

the ‘meta-constraints’ on languages generated by implicational hierar-

chies using logical formalisms. This chapter shows a promising means

of incorporating phonetic information directly into the phonology using

model-theoretic representations, which could indicate that these ‘meta-

constraints’ could be applied to the alphabets of languages governed by

other implicational hierarchies in a similar way.

The second is a more specific and modest objective, and more immedi-

ately relevant to the results of this chapter. Zhang (2004) suggests that a

combination of sonority and length has an implicational effect on the tone

licensing of syllable rhymes. Essentially, longer, more sonorous rhymes

are likely to be less restricted with respect to the types of tone they can

bear. In Thai, for instance, CVːO syllables are more restricted with respect
to tone-bearing than CVR syllables, even though the rhyme of the former
is phonemically represented as being longer than the rhyme of the latter, a

situation which generally creates a less restricted tone-bearing environment.

Zhang (2004) suggests this apparent asymmetry is due to the fact that in

closed syllables (those with obstruent codas), long vowels are phonetically

shortened, which renders the rhyme of the CVR syllable a more ideal tone-
bearing environment, even though long vowels are generally preferred

over short. Essentially, tonal variety is licensed by rhyme length, where

more length implies more tone-bearing freedom. This seems, in phonetic

terms, very analogous to the implicational hierarchy here where the degree

of difficulty scaled with the size and character of the inventory of voiced

obstruents. It seems very likely that rhyme length could be represented

with discrete phonetic tokens, which implies in turn that the constraint

and any processes implied by the phonetic facts could be expressed with

logical formalisms over such representations.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

302 CHAPTER 18. PHONETICALLY GROUNDED PHONOLOGICAL REPRESENTATIONS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 19

Representations of Gradual
Oppositions

Hyun Jin Hwangbo

This chapter provides a computational analysis of a vowel lowering process

in Danish, in which certain vowels lower adjacent to /r/ within a syllable.

This process is also known as r-coloring (Basbøll, 2005). If the rungs of

a ladder represent vowel height, then, for these vowels, Danish vowel

lowering is a single step to the rung below. This process, while simple

and intuitive to describe, has been problematic for both rule-based and

constraint-based accounts. The problem, as noted by Schane (1984) and

Basbøll (2005), among others, is that representations of vowels as com-

plexes of binary features leads to overly complex descriptions of this kind

of process. As I will discuss, a rule-based account requires multiple rules

in an opaque ordering, and a constraint-based approach requires multiple,

special constraints to handle this opacity.

Schane’s approach is to explicitly represent vowel height in terms of

degrees of aperture. Basbøll (2005, Chapter 5) provides a similar analysis

in terms of degrees of distance from the maximally low and back vowel.

These scales formalize the notion of a gradual opposition for vowel height
in Trubetzkoy’s (1969) terminology, which I explain in more detail below.

Once these scales have been set, it is possible to formalize the generalization

directly: vowels subject to lowering increase in aperture (or decrease their

distance to the maximally low and back vowel) by one degree. In this

way, these representational choices allow one to provide an analysis which

303

D
R
A
F
T

304 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

directly captures the nature of the phonological change.

This chapter provides a First Order (FO) logical transduction with

relational structures that represent degrees of aperture directly. With these

representations, it is straightforward to express the generalization that

Danish vowel lowering is a process that increases aperture by one degree

for vowels in the proper context. In this way, this analysis mirrors the

generalization and satisfies the Mirror Principle for phonological analysis,

which expresses a criterion regarding how an analysis within a formalization

ought to capture a generalization (Schane, 1984). While I use the aperture-

based scale, as opposed to Basbøll’s distance-based one, for concreteness,

a logical transduction faithful to the representations and generalizations

made by Basbøll (2005) is also certainly possible.

On the other hand, it is less clear how rule-based and constraint-based

accounts operate over vowels with such representations. As I discuss

below, while nothing in principle prevents these formalisms from using

these representations and defining mechanisms for operating over them,

the formalisms themselves need to be expanded in order to adjust to these

representations. In contrast, changing the representations presents no

obstacle to the logical methods employed here.

The remainder of this chapter is organized as follows. In §19.1, I review

and discuss background material, including salient aspects of Danish vowel

lowering, Trubetzkoy’s views of phonemic oppositions, and the Mirror

Principle. Then in §19.2, I review shortcomings of rule-based and constraint-

based accounts of Danish vowel lowering when vowels are represented with

binary features, and explain how such analyses violate the Mirror Principle.

The next section §19.3 explains how degrees of aperture can be represented

directly with relational structures and §19.4 defines a logical transduction

which increases the aperture by one for vowels in the appropriate /r/

context. §19.5 discusses some related aspects of the analysis, and §19.6

concludes.

19.1 Background

19.1.1 Danish Vowel Lowering

Basbøll (2005, p. 149) describes Danish vowel lowering as follows.

The term r-coloring denotes a whole series of sound changes in

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.1. BACKGROUND 305

Danish, which are mirrored in synchronic phonological rules,

all with the effect that the vowel in question, when it is adjacent

to an /r/, becomes ‘one step closer’ to the low pharyngeal vowel

(see Basbøll [1972]).

In this chapter I review some fundamental aspects of this process, but I

limit the scope of the analysis here in two ways. First, I choose to focus

exclusively on short, front vowels, even though some long and back vowels

also undergo this process. Second, I choose to simplify the environment

which causes lowering to only post-vocalic /r/. These limitations are

sufficient to establish the main points of the analysis and it is left to future

research to further develop the analysis without these limitations.

Table 19.1 displays the set of full, short vocalic phonemes in Danish

(Basbøll, 2005, p. 50) using descriptions from the IPA.

Front Back

Aperture Unrounded Rounded Unrounded Rounded

close i y u

close-mid e ø o

open-mid ɛ œ ɔ

open a ɑ ɒ

Table 19.1: Full, short, vocalic phonemes of Danish.

As mentioned, I set aside the back vowels in the analysis and focus on

the front vowels. Basbøll (2005, p. 151) presents the input-output relations

between full, short vowels affected by r-coloring, which is reproduced in

Table 19.2 for the front vowels. The asterisk on the output [ɑ] indicates that

Input a ɛ e œ ø

Output ɑ* a ɛ ɶ œ

Table 19.2: Front, full, short vowels which undergo vowel lowering.

this vowel also fuses with /r/ and the /r/ itself is elided. The analysis below

does not address this fusion with /r/. Observe that the front vowels /i, y/

are not included in Table 19.2 because they show no lowering adjacent to

/r/.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

306 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

Basbøll (2005, p. 48) presents visualizations of the full vowels of Mod-

ern Standard Copenhagen speech (including allophones), where unround

and round vowels are separated. While the quadrilateral shapes on top

are standard, Basbøll prefers the lower graphs because they do not give

the “impression of a corner” (p. 48) near the [a] vowel. An important

Figure 19.1: Figure 2.2 from Basbøll (2005, p. 48).

consequence of the curved, triangular shape is that as aperture increases,

backness also increases, though nonlinearly.

As for the precise nature of the environment that triggers the change in

vowel quality, it appears that the /r/ must be adjacent and tautosyllabic

with the vowel, but there is variation. While there is evidence that both

tautosyllabic pre-vocalic and post-vocalic /r/ inducing lowering, there is

also evidence they do so differently. For instance, Basbøll (2005, p. 150,

fn. 6) notes that aspects of the syntagmatic patterning of /r/ can be variable

“with respect to speaker variables, style level, and lexicon.” In this chapter,

we are primarily interested in the nature of the change itself, and not the

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.1. BACKGROUND 307

environment. I agree with Basbøll (2005, p. 150), who writes “The unity

of the process, which is in my view a real one and not spurious, lies in

the change of the segments in question.” Nonetheless, for concreteness, I

adopt the first approximation for analysis that front vowels lower when

they are immediately followed by /r/ (Hyman, 1975, pp. 68–69). Putting

it altogether, the phonological generalization that will be analyzed in the

remainder of this chapter is shown below.

Generalization 19.1. Danish front vowel lowering:
Front, non-high, short vowels lower when they are immediately followed

by /r/.

19.1.2 Trubetzkoy’s Oppositions

Trubetzkoy (1969) identified three kinds of phonemic oppositions: priva-

tive, gradual, and equipollent. Privative oppositions are those indicated

by the presence versus absence of a property such as voicing or aspiration.

Gradual oppositions refer to a category that are described with “various

degrees or gradations of the same property (Trubetzkoy, 1969, p.75).”

That is, differences among the phonemes are shown along a scale. Vowel

height is a good example as it can be described with degrees of aperture

as illustrated in Figure 19.1. Equipollent oppositions are neither privative

nor equipollent. Place of articulation (labial, interdental, coronal, dorsal)

is an example of an equipollent opposition.

While binary features naturally represent privative oppositions, it is less

clear whether they are appropriate for gradual and equipollent oppositions.

For example, consider vowel height. With a binary feature system, vowel

height can be represented with features such as [+high] or [−high] and
[+low] or [−low] in the same way as frontness or backness with features
such as [+front] or [−front] and [+back] or [−back]. However, if a
language has four vowel heights /i, e, ɛ, a/, for example, then both /e/

and /ɛ/ are described as [−high, −low] with this binary feature system.
To properly distinguish them, a third feature is needed such as [tense] as

shown in Table 19.3. With this feature, /e/ can be described as [−high,
−low, +tense] and /ɛ/ as [−high, −low, −tense]. In other words, we need
three features in the binary feature system to properly represent the vowels.

Now consider what happens if, as in Danish, there is a vowel lowering

process. Since /e/ lowers to [ɛ], the formal representation of the process

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

308 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

Vowel high low tense

i + −
e − − +
ɛ − − −
a − +

Table 19.3: Vowel features of the four height with binary features system

must change the [tense] feature from [+tense] to [−tense]. And since vowel
/ɛ/ lowers to [a], the formal representation of the process must change the

[low] feature from [−low] to [+low]. Consequently, the question arises:
does the representation of vowels with these features in the binary system

mirror the phonological transformation of vowel lowering?

19.1.3 The Mirror Principle

Schane (1984) introduces the Mirror Principle as a criterion for formal-

izations. He writes “If one believes that a process or change happens in a

certain way, then the notation should not just describe that event but should

reflect as closely as possible its manner of occurrence” (emphasis added).

To illustrate this idea, he presents two rules describing a process where a

consonant assimilates to a following vowel. These rules are reproduced

below.

(10) a. C→ [+sharp]/

 V

+high
−back


b. C→

[
+high
−back

]
/

 V

+high
−back


Schane (1984) observes that “Rule (10a) requires independent, unrelated

features; (10b) does not.” He goes on to explain: “For this particular exam-

ple, the notation of generative phonology mirrors the nature of the process,

and I believe it is fair to say that generative phonology has considered

mirroring to be one of the goals of its notation.”

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.2. TRADITIONAL ANALYSES 309

19.2 Traditional Analyses

As Schane (1984); Basbøll (2005), and others have observed, the binary

feature system in Table 19.3 does not capture, or “mirror” the represen-

tation of the vowels and the lowering process, because the features that

undergo the transformation do not directly point to the lowering. This is

true for both rule-based accounts and for constraint-based accounts.

In a rule-based approach, this lowering process would be given by the

rules in (11). Each rule in (11) shows the lowering of each front vowel,

and /a/ to [ɑ], /ɛ/ to [a], and /e/ to [ɛ]. Note that the mid vowel /e/ does

not change to the low back vowel [ɑ], but to [ɛ], and /ɛ/ lowers to [a] and

not to [ɑ]. In other words, the vowels shift only one degree in height. (In

the case of /a/ this appears to be a shift from front to back.) Therefore,

the rules have to be in the proper order for the correct form to surface.

The rules have to be ordered as shown: rule (11a) must apply before rule

(11b), and rule (11b) must apply before rule (11c). If the rule was ordered

reversed, for example, the mid front vowel /e/ lowers to [ɑ].

(11) a. /a/ −→ [ɑ] : [−back, +low] −→ [+back] / r

b. /ɛ/ −→ [a] : [−high, −low, −tense] −→ [+low] / r

c. /e/ −→ [ɛ] : [−high, −low, +tense] −→ [−tense] / r

This series of rules constitutes an example of counterfeeding opacity

(Kiparsky, 1973; Baković, 2007). While the rules in (11) describe the

map from underlying to surface form accurately, the rules within the

formalism do not capture the process of lowering. That is, each lowering

rule changes different features – [back], [low], and [tense] – to obtain a

lower vowel in the surface form. In other words, a single lowering process

has to be broken down into three different rules, each changing different

features. In addition, the rules have to be applied in the order presented

above, otherwise the vowel /e/ would lower to [ɑ]. Clearly, the traditional

analysis with binary features does not mirror vowel lowering in Danish.

Constraint based accounts with binary features face similar difficulties.

Consider an account within Harmonic Serialism (HS) (McCarthy, 2010).

Hauser et al. (2016) proposes the faithfulness constraint, Faith-UO for

opaque processes (see also Hauser and Hughto, 2020). The faithfulness

constraint has the form of ID-UO(F)/[αG] which is defined below in (12).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

310 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

(12) Faith-UO: ID-UO(F)/[αG] assigns one violation for each value of
F that is changed in segments which are [αG] in the underlying
representation.

For example, ID-UO(low)/[+tense] assigns a violation when underlying

[+tense] vowels are not faithful to [low] features. Thus, the tense vowel

[e] is assigned a violation if it changes the low feature. Therefore, the vowel

[e] does not lower to [a]. ID-UO(back)/[−low] assigns a violation when
an underlying [−low] segment changes its [back] feature. The underlying
[−low] segment /ɛ/, is faithful to the [back] feature when lowering to [a].
Lowering from /ɛ/ to [ɑ] would violate this faithfulness constraint because

it changes the back feature. In this way, these constraints can account for

cases of counterfeeding opacity, such as Danish vowel lowering.

However, the issue here is like the one with the rule-based account:

because the constraints implicate different features, they do not capture the

fact that Danish vowel lowering is a single process. That is, the constraints

requires faithfulness to [low] and [back]. I conclude that, with the binary

feature system, either analysis, the rule-based approach or constraint-based,

fails to mirror the process.

To sum up, counterfeeding chain shifts, where A becomes B, and B

becomes C, and C becomes D, and so on, are difficult to account for with

binary feature systems. If these chain shifts occur along a scale induced

by gradual oppositions, then a representation reflecting that can admit a

singular process and eliminate the opacity. The opacity is, in a sense, a

byproduct on an inappropriate representation. In the case of Danish vowel

lowering, the vowels form a gradual opposition along a scale. Instead of

describing the vowel height with binary features as in Table 19.3 above,

we want a representation that reflects aperture directly.

19.3 Representing Aperture

This section defines relational structures for words in Danish focusing on the

representation of vowels. It shows how the vowel space can be represented

according to the scale shown in Figure 19.1.

Table 19.4 divides the vowels (phonemes and one allophone [ɶ]) by

five degrees of aperture. Schane (1984) proposes an aperture particle,

a, to denote one degree of aperture. That is, vowels with more aperture

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.3. REPRESENTING APERTURE 311

Vowels Features

i,y,u 0th degree of aperture

e,ø,o 1st degree of aperture

ɛ,œ,ɔ 2nd degree of aperture

a,(ɶ) 3rd degree of aperture

ɑ,ɒ 4th degree of aperture

Table 19.4: Five degrees of aperture. The vowel in parentheses is an

allophone.

particles are lower and further back as well. I implement this idea literally

with relational structures as follows. There is a unary relation aperture,
and domain elements satisfying this relation are aperture particles. I

additionally adopt a binary relation α which associate aperture particles to
domain elements satisfying vocalic.
It is interesting to observe that the only two other features needed to

fully make distinguish the vowels in Table 19.4 are the features [round]

and [back]. These two features will be the unary relations round and back
in the model signature for the relational structures. Specifically, while all

vowels described as round in the IPA (see Table 19.1) will satisfy round,
only the vowels /u,o,ɔ/ will satisfy back.
Altogether, the relations I will use to express Danish vowel lowering are

shown in the model signature in Equation 19.1 where F is a set of features
for non-vocalic Danish segments.

R = {vocalic, back, round, aperture, /, α} ∪ F (19.1)

Figure 19.2 illustrates R-structures representing the unround vowels in
Danish. Node 1 is labeled with vocalic and the nodes from 2 to 5 are
labeled with aperture (abbreviated as aper in the figure). The edges from
node 1 to nodes 2, 3, 4, and 5 labeled α indicate the aperture particle
is associated to the vowel. The total aperture of the vowel is given by

the number of aperture particles associated with it. Describing the round

vowels is straightforward. The front round vowels are identical to the ones

shown in Figure 19.2 except node 1 in each vowel would also satisfy round.
The back round vowels are obtained by letting domain element 1 in the

vowels with 0, 1 and 2 aperture particles satisfy round and back.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

312 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

11

2 2

1

3 2 3 4

1

2 3 4 5

1

i

voc

e

voc

ɛ

voc

a

voc

ɑ

voc

aper aper aper aper aper aper aper aper aper aper

α α α α α α α α α α

Figure 19.2: Visualization of the R-structures of unround Danish vowels
with aperture particles.

Here is a more word-like example. The R-structure of a hypothetical
word pok [pok] is shown Figure 19.3. The domain elements 1, 2, and

3 can be understood as representing the positions of [p], [o], and [k],

respectively. Therefore, node 1 is labeled with labial, stop cons, node 2
with back, round, and vocalic, and node 3 with dorsal, stop and cons.
The edges from the node 1 to 2 and from the node 2 to 3 are directed

edges labeled with / indicating the successor relation. Unlike nodes 1 and
3, there are α associations from node 2 to the nodes 4 and 5 which are
labeled with aperture.

1

p

labial
stop
cons

2

o

back
round

vocalic

4

aper
5

aper

3

k

dorsal
stop
cons

/ /

α
α

Figure 19.3: The R-structure of the hypothetical word [pok].

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.4. A LOGICAL TRANSDUCTION OF DANISH VOWEL LOWERING 313

19.4 A Logical Transduction of Danish Vowel

Lowering

The generalization we seek to describe is that front, non-high, short vowels

lower when they are immediately followed by /r/. As mentioned, this

process can be thought of as the increase of one degree of aperture, or

the addition of one aperture particle. Adopting the idea that vowels are

gradual along the scale of the aperture, I formalize the vowel lowering

process with logical formulas in this section.

With the aforementioned representations in mind, I will now turn

to transformation of the phonological process of vowel lowering. Any

transformation inherently maps an underlying representation to a surface

representation. For example, if underlying /er/ undergoes the transforma-

tion of vowel lowering it will surface as [ɛr]. In other words, the process

adds an aperture particle to the vowel in the surface form. Figure 19.4

shows a graphical representation of the transformation /er/→ [ɛr]. I only

1

front
vocalic

2

rhotic
cons

3

aper

/

α

7→ 1

front
vocalic

2

rhotic
cons

3

aper
4

aper

/

α
α

Figure 19.4: An example of transformation from /er/ to [ɛr]

represent the vowel and the following rhotic for convenience. The left side

of the arrow represents the input, /er/, and the right side of the arrow

represents the output, [ɛr]. Note that there is an additional aperture node

on the output, node 4, which indicates that the output vowel is [ɛ] not [e].

I will now show how to construct the output structure from an input

structure using formulas of First-Order logic to define the logical transduc-

tion as explained in Chapter 3. I will use the example of /er/ to [ɛr] as a

running example, and show step by step how the formulas work together

to build the R-structure for [ɛr] from the R-structure for /er/.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

314 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

As Figure 19.4 shows, there are more domain elements in the output

structure than in the input structure. Consequently, two copysets are

required when defining this logical transduction.

C
def
= {1, 2} (19.2)

In other words, the workspace to build the output structure has six domain

elements to work with, as shown in Figure 19.5. In Figure 19.5, and

11 21

31

12 22

32

Figure 19.5: The potential domain elements in the output structure.

subsequent figures, the notation xn indicates the nth copy of the domain
element x.
Since there are two copysets, there must be two formulas for each unary

relation U which determine whether the first and second copies of the
domain elements in the output structure satisfy U , respectively. For the
first copy, all of these are faithful. In other words for every unary relation

U in R, we have a formula as shown in Equation 19.3.

φ1
U(x)

def
= U(x) (19.3)

The next formula in Equation 19.4 determines which domain elements

are aperture particles in the second copyset of the output. In the second

copyset, a domain element satisfies aperture only if its counterpart in the
input structure satisfies vocalic, has at least one aperture particle (and so
is not high), and is succeeded by a domain element satisfying rhotic.

φ2
aper(x)

def
= vocalic(x) ∧ ∃(y)[aperture(y) ∧ xαy]

∧ ∃(z)[rhotic(z) ∧ x / z] (19.4)

Since high vowels do not have an aperture particle, Equation 19.4 will not

create a new aperture particle for them.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.4. A LOGICAL TRANSDUCTION OF DANISH VOWEL LOWERING 315

All other unary relations U are defined to be false for the second copy.
Consequently, given the input R-structure for /er/ as shown in the left in
Figure 19.4, the domain elements in the output structure will have the

unary relations as shown in Figure 19.6.

11 21

31

12 22

32

front
vocalic

rhotic
cons

aper

aper

Figure 19.6: The potential domain elements in the output structure and

the unary relations they satisfy.

Next I consider the binary relations. There will also be multiple formulas

for them. The following equations define whether two domain elements in

the first copyset of the output structure are related. Equation 19.5 defines

the successor relation and Equation 19.6 defines the aperture relation.

φ1,1
/ (x, y)

def
= x / y (19.5)

φ1,1
α (x, y)

def
= x α y (19.6)

Next I define the formula which effectively connects the new aperture

particle to the vowel, which indicates it is lowered. Equation 19.7 says

the alpha relation will hold between the first copy of a pre-rhotic vocalic
position and its second copy.

φ1,2
α (x, y)

def
= (x = y) ∧ φ2

aper(x) (19.7)

Recall from Equation 19.4 that the second copy of domain element cor-

responding to the non-high, pre-rhotic vowel satisfies the unary relation

aperture. In other words, the effect of Equation 19.7 is to connect new
aperture particles to their corresponding non-high, pre-rhotic vowels in

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

316 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

the output structure. All the other binary relations are defined as false as
shown below.

φ1,2
/ (x, y)

def
= φ2,1

/ (x, y)
def
= φ2,2

/ (x, y)
def
= φ2,1

α (x, y)
def
= φ2,2

α (x, y)
def
= false

(19.8)

Consequently, given the input R-structure for /er/ as shown in the left
in Figure 19.4, the domain elements in the output structure will have

the unary and binary relations as shown in Figure 19.7. As defined in

11 21

31

12 22

32

front
vocalic

rhotic
cons

aper

aper

/

α α

Figure 19.7: The potential domain elements in the output structure and

the relations they satisfy.

Equation 19.7, the association is drawn between the node 11 and the node

12 since node 1 in both copysets corresponds to node 1 in the input structure

which satisfies vocalic and whose successor element satisfies rhotic.
Then, we move to the clean-up phase by way of the licensing functions.

There are two licensing formulas, one for each copyset. The only elements

to be licensed are the ones that actually matter in the output structure.

While every element in copy set 1 ought to be licensed no matter what, this

is not the case for domain elements in the second copy set. For example, in

Figure 19.7, the elements 22 and 32 should not be licensed. Essentially, the

only elements in copy set 2 to be licensed are the ones that are new aperture

particles. These licensing formulas are shown below in Equations 19.9

and 19.10.

φ1
lic(x)

def
= true (19.9)

φ2
lic(x)

def
= φ2

aper(x) (19.10)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.5. DISCUSSION 317

The final result for these formulas for the input R-structure /er/ is repre-
sented in Figure 19.8. Only the node 12 is left from the second copyset,

which is attached to the node 11. As a result, the output structure represents

the lowered front vowel before the rhotic. It is clearly isomorphic to the

R-structure /ɛr/ shown on the right hand side in Figure 19.4. More gener-

11 21

31 12

front
vocalic

rhotic
cons

aper aper

/

α
α

Figure 19.8: The structure output given the R-structure for /er/.

ally, these formulas provide a logical transduction for the vowel lowering

in Danish.

19.5 Discussion

Some aspects of the above analysis merit further discussion. I begin with

what the above transduction means for front round vowels and then for

the back vowels. For front round vowels, the transduction works as it

should. For example, consider the map from underlying form /œr/ to

surface form [ɶr]. In the analysis above, the structure for /œr/ would have

two aperture particles associated with a domain element satisfying the

unary relations vocalic and round. Since round is faithfully transmitted to
the output structure and does not play a role in any other formulas defining

the transduction, another aperture particle will be associated to the vowel

in the output structure, yielding the allophone [ɶ].

Like round, the unary relation back also does not occur in any of the
formulas which determine the addition of an aperture particle. The table

which Basbøll (2005, p. 151) presents, which shows the relation between

the underlying and surface short full vowels that undergo lowering, does

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

318 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

not include /o/, suggesting it does not undergo lowering. It also shows

/ɔ/ lowering to [ɒ]. Neither of these is accounted for under the current

analysis. In order to exclude /o/, the formula expressed in Equation 19.4

would have to be adjusted. For /ɔ/ lowering to [ɒ], the process would

have to add two aperture particles. The latter issue could be accounted for

by assuming that /ɔ/ has three degrees of aperture underlyingly, and not

two, but I note that in Basbøll’s analysis (p. 156), /ɔ/ is the same distance

from the maximally low back vowel as the vowels /ɛ,œ/.

Independently, in this analysis, the vowels with four degrees of aperture

/ɑ,ɒ/ are not specified for [back]. The advantage for the current analysis

was that the back feature does not have to change. Whether it matters

or not for the analysis of the back vowels is unclear. For example, the

interpretation of domain elements with four aperture particles which satisfy

or do not satisfy backmay be the same. In short, while this analysis focused
on short, front vowels, extending or revising the analysis to account for

back vowels, as well as other vowels in Danish, is a good project for future

work.

Another way in which the analysis above can be improved is to better

describe the phonological contexts where rhotics induce lowering. The

pre-vocalic rhotic context is currently provided in the third conjunct of

Equation 19.4. This conjunct can be revised to ensure that the rhotic is

tautosyllabic, perhaps by including syllabic representations in R-structures
(Strother-Garcia, 2019, Chapter 15), and to include post-rhotic contexts as

appropriate.

Finally, I turn to the question of whether representing aperture directly

as was done here is possible with rule-based and constraint-based frame-

works. It is possible, but there is an overhead cost that has to be paid. For

example, suppose a rule-based account represents vowels with degrees of

aperture as in Table 19.4 and proposes the rule shown below.

(13) [+vocalic, n aperture] −→ [n+ 1 aperture] / r

One has to also explain what constitutes a well-formed rule, and how

to interpret such rules. Similarly, in OT, if one could provide a marked

structure that could be satisfied by the addition of a single degree of

aperture, one would have to define faithfulness constraints for adding

aperture particles and associating them. While there have been related

efforts in developing OT analyses of tonal insertion and association (Yip,

2002), there remains no general theory of constraints in OT, much less

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

19.6. CONCLUSION 319

over non-linear structures as is the case here.

In contrast, the model-theoretic relational structures and logical trans-

ductions invoked here required no additional overhead. Logic and rela-

tional structures let us consider and compare alternative representations

within a single analytical framework.

19.6 Conclusion

To conclude, this chapter has analyzed vowel lowering in Danish, which is

often considered an opaque phonological process because it exemplifies

a counterfeeding chain. With the traditional binary feature system, nei-

ther phonological analysis in rule-based accounts nor in constraint-based

ones captures or mirrors the transformation intuitively. In this chapter, I

represented vowels with aperture particles instead of binary features for

height to account for the gradual oppositions of Danish vowels. I provided

a FO-definable transduction in terms of these representations, which ac-

curately accounted for the phonological process as well as mirroring it.

Essentially, the analysis added a single aperture particle to target vowels

in the appropriate environment.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

320 CHAPTER 19. REPRESENTATIONS OF GRADIENT OPPOSITIONS

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Chapter 20

Logical approximations of lexical
strata, cophonologies, and
cyclicity

Hossep Dolatian and Jeffrey Heinz

20.1 Introduction

In an abstract sense, morphophonology studies the pronunciations of mor-

phemes based on morphological context. Cross-linguistically, alternations

in pronunciation are governed by universal and language-specific princi-

ples. These principles refer to morphology, prosody, phonological rule

domains (lexical cophonologies or strata), and derivational history. Most

work on computational or mathematical morphology/phonology focuses

on formalizing an individual aspect of an individual principle. This chapter

asks a larger question: How can we formalize the interaction of all these

principles together? We answer this question with logical transductions and

model-theoretic representations of morphophonological data structures.

Our answer is that the use of model-theoretic representations provides a

flexible, universal mathematical framework for integrating a variety of

linear and nonlinear linguistic representations. When these representations

are couched in Monadic Second Order (MSO) logic, the system is capable

of expressing these principles and their interactions. In fact, we find that

even weaker logics may be sufficient. The morphophonology of Armenian

321

D
R
A
F
T

322 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

is used to illustrate and explain this analysis.

There are many different theories of morphophonology. Scheer (2011)

provides an in-depth historical catalog. Theories are often evaluated in

terms of empirical coverage and conceptual elegance. In terms of their

formulation, the differences boil down to differences in either combina-

torial or organizational properties. Combinatorial differences refer to the

individual types of representations or transformations that the theory uses:

morphological trees, morphological features, prosodic trees, cophonologies,

and so on. Organizational differences refer to how these factors are brought

together under some kind of architecture or pipeline.

An important organizational parameter is whether the theory is interac-

tionist like Lexical Phonology (Kiparsky, 1983) vs. non-interactionist like

SPE (Chomsky and Halle, 1968). An interactionist theory (also called a

cyclic theory) is one where the morphological and phonological components

of grammar are interleaved, such that morphology feeds phonology, which

then feeds another cycle of morphology. In contrast, non-interactionist

theories ban such interleaving: morphology feeds phonology in only one

direction. This chapter presents an analysis of interactionist theories. This

choice is motivated on the one hand by our belief that of the two kinds of

theories, interactionism is the greater challenge to formalize, and on the

other by the empirical arguments for cyclicity (Bermúdez-Otero, 2011).

Cyclicity and interactionism are commonly employed in early and

contemporary work in phonology and morphology (Scheer, 2011). How-

ever, these concepts are difficult to computationally formalize and develop

(Sproat, 1992, 208). Intuitively, the problem is because of the following

two challenges in computational treatments of phonology and morphology.

2. Challenges facing cyclic phonology

(a) Linearity: Most computational systems work over linear rep-
resentations, while morphophonological analyses often invoke

nonlinear representations.

(b) Boundedness: A restrictive grammar cannot use the unbounded
application of phonological rules. But the combination of cyclic

rule application in phonology and of unbounded processes in

morphology imply unbounded rule application.

In this chapter, we utilize logical transductions over model-theoretic

representations to address these two challenges. The issue of Linearity

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.2. BACKGROUND 323

is resolved because model-theoretic representations are flexible enough

to operate over a combination of strings, trees, and other data structures.

This allows us to provide a computational realization of inherently deriva-

tional or transformational phenomena such as resyllabification, prosodic

phonology (Nespor and Vogel, 1986; Booij and Lieber, 1993), cyclic levels

(Bermúdez-Otero, 2011), cophonologies (Inkelas, 2014), and tree structure

(Selkirk, 1982), such that the computational realization is faithful to the

representations that linguistic theories posit.

The logical formalization addresses the problem of boundedness, but

does not resolve it completely. We enrich our input representations with

information on the derivational history of words (cf. Potts and Pullum,

2002). This allows us to effectively compute a single cyclic application

and interactionism (Cole, 1995a) with a single logical trandsuction. We

can repeat this transduction as many times as needed in order to generate

increasingly complex forms.

Nonetheless, cyclicity prevents us from realizing a single model that

expresses the totality of the system. Even though our formalization ‘works’

in that it can model cyclic processes, it comes at the cost of assuming a

strictly ‘run-time’ approach to computing cyclic phonology. An independent

apparatus (control system) is needed that will apply the grammar as many

times as needed to compute the correct number of cycles. In this sense, the

present analysis still suffers from the Unboundedness problem.

This chapter is organized as follows. We briefly go through the main

ideas behind cyclic phonology (§20.2.1), and discuss a case study of cyclic

phonology in Armenian (§20.2.2). We formalize the components of cyclic

phonology in §20.3 We define a large fragment of a logical formalization

for generating cyclic phonology, including aspects such as morphologi-

cal structure, syllabification, prosodic parsing, strata, and cophonologies

(§20.4-20.6). In §20.7, we take a step back and evaluate our system and

re-evaluate the main challenges that cyclicity causes for any computational

formalization.

20.2 Background

This section reviews the theoretical literature and main architectural as-

sumptions in cyclic theories of phonology (§20.2.1). Then we present an

in-depth case study of Armenian, taken from the first author’s theoretical

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

324 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

work on the language (§20.2.2). We use Armenian not because Armenian

cyclic phonology is unique, but simply because it is a non-trivial case which

helps illustrate both coarser and finer aspects of the formalization. Readers

are encouraged to apply the formalization used here for Armenian to other

cases of cyclic phonology.

20.2.1 What are cyclicity and strata

Interactionist theories were primarily developed to capture phonological

effects on morphology, such that the form of some complex word A+B was
affected by the phonology of the base word A. Alongside such cyclic effects,
interactionist theories likewise try to capture affix-specific phonological

effects. Cross-linguistically, it is common to find that some sequences of

morphemes trigger a different set of phonological rules than some other

sequence of morphemes.

To illustrate, consider bound roots and stress shift in English (Siegel,

1974; Allen, 1979). The word sensitive is formed by a bound root sens-

and a suffix -itive. It is well-known that some suffixes like -ity cause stress

shift: sénsitive and sènsitív-ity. Such suffixes are called Level 1 suffixes or

stem-level suffixes. In contrast, suffixes like -ness do not trigger stress shift:

sśensitive-ness. Such suffixes are called Level 2 or word-level suffixes. See

Newell (2021) for a review. A common analysis of these patterns in English

utilizes cyclicity and strata. A derivation of sensitivity and sensitiveness

is shown in Table 20.1. Generating the word sénsitive-ness goes through

two cycles. In Cycle 1 (stem-level), the base form is generated: sens-itive.

This word forms a prosodic word (PWord), and the stem-level (Level 1)

cophonology places stress. In the next cycle (word-level; Cycle 3 in the

figure), the suffix -ness is added and stays outside the base’s Prosodic Word.

The word-level (Level 2) cophonology applies which has no stress shift

rule. In contrast, for sènsitív-ity, the word undergoes two stem-level cycles:

one for the base, and one for adding -ity. Stress shift applies across the

stem-level cycles, and the Prosodic Word expands. A vacuous word-level

cycle then applies.

The organizational aspects of the derivation in Table 20.1 are largely

independent of the combinatorial aspects, which can bemodeled in different

theoretical frameworks, whether rule-based or constraint-based.

When formalizing such a derivation one recognizes that cyclic deriva-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.2. BACKGROUND 325

Input / sense, -itive, -ity / / sense, -itive, -ness /

Cycle 1

Morphology Stem Formation sens-itive sens-itive

Prosody

{
Syllabification
PWord Formation

sen.si.tive
(sen.si.tive)w

sen.si.tive
(sen.si.tive)w

Level 1
Phonology

}
Stress Assignment sén.si.tive sén.si.tive

Cycle 2

Morphology /-ity/ Affixation sén.si.tive /-ity/

Prosody

{
Syllabification
PWord Formation

sén.si.ti.vi.ty
(sén.si.ti.vi.ty)w

Level 1
Phonology

}
Stress Assignment sèn.si.tí.vi.ty

Cycle 3

Morphology /-ness/ Affixation sén.si.tive /-ness/

Prosody

{
Syllabification
PWord Formation

sén.si.tive.ness
(sén.si.tive)w.ness

Level 2
Phonology

}
Stress Assignment

Table 20.1: Cyclic derivation of the English words ‘sensitivity’ and ‘sensitive-

ness.’ Prosodic word boundaries are only shown in the PWord Formation

step.

tions involve two types of implicit steps. The first implicit step is that

“something” has to tell us what morphology to add in each cycle. In other

words, aspects of the derivational history need to be present. This informa-

tion is buried in the underlying form of the input. The second implicit step

is that, after the morphology, “something” has to tell us what prosodic or

phonological rules to apply based on the newly generated morphological

structure. This information is buried in the morphological derivation from

each cycle. Throughout this paper we refer to the first implicit step as the

operation and the second one as examination.

The implicit steps of operation and examination become more apparant

when a logical formalization of cyclic phonology is developed. For now,

the main idea is that the operation step keeps track of one’s place in the

derivational history of a word. The examination step involves identifying

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

326 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

the morphological information to apply the correct prosodic/phonological

rules. With this in mind, we turn to the main case study from Armenian.

20.2.2 Illustrating cyclicity with Armenian

Armenian is an agglutinative Indo-European language. We briefly introduce

aspects of Armenian prosody, morphology, and phonology which we later

formalize, which showcase the role of cyclicity and phonological rule

domains.

Armenian has final stress as shown in (3) (Vaux, 1998). If the final

vowel is a schwa, stress is placed to the penultimate full vowel (3b). When

stressed high vowels lose stress, they are reduced in a process of destressed

reduction (4). The high vowel is generally deleted (4b). But if deletion

would create an unsyllabifiable consonant cluster, then the high vowel is

reduced to a schwa (4d).

3. (a) kʰóɾd͡z ‘work’

(b) kʰóɾd͡z-ə ‘work-def’

4. (a) tʰeʁín ‘yellow’

(b) tʰeʁn-orɑ́ɡ ‘yellowish’

(c) hín ‘old’

(d) hən-utʰjún ‘oldness’

Destressed reduction targets high vowels which had stress in the base

but not in derived forms. Thus, unstressed vowels in the base do not reduce

in derived forms (5a). Furthermore, reduction can apply an unbounded

number of times based on how much morphology we have. It can apply in

roots (5b), suffixes (5c), and in compounds (5d).

5. (a) məχitʰɑ́ɾ ‘comforter’

məχitʰɑɾ-él ‘to comfort’

*məχtʰɑɾ-él

(b) d͡zín ‘birth’

d͡zən-únʰt ‘birth’

d͡zən-ənʰt-ɑɡɑ́n ‘generative’

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.2. BACKGROUND 327

(c) ɑ́sk ‘nation’

ɑsk-ɑjín ‘national’

ɑsk-ɑjn-uʰtjún ‘nationalist’

(d) kʰíɾ ‘writing’

kʰəɾ-ít͡ʃ ‘pen’

dúp ‘box’

kʰəɾ-t͡ʃ-ɑ-dúp ‘pencil-box’

Altogether, only high vowels which were stressed at some earlier point in

the derivation undergo reduction. The reduction facts provide evidence

that stress is assigned cyclically.

Morphologically, not every affix triggers reduction. Derivational suf-

fixes and compounding trigger it, while inflectional suffixes do not (6 and

7).

6. kʰíɾ ‘writing’

kʰəɾ-ít͡ʃ ‘pen’

kʰəɾ-it͡ʃ-é ‘pen-abl’

7. tʰeʁín ‘yellow’

tʰeʁn-ɑ́l ‘to yellow’

tʰeʁin-óv ‘yellow-ins’

Dolatian analyzes reduction with Lexical Phonology (Dolatian, 2020a)

and Stratal OT (Dolatian, 2020b). Different types of morphology create

different phonological domains. Free-standing roots and derivational mor-

phology create morphological stems (MStems, MS).1 These trigger the

stem-level (SLevel) phonology of stress and reduction. In contrast, in-

flectional morphology creates morphological words (MWords, MW) and

triggers word-level phonological stress assignment, which does not induce

reduction. To illustrate, consider Figure 20.1, which shows three tree

structures associated with the the inflected term kʰəɾ-it͡ʃ-e in (6). One tree

structure shows the morphological derivation, one showcases the different

1To illustrate morphological functions, we assume that free-standing roots get their
syntactic category via a zero morpheme n (Marantz, 2007). We don’t use lowercase letters
n to avoid ambiguity. For simpler illustration, overt derivational and inflectional suffixes
are labelled as Der and Inf.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

328 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

phonological rule domains of this word, and one presents the prosodic

structure.2

Morphology Rule domains Prosody

MW

Inf

-e/

MS

Der

-it͡ʃ

MS

n

-∅

√

/kʰiɾ

WLevel

-e/

SLevel

-it͡ʃ

SLevel

/kʰiɾ-∅

PW

σ

t͡ʃé

σ

ɾi

σ

kʰə

Figure 20.1: Morphological and prosodic structures and rule domains for

[kʰəɾ-it͡ʃ-e] ‘pen-abl’. Prosodic word boundaries are only shown in the

PWord Formation step.

Figure 20.2 illustrates a derivation for the inflected form kʰəɾ-it͡ʃ-e. The

root undergoes one cycle of the stem-level phonology to get stressed: kʰíɾ.

The derivational suffix triggers a new cycle of the stem-level phonology

to get stressed and to reduce the root: kʰəɾ-ít͡ʃ. Between stress shift and

reduction, we mark the destressed vowel with the diacritic ǐ. Finally,

the inflectional suffix triggers a cycle of the word-level phonology to get

stressed but without causing reduction: kʰəɾ-it͡ʃ-é. This last cycle generates

a prosodic word (PWord).

In sum, the Armenian data motivates both morphological and prosodic

structure. These structures cyclically create phonological domains. The

next section formalizes a stratal architecture for computing cyclic phonol-

ogy and morphology.

20.3 Components of cyclic phonology

As with any computational formalism, logical transductions require precise

and well-defined representations and operations. In order to formalize

2Between syllables and prosodic words, Dolatian (2020a,b) uses an additional prosodic
constituent called the prosodic stem (Downing, 1999). We set this aside here.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.3. COMPONENTS OF CYCLIC PHONOLOGY 329

Input /kʰiɾ, -∅, -it͡ʃ, -e/

Cycle 1

Morphology Stem Formation kʰiɾ -∅
Prosody Syllabification kʰiɾ

Stem Level
Phonology

} {
Stress Assignment
Reduction

kʰíɾ

Cycle 2

Morphology Affixation kʰíɾ-/it͡ʃ/

Prosody Syllabification kʰí.ɾit͡ʃ

Stem Level
Phonology

} {
Stress Assignment
Reduction

kʰǐ.ɾít͡ʃ
kʰə.ɾít͡ʃ

Cycle 3

Morphology Affixation kʰə.ɾít͡ʃ-/e/

Prosody

{
Syllabification
PWord Formation

kʰə.ɾí.t͡ʃe
(kʰə.ɾí.t͡ʃe)w

Word Level
Phonology

}
Stress Assignment kʰə.ɾǐ.t͡ʃé

Output kʰəɾit͡ʃé

Table 20.2: Derivation table for the cyclic derivation of the inflected form

[kʰəɾit͡ʃe] ‘pen-abl’.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

330 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

cyclic phonology, we first set up the components of a cyclic architecture.

Using the Armenian word kʰəɾ-it͡ʃ-e ‘pen-abl’ as a running example, we for-

malize the individual morphological, prosodic, and phonological operations

across 3 cycles (§20.4-20.6). This section provides an overview.

In the previous section §20.2.2, we used an informal illustration in the

form of a derivational table (20.2). This table encodes steps or components

for morphology, prosody, and phonology where the operation and exami-

nation steps were left implicit. In order to formalize cyclic phonology, we

develop an elaborated architecture in (20.2) and make the operation and

examination steps explicit.

Input (root)

Operation

Morphology

Examination

Prosody

Phonology

Output

(root with material)

Figure 20.2: Elaborated architecture for cyclic phonology.

The figure in (20.2) shows the three expected modules of Morphology,
Prosody, and Phonology. They are intermingled with two additional
components: the Operation and the the Examination. These two compo-
nents are used to streamline the choice of morphological, prosodic, and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 331

phonological functions. Together, these 5 components comprise a single

cycle. The output of this cycle is then fed back to itself to start a new cycle.

In a cycle, the first component is the Operation. It encodes the word’s
derivational order, i.e., a log of what morphological functions have applied

or will be applied. This feeds the Morphology component which adds
morphological structure. The morphology is then examined to find global

properties of the input in the Examination stage. These properties deter-
mine what prosodic parse to apply, and what phonological rule domains

to trigger. These properties are encapsulated into a global constant called

the settings. With the properties in place, we then apply the Prosody
and Phonology.
Before going further, we wish to emphasize that although we use proce-

dural language, the logical methods here are declarative. For example, we

often use procedural terms like ‘then.’ This is only for ease of exposition.

There is no fixed ordering between logical statements within a single trans-

duction. While five distinct transductions are specified above, one for each

component, it is well-known that logical transductions are closed under

composition. In other words, there is a single logical transduction that

computes a single cycle, and within this transduction, there is no ‘ordering’

per se.

Having outlined our formalization of the cyclic architecture, the next

sections formalize the logical transductions which comprise these 5 compo-

nents. Using kʰəɾ-it͡ʃ-e ‘pen-abl’ as our running example, we showcase these

transductions over the course of three cycles. Because there are many com-

ponents to the derivation, it is burdensome to present the model-theoretic

signature for the structure at this time. Each section adds more unary labels

and binary relations to our model. We provide the signature with some

notes in an appendix to this chapter. In addition, for each transduction, we

only provide a fragment relevant to the running example. As we explain,

the remainder of the transduction must be filled in on the basis of other

aspects of the grammars (such as other morphemes).

20.4 First cycle: Generating a stem

In the first cycle, the input is an unsyllabified and unstressed root
√
kʰiɾ.

The root lacks any syntactic category. The output is a fully syllabified

and stressed stem kʰíɾ in a morpho-phonological structure. To formalize

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

332 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

this transformation, we first explain the input structure (§20.4.1). We

process the derivational order (Operation list) in order to determine what

morphological rules to apply (§20.4.2). We then apply the morphology

(§20.4.3), examination (§20.4.4), prosody of syllabification (§20.4.5), and

phonological rule domains (§20.4.6).

20.4.1 Morphological and phonological representations

As said, the input to the first cycle is a simple root
√
kʰiɾ. Phonologically,

the segments of the root are in a linear order based on immediate successor.

Morphologically, the segments are dominated by a root morpheme MRoot.

Essentially, the linguistic representation combines a morphological tree

with a linear phonological sequence of segments. The model-theoretic

representation expresses this faithfully with a successor relation, dominance

relation, and unary relations to identify the various positions.

As the cycle unfolds, this morphophonological structure will be modified.

In order to know how to modify it, the model-theoretic representation in-

cludes two additional types of structures: the Settings and the Operation
List. These structures encapsulate information about what morphological
and phonological functions to apply.

Figure 20.3 visualizes this model-theoretic structure. We adopt a dif-

ferent set of conventions for the illustrations of model-theoretic structures

than the other chapters in this book in order to facilitate reading them. We

explain this figure and these conventions in more detail below. In general

we use the language of graphs where nodes correspond to domain elements
in the structure and labeled edges connecting nodes correspond to binary
relations in the structure.

For the phonology, the positions representing the segments k,i,ɾ satisfy

the unary relations k, i, ɾ respectively.3 Each position likewise has the label
segment in order to distinguish them from other kinds of structure in the
representation. As for the morphology, the root has the labels morpheme(x)
and MRoot(x). In general, the unary relations segment and morpheme(x) are
not shown in the figures.

Instead of labeling the nodes in the graph with the indices of the domain

elements, we label the nodes of the graph with the most important unary

3We use segmental labels instead of features to facilitate discussion, but as discussed
in Chapter 2, phonological features could be used instead.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 333

kʰ1 i2 ɾ3

MRoot4

settings

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

o

Figure 20.3: Input to Cycle 1: kʰiɾ ‘write’ (root).

relation it satisfies. We include the indexing of domain element as a

subscript to this label.

The segments are connected via the binary successor relation. The

successor relation is specialized for segments only: succ:seg(x, y) (shown
as /-labeled edges in Figure 20.3). The root is connected to its segments
via the binary relation of morphological dominance MDom(x, y) (shown as
m-labeled edges in Figure 20.3).4

Above the tree, the settings node is a constant (shown as a rectangle).
In relational structures, a constant is a domain element with a unique name

present in every structure. As will be explained, this domain element will

satisfy various properties in the course of the cyclic derivation in order to

fulfill the examination step.

The settings is connected to a sequence of nodes called the Operation
List. The list encodes the derivational sequence to generate the word.
Each of these nodes represents an Operation (shown in rectangles). Nodes
which represent operations satisfy the unary relation oper(x). Operation
nodes are connected via the binary relation of successor, specialized for

operation nodes: succ:oper(x). The main label for each operation node
is the name of the type of morphological function that it triggers. In the

running example in Figure 20.3, the Operation List carries the following

information:

1. it begins with root: Op:Root(x),
2. then there is zero-nominalization: Op:N(x),

4Dolatian (2020a) includes a morph level between segments and morphemes. We omit
it for brevity.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

334 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

3. followed by overt nominalization with the suffix -it͡ʃ : Op:Der-it͡ʃ(x),
4. and finally inflection occurs with the suffix -e: Op:Inf-e(x).

The settings is connected to the first operation via the binary relation of

operate_at(settings, y) (shown as an o-labeled edge). There are finitely
many syntactic categories and so there are finitely many primitive unary

relations like Op:N(x) (such as Op:A(x) for adjectives). There are also finitely
many derivational and inflectional morphemes like Op:Der-it͡ʃ(x) and Op:Inf-
e(x). Each has its own unary relation in the signature of the relational
structure.

In the diagrams, we omit the prefix “op:” from these operation labels.

In general, we do not show indexes for the settings and operation nodes.

20.4.2 Operation: Encoding derivational history

With this input, the first cycle begins with the Operation component (see

Figure 20.2). Essentially, the Operation component advances the Settings to

the next operation in the operation list. Formally, the Operation component

is a logical transduction that uses a copy set of size 1. The input and

output of this transduction for the structure in Figure 20.3 are shown

below in Figure 20.4. In the input, settings constant is connected to

the first operation node: Op:Root. In the output, the settings constant is
reconnected with the subsequent operation node: Op:N. In the diagram, the
indices are preprended with a number indicating the copy set. We adopt a

convention where the “copy set” of the input is 0.

In the Operation step, all labels and binary relations are faithfully

outputted except for the operate_at(x, y) relation. Beyond this section,
we do not show the formulas for faithfully outputting elements. They all

follow the same format as below. For all unary relations u∈U , and for all
binary relations b in B/{operate_at}, we have the following formulas.

φ1
u(x)

def
= u(x) (20.1)

φ1,1
b (x, y)

def
= b(x, y) (20.2)

To move along the operation list, we use the predicate defined in (20.3)

to find the current node connected to the settings, and the predicate in

(20.4) to find the subsequent operation node. The settings node is then

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 335

Input

kʰ0.1 i0.2 ɾ0.3

MRoot0.4

settings

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

o

Output

kʰ1.1 i1.2 ɾ1.3

MRoot1.4

settings

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

o

Figure 20.4: Operation: Proceeding on the operation list for the root kʰiɾ

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

336 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

made to point to the subsequent node in the definition of φoperate_at (20.5).

Op:curr (x)
def
= Op(x) ∧ operate_at(settings, x) (20.3)

Op:next (x)
def
= Op(x) ∧ ∃y[Op:curr (y) ∧ succ:Oper(y, x)] (20.4)

φ1,1
operate_at(x, y)

def
= x = settings ∧ Op:next (y) (20.5)

The logical transduction defined above points the settings constant to

a new operation and leaves everything else the same. The next stage is to

apply the morphological function designated by this new operation. Every

cycle starts with this logical transduction for the Operation step, defined

by the above formulas. Note that this means that if the settings currently

points to the last item in the list, then application of this transduction

results in the settings not being related to anything. In principle, this

could be used as a flag to know that the derivation has ended.

Turning now to the licensing functions, we adopt a simple strategy here

and for all subsequent transductions: unliscensed elements are ones that

satisfy no unary relations. If U is the set of unary relations, we can write
the following equation for all copies c in the copy set C.

φc
license(x) =

∨
u∈U

u(x) (20.6)

Consequently, elements satisfying no unary relation are eliminated.

20.4.3 Morphology: Morphological functions

A language consists of a finite number of possible morphological processes

which are applied in some order. We formalize these morphological pro-

cesses as logical transductions that reference the operation list. We examine

the label of the current operation node, and we apply the type of morpho-

logical process which this node is labeled for. For our running example, the

morphology adds a zero affix -∅ to create an MStem. We define a logical
transduction with a copy set of size at least 3 for reasons explained below.

Figure 20.5 illustrates the application of this transduction to the running

example.

We use the predicate in (20.7) to check if the current operation node has

the label Op:N for zero-nominalization. We also use the predicate MTop (x)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 337

Input

kʰ0.1 i0.2 ɾ0.3

MRoot0.4

settings

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

o

Output

kʰ1.1 i1.2 ɾ1.3

MRoot1.4 N2.4

MStem3.4

settings

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

m

m

o

Figure 20.5: Morphology: Adding a covert nominalizer in kʰiɾ-∅.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

338 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

(20.8) to find the morphologically-topmost node in the input, i.e., the

morphological node which is at the top of the tree (MRoot0.4).

CrntOp : N def
= ∃y[Op(y) ∧ Op:curr (y) ∧ Op:N(y)] (20.7)

MTop (x)
def
= MNode(x) ∧ ¬∃y[MDom(y, x)] (20.8)

In general, CrntOp : N is just one of several that are defined based on
the finite number of derivational and inflectional morphemes categories.

For example, there is a zero suffix which turns roots into adjectives, as

in /uɾɑχ/ ‘happy,’ and thus there is a predicate CrntOp : A defined as in
Equation 20.7 but using the atomic relation Op:A instead Op:N. Generally,
if M denotes the finite set of morphological derivational and inflectional

operations, then for all M ∈M , there is a predicate CrntOp : M defined as
above where Op:N is replaced with Op:M.
Given these predicates, we then output the base kʰiɾ in Copy 1. This

is accomplished by making the copy 1 formulas fully faithful as discussed

with respect to Equations 20.1 and 20.2. We output the suffix morpheme

N2.4 in Copy 2 and the new MStem3.4 in Copy 3 as output correspondents of

the morphologically-topmost node MRoot0.4. The morpheme has the labels

N because it assigns the syntactic category, while the MStem has the label
MStem. The MStem dominates its suffix and the base’s MRoot.
While the discussion so far illustrates the application of the transduction

to the specific example, the transduction must be written in a way to

accomodate all derivational and inflectional morphemes, of which there

are only finitely many. We therefore construct a finite set of predicates for

the different syntactic categories as shown below. For all M ∈M , we define
each φ2

M(x) as follows.

φ2
M(x)

def
= MTop (x) ∧ CrntOp : M (20.9)

(20.10)

Consequently, φ2
N(x) is defined as MTop (x) ∧ CrntOp : N . This formula is

responsible for labeling node N2.4 in Figure 20.5.

We use the third copy to indicate the node labeled φMStem in the output.

In Figure 20.5, this is the node indexed N3.4. The fact this node is labeled

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 339

φMStem instead of φMWord is because zero nominalization Op:N is a derivational,
and not an inflectional suffix. We partition the set M into two disjoint
subsets MD for the derivational morphemes, and MI for the inflectional
morphemes. The former create stems, and the latter create words, as

indicated in Equations 20.11 and 20.12, respectively below.

φ3
MStem(x)

def
= MTop (x) ∧

∨
M∈MD

CrntOp : M (20.11)

φ3
MWord(x)

def
= MTop (x) ∧

∨
M∈MI

CrntOp : M (20.12)

The formulas below establish the morphological dominance relations.

The way we have set things up, the 3rd copy of the morphological topmost

input node will dominate both the 2nd and 1st copy of the morphological

topmost input node.

φ3,2
MDom(x, y)

def
= MTop (x) ∧ MTop (y) (20.13)

φ3,1
MDom(x, y)

def
= MTop (x) ∧ MTop (y) (20.14)

With regards to copy sets, 2 and 3, there are additional unary and binary

relations we have not yet discussed. Generally, such formulas will be set to

false. For example, φ2,3
MDom(x, y)

def
= false. Formally, for all unary relations

u∈U , and for all binary relations b in B/{operate_at} which have not been
previously defined, and whenever c > 1 or c′ > 1, we define them as below
(cf. Equations 20.1 and 20.2).

φc
u(x)

def
= false (20.15)

φc,c′

b (x, y)
def
= false (20.16)

To conclude this section, we return to the issue of the size of the copy

set. At the beginning of this section, we wrote that the size of the copy set

is “at least 3” but we did not specify its exact size. What is the size of the

copy set of the logical transduction discussed here that adds a morpheme?

In the running example, the added morpheme’s phonetic content was null.

As a result, the output only needed to grow in size by two elements (nodes

2.4 and 3.4 in Figure 20.5). This is why we said that the copy set is at

least size 3. However, if the added morpheme’s phonetic content is not

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

340 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

null, then the output structure would include more nodes to represent this

phonetic content. The reason why the copy set is “at least 3” is that we

utilize additional copies to provide this phonetic content. In principle,

the derivational and inflectional affixes could have phonetic content of

any length. However, because there are finitely many derivational and

inflectional affixes there is a largest one. Let it’s size be n. Then the size
of the copy set of this logical transduction will be n+ 3. Here, where the
affix was covert with size 0, three copies were sufficient. We explain this

value in §20.5.1, which discusses how the formulas in this transduction

accomodate the derivational suffix [it͡ʃ] in the second cycle of the running

example.

20.4.4 Examination: What to parse and what rules to

apply

Following the Morphology stage, the next stage is Examination. Examina-

tion is a logical transduction with a copy set of size 1. In Examination, we

examine the morphological structure and determine what prosodic parses

and what phonological rules to later apply. This is done by examining the

morphological and prosodic context of the morphologically-topmost node.

Based on this context, we encapsulate properties onto the settings node.

We show the input and output of the running example in Figure 20.6 below.

For convenience, we reindex the domain elements between stages. For

example, the node labeled MStem now has the index 0.6 in the input side

of Figure 20.6 instead of 2.4, which was its index in the output structure

of Figure 20.5.

For the root kʰiɾ, the morphology created an MStem and not an MWord.

Thus we should not create a PWord in Cycle 1. We should apply the stem-

level phonology, not the word-level phonology. In linguistic theory, the

separation of stem-level and word-level phonology is formalized with sepa-

rate cophonologies or levels (Inkelas, 2014). We formalize cophonologies

with the unary relations Cophon:SLevel and Cophon:WLevel.

The formulas below examine whether the topmost node in the morpho-

logical tree satsfies MStem or MWord to deterimine whether the settings

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 341

Input

kʰ0.1 i0.2 ɾ0.3

MRoot0.4 N0.5

MStem0.6

settings

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

m

m

o

Output

kʰ1.1 i1.2 ɾ1.3

MRoot1.4 N1.5

MStem1.6

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

m

m

o

Figure 20.6: Examination: Setting the instructions for the prosody and

phonology kʰiɾ.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

342 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

node satisfies Cophon:SLevel or Cophon:SLevel, respectively.

φCophon:SLevel(x)
def
= x = settings ∧ MTop (x) ∧ MStem(x) (20.17)

φCophon:WLevel(x)
def
= x = settings ∧ MTop (x) ∧ MWord(x) (20.18)

The output side of Figure 20.6 labels the inside of settings box with the

unary relation it satisfies. For kʰiɾ, the settings inherits the stem-level

feature from the topmost node MStem0.6.

Generally, there can be other properties to encode on settings. These

will be defined when they are introduced. With Examination completed,

we move on to the Prosody and Phonology.

20.4.5 Prosody: Syllabification

In the Prosody component, we apply syllabification, resyllabification, sylla-

ble linearization, and the generation of higher-level prosodic constituents

like the prosodic word. These processes are each modeled by their own

logical transduction which are composed into a single transduction. This

is illustrated in Figure 20.7. For the stem kʰiɾ in Cycle 1, the only relevant

Input

(re)Syllabification

Syllable Linearization

Prososdic Constituency

Output

Figure 20.7: Elaborated architecture for the Prosody component of the

cycle.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 343

prosodic process is syllabification.5 Therefore, in this section, we only show

syllabification, and the other aspects of the Prosody stage are introduced

later.

Generally, the syllable structure of Armenian is fairly typical. The

maximal syllable is CjVCCC. In this chapter, we set aside complex codas,

but see Dolatian (2020a) for a treatment of them.

Formally, syllabification is a function with a copy set of size 2. The

input and output are shown for the running example in Figure 20.8 below,

omitting the settings, operation list, and morphological structure. As shown,

syllabification creates a single syllable over the stem kʰiɾ.

Input

kʰ0.1 i0.2 ɾ0.3
/ /

Output

kʰ1.1 i1.2 ɾ1.3

σ2.2

/ /
p

p
p

Figure 20.8: Prosody: Syllabifying the stem kʰiɾ.

Strother-Garcia (2019) examined different ways syllable structure and

syllabification can be formalized using model-theoretic representations

and logic. In particular, she used a single binary dominance relation, and

included domain elements that satisfied unary relations for syllabic roles

such as onset, nucleus, and coda (see also Chapter 15). We formalize a

different approach. Specifically, the syllable prosodically dominates the

segments via different types of prosodic dominance relations which are

specialized for the type of syllable position: PDom:syll_nuc, PDom:syll_ons,
and PDom:syll_coda. In our graphs such as in Figure 20.8, these relations
are shown as p-labeled edges.

5As said in footnote (2), Dolatian (2020a) has MStems mapped to prosodic stems
(PStem). For kʰəɾ-it͡ʃ-e, a PStem is created and modified in Cycles 1 and 2. We omit the
PStem for brevity.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

344 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

The first step in syllabification is to faithfully output all labels and rela-

tions in Copy 1 (not shown). There will be an exception to this to account

for resyllabificaton, which will be discussed later in §20.5.2. Following

this, syllabification applies only to segments which are unsyllabified in

the input. The predicate unsyll_0 in (20.19) checks if some segment
is unsyllabified in the input. (Recall that we use 0 to denote the input

‘copy.’) We likewise define the predicate unsyll_1 in (20.20) to check if
a segment is unsyllabified over the output in Copy 1. The use of these two

separate predicates is to simplify resyllabification in later cycles (§20.5.2).

They both check if a segment x lacks a prosodic dominance relation to
some syllable y.

unsyll_0 (x)
def
= ¬∃y[syll(y) ∧ [PDom:syll_ons(y, x)∨ (20.19)

PDom:syll_nuc(y, x) ∨ PDom:syll_coda(y, x)]]

unsyll_1 (x)
def
= ¬∃y[φ1

syll(y) ∧ [φ1,1
PDom:syll_ons(y, x)∨ (20.20)

φ1,1
PDom:syll_nuc(y, x) ∨ φ

1,1
PDom:syll_coda(y, x)]]

These predicates will faciltate writing how the prosodic structure in

the output is generated. For every position 1.x that is an unsyllabified
vowel in Copy 1, a syllable node is created in Copy 2 (20.21). Any un-

syllabified vowel at position 1.x will stand in the PDom:syll_nuc relation
to the newly created syllable 2.x (20.22). As for onset formation (20.23),
any unsyllabified consonant 1.y which precedes some vowel 1.z in Copy 1
becomes related to the syllable 2.z. Similarly for coda formation (20.24),
any consonant at position 1.y which succeeds a vowel 1.z in Copy 1 is
related to the syllable 2.z provided the consonant 1.y is not already serving

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 345

as the onset of some syllable.

φ2
syll(x)

def
= φ1

vowel(x) ∧ unsyll_1 (x) (20.21)

φ2,1
PDom:syll_nuc(x, y)

def
= φ2

syll(x) ∧ φ1
vowel(y) ∧ unsyll_1 (y)

∧ (x = y) (20.22)

φ2,1
PDom:syll_ons(x, y)

def
= φ2

syll(x) ∧ φ1
cons(y) ∧ unsyll_1 (y)

∧∃z[φ1
vowel(z) ∧ φ1,1

succ:seg(y, z)

∧φ2,1
PDom:syll_nuc(x, z)] (20.23)

φ2,1
PDom:syll_coda(x, y)

def
= φ2

syll(x) ∧ φ1
cons(y) ∧ unsyll_1 (y)

∧∃z[φ1
vowel(z) ∧ φ1,1

succ:seg(z, y)]

∧φ2,1
PDom:syll_nuc(x, z)] ∧ ¬∃u[φ2

syll(u)

∧φ2,1
PDom:syll_ons(u, y)] (20.24)

Following syllabification, there is resyllabification, syllable lineariza-

tion, and prosodic constituents are constructed (see Figure 20.7). For

monosyllabic kʰiɾ, these steps are vacuous. We explain these steps in detail

in later sections.

20.4.6 Phonology: Stem-level rule of stress

After Prosody, the next stage is the Phonology. There are two phonological

processes in this component: stress assignment and reduction. For the stem

kʰiɾ, the stem-level rule of stress applies. Reduction does not apply because

there are no destressed vowels. Reduction is formalized in Cycle 2 (§20.5).

The input and output are shown below in Figure 20.9. The stressed vowel

is in bold.

Stress is a transduction with a copy set of size 1. Morphologically,

stress is triggered if we are in the stem-level or word-level domains. The

predicate (20.25) checks if we are in the right cophonology by examining

the settings. We use this predicate as a condition on the application of

stress.

StrDom def
= Cophon:SLevel(settings)∨ (20.25)

Cophon:WLevel(settings)

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

346 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

Input

kʰ0.1 i0.2 ɾ0.3

MRoot0.4 N0.5

MStem0.6

σ0.7

settings

Cophon:SLevel

/ /

m
m

m

m

m

p
p

p

Output (Copy 1)

kʰ1.1 í1.2 ɾ1.3

MRoot1.4 N1.5

MStem1.6

σ1.7

settings

Cophon:SLevel

/ /

m
m

m

m

m

p
p

p

Figure 20.9: Phonology: Applying stem-level stress assignment in kʰiɾ.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.4. FIRST CYCLE: GENERATING A STEM 347

As said in §20.2.2, Armenian places stress on the rightmost full vowel.

This is either the final syllable if it’s a non-schwa; otherwise the penulti-

mate syllable. We use the following predicates to find these phonological

contexts, i.e., full vowels, final syllables, and penultimate syllables which

precede a schwa-headed syllable.6

vowel : full (x)
def
= vowel(x) ∧ ¬schwa(x) (20.26)

syll : final (x)
def
= syll(x) ∧ ¬∃y[succ:syll(x, y)] (20.27)

syll : schwa (x)
def
= syll(x) ∧ ∃y[schwa(y)

∧PDom:syll_nuc(x, y)] (20.28)

syll : pen-pre-schwa (x)
def
= syll(x) ∧ ∃y[succ:syll(x, y)

∧ syll : final (y)

∧ syll : schwa (y)] (20.29)

With these predicates, we now apply stress. We faithfully output all

labels and relations except for those which involve stress (not shown). Then

we find the rightmost full vowel (20.30), i.e., a vowel x which (1) is full,
(2) part of the syllable y which is (3) either the final syllable or precedes
a schwa-headed syllable. The position x is stressed by getting the label
stressed(x) (20.31). Crucially, the output function (20.31) checks that we
are in the right morphologically-induced stress domain. This transduction

is however incomplete. In Cycle 2 (§20.5.3), we add an output function to

mark destressed vowels.

6Some of these predicates check for the linear order of syllables via the binary relation
of syllable-based immediate successor: succ:syll(x, y), which we will discuss later in
Cycle 2 (§20.5.2).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

348 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

vowel : rightFull (x)
def
= vowel : full (x)∧

∃y[
(

syll : final (y) ∨ syll : pen-pre-schwa (y)
)

∧PDom:syll_nuc(y, x)]
(20.30)

φ1
stressed(x)

def
= StrDom ∧ vowel : rightFull (x)

(20.31)

Other aspects of the co-phonologies are treated in later sections.

This completes the first stem-level cycle for the free-standing noun kʰíɾ.

The output of this cycle is next fed back to the cyclic architecture in order

to start a new cycle of morphology and phonology.

20.5 Second cycle: Generating a derivative

The first cycle showcased the basis of our logical formalization. In the

second cycle, we provide further details on those logical transductions

to account for the creation of overt morphological structure (§20.5.1),

resyllabification (§20.5.2), and the application of cyclical phonological

rules (§20.5.3).

20.5.1 Operation andMorphology: Adding a derivational

suffix

Given the output of the first cycle as input to Cycle 2, the transductions

illustrated in Figure 20.2 are repeated, beginning with the Operation com-

ponent, articulated in §20.4.2. This transduction shifts settings to point

to the subsequent operation. In the running example, it now points to

the operation labeled Op:Der-it͡ʃ(x), which means this cycle will add the
derivational suffix -it͡ʃ. The input and output for the Operation component

of cycle 2 is shown in Figure 20.10.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.5. SECOND CYCLE: GENERATING A DERIVATIVE 349

Input

kʰ0.1 i0.2 ɾ0.3

MRoot0.4 N0.5

MStem0.6

σ0.7

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

m

m

o

p
p

p

Output

kʰ1.1 í1.2 ɾ1.3

MRoot1.4 N1.5

MStem1.6

σ1.7

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

m

m

o

p
p

p

Figure 20.10: Operation: The input and output of the operation component

of cycle 2 for the stem kʰiɾ.

The output of the Operation component is fed to the Morphology com-

ponent. While the Morphology component in Cycle 1 added a covert affix

-∅, the Morphology component in Cycle 2 adds an overt derivational suffix

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

350 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

-it͡ʃ. The input and output of the Morphology component in Cycle 2 is

shown in Figure 20.11.

Input

kʰ0.1 í0.2 ɾ0.3

MRoot0.4 N0.5

MStem0.6

σ0.7

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ /

/ / /

m
m

m

m

m

o

p
p

p

Output

kʰ1.1 í1.2 ɾ1.3 i4.3 t͡ʃ5.3

MRoot1.4 N1.5

MStem1.6

σ1.7

Der2.6

MStem3.6

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ / / /

/ / /

m
m

m

m

m

m

m

m

m

o

p
p

p

Figure 20.11: Input and output structures for the addition of the deriva-

tional suffix -it͡ʃ.

In the first cycle, we noted that the size of the copy set for the logical

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.5. SECOND CYCLE: GENERATING A DERIVATIVE 351

transduction would be equal to n+ 3 where n was the size of the largest
derivational or inflectional affix. Since the derivational suffix -it͡ʃ is of size

2, the part of the logical transduction that addresses its addition will use a

copy set up to and including 5. As in the case of zero-affixation, copies 2

and 3 are reserved for positions in the morphological structure indicating

the affix and the new stem. Copies 4 and 5 will be used to represent the

phonetic content of the derivational suffix -it͡ʃ.

The current transduction utilizes the predicate CrntOp : Der-it͡ʃ , which

is true only if there is an instruction to add the derivational suffix -it͡ʃ (see

§20.4.3). This predicate is used to output the base faithfully (not shown). As

explained in §20.4.3, equations 20.9 and 20.11 on page 338 place the suffix

node and MStem node in copies 2 and 3 as output correspondents of the

morphologically-topmost node in the input structure (the node MStem0.6)

in Figure 20.11). Similarly, the formulas which establish the dominance

relations (Equations 20.13 and 20.14 on page 339) are also at work here.

Since the suffix it͡ʃ has length 2, the next two copies 4 and 5 are used to

represent this suffix’s phonetic content. Specifically, the phonetic content

of the suffix it͡ʃ is defined to be output correspondents of the input-final

segment (20.33 and 20.34). In Figure 20.11, this is the node indexed

0.3. This segment is picked out by the predicate final (x) defined below.
The suffix morpheme dominates these suffix segments via morphological

dominance in the output structure (20.35 and 20.36). The suffix segments

are connected via successor (20.37), and connected with the base via

successor (20.38).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

352 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

final (x)
def
= ¬∃y[succ:seg(x, y) (20.32)

φ4
i(x)

def
= final (x) ∧ CrntOp : Der-it͡ʃ (20.33)

φ5
t(x)

def
= final (x) ∧ CrntOp : Der-it͡ʃ (20.34)

φ2,4
MDom(x, y)

def
= MTop (x) ∧ final (y) ∧ CrntOp : Der-it͡ʃ (20.35)

φ2,5
MDom(x, y)

def
= MTop (x) ∧ final (y) ∧ CrntOp : Der-it͡ʃ (20.36)

φ4,5
succ:seg(x, y)

def
= final (x) ∧ final (y) ∧ CrntOp : Der-it͡ʃ (20.37)

φ1,4
succ:seg(x, y)

def
= final (x) ∧ final (y) ∧ CrntOp : Der-it͡ʃ (20.38)

As before, any other unary and binary relation which refer to a copy c > 1
that have not been specified are set to false as described in Equations 20.15
and 20.16.

In sum, overt affixation further specifies aspects of the transduction of

the morphological component specified in §20.4.3 to generate and linearize

the segmental make-up of the overt affix and place them in a dominance

relation with morphological nodes. In the case of the suffix it͡ʃ, because

it is of length 2, we used copies 4 and 5 for this purpose. Affixes of size

3 would also make use of copy 6. Thus the size of the copy set for the

transduction for the morphological compenent is n+ 3 where n is the size
of the largest affix.

While the above formulas work for the particular derivational suffix

-it͡ʃ, they will need to be generalized to be sensitive to other morphemes as

well to accurately specify the transduction we have in mind. To explain,

recall that M denotes the finite set of morphological derivational and

inflectional operations. If there is another suffix M ∈M that begins with the

vowel [i] then the equation φ4
i(x) would have to be defined as final (x)∧(

CrntOp : Der-it͡ʃ ∨ CrntOp : M
)
. More generally, we have to partition

M according to the segmental makeup of the morphemes. IfM1[i] denotes
the suffixes that begin with [i] and if M2[t͡ʃ] denotes the suffixes whose
second segment is [t͡ʃ], then formulas 20.33 and 20.34 above would be

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.5. SECOND CYCLE: GENERATING A DERIVATIVE 353

replaced with formulas 20.39 and 20.40 shown below, respectively.

φ4
i(x)

def
= final (x) ∧

∨
M∈M1[i]

CrntOp : M (20.39)

φ5
t͡ʃ
(x)

def
= final (x) ∧

∨
M∈M1[t͡ʃ]

CrntOp : M (20.40)

(20.41)

Likewise, the dominance relations expressed in formulas 20.35 and 20.36

have to be generalized because there are potentially other morphemes in

the lexicon that have phonetic content and are of length 1 or of length

2. We again partition M into morphemes of length 1 and 2 into the sets
Mlen1 and Mlen2, respectively. Then formulas 20.35 and 20.36 above
would be replaced with Equations 20.42 and 20.43 below.

φ2,4
MDom(x, y)

def
= MTop (x) ∧ final (y) ∧

∨
M∈Mlen1

CrntOp : M (20.42)

φ2,5
MDom(x, y)

def
= MTop (x) ∧ final (y) ∧

∨
M∈Mlen2

CrntOp : M (20.43)

(20.44)

Similar generalizationse should be made for the formulas defining successor

relations as well.

20.5.2 Examination and Prosody: Stem-levels and resyl-

labification

The Examination component applies after the Morphology component. The

new topmost morphological node is the suffix MStem. Just like in Cycle 1,

the Settings gets the stem-level cophonology label via percolation from

the topmost MStem node. The transduction presented in §20.4.4 needs no

further specification, and the change itself is vacuous, and so we move on

to the next component, Prosody.

As outlined in §20.4.5, the the Prosody component will syllabify the

suffix, and resyllabify the base’s coda. Figure 20.12 shows the input and

output structures for this process. This figure only shows the segments and

syllables and leaves out the other parts of the input and output structures.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

354 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

Input

kʰ0.1 í0.2 ɾ0.3 i0.8 t͡ʃ0.9

σ0.7

/ / / /
p

p
p

Output

kʰ1.1 í1.2 ɾ1.3 i1.8 t͡ʃ1.9

σ1.7 σ2.8

/ / / /
p

p

p

p

p

Figure 20.12: Applying resyllabification to the derived stem kʰíɾ-it͡ʃ.

In §20.4.5, copy 1 contained a faithful copy of all the input relations,

both segemental, and prosodic. For example, labels are carried over to copy

1 because of formulas such as φ1
seg(x)

def
= seg(x) and φ1

syll(x)
def
= syll(x).

Similarly, binary relations that hold in the input structure are also carried

over with formulas expressing faithfulness like the ones shown below.

φ1,1
PDom:syll_nuc(x, y)

def
= PDom:syll_nuc(x, y) (20.45)

φ1,1
PDom:syll_ons(x, y)

def
= PDom:syll_ons(x, y) (20.46)

In §20.4.5, however, we noted there was an exception to copy 1 being

a completely faithful copy to the input structure in order to account for

resyllabification. This exception has to do with codas, so that they can be

resyllabified as onsets. The exception effectively ‘unsyllabifies’ segments

preceding vowels which were previously identifed as codas. Equation 20.47

says a segment which is a coda in the input structure will remains a coda

in copy 1 unless it precedes a vowel.7

φ1,1
PDom:syll_coda(x, y)

def
= PDom:syll_coda(x, y)∧

¬∃z[vowel(z) ∧ succ:seg(y, z)] (20.47)

As before in §20.4.5, copy 2 is used to introduce new syllable nodes for

unsyllabified material. This part of the logical transduction is the same as

7Dolatian (2020a) provides additional conditions for resyllabification, such as when
new consonants precede or follow the base’s root, when new vowels precede the root, or
in compound prosody. We set these aside.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.5. SECOND CYCLE: GENERATING A DERIVATIVE 355

what was presented in §20.4.5. The same formulas which syllabified the

root in the cycle 1 will also successfully syllabify the overt affix here. This

is because the formulas for copy 2 elements are defined in terms of the

structure present in Copy 1. In particular, in the running example, because

the node labeled [ɾ] indexed at 1.3 is no longer syllabified, Equations 20.21
to 20.24 will ensure that it will be syllabified as an onset.

After (re)syllabification, the old and new syllables are ordered via a the

successor relation among syllables: succ:syll(x, y). Syllable linearization
is a transduction that uses a copy set of size 1. We show the input and

output below.

Input

kʰ0.1 í0.2 ɾ0.3 i0.8 t͡ʃ0.9

σ0.7 σ0.12

/ / / /
p

p

p

p

p

Output

kʰ1.1 í1.2 ɾ1.3 i1.8 t͡ʃ1.9

σ1.7 σ1.12

/ / / /
p

p

p

p

p

/

Figure 20.13: Prosody: Ordering syllables in a derived stem kʰíɾ-it͡ʃ

Syllables are ordered based on the general precedence relations of their

nuclei. We first generalize the immediate successor relation (/) of seg-
ments into general long-distance precedence (<). Chapter 2 explained how
this can be accomplished with MSO logic in Equation 2.14 on page 47.

With general precedence we can define the next-vowel relation (Equa-

tion 20.48) which related successive vowels on the vowel tier. Syllables

can then be ordered based on the location of their nuclei in the vowel tier

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

356 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

(Equation 20.49).

/V (x, y)
def
= vowel(x) ∧ vowel(y) ∧ x < y

∧¬∃z[vowel(z) ∧ x < z < y] (20.48)

φ1,1
succ:syll(x, y)

def
= syll(x) ∧ syll(y) ∧ ∃u, v

[u /v v ∧ PDom:syll_nuc(x, u)

∧PDom:syll_nuc(y, v)] (20.49)

As mentioned, general precedence requires MSO logic by using quanti-

fiers over sets. Alternatively as discussed in Chapter 2, general precedence

could be set as a primitive relation in our input and the successor relations

could be derived with only First Order (FO) logic.8 Having formalized

resyllabification and syllable ordering, we now turn to cyclic phonological

rules.

20.5.3 Phonology: Cyclic reduction

The Phonology component follows the Prosody component. As with Cycle

1, stem-level cophonology applies. For Cycle 2, both stem-level rules, stress

assignment and reduction, apply.

The Phonology component consists of two logical transductions which

apply in a sequence: stress assignment and reduction. The tranduction

for stress assignment was presented in §20.4.6, and it applies here again,

placing stress on the suffix vowel -ít͡ʃ. We introduce an atomic relation

destressed and include its specification as part of the stress assignment
function. Then the transduction for reduction transforms destressed vowels

into schwas.

Figure 20.14 shows the segmental part of the input and output structures

for the reduction process in the Phonology component, as applied to the

running example.

In addition to assigning stress as described in §20.4.6, we further spec-

ify stress assignment to also indicate which vowels are destressed. Equa-

tion 20.50 says that a position x satisfies the atomic formula destressed
8Because syllable sizes are bound, it is possible that syllable linearization may be

achievable with quantifier-free logic. See Chapter 22 for Quantifer-Free logic and Strother-
Garcia (2018a) and Strother-Garcia (2019) for application to syllabification.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.5. SECOND CYCLE: GENERATING A DERIVATIVE 357

Input

kʰ0.1 í0.2 ɾ0.3 i0.8 t͡ʃ0.9

σ0.7 σ0.12

settings

Cophon:SLevel

/ / / /
p

p

p

p

p

/

Output

kʰ1.1 ə1.2 ɾ1.3 í1.8 t͡ʃ1.9

σ1.7 σ1.12

settings

Cophon:SLevel

/ / / /
p

p

p

p
p

/

Figure 20.14: Phonology: Applying stress assignment and reduction to the

derived stem kʰǐɾ-ít͡ʃ.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

358 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

in the output if and only if x is a stressed vowel in the input but not the
output.

φdestressed(x)
def
= stressed(x) ∧ ¬φstressed(x) (20.50)

No position would satisfy this formula in cycle 1 because no input would

include any stressed vowels.

Following the application of stress assignment, vowel reduction oc-

curs. Reduction is modeled with a separate logical transduction that uses

a copy set of size 1. Figure 20.15 shows the input and output structures

to reduction for the running example. Figure 20.15 only shows the seg-

ments, syllable nodes, and the Settings constant. In the input structure in

Figure 20.15, the destressed and stressed vowels are shown in bold.

Input
kʰ0.1 ǐ0.2 ɾ0.3 í0.8 t͡ʃ0.9/ / / /

Output
kʰ1.1 ə1.2 ɾ1.3 í1.8 t͡ʃ1.9/ / / /

Figure 20.15: Phonology: Applying vowel reduction to the input structure

kʰǐɾ-ít͡ʃ to produce the output kʰəɾ-ít͡ʃ.

As explained in §20.2.2, destressed high vowels are either deleted or

reduced to a schwa. The transduction first checks that we are in the right

morphological domain of reduction (20.51), i.e., that we are in the stem-

level domain based on the features of the settings constant. With this

domain condition, we turn destressed high vowels into schwas (20.52).

Any underlying schwas are faithfully outputted.

ReducDom def
= Cophon:SLevel(settings) (20.51)

φschwa(x)
def
= ReducDom ∧ [schwa(x)

∨[destressed(x) ∧ high(x)]] (20.52)

(20.53)

There are some additional finer points regarding reduction which are set

aside here. Readers are referred to Dolatian (2020a) for a complete formal-

ization. Nonetheless, the reduction transduction specified here captures

the main features of reduction in Armenian.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.6. THIRD CYCLE: WORD-LEVEL PHONOLOGY 359

This completes the second cycle. The logical formalism exactly captures

the fact that reduction is a cyclic process that is derived via multiple cycles

of stress shift and reduction. In the next cycle, we show how this formalism

separates the stem-level domain from the word-level domain.

20.6 Third cycle: Word-level phonology

The output of the second cycle kʰəɾ-ít͡ʃ is fed to a new third cycle to form

an inflected word kʰəɾ-it͡ʃ-é. The main aspects of this cycle are creating

a different overt affix (§20.6.1), parsing prosodic words (§20.6.3), and

applying a separate morphologically-induced cophonology (§20.6.4).

20.6.1 Operation and Morphology: Adding an inflec-

tional suffix

In the third cycle, the Operation and Morphology components do the

tasks of generating an overt inflectional affix. The operation component

advances the operation list so that the settings points to the final operation

node: Op:Inf-e. This transduction uses the same functions from Cycle 1
(§20.4.2). Then the Morphology component adds the inflectional suffix -e.

Figure 20.16 shows the input and output structures for the Morphology

component.

As in previous Morphology stages, the predicate CrntOp : Inf-e checks
if the current operation node indicates that an inflectional suffix -e should

be added. With this condition, the transduction generates the inflectional

suffix -e. Following the convention established in the first two cycles, copies

2 and 3 are used to for the affix and MWord nodes in the morphological

structure (Equations 20.9 and 20.12). The phonetic material -e will be

placed in copy 4. Following the discussion at the end of §20.5.1, let M1[e]
be the subset of morphemes which begin with [e]. Equation 20.54 ensures

that t

φ4
e(x)

def
= final (x) ∧

∨
M∈M1[e]

CrntOp : M (20.54)

Finally all of the aforementioned nodes are connected via successor and

morphological dominance with the formulas specified in §20.5.1.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

360 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

Input

kʰ0.1 í0.2 ɾ0.3 i0.8 t͡ʃ0.9

MRoot0.4 N0.5

MStem0.6

σ0.7 σ0.12

Der0.10

MStem0.11

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ / / /

/ / /

m
m

m

m

m

m

m

m

m

o

p
p

p

p

p

/

Output

kʰ1.1 ə1.2 ɾ1.3 í1.8 t͡ʃ1.9 e4.9

MRoot1.4 N1.5

MStem1.6

σ1.7 σ1.12

Der1.10 Inf2.11

MStem1.11

MWord3.11

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ / / / /

/ / /

m
m

m

m

m
m

m

m

m

m

m

m

o

p
p

p

p
p

/

Figure 20.16: Morphology: Adding an overt inflectional suffix kʰəɾ-ít͡ʃ-e.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.6. THIRD CYCLE: WORD-LEVEL PHONOLOGY 361

20.6.2 Examination: Parsing instructions

The output of the Morphology in cycle 3 is a morphological word. Unlike

stems, words trigger the word-level cophonology and they are parsed into

prosodic words. In order to apply these processes, in the Examination stage,

the settings constant is given the word-level cophonology label. It is like-

wise given a parsing instruction to trigger PWord formation. Figure 20.17

shows the input and output structures of the Examination component as

applied to the running example.

The label for the word-level cophonology is percolated via the output

function in (20.55). As for the parse instructions (20.56), this label is

generated on the settings if the morphologically topmost node is an

MWord which is not already parsed into a PWord. To encode this property,

we use the binary relation of Match:word(x, y) which associates an MWord
with a matching PWord. This relation is explained further in the Prosody

stage (§20.6.3).

φ1
Cophon:WLevel(x)

def
= x = settings ∧ ∃y[MTop (y)∧

Cophon:WLevel(y)] (20.55)

φ1
Parse:MWord(x)

def
= x = settings ∧ ∃y[MTop (y) ∧ MWord(y)∧

¬∃z[PWord(y) ∧ Match:word(y, z)]] (20.56)

20.6.3 Prosody: Generating prosodic words

After Examination, the Prosody component applies. The Prosody compo-

nent involves resyllabification and generating higher-level prosodic struc-

ture. The suffix is first resyllabified with the base, using the functions

completely specified in Cycle 2 (§20.5.2), which effectively resyllabfies

.kʰə.ɾít͡ʃ.〈e〉 as .kʰə.ɾí.t͡ʃe.
The final transduction making up the Prosody component is Prosodic

Constituency (Figure 20.7). The labels on the settings indicate whether

any prosodic constituents should be generated. In the running example, the

settings constant has the label Parse:MWord, which is interpreted as an
instruction to generate a PWord. In terms of the relational structure, this

PWord dominates the syllable nodes. Additionally, this PWord is related to

the MWord via a special binary relation Match:word(x, y) that is specialized

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

362 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

Input

kʰ0.1 ə0.2 ɾ0.3 í0.8 t͡ʃ0.9 e0.13

MRoot0.4 N0.5

MStem0.6

σ0.7 σ0.12

Der0.10 Inf0.14

MStem0.11

MWord0.15

settings

Cophon:SLevel

Root N Der-it͡ʃ Inf-e

/ / / / /

/ / /

m
m

m

m

m
m

m

m

m

m

m

m

o

p
p

p

p
p

/

Output

kʰ1.1 ə1.2 ɾ1.3 í1.8 t͡ʃ1.9 e1.13

MRoot1.4 N1.5

MStem1.6

σ1.7 σ1.12

Der1.10 Inf1.14

MStem1.11

MWord1.15

settings

Cophon:WLevel

Parse:MWord

Root N Der-it͡ʃ Inf-e

/ / / / /

/ / /

m
m

m

m

m
m

m

m

m

m

m

m

o

p
p

p

p
p

/

Figure 20.17: Examination: Percolating word-level cophonology and

prosodic parse for kʰəɾ-ít͡ʃ-e.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.6. THIRD CYCLE: WORD-LEVEL PHONOLOGY 363

for prosodic correspondences (Selkirk, 2011). Figure 20.18 shows the input

and output structures of the Prosodic Constituency transduction for the

running example.

The following equations generate the PWord, establish its dominance

relations, and match it with the topmost MWord. The first lines of Equa-

tion 20.57 generates the PWord as output correspondent of the input’s

topmost MWord. The second line ensures that the input MWord is not

already matched to a PWord.

φ2
PWord(x)

def
= Parse:MWord(settings) ∧ MWord(x)

∧¬∃y[PWord(y) ∧ Match:word(x, y)] (20.57)

(20.58)

Equation 20.59 establishes the Match:word relation between the MWord
and this new Pword.

Match:word1,2(x, y) φ1
MWord(x) ∧ φ2

PWord(y) (20.59)

(20.60)

Finally, the PWord dominates the syllables via a type of prosodic domi-

nance that’s specialized for PWords and syllables.

φ2,1
PDom:PWord_syll(x, y)

def
= Parse:MWord(settings)

∧φ2
PWord(x) ∧ φ1

syll(y) (20.61)

As before, any relation not specified here which involve a copy c > 1 is set
to false. In this way, this logical transduction captures the generation of
prosodic structure from morphological structure.

20.6.4 Phonology: Word-level phonology blocks reduc-

tion

After the Prosodic component, the Phonology component applies. As before,

we examine the settings in order to determine what cophonology to apply.

For kʰəɾ-ít͡ʃ-e, the settings has the cophonology label Cophon:WLevel. Thus,
we should trigger the word-level cophonology of stress without reduction.

Figure 20.19 shows the input structure submitted to the Phonology compo-

nent and the resulting output stucture. This figure omits the morphology

and operation list.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

364 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

Input

kʰ0.1 ə0.2 ɾ0.3 í0.8 t͡ʃ0.9 e0.13

MRoot0.4 N0.5

MStem0.6

σ0.7 σ0.12 σ0.16

Der0.10 Inf0.14

MStem0.11

MWord0.15

settings

Cophon:WLevel

Parse:MWord

Root N Der-it͡ʃ Inf-e

/ / / / /

/ / /

m
m

m

m

m
m

m

m

m

m

m

m

o

p
p

p

p
p

p

/ /

Output

kʰ1.1 ə1.2 ɾ1.3 í1.8 t͡ʃ1.9 e1.13

MRoot1.4 N1.5

MStem0.6

σ1.7 σ1.12 σ1.16

Der1.10 Inf1.14

MStem1.11

MWord1.15

PWord2.15

settings

Cophon:WLevel

Parse:MWord

Root N Der-it͡ʃ Inf-e

/ / / / /

/ / /

m
m

m

m

m
m

m

m

m

m

m

m

o

p
p

p

p
p

p

/ /

Match

p p
p

Figure 20.18: Prosody: Parsing an MWord into a PWord in kʰəɾ-ít͡ʃ-e.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.6. THIRD CYCLE: WORD-LEVEL PHONOLOGY 365

Input

kʰ0.1 ə0.2 ɾ0.3 í0.8 t͡ʃ0.9 e0.13

σ0.7 σ0.12 σ0.16

settings

Cophon:WLevel

Parse:MWord

/ / / / /
p

p

p

p
p

p

/ /

Output

kʰ1.1 ə1.2 ɾ1.3 ǐ1.8 t͡ʃ1.9 é1.13

σ1.7 σ1.12 σ1.16

settings

Cophon:WLevel

Parse:MWord

/ / / / /
p

p

p

p
p

p

/ /

Figure 20.19: Phonology: Applying word-level phonology to an inflected

word kʰəɾ-it͡ʃ-é.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

366 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

The same stress shift functions described in Cycle 1 (§20.4.6) shift stress

onto the new suffix -e. However, stress reduction does not apply in this cycle

because this inflectional suffix triggers the word level cophonology. These

effects are obtained with the formulas previously specified. In particular,

we introduced two predicates StrDom and ReducDom which must be true
for stress shift and reduction to occur. Equations 20.62 and 20.63 show

the definitions of these predicates. These equations repeat Equations 20.25

(page 345) and 20.51 (page 358), respectively.

StrDom def
= Cophon:SLevel(settings)∨

Cophon:WLevel(settings) (20.62)

ReducDom def
= Domain : Cophon:SLevel(settings) (20.63)

Readers can verify that functions used for stress shift (§20.4.6) all obey the

cophonology condition StrDom . Thus they will apply for the inflected
word kʰəɾ-it͡ʃ-é. In contrast, the reduction functions from Cycle 2 (§20.5.3)

need to meet the condition ReducDom , which is not satisfied in this cycle,
and this reduction is blocked.

This concludes cycle 3.

20.7 Evaluating the cyclic architecture and the

computation of cyclicity

The previous sections explained how logical transductions can not only

encode the input-output relationships in morphophonology, but also apply

morphophonological processes in a cyclic manner. That is, the output of

one round of morphophonology acts as the input to another.

Specifically, in this chapter, we presented the cycle as a series of MSO

logical transductions, which apply one after another. There were five

components for cyclic derivations: Operations, Morphology, Examination,

Prosody, and Phonology. Within a single cycle, each component was its

own logical transduction that fed the next component. To model one cycle,

these five logical transductions can be combined into a single one via

composition: C = Ph◦Pr ◦E ◦M ◦O. Since MSO logical transductions are
closed under composition, and there were a fixed number of transductions

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.7. EVALUATING THE CYCLIC ARCHITECTURE AND THE COMPUTATION OF
CYCLICITY 367

that we employed for the cycle, this means there is a single logical trans-

duction encompassing the entire cycle C. The application of two cycles,
however, requires composing the single transduction C with itself again.
And generating three cycles is obtained with C ◦ C ◦ C.
However, because there is no bound on the number of cycles in the

mental grammar of Armenian (or any language), there is no bound as

to how many cycles of C an arbitrary word gets. While MSO(/) logical
transductions are closed under bounded composition, they are not closed

under unbounded composition. In other words, there is not necessarily

a MSO/ logical transduction which captures the behavior of arbitrarily
long sequences of C composed with itself. The end-result is that our
formal grammar C for cyclic phonology is actually a formal grammar for
computing a single cycle.

This section discusses the computational issues that arise from the

absence of a bound on the number of times that a cycle may apply. In the

context of the logical transducions introduced here, this amounts to no

bound on the length of the operations list.

Cyclicity is a common aspect of generative phonology and morphology

(Chomsky and Halle, 1968; Brame, 1974; Kiparsky, 1982). The combi-

nation of cyclicity and interactionism flourished in early work in Lexical

Phonology (Kiparsky, 1982; Kaisse and Shaw, 1985), continued into Stratal

OT (Trommer, 2013; Mascaró, 1976; Wiese, 1994; Kaisse and McMahon,

2011), and into contemporary phase-based approaches (Marvin, 2002;

Newell, 2008; Embick, 2010; Samuels, 2011; Scheer, 2012; Guekguezian,

2017, 2021; Sande, 2017; Newell et al., 2017).

But in computational linguistics, cyclicity has been a challenging prob-

lem to formalize (Sproat, 1992), with few implementations (Williams, 1993,

1994) and few learnability results (Nazarov and Pater, 2017). The same

problem arguably exists in computational syntax (Levelt, 1974). There are

two reasons for this difficulty: implicitness and complexity.

The first reason is that, many, if not all, cyclic formalisms utilize tools

and principles that are insufficiently explicit for formal analysis. In Lexical

Phonology, there have been many analyses of English phonology with a

principle like the Strict Cycle Condition. In a computational formalization

of English lexical phonology, Williams (1993) found various weaknesses

in three contemporary theoretical models (Kiparsky, 1982; Halle and Mo-

hanan, 1985; Booij and Rubach, 1987). Essentially, these weaknesses

boiled down to various degrees of ambiguity in how certain principles or

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

368 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

assumptions were defined. This led to either contradictions in modelling

assumptions or to errors in how the models account for aspects of the data.

One major source of these difficulties lay in how models defined the Strict

Cycle Condition (Kiparsky, 1993).

The second challenge for formal analysis of cyclicity is the well-known

result that, in order for a phonological or morphophonological rule to be

finite-state definable, the rule cannot apply to the locus of its structural

change (Johnson, 1972), i.e., to the same location in the output. Otherwise,

the unbounded application of a phonological rule can create non-regular

languages. For example, a rule like ∅ → ab/a_b is not only regular, it is
input strictly local if it applies simultaneously (Chandlee, 2017a; Chandlee

and Heinz, 2018), and therefore as a logical transduction quantifier-free

(Chapter 22). But the unbounded application of this rule results in a

process which is not regular, because it effectively creates the non-regular,

context-free language {anbn | n ≥ 1}.
One potential response could be to place a bound on the number of cycles

(Peters and Ritchie, 1973). To our knowledge, however, this alternative

has not been seriously developed because no a priori bound is clear.

To sum up, it is this unbounded application which causes a blow-up in

expressivity. Unbounded rule application can simulate a Turing machine

(Coleman, 1995, 1998, 77ff) or be computationally undecidable (Ristad,

1990). Kaplan and Kay (1994, 365) put it nicely as: “In the worst case, in

fact, we know that the computations of an arbitrary Turing machine can

be simulated by a rewriting grammar with unrestricted rule reapplication.”

Cyclic phonological rules are a priori supposed to apply to their own output,

and thus we appear to reach an impasse.

This issue of unboundedness can be expressed succinctly as follows: It

is not the case that there exists a number k such that for all words w, we
can apply at most k cycles. In response to this problem, we sketch out three
possible approaches: Run-time Approximation, Give up Regularity,

and Restrict Cyclicity.

The core issue of unboundedness expressed above is highlighted by the

notation (∃k, ∀w), which emphasizes the order of quantification. When
this order is flipped, notated (∀w, ∃k), a true statement is obtained: for
every word w, there exists a number k of cycles which is specific to that
word w, such that exactly k cycles occur. So for a given word w, there is a
bound k in run-time or in practice. This approach is what we call Run-time

Approximation. It is essentially what the logical formalization in this

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.7. EVALUATING THE CYCLIC ARCHITECTURE AND THE COMPUTATION OF
CYCLICITY 369

chapter is doing, because the operation list is of finite size and controls

how many cycles to generate.

Given w, this approach allows us to use quite expressive logical struc-
tures such as in this chapter. One could also use this approach to define a

finite-state grammar that can generate words with up to k cycles.9 This ap-
proach prioritizes practical considerations over theoretical ones to side-step

the question of the generative capacity of morphophonology. A related

theoretical position one could take however would be to factor the mor-

phophonological grammar into a regular morphophonological component

and a control structure which allows the regular component to be called un-

boundedly many times. This is essentially the approach taken in Williams

(1993) who uses a looping mechanism over the morphology and phonol-

ogy. This practical approach recognizes the fact that phonological rules are

regular per application (or up to k cycles) but that the generative capacity
of the whole system can in principle be beyond regular.

The Run-time Approximation approach works as a grammar for an

individual cycle, but not as a grammar for cyclic phonology as a whole.

Given an input root r which includes its operation list o, an independent
mechanism has to apply the function F as many times as needed so that
we ‘traverse’ the operation list o from start to end and generate the desired
final output word w. The end-result is that we need both a formal grammar
(our logical transductions) as well as another apparatus that will actively

apply the formal grammar as many times as needed.

There is another approach that we term Give up Regularity. Some

formalizations of lexical phonology abandoned cyclicity and used context-

free grammars (Cole, 1990, 1995b; Coleman, 1995; Cole and Coleman,

1992). This approach effectively treats the morphophonological module of

grammar as non-regular. This is a valid approach, but since we have little

to say about it, we move on to the last approach.

The third approach is the most appealing to us: Restrict Cyclicity.

This approach aims to identify restrictions on cyclic morphophonological

rules so that the transitive closure of their composition remains regular.

Such restrictions include the one that Johnson and Kaplan and Kay (JKK)

recognized: phonological rules cannot apply to the locus of their structural

9This is similar to some treatments of total reduplication (Walther, 2000; Beesley and
Karttunen, 2003) which push the work of total reduplication into a run-time process. This
treatment is required if we try to formalize reduplication with 1-way FSTs, but not with
2-way FSTs (cf. for a review, see Dolatian and Heinz, 2020).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

370 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

change. This approach generates two questions: one empirical, and one

formal.

The empirical question is whether all attested morphophonological rules

obey the JKK restriction. In other words, are there cyclic morphophono-

logical processes like ∅ → ab/a_b whose transitive closure is non-regular?
Research around this question has consistently shown no. Although un-

bounded suffixation (a regular language) exists, there are no cases of

unbounded circumfixation (a non-regular anbn language) (Aksënova et al.,
2016). Although the semantics of morphological structures is non-regular

because of center-embedding in tree structures (Langendoen, 1981; Carden,

1983; Oseki, 2018; Oseki et al., 2019; Oseki and Marantz, 2020), their

surface morphotactics (Hammond, 1993) and cyclic phonology are reg-

ular (Bjorkman and Dunbar, 2016). The marked absence of non-regular

morphotactics has been taken as evidence that, even if morphoseman-

tics can in principle be non-regular, it is filtered through a finite-state

morphophonological processing system (Hammond, 1993).

It thus seems that that restriction on regularity is empirically robust.

This leads to the formal question on how we can translate the formalization

of the JKK restriction from string-to-string relations to logical transductions

over nonlinear representations. Answering this question appears to us to

be the most appealing at present, and we encourage future work in this

area.

20.8 Conclusion

This chapter showcased how to construct a formal grammar for the morpho-

phonology of Armenian using logical transduction over a representation

that included phonological, morphological, and prosodic components. In

this way, we presented an alternative formalization to the cycle to previous

finite-state methods, which were limited to string-based representations

of the phonology, morphology, and prosody The logical formalism was

capable of representing a wide array of morphophonological phenomena

that are couched within cyclic phonology. By using an explicit system, we

are able to appreciate the complexity of morphophonological processes

and the logical formulas help express the different types of information

and how they determine the morphological structure of complex words.

Although we did not discuss the generative capacity of such processes, and

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.8. CONCLUSION 371

made liberal use of MSO(/) logic, Dolatian (2020a) found that the bulk of
morphophonological processes are individually local functions.

A larger question is: Is cyclicity as a larger phenomenon still computation-

ally un-definable and too expressive? While one of our goals was to answer

this question, we essentially reached the same end-result that Williams

(1993) had in her earlier formalization of cyclicity. The logical transduction

here models individual cycles C, but an independent apparatus is needed
to apply it as many times as needed to an input. Nonetheless, we hope

that this formalization helps tease apart these moving parts, so that future

work can be guided to either a) discovering the formal nature of this inde-

pendent apparatus, or b) discovering restrictions on the attested typology

of cyclic processes which ensures that their unbunded composition is also

computationally regular. This later route again harkens back to Kaplan

and Kay (1994)’s lucid discussion on why cyclicity is still a problem.

Appendix

This appendix summarizes the model signature for the relational structures

used in this chapter. The list of atomic relations in Tables 20.3 and 20.4

are the ones used in this chapter.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

372 CHAPTER 20. LOGICAL APPROXIMATIONS OF LEXICAL STRATA

Types of Nodes (Domain Elements)

oper(x)
morpheme(x)
segment(x)
syll(x)

Successor Relations

succ:seg(x,y)
succ:oper(x)
succ:syll(x,y)

Dominance relations

MDom(x,y)
PDom:syll_nuc(x,y)
PDom:syll_ons(x,y)
PDom:syll_coda(x,y)
PDom:PWord_syll(x,y)

Relations connecting types of structure

operate_at(x,y)
Parse:MWord(x)
Match:word(x,y)

Others

Cophon:SLevel(x)
Cophon:WLevel(x)
MRoot(x)
Op:Root(x)
stressed(x)
destressed(x)

Table 20.3: Part 1 of the R-signature for the structures in this chapter.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

20.8. CONCLUSION 373

Language Specific Morphemes

Op:N(x)
…

Op:Der − it͡ʃ(x)
…

Op:Inf − e(x)
…

Language Specific Phonemes

i
…

Language Specific Features

consonantal
…

Table 20.4: Part 2 of the R-signature for the structures in this chapter.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

436

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Bibliography

Aksënova, Alëna, Thomas Graf, and Sedigheh Moradi. 2016. Morphotac-

tics as tier-based strictly local dependencies. In Proceedings of the 14th

sigmorphon workshop on computational research in phonetics, phonology,

and morphology, 121–130.

Albro, Dan. 2005. A large-scale, LPM-OT analysis of Malagasy. Doctoral

dissertation, University of California, Los Angeles.

Albro, Daniel M. 2000. Taking Primitive Optimality Theory beyond the

finite state. In Finite-state phonology: Proceedings of the 5th Workshop of

SIGPHON, edited by Jason Eisner, Lauri Karttunen, and Alain Thériault,

57–67. Luxembourg.

URL http://aclanthology.coli.uni-saarland.de/pdf/W/W00/
W00-1806.pdf

Albro, Daniel M. 2003. A large-scale, computerized phonological analysis

of malagasy. In Talk presented at the Annual Meeting of the Linguistic Society

of America.

Allauzen, Cyril, Michael Riley, Johan Schalkwyk, Wojciech Skut, and

Mehryar Mohri. 2007. OpenFst: A general and efficient weighted finite-

state transducer library. In Proceedings of the Ninth International Conference

on Implementation and Application of Automata, (CIAA 2007), vol. 4783

of Lecture Notes in Computer Science, 11–23. Springer.

URL http://www.openfst.org

Allen, Margaret Reece. 1979. Morphological investigations. Doctoral

dissertation, University of Connecticut, Storrs, CT.

Anderson, Stephen. 1974. The Organization of Phonology. Academic Press.

437

http://aclanthology.coli.uni-saarland.de/pdf/W/W00/W00-1806.pdf
http://aclanthology.coli.uni-saarland.de/pdf/W/W00/W00-1806.pdf
http://www.openfst.org

D
R
A
F
T

438 BIBLIOGRAPHY

Archangeli, Diana, and Douglas Pulleyblank. 2022. Emergent phonology,

vol. 7 of Conceptual Foundations of Language Science. Berlin: Language

Science Press.

Aronoff, Mark. 1976. Word formation in generative grammar. No. 1 in

Linguistic Inquiry Monographs. Cambridge, MA: The MIT Press.

Baković, Eric. 2000. Harmony, dominance and control. Doctoral disserta-

tion, Rutgers University.

Baković, Eric. 2007. A revised typology of opaque generalisations. Phonol-

ogy 24:217–259.

Bale, Alan, and Charles Reiss. 2018. Phonology: A Formal Introduction. The

MIT Press.

Basbøll, Hans. 1972. Some conditioning phonological factors for the pronun-

ciation of short vowels in danish with special reference to syllabification.

In Annual Reports of the Institute of Phonetics, vol. 6, 185–210. University

of Copenhagen.

Basbøll, Hans. 2005. The phonology of Danish. Oxford University Press.

Beauquier, D., and J.E. Pin. 1991. Languages and scanners. Theoretical

Computer Science 84:3–21.

Becker, Michael. 2022. Cairene arabic stress is local. Radical: A Journal of

Phonology 4:211–247.

Beesley, Kenneth, and Lauri Karttunen. 2000. Finite-state non-

concatenative morphotactics. In Proceedings of the 38th Annual Meeting on

Association for Computational Linguistics, ACL ’00, 191–198. Hong Kong:

Association for Computational Linguistics.

URL https://doi.org/10.3115/1075218.1075243

Beesley, Kenneth, and Lauri Karttunen. 2003. Finite State Morphology. CSLI

Publications.

Benedikt, Michael, Leonid Libkin, Thomas Schwentick, and Luc Segoufin.

2001. A model-theoretic approach to regular string relations. Logic in

Computer Science, Symposium on 0:0431.

September 23, 2024 © Jeffrey Heinz

https://doi.org/10.3115/1075218.1075243

D
R
A
F
T

BIBLIOGRAPHY 439

Benua, Laura. 1997. Transderivational identity: Phonological relations

between words. Doctoral dissertation, University of Massachusetts,

Amherst.

Bermúdez-Otero, Ricardo. 2011. Cyclicity. In The Blackwell companion to

phonology, edited by Marc van Oostendorp, Colin Ewen, Elizabeth Hume,

and Keren Rice, vol. 4, 2019–2048. Malden, MA: Wiley-Blackwell.

Bjorkman, Bronwyn, and Ewan Dunbar. 2016. Finite-state phonology

predicts a typological gap in cyclic stress assignment. Linguistic Inquiry

47:351–363.

Blevins, Juliette. 1995. Syllable in phonological theory. In The Handbook

of Phonological Theory, edited by John Goldsmith, 206–244. Blackwell

Publishers.

Blumenfeld, Lev. 2006. Constraints on phonological interactions. Doctoral

dissertation, Stanford University.

Blust, Robert A. 2001. Thao triplication. Oceanic Linguistics 40:324–335.

Booij, Geert, and Rochelle Lieber. 1993. On the simultaneity of morpho-

logical and prosodic structure. In Studies in lexical phonology, edited by

Sharon Hargus and Ellen M. Kaisse, vol. 4 of Phonetics and Phonology,

23–44. San Diego: Academic Press.

Booij, Geert, and Jerzy Rubach. 1987. Postcyclic versus postlexical rules

in lexical phonology. Linguistic Inquiry 18:1–44.

Brame, Michael K. 1974. The cycle in phonology: Stress in Palestinian,

Maltese, and Spanish. Linguistic Inquiry 5:39–60.

Brentari, Diane. 1990. Licensing in asl handshape change. Sign language

research: Theoretical issues .

Brentari, Diane. 1998. A prosodic model of sign language phonology. Mit

Press.

Brentari, Diane. 2019. Sign Language Phonology. Cambridge University

Press.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

440 BIBLIOGRAPHY

Brody, Michael. 1990. Some remarks on the focus field in hungarian. UCL

Working Papers in Linguistics 2:201–225.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata.

Mathematical Logic Quarterly 6:66–92.

Carden, Guy. 1983. The non-finite-state-ness of the word formation com-

ponent. Linguistic Inquiry 14:537–541.

Caron, Pascal. 2000. Families of locally testable languages. Theoretical

Computer Science 242:361–376.

Carrier, Jill Louise. 1979. The interaction of morphological and phonologi-

cal rules in tagalog: a study in the relationship between rule components

in grammar. Doctoral dissertation, Massachusetts Institute of Technology.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral

dissertation, The University of Delaware.

Chandlee, Jane. 2017a. Computational locality in morphological maps.

Morphology 27:599–641.

Chandlee, Jane. 2017b. Computational locality in morphological maps.

Morphology 27:1–43.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2014. Learning strictly

local subsequential functions. Transactions of the Association for Computa-

tional Linguistics 2:491–503.

URL http://aclweb.org/anthology/Q14-1038

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2015. Output strictly

local functions. In 14th Meeting on the Mathematics of Language, 112–125.

Chandlee, Jane, Remi Eyraud, Jeffrey Heinz, Adam Jardine, and Jonathan

Rawski. 2019. Learning with partially ordered representations. In Pro-

ceedings of the 16th Meeting on the Mathematics of Language, 91–101.

Toronto, Canada: Association for Computational Linguistics.

Chandlee, Jane, and Jeffrey Heinz. 2012. Bounded copying is subsequential:

Implications for metathesis and reduplication. In Proceedings of the 12th

Meeting of the ACL Special Interest Group on Computational Morphology

September 23, 2024 © Jeffrey Heinz

http://aclweb.org/anthology/Q14-1038

D
R
A
F
T

BIBLIOGRAPHY 441

and Phonology, 42–51. Montreal, Canada: Association for Computational

Linguistics.

Chandlee, Jane, and Jeffrey Heinz. 2018. Strict locality and phonological

maps. Linguistic Inquiry 49:23–60.

Chandlee, Jane, Jeffrey Heinz, and Adam Jardine. 2018. Input strictly local

opaque maps. Phonology 35:171–205.

Chandlee, Jane, and Adam Jardine. 2019a. Autosegmental input-strictly

local functions. Transactions of the Association for Computational Linguistics

7:157–168.

Chandlee, Jane, and Adam Jardine. 2019b. Quantifier-free least fixed

point functions for phonology. In Proceedings of the 16th Meeting on

the Mathematics of Language, 50–62. Toronto, Canada: Association for

Computational Linguistics.

Chandlee, Jane, and Adam Jardine. 2021. Computational universals in

linguistic theory: Using recursive programs for phonological analysis.

Language 93:485–519.

Chomsky, Noam. 1995. The Minimalist Program. The MIT Press.

Chomsky, Noam, and Morris Halle. 1965. Some controversial questions in

phonological theory. Journal of Linguistics 1:97–138.

Chomsky, Noam, and Morris Halle. 1968. The Sound Pattern of English. New

York: Harper & Row.

Clark, Alexander. 2017. Computational learning of syntax. Annual Review

of Linguistics 3:107–123.

Clark, Alexander, and Ryo Yoshinaka. 2012. Beyond semilinearity: Distribu-

tional learning of parallel multiple context-free grammars. In International

Conference on Grammatical Inference, 84–96.

Clark, Alexander, and Ryo Yoshinaka. 2014. Distributional learning of

parallel multiple context-free grammars. Machine Learning 96:5–31.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

442 BIBLIOGRAPHY

Clements, George. 1990. The role of the sonority cycle in core syllabifi-

cation. In Papers in Laboratory Phonology, edited by John Kingston and

Mary Beckmann, vol. 1, 283–333. Cambridge: Cambridge University

Press.

Clements, George, and Jay Keyser. 1983. CV phonology: a generative theory

of the syllable. Cambridge, MA: MIT Press.

Cohen-Sygal, Yael, and Shuly Wintner. 2006. Finite-state registered au-

tomata for non-concatenative morphology. Computational Linguistics

32:49–82.

Cohn, Abigail C. 1989. Stress in Indonesian and bracketing paradoxes.

Natural language & linguistic theory 7:167–216.

Cole, Jennifer. 1990. Arguing for the phonological cycle: A critical review.

In Proceedings of the Formal Linguistics Society of Midamerica, edited by De-

nis Meyer, Satoshi Tomioka, and Leyla Zidani-Eroglue, 51–67. Linguistics

Student Association, Madison, WI: University of Wisconson.

Cole, Jennifer. 1995a. The cycle in phonology. In The Handbook of Phono-

logical Theory, edited by John Goldsmith, 1 ed., 70–113. Cambridge, MA:

Blackwell Publishers.

Cole, Jennifer. 1995b. Eliminating cyclicity as a source of complexity in

processing phonology. In Linguistics and Computation, edited by Jennifer

Cole, Georgia M. Green, and Jerry L. Morgan, no. 52 in CSLI Lecture

Notes, 255–280. Stanford, CA: CSLI Publications.

Cole, Jennifer, and John Coleman. 1992. No need for cyclicity in gen-

erative phonology. In Proceedings of the 28th Regional Meeting of the

Chicago Linguistics Society, edited by Costas P. Canakis, Grace P. Chan,

and Jeannette Marshall Denton, vol. 2, 36–50. Chicago, IL: University of

Chicago.

Coleman, Jason. 2004. Thesis shmesis: Representing reduplication with

directed graphs. Bachelor’s thesis, Haverford College, Haverford, PA.

Coleman, John. 1995. Declarative lexical phonology. In Frontiers of phonol-

ogy: Atoms, structures, derivations, edited by Jacques Durand and Francsis

Katamba, 333–383. London: Longman.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 443

Coleman, John. 1998. Phonological representations: Their names, forms and

powers. Cambridge University Press.

Coleman, John, and John Local. 1991. The “no crossing constraint” in

autosegmental phonology. Linguistics and Philosophy 14:295–338.

Courcelle, Bruno. 1994. Monadic second-order definable graph transduc-

tions: A survey. Theoretical Computer Science 126:53–75.

Courcelle, Bruno. 1997. The expression of graph properties and graph

transformations in monadic second-order logic. In Handbook of Graph

Grammars and Computing by Graph Transformations, edited by Grzegorz

Rozenberg, vol. 1, 313–400. World Scientific.

Courcelle, Bruno, and Joost Engelfriet. 2012. Graph Structure and Monadic

Second-Order Logic, a Language Theoretic Approach. Cambridge University

Press.

Culy, Christopher. 1985. The complexity of the vocabulary of Bambara.

Linguistics and Philosophy 8:345–351.

Danis, Nick, and Adam Jardine. 2019. Q-theory representations are logically

equivalent to autosegmental representations. In Proceedings of the Society

for Computation in Linguistics, vol. 2, 29–38.

Davis, Stuart. 1988. Topics in Syllable Geometry. Outstanding Dissertations

in Linguistics. New York: Garland Press.

Dolatian, Hossep. 2020a. Computational locality of cyclic phonology in

armenian. Doctoral dissertation, Stony Brook University.

Dolatian, Hossep. 2020b. Cyclicity and prosodic misalignment in Armenian

stems: Interaction of morphological and prosodic cophonologies. Natural

Language and Linguistic Theory .

Dolatian, Hossep, and Jeffrey Heinz. 2018. Modeling reduplication with

2-way finite-state transducers. In Proceedings of the Fifteenth Workshop on

Computational Research in Phonetics, Phonology, and Morphology, 66–77.

Brussels, Belgium: Association for Computational Linguistics.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

444 BIBLIOGRAPHY

Dolatian, Hossep, and Jeffrey Heinz. 2020. Computing and classifying

reduplication with 2-way finite-state transducers. Journal of Language

Modeling 8:179–250.

Dolatian, Hossep, Jonathan Rawski, and Jeffrey Heinz. 2021. Strong

generative capacity of morphological processes. In Proceedings of the

Society for Computation in Linguistics, vol. 4, 228–243.

Downing, Laura J. 1999. Prosodic stem 6= prosodic word in Bantu. In Studies
on the phonological word, edited by T Alan Hall and Ursula Kleinhenz,

vol. 174, 73–98. Amsterdam/Philadelphia: John Benjamins Publishing.

Downing, Laura J. 2001. Review of Eric Raimy (2000). the phonology

and morphology of reduplication. (Studies in Generative Grammar 52.)

Berlin: Mouton de Gruyter. pp. viii+ 200. Phonology 18:445.

Dresher, Elan B. 2011. The phoneme. In The Blackwell Companion to

Phonology, edited by Elizabeth HumeMarc van Oostendorp, Colin J. Ewen

and Keren Rice, vol. 1, 241–266. Malden, MA & Oxford: Wiley-Blackwell.

Droste, Manfred, and Paul Gastin. 2009. Weighted automata and weighted

logics. In Droste et al. (2009), chap. 5.

Droste, Manfred, and Werner Kuich. 2009. Semirings and formal power

series. In Droste et al. (2009), chap. 1.

Droste, Manfred, Werner Kuich, and Heiko Vogler, eds. 2009. Handbook

of Weighted Automata. Monographs in Theoretical Computer Science.

Springer.

Durvasula, Karthik, and Scott Nelson. 2018. Lexical retuning targets fea-

tures. In Proceedings of the Annual Meetings on Phonology, edited by Gillian

Gallagher, Maria Gouskova, and Sora Yin. Linguistic Society of America.

É. Kiss, Katalin. 1981. Structural relations in hungarian, a ”free” word

order language. Linguistic Inquiry 12:185–213.

É. Kiss, Katalin. 2002. The Syntax of Hungarian. Cambridge Syntax Guides.

Cambridge University Press.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 445

Eisner, Jason. 1997. Efficient generation in primitive optimality theory.

In 35th Annual Meeting of the Association for Computational Linguistics and

8th Conference of the European Chapter of the Association for Computational

Linguistics, 313–320.

Eisner, Jason. 2000a. Directional constraint evaluation in optimality the-

ory. In COLING 2000 Volume 1: The 18th International Conference on

Computational Linguistics.

Eisner, Jason. 2000b. Easy and hard constraint ranking in ot: Algorithms

and complexity. In Proceedings of the Fifth Workshop of the ACL Special

Interest Group in Computational Phonology, 22–33.

Eliasson, S. 1985. Turkish k-deletion: simplicity vs. retrieval. Folia Linguis-

tica 19:289–312.

Embick, David. 2010. Localism versus globalism in morphology and phonology,

vol. 60 of Linguistic Inquiry Monographs. Cambridge, MA: MIT Press.

Enderton, Herbert B. 2001. A Mathematical Introduction to Logic. 2nd ed.

Academic Press.

Engelfriet, Joost. 2015. Two-way pebble transducers for partial functions

and their composition. Acta Informatica 52:559–571.

Engelfriet, Joost, and Hendrik Jan Hoogeboom. 2001. MSO definable string

transductions and two-way finite-state transducers. Transactions of the

Association for Computational Linguistics 2:216–254.

URL http://doi.acm.org/10.1145/371316.371512

Engelfriet, Joost, and Sebastian Maneth. 2002. Two-way finite state trans-

ducers with nested pebbles. In International Symposium on Mathematical

Foundations of Computer Science, 234–244. Springer.

Filiot, Emmanuel, and Pierre-Alain Reynier. 2016. Transducers, logic and

algebra for functions of finite words. ACM SIGLOG News 3:4–19.

URL http://doi.acm.org/10.1145/2984450.2984453

Finley, Sara. 2008. The formal and cognitive restrictions on vowel harmony.

Doctoral dissertation, Johns Hopkins University, Baltimore, MD.

September 23, 2024 © Jeffrey Heinz

http://doi.acm.org/10.1145/371316.371512
http://doi.acm.org/10.1145/2984450.2984453

D
R
A
F
T

446 BIBLIOGRAPHY

Fitzpatrick, Justin. 2004. A concatenative theory of possible affix types. In

Papers from EVELIN I. MIT Working Papers in Linguistics, edited by Andrés

Salanova.

Fitzpatrick, Justin. 2006. Sources of multiple reduplication in Salish and

beyond. InMIT Working Papers on Endangered and Less Familiar Languages:

Studies in Salishan 7, edited by Shannon T. Bischoff, Lynnika Butler, Peter

Norquest, and Daniel Siddiqi, 211–240.

Fitzpatrick, Justin, and Andrew Nevins. 2002. Phonological occurrences:

Relations and copying. In Proceedings of the 2nd North American Phonology

Conference. Montreal.

Fitzpatrick, Justin, and Andrew Nevins. 2004. Linearizing nested and

overlapping precedence in multiple reduplication. In University of Penn-

sylvania Working Papers in Linguistics, 75–88.

Flack, Kathryn. 2009. Constraints on onsets and codas of words and phrases.

Phonology 26:269–302.

Frampton, John. 2009. Distributed reduplication. Cambridge, MA: MIT Press.

Frank, Robert, and Giorgo Satta. 1998. Optimality Theory and the gen-

erative complexity of constraint violability. Computational Linguistics

24:307–315.

Frank, Robert, and K. Vijay-Shanker. 2001. Primitive c-command. Syntax

4:164–204.

Frishberg, Nancy. 1975. Arbitrariness and iconicity: historical change in

american sign language. Language 696–719.

Gazdar, Gerald, and Geoffrey K Pullum. 1985. Computationally relevant

properties of natural languages and their grammars. New generation

computing 3:273–306.

Gerdemann, Dale, and Mans Hulden. 2012. Practical finite state optimality

theory. In Proceedings of the 10th International Workshop on Finite State

Methods and Natural Language Processing, 10–19.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 447

Gerdemann, Dale, and Gertjan van Noord. 2000. Approximation and

exactness in finite state optimality theory. In Proceedings of the Fifth

Meeting of the ACL Special Interest Group in Computational Phonology,

34–45.

Goedemans, R. W. N., Jeffrey Heinz, and Harry van der Hulst. 2015.

StressTyp2.

URL http://st2.ullet.net/

Golan, Jonathan S. 1999. Semirings and their Applications. Springer.

Gold, E.M. 1967. Language identification in the limit. Information and

Control 10:447–474.

Goldsmith, John. 1976. Autosegmental phonology. Doctoral dissertation,

MIT, Cambridge, MA.

Goldsmith, John. 2011. The syllable. In The Blackwell Handbook of Phono-

logical Theory, edited by John A. Goldsmith, Jason Riggle, and Alan C. L.

Yu, 164–196. Wiley-Blackwell.

Goodman, Joshua. 1999. Semiring parsing. Computational Linguistics

25:573–606.

Gorman, Kyle. 2016. Pynini: A python library for weighted finite-state

grammar compilation. In Proceedings of the SIGFSMWorkshop on Statistical

NLP and Weighted Automata, 75–80. Berlin, Germany.

Gorman, Kyle, and Richard Sproat. 2021. Finite-State Text Processing. Mor-

gan & Claypool Publishers.

Graf, Thomas. 2010a. Comparing incomparable frameworks: A model

theoretic approach to phonology. In University of Pennsylvania Working

Papers in Linguistics, vol. 16.

Graf, Thomas. 2010b. Logics of phonological reasoning. Master’s thesis,

University of California, Los Angeles.

Graf, Thomas. 2013. Local and transderivational constraints in syntax and

semantics. Doctoral dissertation, University of California, Los Angeles.

September 23, 2024 © Jeffrey Heinz

http://st2.ullet.net/

D
R
A
F
T

448 BIBLIOGRAPHY

Guekguezian, Peter Ara. 2017. Prosodic recursion and syntactic cyclicity

inside the word. Doctoral dissertation, University of Southern California.

Guekguezian, Peter Ara. 2021. Aspectual phase heads in Muskogee verbs.

Natural Language & Linguistic Theory 39:1129–1172.

Guimarães, Maximiliano, and Andrew Nevins. 2012. Opaque nasalization

in ludlings and the precedence relations of reduplication and infixation.

Letras & Letras 28:129–166.

Gussmann, Edmund. 2007. The Phonology Of Polish. Oxford University

Press.

Halle, Morris. 2008. Reduplication. Current studies in linguistics series

45:325.

Halle, Morris, and George N. Clements. 1983. Problem Book in Phonology:

A workbook for introductory courses in linguistics and in modern phonology.

MIT Press.

Halle, Morris, and K. P. Mohanan. 1985. Segmental phonology of Modern

English. Linguistic Inquiry 16:57–116.

Hammond, Michael. 1988. On deriving the well-formedness condition.

Linguistic Inquiry 19:319–325.

Hammond, Michael. 1993. On the absence of category-changing prefixes

in English. Linguistic Inquiry 24:562–567.

Hansson, Gunnar. 2010. Consonant Harmony: Long-Distance Interaction in

Phonology. No. 145 in University of California Publications in Linguistics.

Berkeley, CA: University of California Press. Available on-line (free) at

eScholarship.org.

Hao, Sophie. 2024. Universal generation for Optimality Theory is PSPACE-

complete. Computational Linguistics 50:83–117.

Hao, Yiding. 2019. Finite-state optimality theory: non-rationality of har-

monic serialism. Journal of Language Modelling 7:49–99.

Harris, James. 1983. Syllable Structure And Stress in Spanish: a Nonlinear

Analysis. Cambridge, Mass.: MIT Press.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 449

Harris, James, and Morris Halle. 2005. Unexpected plural inflections in

Spanish: Reduplication and metathesis. Linguistic Inquiry 36:195–222.

Harrison, K David, and Eric Raimy. 2004. Reduplication in tuvan: Expo-

nence, readjustment and phonology. In Proceedings of Workshop in Altaic

Formal Linguistics, vol. 1. Citeseer.

Hauser, Ivy, and Coral Hughto. 2020. Analyzing opacity with contextual

faithfulness constraints. Glossa: a journal of general linguistics 5.

Hauser, Ivy, Coral Hughto, and Megan Somerday. 2016. Faith-uo: Counter-

feeding in harmonic serialism. In Proceedings of the 2014 Annual Meeting

on Phonology, vol. 2.

Hayes, Bruce. 2009. Introductory Phonology. Wiley-Blackwell.

Hayes, Bruce, Robert Kirchner, and Donca Steriade, eds. 2004. Phonetically-

Based Phonology. Cambridge University Press.

Hayes, Bruce, and Donca Steriade. 2004. Introduction: the phonetic bases

of phonological markedness. In Hayes et al. (2004), chap. 1, 1–33.

Hayes, Bruce, Bruce Tesar, and Kie Zuraw. 2013. Otsoft 2.3.2. software

package.

URL http://www.linguistics.ucla.edu/people/hayes/otsoft

Hayes, Bruce, and James White. 2015. Saltation and the p-map. Phonology

32:267–302.

Hedman, Shawn. 2004. A First Course in Logic. Oxford University Press.

Heinz, Jeffrey. 2007. The inductive learning of phonotactic patterns. Doc-

toral dissertation, University of California, Los Angeles.

Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns.

Phonology 26:303–351.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry

41:623–661.

September 23, 2024 © Jeffrey Heinz

http://www.linguistics.ucla.edu/people/hayes/otsoft

D
R
A
F
T

450 BIBLIOGRAPHY

Heinz, Jeffrey. 2014. Culminativity times harmony equals unbounded

stress. In Word Stress: Theoretical and Typological Issues, edited by Harry

van der Hulst, chap. 8, 255–275. Cambridge, UK: Cambridge University

Press.

Heinz, Jeffrey. 2018. The computational nature of phonological generaliza-

tions. In Phonological Typology, edited by Larry Hyman and Frans Plank,

Phonetics and Phonology, chap. 5, 126–195. De Gruyter Mouton.

Heinz, Jeffrey, and William Idsardi. 2013. What complexity differences

reveal about domains in language. Topics in Cognitive Science 5:111–131.

Heinz, Jeffrey, Gregory M Kobele, and Jason Riggle. 2009. Evaluating the

complexity of optimality theory. Linguistic Inquiry 40:277–288.

Heinz, Jeffrey, and Regine Lai. 2013. Vowel harmony and subsequentiality.

In Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13),

edited by Andras Kornai and Marco Kuhlmann, 52–63. Sofia, Bulgaria.

Hooper, J. 1976. An Introduction to Natural Generative Phonology. New

York: Academic Press.

Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 2006. Introduction to

Automata Theory, Languages, and Computation. 3rd ed. Addison-Wesley.

Hopcroft, John E, and Jeffrey D Ullman. 1969. Formal languages and their

relation to automata. Boston, MA: Addison-Wesley Longman Publishing

Co., Inc.

Horvath, Julia. 1976. Focus in hungarian and x-̄notation. Linguistic Analysis

2:175–197.

Hulden, Mans. 2009a. Finite-state machine construction methods and algo-

rithms for phonology and morphology. Doctoral dissertation, University

of Arizona.

Hulden, Mans. 2009b. Foma: A finite-state compiler and library. In

Proceedings of the Demonstrations Session at EACL 2009, 29–32. Athens,

Greece: Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/E09-2008

September 23, 2024 © Jeffrey Heinz

http://www.aclweb.org/anthology/E09-2008

D
R
A
F
T

BIBLIOGRAPHY 451

Hulden, Mans, and Shannon T Bischoff. 2009. A simple formalism for

capturing reduplication in finite-state morphology. In Proceedings of the

2009 conference on Finite-State Methods and Natural Language Processing:

Post-proceedings of the 7th International Workshop FSMNLP 2008, edited by

Jakub Piskorski, Bruce Watson, and Anssi Yli-Jyrä, 207–214. Amsterdam:

IOS Press.

URL http://dl.acm.org/citation.cfm?id=1564035.1564059

van der Hulst, Harry. 1993. Units in the analysis of signs. Phonology

10:209–241.

van der Hulst, Harry. 1994. Dependency relations in the phonological

representation of signs. Sign language research 11–38.

van der Hulst, Harry, ed. 2014. Word Stress: Theoretical and Typological

Issues. Cambridge University Press.

von Humboldt, Wilhelm. 1999. On Language. Cambridge Texts in the

History of Philosophy. Cambridge University Press. Edited by Michael

Losonsky. Translated by Peter Heath. Originally published 1836.

Hurch, Bernhard, ed. 2005. Studies on reduplication. No. 28 in Empirical

Approaches to Language Typology. Berlin: Walter de Gruyter.

Hyman, Larry. 1975. Phonology: Theory and Analysis. Holt, Rinehart and

Winston.

Hyman, Larry M. 2009. How (not) to do phonological typology: the case of

pitch-accent. Language Sciences 31:213 – 238. Data and Theory: Papers

in Phonology in Celebration of Charles W. Kisseberth.

Idsardi, William, and Eric Raimy. 2008. Reduplicative economy. In Rules,

Constraints, and Phonological Phenomena, edited by Bert Vaux and Andrew

Nevins, chap. 5, 149–184. Oxford: Oxford University Press.

Idsardi, William, and Eric Raimy. 2013. Three types of linearization and

the temporal aspects of speech. In Challenges to linearization, edited by

Eric Raimy and Charles Cairns, 31–56. Mouton de Gruyter, Berlin.

Idsardi, William J. 2006. A simple proof that optimality theory is compu-

tationally intractable. Linguistic Inquiry 37:271–275.

September 23, 2024 © Jeffrey Heinz

http://dl.acm.org/citation.cfm?id=1564035.1564059

D
R
A
F
T

452 BIBLIOGRAPHY

Idsardi, William J, and Eric Raimy. 2005. Remarks on language play.

Unpublished manuscript, University of Delaware, Newark DE.

Idsardi, William J, and Rachel Shorey. 2007. Unwinding morphology.

Presented at CUNY Phonology ForumWorkshop on Precedence Relations.

Inkelas, Sharon. 2014. The interplay of morphology and phonology. Oxford:

Oxford University Press.

Inkelas, Sharon, and Laura J Downing. 2015a. What is reduplication?

Typology and analysis part 1/2: The typology of reduplication. Language

and Linguistics Compass 9:502–515.

Inkelas, Sharon, and Laura J Downing. 2015b. What is reduplication?

Typology and analysis part 2/2: The analysis of reduplication. Language

and Linguistics Compass 9:516–528.

Inkelas, Sharon, and Cheryl Zoll. 2005. Reduplication: Doubling in Morphol-

ogy. Cambridge: Cambridge University Press.

Ito, Junko. 1986. Syllable Theory in Prosodic Phonology. Doctoral disserta-

tion, University of Massachusetts, Amherst. Published 1988. Outstanding

Dissertations in Linguistics series. New York: Garland.

Itô, Junko. 1989. A prosodic theory of epenthesis. Natural Language &

Linguistic Theory 7:217–259.

Jakobson, Roman. 1962. Selected Writings 1: Phonological Studies. The

Hague: Mouton & Co. Second expanded edition.

Jardine, Adam. 2016. Locality and non-linear representations in tonal

phonology. Doctoral dissertation, University of Delaware.

Jardine, Adam. 2017. The local nature of tone-association patterns. Phonol-

ogy 34:363–384.

Jardine, Adam, Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2014.

Very efficient learning of structured classes of subsequential functions

from positive data. In International Conference on Grammatical Inference,

94–108.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 453

Jardine, Adam, Nick Danis, and Luca Iacoponi. 2021. A formal investigation

of q-theory in comparison to autosegmental representations. Linguistic

Inquiry 52:333–358.

URL https://doi.org/10.1162/ling_a_00376

Jassem, Wiktor. 2003. Polish. Journal of the International Phonetic Association

33.

Johnson, C Douglas. 1972. Formal aspects of phonological description. The

Hague: Mouton.

Kager, René. 1999. Optimality Theory. Cambridge University Press.

Kaisse, Ellen M, and April McMahon. 2011. Lexical phonology and the

lexical syndrome. In The Blackwell companion to phonology, edited by

Marc van Oostendorp, Colin Ewen, Elizabeth Hume, and Keren Rice,

vol. 4, 2236–2257. Malden, MA: Wiley-Blackwell.

Kaisse, Ellen M, and Patricia A Shaw. 1985. On the theory of lexical

phonology. Phonology 2:1–30.

Kaplan, Ronald M, and Martin Kay. 1994. Regular models of phonological

rule systems. Computational linguistics 20:331–378.

Karttunen, Lauri. 1998. The proper treatment of optimality in computa-

tional phonology. In Proceedings of the International Workshop on Finite

State Methods in Natural Language Processing, 1–12. International Work-

shop on Finite-State Methods in Natural Language Processing, Bilkent

University, Ankara, Turkey.

Karttunen, Lauri. 2003. Computing with realizational morphology. In

International Conference on Intelligent Text Processing and Computational

Linguistics, 203–214. Springer.

Karttunen, Lauri. 2006. The insufficiency of paper-and-pencil linguistics:

the case of Finnish prosody. Rutgers Optimality Archive #818-0406.

Keisler, H. Jerome, and Joel Robbin. 1996. Mathematical Logic and Com-

putability. McGraw-Hill.

Kenstowicz, Michael, and Charles Kisseberth. 1977. Topics in Phonological

Theory. New York: Academic Press.

September 23, 2024 © Jeffrey Heinz

https://doi.org/10.1162/ling_a_00376

D
R
A
F
T

454 BIBLIOGRAPHY

Kenstowicz, Michael, and Charles Kisseberth. 1979. Generative Phonology.

Academic Press, Inc.

Kenstowicz, Michael, and Charles Kisseberth. 1990. Chizigula tonology:

the word and beyond. In The Phonology–Syntax Connection, edited by

Sharon Inkelas and Draga Zec, 163–194. Chicago: the University of

Chicago Press.

Kiparsky, Paul. 1973. Abstractness, opacity, and global rules. In Three di-

mensions of linguistic theory, edited by Osamu Fujimura. Tokyo: Taikusha.

Kiparsky, Paul. 1982. Lexical morphology and phonology. In Linguistics in

the morning calm: Selected papers from SICOL-1981, edited by I.-S. Yang,

3–91. Seoul: Hansin.

Kiparsky, Paul. 1983. Word-formation and the lexicon. In Proceedings of

the 1982 Mid-America Linguistics Conference, edited by Frances Ingemann,

3–29. Mid-America Linguistics Conference, Lawrence: University of

Kansas.

Kiparsky, Paul. 1993. Blocking in non-derived environments. In Studies in

lexical phonology, edited by Sharon Hargus and Ellen M. Kaisse, vol. 4 of

Phonetics and Phonology, 277–313. San Diego: Academic Press.

Kiparsky, Paul. 2010. Reduplication in stratal OT. Reality exploration and

discovery: Pattern interaction in language & life 125–142.

Kobele, Gregory Michael. 2006. Generating copies: An investigation into

structural identity in language and grammar. Doctoral dissertation,

University of California, Los Angeles.

Kornai, András. 1995. Formal phonology. Garland Publishing Inc.

Kornai, András. 2009. The complexity of phonology. Linguistic Inquiry

40:701–712.

Koskenniemi, Kimmo. 1983. Two-level morphology: A general compu-

tational model for word-form recognition and production. Doctoral

dissertation, University of Helsinki.

Kozen, Dexter. 1997. Automata and Computability. Springer.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 455

Krämer, Martin. 2012. Underlying Representations. Cambridge University

Press.

de Lacy, Paul. 2011. Markedness and faithfulness constraints. In The

Blackwell Companion to Phonology, edited by M. V. Oostendorp, C. J.

Ewen, E. Hume, and K. Rice. Blackwell.

Lai, Regine. 2015. Learnable vs. unlearnable harmony patterns. Linguistic

Inquiry 46:425–451.

Lambert, Dakotah. 2022. Unifying classification schemes for languages and

processes with attention to locality and relativizations thereof. Doctoral

dissertation, Stony Brook University.

URL https://vvulpes0.github.io/PDF/dissertation.pdf/

Lambert, Dakotah. 2023. Relativized adjacency. Journal of Logic Language

and Information .

Lambert, Dakotah. 2024. System description: A theorem-prover for sub-

regular systems: The language toolkit and its interpreter, plebby. In

Functional and Logic Programming, edited by Jeremy Gibbons and Dale

Miller, 311–328. Singapore: Springer Nature Singapore.

Lambert, Dakotah, and Jeffrey Heinz. 2023. An algebraic characterization

of total input strictly local functions. In Proceedings of the Society for

Computation in Linguistics, vol. 6.

Lambert, Dakotah, Jonathan Rawski, and Jeffrey Heinz. 2021. Typology

emerges from simplicity in representations and learning. Journal of

Language Modelling 9:151–194.

Lambert, Dakotah, and James Rogers. 2020. Tier-based strictly local

stringsets: Perspectives from model and automata theory. In Proceedings

of the Society for Computation in Linguistics, vol. 3, 330–337. New Orleans,

Louisiana.

Lamont, Andrew. 2021. Optimizing over subsequences generates context-

sensitive languages. Transactions of the Association for Computational

Linguistics 9:528–537.

September 23, 2024 © Jeffrey Heinz

https://vvulpes0.github.io/PDF/dissertation.pdf/

D
R
A
F
T

456 BIBLIOGRAPHY

Lamont, Andrew. 2022a. Directional harmonic serialism. Doctoral disser-

tation, University of Massachusetts Amherst.

Lamont, Andrew. 2022b. Optimality theory implements complex functions

with simple constraints. Phonology 38:729–740.

Langendoen, D Terence. 1981. The generative capacity of word-formation

components. Linguistic Inquiry 12:320–322.

Lapoliwa, Hans. 1981. A generative approach to the phonology of Bahasa

Indonesia. Dept. of Linguistics, Research School of Pacific Studies, The

Australian.

Law, Howard. 1958. Morphological structure of Isthmus Nahuat. Interna-

tional Journal of American Linguistics 24:108–129.

Lepic, Ryan. 2015. Motivation in morphology: Lexical patterns in asl and

english. Doctoral dissertation, UC San Diego.

Levelt, Willem. 1974. Formal grammars in linguistics and psycholinguistics.

The Hague: Mouton.

Liddell, Scott K. 1984. Think and believe: sequentiality in american sign

language. Language 372–399.

Liddell, Scott K, and Robert E Johnson. 1986. American sign language com-

pound formation processes, lexicalization, and phonological remnants.

Natural Language & Linguistic Theory 4:445–513.

Liddell, Scott K, and Robert E Johnson. 1989. American sign language:

The phonological base. Sign language studies 64:195–277.

Lieber, Rochelle. 1980. On the organization of the lexicon. Doctoral

dissertation, Massachusetts Institute of Technology.

Łubowicz, Anna. 2002. Derived environment effects in Optimality Theory.

Lingua 112:243–280.

Luo, Huan. 2017. Long-distance consonant agreement and subsequentiality.

Glossa 2:1–25.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 457

Manaster-Ramer, Alexis. 1986. Copying in natural languages, context-

freeness, and queue grammars. In Proceedings of the 24th annual meeting

on Association for Computational Linguistics, 85–89. Association for Com-

putational Linguistics.

Marantz, Alec. 1982. Re reduplication. Linguistic Inquiry 13:435–482.

Marantz, Alec. 2007. Phases and words. In Phases in the theory of grammar,

edited by Sook-Hee Choe, Dong-Wee Yang, Yang-Soon Kim, Sung-Hun

Kim, and Alec Marantz, 191–222. Seoul: Dong-In Publishing Co.

Marvin, Tatjana. 2002. Topics in the stress and syntax of words. Doctoral

dissertation, Massachusetts Institute of Technology.

Mascaró, Joan. 1976. Catalan phonology and the phonological cycle.

Doctoral dissertation, Massachusetts Institute of Technology.

McCarthy, John. 1979. Formal problems in semitic phonology and mor-

phology. Doctoral dissertation, MIT, Cambridge, MA.

McCarthy, John. 2003. OT constraints are categorical. Phonology

20:75–138.

McCarthy, John. 2008a. Doing Optimality Theory. Malden, MA: Blackwell.

McCarthy, John J. 2008b. The gradual path to cluster simplification.

Phonology 25:271–319.

McCarthy, John J. 2010. An introduction to harmonic serialism. Language

and Linguistics Compass 4:1001–1018.

McCarthy, John J, and Alan Prince. 1995. Faithfulness and reduplicative

identity. In Papers in Optimality Theory, edited by Jill N. Beckman,

Laura Walsh Dickey, and Suzanne Urbanczyk. Amherst, MA: Graduate

Linguistic Student Association, University of Massachusetts.

McClory, Daniel, and Eric Raimy. 2007. Enhanced edges: morphological

influence on linearization.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata.

MIT Press.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

458 BIBLIOGRAPHY

Miller, Philip H. 1999. Strong generative capacity: The semantics of linguistic

formalism. Stanford: CSLI publications.

Mohri, Mehryar, and Richard Sproat. 1996. An efficient compiler for

weighted rewrite rules. In Proceedings of the 34th Meeting of the Association

for Computational Linguistics (ACL ’96).

Moravcsik, Edith. 1978. Reduplicative constructions. In Universals of

Human Language, edited by Joseph Greenberg, vol. 1, 297–334. Stanford,

California: Stanford University Press.

Nazarov, Aleksei, and Joe Pater. 2017. Learning opacity in stratal maximum

entropy grammar. Phonology 34:299–324.

Nelson, Scott. 2022. A model theoretic perspective on phonological feature

systems. In Proceedings of the Society for Computation in Linguistics 2022,

edited by Allyson Ettinger, Tim Hunter, and Brandon Prickett, 1–10.

online: Association for Computational Linguistics.

URL https://aclanthology.org/2022.scil-1.1

Nespor, Marina, and Irene Vogel. 1986. Prosodic phonology. Dordrecht:

Foris.

Nevins, Andrew. 2004. What ug can and can’t do to help the reduplication

learner. In MIT Working Papers in Linguistics 48, edited by Aniko Cslrmaz,

Andrea Gualmini, and Andrew Nevins, 113–126. Cambridge,MA: MIT

Department of Linguistics and Philosophy.

Newell, Heather. 2008. Aspects of the morphology and phonology of phases.

Doctoral dissertation, McGill University, Montreal, QC.

Newell, Heather. 2021. Deriving level 1/level 2 affix classes in English:

Floating vowels, cyclic syntax. Acta Linguistica Academica 68:31–76.

Newell, Heather, Máire Noonan, and Glyne Piggott, eds. 2017. The structure

of words at the interfaces, vol. 68. Oxford: Oxford University Press.

Newkirk, Don E. 1998. On the temporal segmentation of movement in

american sign language. Sign language & linguistics 1:173–211.

Oakden, Chris. 2020. Notational equivalence in tonal geometry. Phonology

37:257–296.

September 23, 2024 © Jeffrey Heinz

https://aclanthology.org/2022.scil-1.1

D
R
A
F
T

BIBLIOGRAPHY 459

Odden, David. 1982. Tonal phenomena in Kishambaa. Studies in African

Linguistics 13:177–208.

Odden, David. 1994. Adjacency parameters in phonology. Language

70:289–330.

Odden, David. 2014. Introducing Phonology. 2nd ed. Cambridge University

Press.

Oncina, Jose, and Pedro Garcia. 1991. Inductive learning of subsequential

functions. Tech. Rep. DSIC II-34, University Politécnia de Valencia.

van Oostendorp, Marc, Colin Ewen, Elizabeth Hume, and Keren Rice,

eds. 2011. The Blackwell companion to phonology. Malden, MA: Wiley-

Blackwell.

Oseki, Yohei. 2018. Syntactic structures in morphological processing.

Doctoral dissertation, New York University.

Oseki, Yohei, and Alec Marantz. 2020. Modeling human morphological

competence. Frontiers in Psychology 11.

Oseki, Yohei, Charles Yang, and Alec Marantz. 2019. Modeling hierarchical

syntactic structures in morphological processing. In Proceedings of the

Workshop on Cognitive Modeling and Computational Linguistics, 43–52.

Minneapolis, Minnesota: Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/W19-2905

Papillon, Maxime. 2020. Precedence and the lack thereof: Precedence-

relation-oriented phonology. Doctoral dissertation, University of Mary-

land.

Pater, Joe. 1999. Austronesian nasal substitution and other *NC
˚
effects.

In The Prosody–Morphology Interface, edited by René Kager, Harry van

der Hulst, and Wim Zonneveld. Cambridge: Cambridge University Press.

ROA 160-1196.

Pater, Joe. 2004. Austronesian nasal substitution and other NC effects.

In Optimality Theory in Phonology: A Reader, edited by John McCarthy,

271–289. Oxford and Malden, MA: Blackwell.

September 23, 2024 © Jeffrey Heinz

https://www.aclweb.org/anthology/W19-2905

D
R
A
F
T

460 BIBLIOGRAPHY

Payne, Amanda. 2017. All dissimilation is computationally subsequential.

Language 4:e353–e371.

Payne, Amanda, Mai Ha Vu, and Jeffrey Heinz. 2017. A formal analysis of

correspondence theory. In Proceedings of the Annual Meetings on Phonology,

vol. 4.

Payne, Sarah. 2024. A generalized algorithm for learning positive and

negative grammars with unconventional string models. In Proceedings of

the Society for Computation in Linguistics, vol. 7, 75–85.

Perlmutter, David M. 1993. Sonority and syllable structure in american

sign language. In Current issues in ASL phonology, 227–261. Elsevier.

Peters, P Stanley, and Robert W Ritchie. 1973. On the generative power of

transformational grammars. Information sciences 6:49–83.

Postal, Paul M. 1968. Aspects of Phonological Theory. Harper & Row.

Potts, Christopher, and Geoffrey K Pullum. 2002. Model theory and the

content of OT constraints. Phonology 19:361–393.

Prince, Alan. 2002. Arguing optimality. In Papers in Optimality Theory

II, edited by Angela Carpenter, Andries Coetzee, and Paul De Lacy,

no. 26 in University of Massachussetts Occasional Papers in Linguis-

tics, 269–304. Amherst, MA: GLSA Publications. Available on Rutgers

Optimality Archive, ROA-562.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint

interaction in generative grammar. Tech. Rep. 2, Rutgers University

Center for Cognitive Science.

Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint

Interaction in Generative Grammar. Blackwell Publishing.

Prince, Alan, Bruce Tesar, and Nazarré Merchant. 2016. Otworkplace.

software package. Additions by Luca Iacoponi and Natalie DelBusso.

URL https://sites.google.com/site/otworkplace/home

Puskás, Genoveva. 2000. Negation. InWord Order in Hungarian: The Syntax

of A’-positions, vol. 33 of Linguistik Aktuell, 295–376. Amsterdam: John

Benjamins Publishing Company.

September 23, 2024 © Jeffrey Heinz

https://sites.google.com/site/otworkplace/home

D
R
A
F
T

BIBLIOGRAPHY 461

Rabin, Michael Oser, and Dana Scott. 1959. Finite automata and their

decision problems. IBM Journal of Research and Development 3:114–125.

Raimy, Eric. 1999a. Representing reduplication. Doctoral dissertation,

University of Delaware, Newark, DE.

Raimy, Eric. 1999b. Strong syllable reduplication inMokilese. In Proceedings

from ESCOL’99, 191–202. Ithaca, NY: CLC Publications.

Raimy, Eric. 2000a. The Phonology and Morphology of Reduplication. Berlin:

Mouton de Gruyter.

Raimy, Eric. 2000b. Remarks on backcopying. Linguistic Inquiry

31:541–552.

Raimy, Eric. 2003. Asymmetry and linearization in phonology. In Asymme-

try in grammar, edited by Anna Maria Di Sciullo, vol. 2, 129–146. John

Benjamins Publishing.

Raimy, Eric. 2007. Precedence theory, root and template morphology,

priming effects and the structure of the lexicon.

Raimy, Eric. 2009a. A case of appendicitis. In Raimy and Cairns (2009),

177–188.

Raimy, Eric. 2009b. Deriving reduplicative templates in a modular fashion.

In Raimy and Cairns (2009), 383–404.

Raimy, Eric. 2011. Reduplication. In van Oostendorp et al. (2011),

2383–2413.

Raimy, Eric, and Charles Cairns. 2011. Precedence relations in phonology.

In van Oostendorp et al. (2011), 799–823.

Raimy, Eric, and Charles E. Cairns, eds. 2009. Contemporary views on

architecture and representations in phonology. No. 48 in Current Studies in

Linguistics. Cambridge, MA: MIT Press.

Rawski, Jonathan. 2017. Phonological complexity is subregular: Evidence

from sign language. In Proceedings of the 53rd Chicago Linguistics Society

Annual Meeting.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

462 BIBLIOGRAPHY

Rawski, Jonathan. 2021. Structure and learning in natural language. Doc-

toral dissertation, Stony Brook University.

Rawski, Jonathan, Hossep Dolatian, Jeffrey Heinz, and Eric Raimy. 2023.

Regular and polyregular theories of reduplication. Glossa: a journal of

general linguistics 8:1–38.

Reiss, Charles, and Marc Simpson. 2009. Reduplication as projection.

Unpublished manuscript, Concordia University, Montréal.

Riggle, Jason. 2004. Generation, recognition, and learning in finite state

Optimality Theory. Doctoral dissertation, University of California, Los

Angeles.

Ristad, Eric Sven. 1990. Computational structure of human language.

Doctoral dissertation, Massachusetts Institute of Technology.

Ritchie, Graeme. 1989. On the generative power of two-level morpho-

logical rules. In Proceedings of the fourth conference on European chapter

of the Association for Computational Linguistics, 51–57. Association for

Computational Linguistics.

Ritchie, Graeme. 1992. Languages generated by two-level morphological

rules. Computational Linguistics 18:41–59.

Roark, Brian, and Richard Sproat. 2007. Computational Approaches to

Morphology and Syntax. Oxford: Oxford University Press.

Robinson, Andrew. 2018. Einstein said that – didn’t he? Nature 557:30.

Rogers, James. 2003. wMSO theories as grammar formalisms. Theoretical

Computer Science 293:291–320.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher,

David Wellcome, and Sean Wibel. 2010. On languages piecewise testable

in the strict sense. In The Mathematics of Language, edited by Christian

Ebert, Gerhard Jäger, and Jens Michaelis, vol. 6149 of Lecture Notes in

Artifical Intelligence, 255–265. Springer.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lam-

bert, and Sean Wibel. 2013. Cognitive and sub-regular complexity. In

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 463

Formal Grammar, edited by Glyn Morrill and Mark-Jan Nederhof, vol.

8036 of Lecture Notes in Computer Science, 90–108. Springer.

Rogers, James, and Dakotah Lambert. 2019a. Extracting Subregular con-

straints from Regular stringsets. Journal of Language Modelling 7:143–176.

Rogers, James, and Dakotah Lambert. 2019b. Some classes of sets of

structures definable without quantifiers. In Proceedings of the 16th Meeting

on the Mathematics of Language, 63–77. Toronto, Canada: Association for

Computational Linguistics.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition

experiments and the subregular hierarchy. Journal of Logic, Language and

Information 20:329–342.

Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement

as correspondence. Language 80:475–531.

Rubach, Jerzy. 1984. Cyclic and Lexical Phonology: The Structure of Polish.

Dordrecht, The Netherlands: Foris Publications.

Sakarovitch, Jaques. 2009. Elements of Automata Theory. Cambridge

University Press. Translated by Reuben Thomas from the 2003 edition

published by Vuibert, Paris.

Samuels, Bridget. 2010. The topology of infixation and reduplication. The

Linguistic Review 27:131–176.

Samuels, Bridget D. 2011. Phonological architecture: A biolinguistic perspec-

tive. Oxford Studies in Biolinguistics. Oxford University Press.

Sande, Hannah L. 2017. Distributing morphologically conditioned phonol-

ogy: Three case studies from guébie. Doctoral dissertation, University of

California, Berkeley, Berkeley, CA.

Sandler, Wendy. 1986. The spreading hand autosegment of american sign

language. Sign Language Studies 50:1–28.

Sandler, Wendy. 1989. Phonological representation of the sign: Linearity and

nonlinearity in American Sign Language, vol. 32. Walter de Gruyter.

Sandler, Wendy. 1993. Sign language and modularity. Lingua 89:315–351.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

464 BIBLIOGRAPHY

Sandler, Wendy, and Diane Lillo-Martin. 2006. Sign language and linguistic

universals. Cambridge University Press.

Saussure, Ferdinand de. 1916. Cours de linguistique générale. Paris: Payot.

Savitch, Walter J. 1982. Abstract machines and grammars. Boston: Little

Brown and Company.

Savitch, Walter J. 1989. A formal model for context-free languages aug-

mented with reduplication. Computational Linguistics 15:250–261.

Savitch, Walter J. 1993. Why it may pay to assume that languages are

infinite. Annals of Mathematics and Artificial Intelligence 8:17–25.

Schane, S. A. 1984. The fundamentals of particle phonology. In Phonology

Yearbook, 129–155.

Scheer, Tobias. 2011. A guide to morphosyntax-phonology interface theories:

How extra-phonological information is treated in phonology since Trubetzkoy’s

Grenzsignale. Berlin: Mouton de Gruyter.

Scheer, Tobias. 2012. Chunk definition in phonology: Prosodic constituency

vs. phase structure. In Modules and interfaces, edited by M. Bloch-Trojnar

and A. Bloch-Rozmej, 221–253. Lublin: Wydawnictwo KUL.

Schmidt, Hans. 2003. Temathesis in Rotuman. In Issues in Austronesian

historical phonology, edited by John Lynch, 175–207.

Scobbie, James M., John S. Coleman, and Steven Bird. 1996. Key aspects

of declarative phonology. In Current Trends in Phonology: Models and

Methods, edited by Jacques Durand and Bernard Laks, vol. 2, 685–709.

Manchester, UK: European Studies Research Institute. University of

Salford.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami.

1991. On multiple context-free grammars. Theoretical Computer Science

88:191–229.

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi Kaji, Sachiko Ando, and Tadao

Kasami. 1993. Parallel multiple context-free grammars, finite-state trans-

lation systems, and polynomial-time recognizable subclasses of lexical-

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 465

functional grammars. In Proceedings of the 31st annual meeting on Associa-

tion for Computational Linguistics, 130–139. Association for Computational

Linguistics.

Selkirk, Elisabeth. 1984. Phonology and syntax: The relation between sound

and structure. Cambridge, MA: MIT Press.

Selkirk, Elisabeth. 2011. The syntax-phonology interface. In The Handbook

of Phonological Theory, edited by John Goldsmith, Jason Riggle, and Alan

C. L. Yu, 2 ed., 435–483. Oxford: Blackwell.

Selkirk, Elisabeth O. 1982. The syntax of words. No. 7 in Linguistic Inquiry

Monographs. Cambridge, Mass: MIT Press.

Shen, David Ta-Chun. 2016. Precedence and search: Primitive concepts

in morpho-phonology. Doctoral dissertation, National Taiwan Normal

University, Taipei, Taiwan.

Shukla, Shaligram. 2000. Hindi Phonology. Muenchen: Lincom Europa.

Siegel, Dorothy Carla. 1974. Topics in English morphology. Doctoral

dissertation, Massachusetts Institute of Technology.

Sievers, Eduard. 1881. Grundz uge der Phonetik. Leipzig: Breitkopf and

Hartel.

Simon, Imre. 1975. Piecewise testable events. In Automata Theory and

Formal Languages, 214–222.

Sipser, Michael. 2012. Introduction to the Theory of Computation. 3rd ed.

Cengage Learning.

Siptar, Peter. 2005. The phonology of Hungarian vowel clusters. Magyar

Nyelv (Hungarian Language) 3:282–304.

Sproat, Richard William. 1992. Morphology and computation. Cam-

bridge,MA: MIT press.

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of

computational linguistics, edited by Christian Retoré, vol. 1328 of Lecture

Notes in Computer Science, 68–195. Berlin: Springer.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

466 BIBLIOGRAPHY

Stabler, Edward P. 2004. Varieties of crossing dependencies: structure

dependence and mild context sensitivity. Cognitive Science 28:699–720.

Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John J.

McCarthy, and Joe Pater. 2010. Ot-help 2.0. software package.

URL http://people.umass.edu/othelp/

Steriade, Donca. 1982. Greek prosodies and the nature of syllabification.

Doctoral dissertation, MIT, Cambridge, Mass.

Steriade, Donca. 1988. Reduplication and syllable transfer in Sanskrit and

elsewhere. Phonology 5:73–155.

Stowell, Timothy Angus. 1981. Origins of phrase structure. Doctoral

dissertation, Massachusetts Institute of Technology.

Strother-Garcia, Kristina. 2018a. Imdlawn Tashlhiyt Berber syllabification

is quantifier-free. In Proceedings of the Society for Computation in Linguistics,

vol. 1. Article 16.

Strother-Garcia, Kristina. 2018b. Imdlawn Tashlhiyt Berber syllabification

is quantifier-free. In Proceedings of the Society for Computation in Linguistics,

vol. 1, 145–153.

Strother-Garcia, Kristina. 2019. Using model theory in phonology: A

novel characterization of syllable structure and syllabification. Doctoral

dissertation, University of Delaware.

Strother-Garcia, Kristina, Jeffrey Heinz, and Hyun Jin Hwangbo. 2017.

Using model theory for grammatical inference: A case study from phonol-

ogy. In Proceedings of The 13th International Conference on Grammatical

Inference, JMLR: Workshop and Conference Proceedings, 66–78.

Struijke, Carolina Maria. 2000. Reduplication, feature displacement, and

existential faithfulness. Doctoral dissertation, University of Maryland,

College Park.

Tesar, Bruce. 2014. Output-driven Phonology. Cambridge University Press.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic.

Journal of Computer and Systems Sciences 25:370–376.

September 23, 2024 © Jeffrey Heinz

http://people.umass.edu/othelp/

D
R
A
F
T

BIBLIOGRAPHY 467

Thomas, Wolfgang. 1997. Languages, automata, and logic. In Handbook

of Formal Languages, edited by Grzegorz Rozenberg and Arto Salomaa,

vol. 3, 389–455. New York, NY, USA: Springer-Verlag New York, Inc.

URL http://dl.acm.org/citation.cfm?id=267871.267878

Trommer, Jochen. 2013. Stress uniformity in Albanian: Morphological

arguments for cyclicity. Linguistic Inquiry 44:109–143.

Trubetzkoy, Nikolai S. 1969. Principles of phonology. Berkeley & Los Angeles:

University of California Press. Originally published 1939 as Grundzüge

der Phonologie. Göttingen: van der Hoeck & Ruprecht.

Urbanczyk, Suzanne. 2007. Themes in phonology. In The Cambridge

Handbook of Phonology, edited by Paul de Lacy, 473–493.

Urbanczyk, Suzanne. 2011. Reduplication. In Oxford Bibliography, edited

by Mark Aronoff.

URL http://oxfordindex.oup.com/view/10.1093/obo/
9780199772810-0036

Vaux, Bert. 1998. The phonology of Armenian. Oxford: Clarendon Press.

Vu, Mai Ha, Ashkan Zehfroosh, Kristina Strother-Garcia, Michael Sebok,

Jeffrey Heinz, and Herbert G. Tanner. 2018. Statistical relational learning

with unconventional string models. Frontiers in Robotics and AI 5:1–26.

Walther, Markus. 2000. Finite-state reduplication in one-level prosodic

morphology. In Proceedings of the 1st North American chapter of the Asso-

ciation for Computational Linguistics conference, NAACL 2000, 296–302.

Seattle, Washington: Association for Computational Linguistics.

URL http://dl.acm.org/citation.cfm?id=974305.974344

Wang, Yang. 2021a. Recognizing reduplicated forms: Finite-state buffered

machines. In Proceedings of the 18th SIGMORPHON Workshop on Com-

putational Research in Phonetics, Phonology, and Morphology, 177–187.

Online: Association for Computational Linguistics.

Wang, Yang. 2021b. Regular languages extended with reduplication: For-

mal models, proofs and illustrations. Master’s thesis, University of Cali-

fornia, Los Angeles.

September 23, 2024 © Jeffrey Heinz

http://dl.acm.org/citation.cfm?id=267871.267878
http://oxfordindex.oup.com/view/10.1093/obo/9780199772810-0036
http://oxfordindex.oup.com/view/10.1093/obo/9780199772810-0036
http://dl.acm.org/citation.cfm?id=974305.974344

D
R
A
F
T

468 BIBLIOGRAPHY

Watters, James. 1988. Topics in Tepehua grammar. Doctoral dissertation,

University of California, Berkeley.

White, James. 2017. Accounting for the learnability of saltation in phono-

logical theory: A maximum entropy model with a p-map bias. Language

93:1–36.

Wiese, Richard, ed. 1994. Recent developments in lexical phonology. Düssel-

dorf: Heinrich-Heine-Universität.

Wilbur, RB. 1982. A multi-tiered theory of syllable structure for american

sign language. In Annual Meeting of the Linguistic Society of America, San

Diego.

Wilbur, Ronnie. 2011. Sign syllables. The Blackwell companion to phonology

1:1309–1334.

Wilbur, Ronnie B. 2005. A reanalysis of reduplication in American Sign

Language. In Hurch (2005), 595–623.

Wilbur, Ronnie Bring. 1973. The phonology of reduplication. Doctoral

dissertation, University of Indiana, Bloomington, Indiana.

Williams, Sheila M. 1994. Lexical phonology and speech style: Using a

model to test a theory. In Computational Phonology.

Williams, Sheila Margaret. 1993. Lexphon: A computational implementa-

tion of aspects of lexical phonology. Doctoral dissertation, University of

Reading.

Wilson, Colin, and Gillian Gallagher. 2018. Accidental gaps and surface-

based phonotactic learning: a case study of South Bolivian Quechua.

Linguistic Inquiry 49:610–623.

Woollams, Geoff. 1996. A Grammar of Karo Batak, Sumatra. Canberra:

Pacific Linguistics.

Yanti, and Eric Raimy. 2010. Reduplication in Tanjung Raden Malay.

In Linguistik Aktuell/Linguistics Today, edited by Raphael Mercado, Eric

Potsdam, and Lisa deMena Travis, vol. 167, 25–44. Amsterdam: John

Benjamins Publishing Company.

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

BIBLIOGRAPHY 469

Yip, Moira. 2002. Tone. Cambridge University Press.

Yu, Alan CL. 2007. A Natural History of Infixation. No. 15 in Oxford Studies

in Theoretical Linguistics. Oxford: Oxford University Press.

Zetzsche, Georg. 2018. Separability by piecewise testable languages and

downward closures beyond subwords. In LICS ’18: Proceedings of the

33rd Annual ACM/IEEE Symposium on Logic in Computer Science, 929–938.

New York, NY: Association for Computing Machinery.

Zhang, Jie. 2004. The role of contrast-specific and language-specific pho-

netics in contour tone distribution. In Hayes et al. (2004).

September 23, 2024 © Jeffrey Heinz

D
R
A
F
T

Index

downward closure, 255

powerset construction, 258

powerset graph, 260

470

