
D
R
A
F
T

Chapter 22

Logical Perspectives on Strictly
Local Transformations

Jane Chandlee and Steven Lindell

22.1 Introduction

The chapters in Part 2 of this volume have broadly demonstrated how

phonological maps can be represented as graph transductions using first

order (FO) logic. The fact that FO logic is sufficient for modeling these

phonological maps points to an upper bound on the computational com-

plexity of phonological grammars. In this chapter, however, we provide

evidence that this bound is too high, meaning it may be the case that a

logic more restrictive than FO will still be sufficient for a certain class of

phonological maps. Specifically, we characterize local phonological maps

as quantifier-free logical interpretations over strings with adjacency.

This result stems from previous work on phonological maps grounded

in finite state automata. It has long been known that phonological maps

describable with rewrite rules of the form A→ B / C D describe regular

relations, provided the rule does not re-apply to the locus of its structural

change (Johnson, 1972; Kaplan and Kay, 1994). More recent work has

shown that at least with respect to local phonological maps, the class of

regular relations is not restrictive enough. Chandlee (2014) defines input

strictly local (ISL) functions, a class of string-to-string functions that is a

proper subset of the regular relations, and demonstrates that they are

405

D
R
A
F
T

406CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

sufficient to model (noniterative) phonological maps with local triggers.

This result is significant for at least two reasons. One, it provides a better

characterization of the typology of local phonological maps. Two, the

restrictive nature of ISL functions provides learnability advantages. Unlike

the regular relations, the ISL functions are learnable from positive data

(Chandlee et al., 2014; Jardine et al., 2014) in the sense of Gold (1967).

In this chapter we provide a logical characterization of the ISL functions

and prove its equivalence to the automata-theoretic characterization given

by Chandlee (2014) and Chandlee et al. (2014). For an example of the finite

state characterization, consider the rule of postnasal obstruent voicing in

14, which is attested in Puyo Pungo Quechua (Pater, 2004).

(14) [−son]→ [+voice] / [+nasal]
(15) Puyo Pungo Quechua (Quechua; Pater, 2004)

/kampa/ 7→ [kamba] ‘yours’

Figure 22.1 presents the finite state transducer (FST) for the postnasal

obstruent voicing function. For readability, this FST is defined with a

reduced alphabet of {V, D, T, N}, where V=vowel, D=voiced obstruent,
T=voiceless obstruent, and N=nasal consonant. It has also been minimized,
such that states ‘V’, ‘T’, and ‘D’ are collapsed with the start state. Lastly,

single-symbol transition labels indicate identity mappings (e.g., X = X:X).

λ N

V, D, T
N

N

V, D, T:D

Figure 22.1: 2-ISL FST for postnasal obstruent voicing map

Given the input string ‘kampa’, the FST in Figure 22.1 would follow the

path shown in 16. The input is read one segment at a time and the FST

proceeds through its states according to the labeled transitions.

(16)

Input: k a m p a

States: λ ⇒ λ ⇒ λ ⇒ N ⇒ λ ⇒ λ
Output: k a m b a

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.1. INTRODUCTION 407

For the most part, the input is reproduced faithfully in the output.

The crucial transition is from state N, which is reached anytime the FST

encounters a nasal consonant. If the next segment is a voiceless obstruent,

it is output as its voiced counterpart via the T:D transition.1

The fact that this map is describable with a FST proves that it is a

regular relation. What establishes it further as an ISL function is that the

FST in Figure 22.1 has certain properties not shared by FSTs generally.

These properties enforce a type of short-term memory on the FST, such

that at any given time it can only factor in the most recent input when

determining what to output. What counts as ‘most recent’ is a parameter of

a given ISL function, called its k-value. In the case of postnasal obstruent
voicing, k = 2, since the needed information (i.e., a nasal followed by a
voiceless obstruent) forms a contiguous substring of length 2.

Specifically, the properties that make the FST in Figure 22.1 an ISL FST

are: 1) the states correspond to all possible input sequences of length up to

k − 1, and 2) the transitions force the FST to always be in the state that
represents the most recently read input sequence of length k − 1.2 FSTs
in general are not held to these requirements on states and transitions.

Machines that have these restrictions are also called local machines of

degree k (Sakarovitch, 2009).

The restrictive nature of the ISL class of functions that is reflected in

its FST characterization also carries over to the logical characterization

we present in this chapter. As in all of the case studies in the previous

chapters, the postnasal obstruent voicing map can be modeled as a graph

transduction using FO logic. However, we will show that it can in fact be

modeled without using the full power of FO. More generally, our main

result is that ISL functions (without null cycles) are quantifier-free logical
interpretations over strings with adjacency.

In §22.2 we first provide the necessary preliminaries, and then in §22.3

we provide the intuition behind the proof by giving several examples of ISL

phonological maps represented as quantifier-free logical interpretations.

1We put aside the fact that in Puyo Pugo Quechua this function only applies across
a morpheme boundary (i.e., tautomorphemic sequences of a nasal and voiceless stop
are permitted). Incorporating that added fact into the analysis would not change its
computational classification: it would still be an ISL map, but it would be 3-ISL to include
the morpheme boundary in the triggering environment.
2Again because the FST in the figure has been minimized, not all states are shown

separately.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

408CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

The proof of our main result is given in §22.4.

22.2 Preliminaries

22.2.1 Finite-state transducers

Let |w| denote the length of a finite string. A deterministic finite-state
transducer (FST) is a 5-tuple (Q, q0,Σ,Γ, δ), where Q is a finite set of states,
Σ and Γ are finite alphabets, q0 ∈ Q is the start state, and the function
δ: Q × Σ → Γ∗ × Q are the transitions. We break up δ(q, a) into its
two components by letting δ1: Q × Σ → Γ∗ be the output transitions

and δ2: Q× Σ → Q the state transitions. A subsequential FST is a 6-tuple

(Q, q0,Σ,Γ, δ, ρ), whereQ, q0,Σ,Γ, and δ are defined as above and ρ: Q→ Γ∗

is a final output function that maps states to strings.

The subsequential FSTs used to model ISL functions have the following

additional restrictions (Chandlee, 2014; Chandlee et al., 2014):3

1. Q = Σ<k and q0 = λ

2. δ2(q, a) = Sk−1(qa), where Sn(x) is the suffix of length n of a string x
(with Sn(x) = x when |x| < n).

22.2.2 Language theory

Let P (w) = {p ∈ Σ∗ : w = ps for some suffix s ∈ Σ∗} be the set of all
prefixes of w. If w = ps, then we can write s = p−1w. For a set of strings S,
let P (S) =

⋂
{P (w) : w ∈ S} be the set of common prefixes of all strings in

S. If S is a nonempty set of strings, then the longest common prefix
∧
S is

defined to be the longest prefix in P (S).
For a function f and set of strings S, f [S] = {f(y) : y ∈ S}. We now

define the notion of a tail of a string x with respect to a function f .

Definition 7. (Sakarovitch, 2009, p.692) For a function f : Σ∗ → Γ∗ and

x ∈ Σ∗ let fx(y) = (
∧
f [xΣ∗])−1f(xy) be the tail of f at x.

3See also Sakarovitch (2009, pg. 661-664) on local functions.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.2. PRELIMINARIES 409

Informally, the tail of x is a function that maps all possible extensions y
of x to y’s unique contribution to the output string of xy. The uniqueness
of this contribution is obtained by removing the longest common prefix of

all output strings whose input string begins with x. Note that
∧
f [xΣ∗] is

always a prefix of f(xy) for any y, so the use of inverse makes sense here.
It has been shown that f can be computed by a deterministic finite-state

transducer iff its set of tails {fx : x ∈ Σ∗} is finite (Oncina and Garcia,

1991). And if its output depends only on the most recent k inputs, the
function is k-input strictly local (k-ISL) (Chandlee, 2014).

Definition 8. A function f is k-local (k-ISL) if for all strings x of length
k−1, fux = fx for all u ∈ Σ∗. Note that a k-local function is regular because
it has at most |Σ|k−1 tails (strings with same length k − 1 suffix have the
same tails).

A function from Σ∗ to Γ∗ is k-ISL iff it can be computed by a local
automaton whose states correspond to Σ<k, input strings of length less than

k, where each transition between states is labeled with an input symbol
from Σ and an output string from Γ∗ (Chandlee, 2014; Chandlee et al.,

2014).

In order to ensure closure under composition among ISL functions, we

need to bound the ratio between their input and output string lengths. The

easiest way to enforce this is to forbid the automaton from having a null

cycle—a closed circuit of transitions all of which output the empty string.

However, there is a more elegant language theoretic way of expressing

this.

Definition 9. A function f : Σ∗ → Γ∗ is finite-to-one if f−1(y) is always
finite. I.e., for every y ∈ Γ∗, |{x : f(x) = y}| is finite. Note that this is
equivalent to saying that f [L] is infinite whenever L is infinite.

An example of an ISL phonological map that is not a finite-to-one

function would be one that reduces word-initial consonant clusters of any

length down to a single consonant. In a rule-based formalism, this would

be represented with a rule like C → ∅/CC0 , where C0 abbreviates any

string of zero or more consonants.4 This rule maps the infinite set of strings

4In a constraint-based formalism like Optimality Theory, this same map can be repre-
sented with the constraint ranking *#CC� Max.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

410CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

C+V to the single string CV . Hence it is infinite-to-one.
Claim: Suppose a function f is computed by a minimal finite-state

machine M . Then f is finite-to-one if and only if M has no null cycles.

Proof. Suppose M has a null cycle C labeled by v. Since M is minimal,
every state is reachable, and so we can get to C from the start state via
some string u, and then f [uv∗] = {f(u)}, which makes f infinite-to-one.
On the other hand, if M has n states, every path of length n contains a
cycle, so every sequence of n symbols must produce some output (since
M does not contain a null cycle). So a string w must produce an output of
length at least |w| ÷ n. If L is infinite, it contains arbitrarily long strings,
thereby producing arbitrarily long output, and so f [L] is infinite.

22.2.3 Model theory

We use a special kind of structure to model strings with adjacency.

Definition 10. A monadic structure is a structure of the form 〈D; f, ..., R, ...〉
where D is a set (the domain), each f : D → D is a unary function, and
each R ⊆ D is a unary predicate.

Example: We use a linear monadic structure to represent strings. For
example, baab will be represented as 〈{1, 2, 3, 4}; s, p, Ua, Ub〉, where s is a
successor function, p is a predecessor function, and {Ua, Ub} partition the

domain {1, 2, 3, 4} into the locations of the symbols a and b. This structure
is shown in Figure 22.2.

b a a bp

s s s

s

ppp

Figure 22.2: The structure for the string baab, where U a = {2, 3} and Ub =
{1, 4}.

Note that s and p are inverses of each other, except when they reach
their maximum and minimum, respectively, as shown in the figure. This is

easily generalized to arbitrary finite strings over an arbitrary finite alphabet.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.2. PRELIMINARIES 411

Definition 11. A Σ-structure is a tuple 〈{1, ..., n}; s, p, {Uσ : σ ∈ Σ}〉
where s(i) = i+1 (except s(n) = n) and p(i) = i− 1 (except p(1) = 1), such
that {Uσ : σ ∈ Σ} is a partition of the domain {1, ..., n}. Each Σ-structure
corresponds to a unique string in Σ+ of length n > 0 whose ith symbol is σ
when Uσ(i) is true.

We assume the reader is familiar with the basics of first-order inter-

pretations on structures (see Courcelle, 1994; Engelfriet and Hoogeboom,

2001). Just as finite-state automata provide a mechanism for string to string

transductions, logical formulas provide a way to define mappings from one

structure to another, known as translations or interpretations. Although

the general notion of an interpretation permits defining a mapping from

any logical signature to another (i.e., a translation), we confine ourselves

to mappings from strings to strings. In particular, we restrict ourselves to

linear interpretations that produce an output consisting of m copies of the
input for some fixed m, defined by vectors of formulas. We use superscript
notation to denote various copies of formulas, variables, elements, or sets.

For example, dc represents the cth copy of an element d ∈ D for some
domain D, and is really just an abbreviation for 〈d, c〉 ∈ D × C for some
copy set C = {1, ...,m}.

22.2.4 Polymorphic formulas: typed variables

Typed and extended terms
We elaborate terms from FO logic in two ways. First, the value of any

term can be designated with a type from the copy set {1, ..., m}, so that
every term has an assigned value and an assigned type. For example, xc

means the value x with type c. Polymorphic formulas can act on these
typed terms so that different formulas can apply to different types.

Definition 12. A polymorphic formula χ(x) is a vector 〈χ1(x), ..., χm(x)〉 of
ordinary (untyped) formulas, one for each possible type i = 1, ...,m with
the understanding that χ(xi) = χi(x).

In this context, an ordinary formula χ(x) is just 〈χ(x), ...χ(x)〉, m copies
of the same formula.

An extended term t(x) is an ordinary typed term (a value and a type) or
a conditional combination of two extended terms: if χ(x) then u(x) else
v(x); where χ(x) is a polymorphic formula and u(x) and v(x) are extended

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

412CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

terms. Nested applications of this conditional construction allow us to form

the more familiar definitions by cases, as in:

f(x) =


t1(x) if χ1(x)
...

...

tn−1(x) if χn−1(x)

tn(x) otherwise

where each tj(x) is an extended term and each χj(x) a polymorphic
formula (which may themselves contain extended terms). It is interpreted

by giving priority to the order of the cases, which is to say the value of

f(x) is the value of tj(x) if χj(x) is satisfied and none of the previous con-
ditions χ1(x), ..., χj−1(x) are satisfied. This priority assumption guarantees
extended terms always have unique values, just like ordinary terms. The

otherwise clause is interpreted as always being true and ensures extended

terms denote total functions, again like ordinary terms.

These conditionals are important for defining quantifier-free local

functions, instead of defining a function by its graph. For example, the

quantifier-free formula τ(x, y) ≡ s(y) = y defines the graph of a constant
function f(x) = y always equal to the last element, which is clearly non-
local. But conditional term definitions of functions using only one variable

always preserve locality.

Proposition 1. Any quantifier-free formula with extended terms is equiva-
lent to an ordinary quantifier-free formula.

Proof. If t(x) were to equal u(x) when χ(x) is true and v(x) otherwise,
just replace any occurrence ...t(x)... by χ(x) ∧ ...u(x)... ∨ ¬χ(x) ∧ ...v(x)... .
Since this conversion uses only Boolean combinations, every quantifier-free

extended formula is equivalent to an ordinary quantifier-free formula.

Using extended terms allows for simpler descriptions of polymorphic

functions.

Example: Consider the interpretation that doubles every symbol (e.g.,
baab → bbaaaabb), with m = 2. Define two adjacent copies x1 and x2

for every input element, defining the (polymorphic) successor (s) and
predecessor (p) functions as: s(x1) = x2, s(x2) = (s(x))1 if s(x) 6= x and
x2 otherwise; and p(x2) = x1, p(x1) = (p(x))2 if p(x) 6= x and x1 otherwise.
Notice that the two copies of any element are placed next to each other.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.3. INTUITION OF THE PROOF 413

Use αa(x
1) ≡ αa(x

2) ≡ Ua(x) and αb(x
1) ≡ αb(x

2) ≡ Ub(x) to say the copies
are replicas of the originals.

picture must be changed

Figure 22.3: Illustration of an instance of the 2-copy interpretation, baab→
bbaaaabb

The generalized version is defined as follows.

Definition 13. An m-copy interpretation from Σ-structures to Γ-structures
is a tuple

〈ϕ(x);π(x), σ(x), {αγ(x) : γ ∈ Γ}〉
of polymorphic formulas and extended terms over a copy set C =

{1, ...,m}. It assigns to each Σ-structure A a Γ-structure B whose out-
put domain is defined by the polymorphic formula ϕ(x) as |B| = {ac :
A |= ϕc[a], a ∈ |A|, c ∈ C}, drawn from m disjoint copies of the input
domain |A| × C. Adjacency between these elements is determined by
the polymorphic extended terms π(x) and σ(x) representing the predeces-
sor and successor functions, respectively. The collection of polymorphic

formulas {αγ(x) : γ ∈ Γ} determine a partition of |B| into |Γ| pieces
{ac ∈ |B| : A |= αγ[a

c]} where the symbol γ appears.
Because the formulas above depend on only one variable, we call these

monadic interpretations. Moreover, we will study quantifier-free interpreta-

tions exclusively, as we have been careful to define extended terms so that

conditional definitions can be incorporated, as we saw in the example.5

22.3 Intuition of the proof

Before presenting the actual proof that ISL functions are quantifier-free

logical interpretations, in this section we first walk through a few examples

of actual phonological processes represented as quantifier-free interpreta-

tions. Specifically we will demonstrate a quantifier-free interpretation for

an example of 1) substitution, 2) epenthesis, and 3) deletion.

5See the appendix for how we can effectively determine whether the successor and
predecessor functions of an interpretation consistently define adjacency.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

414CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

22.3.1 Substitution

For an example of substitution, we return to the 2-ISL postnasal voicing

process from the introduction. The FST for this process was given in Figure

22.1; we repeat it here in Figure 22.4.

λ N

V,D,T
N

N

V,D,T:D

Figure 22.4: A second-degree (k = 2) ISL FST for the postnasal obstruent
voicing map. Recall that this FST is minimized: states V, D, and T are

collapsed with the start state.

We use the (hypothetical) input string /pampa/, the graph representa-

tion of which is shown in Figure 22.5.

p a m p ap

s s s s

s

pppp

Figure 22.5: The structure for the input pampa, where Up = {1, 4}, U a =
{2, 5}, and Um = {3}

As the longest output string in the FST is of length 1, the copy set is

C = {1}, and so the output graph is constructed from positions 11, 21, 31, 41,
and 51. We determine the labels of these output positions using the state we
are ‘in’ for each position of the input graph. Determining which state we are

in requires inspecting the neighboring positions. How many neighboring

positions we inspect depends on 1) the degree k of the function, and 2)
how close we are to the beginning of the string.

For the second point, there are three scenarios we are concerned with:

1) we are at the first position, 2) we are at some position j that is between
the first and the kth positions, or 3) we are at the kth position or higher.
Which of these scenarios we are in can be determined using the predecessor

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.3. INTUITION OF THE PROOF 415

function (details given in the next section), and will be designated with

the terms ψ1(x), ψj(x), and ψk(x).
For example, since at position 1 it is the case that p(1) = 1, we are in

the first position and so ψ1(x) is true. For the remaining positions, ψ2(x) is
true. (Since in this example k = 2, there are no positions between 1 and k
and so there are only two possible scenarios.)

Which ψi(x) is true tells us how many predecessors to look at from
our current position. In the first position, since ψ1(x) is true we look at
1− 1 = 0 previous positions. For the remaining positions, ψ2(x) is true and
so we look at 2 − 1 = 1 previous position. We then make use of a set of
formulas, one for each state, that assert which state we must be in using

this information.

For example, positions 3 and 4 of Figure 22.5 satisfy the state formulas

in 17a and 17b, respectively:

(17) a. θa(x) ≡ Ua(p(x))∧ψ2(x) [meaning the previous

symbol was a.]

b. θm(x) ≡ Um(p(x))∧ψ2(x) [meaning the previous

symbol was m.]

So at position 3 we are in state a and at position 4 we are in state m.
Note again though that the FST in Figure 22.4 uses an abbreviated alphabet

for readability, such that there is a discrepancy in our ‘state’ formulas and

the state labels of the diagram. Instead of a single state ‘N’, the complete

FST would have a state for each nasal consonant in the language (i.e., {m,

n, ɲ}). Formulas like θm(x) refer to this complete version of the FST.
Now using the transition function of the FST, we can determine the

labels of each position of the output. Again using position 3 as an example,

the formula in 17a is true when x = 3, as is the formula Um(x), since
position 3 is labeled m. The value of the transition function for these
arguments is δ1(a,m) = m. Together this means the formula in 18 is true
for output position 31, and so it will be labeled m.

(18) αm(x
1) ≡ θa(x)∧Um(x) [If the previous symbol was a, output

m on input m.]

Likewise, the change from p to b takes place because at position 4 in the
input graph, θm(x) is true (i.e., we are in state m) and Up(x) is true (i.e.,
input position 4 is labeled p). Since in the FST, δ1(m, p) = b, position 41 in
the output graph is labeled b.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

416CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

(19) αb(x
1) ≡ θm(x) ∧ Up(x) [If the previous symbol was m, out-

put b on input p.]

Lastly, the successor and predecessor functions are defined the same as

the input to establish the linear order of the output positions. The resulting

output graph is shown in Figure 22.6.

p a m b ap

s s s s

s

pppp

Figure 22.6: The output pamba, where Up = {11}, U a = {21, 51}, Um = {31},
and Ub = {41}

Any substitution process, in which one segment is simply replaced with

another, is a same-length function, one in which the output strings of the

FST are always of length 1. In contrast, in epenthesis and deletion processes

the length of the output strings can vary. In the next two subsections we

present an example of each of these to demonstrate how that difference

is handled through the copy set and the definition of predecessor and

successor by cases.

22.3.2 Epenthesis

As an example of epenthesis we consider a process in Karo Batak (Woollams,

1996), in which a labiovelar glide (w) is inserted between two vowels when

the first is back.6 A rule for this process is given in 20, with examples in

21.

(20) ∅ → w / [+syl, −front] [+syl]

(21) Karo Batak (Austronesian; Woollams, 1996)
a. /ue/ [uwe] ‘yes’

b. /doah/ [dowah] ‘carry a child in a sling’

c. /dibərue/ [dibəruwe] ‘that woman’

6Woollams (1996, pg. 29) describes the process as optional. We do not address in
this chapter how to handle optionality in this framework, but the use of probabilistic
FSTs and/or weighted logics to model optionality could be a fruitful direction for future
research.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.3. INTUITION OF THE PROOF 417

The second-degree (k=2) ISL FST for this process is given in Figure
22.7. Again for readability the FST is minimized and has an abbreviated

alphabet of {C, O, A}, where C=consonant, O=back vowel, and A=front
or central vowel.7 In addition to these, the output alphabet includes {w}.

λ O

C,A

O

O:wO

C, A:wA

Figure 22.7: Second-degree ISL FST for intervocalic w-epenthesis map.

This FST is minimized: states C and A are collapsed with the start state.

Figure 22.8 shows the structure for the input string /doah/.

d o a hp

s s s

s

ppp

Figure 22.8: The input structure for doah, where Ud = {1}, Uo = {2}, U a =
{3}, and Uh = {4}

The addition of a segment in an epenthesis process is handled using

the copy set. Recall that the copy set specifies how many copies of each

input node are present in the output structure: for the substitution process

presented in the previous section the copy set was C = {1}. For epenthesis
(of a single segment), the copy set is C = {1, 2}. More generally, the copy
set must be as large as the length of the longest output string.

This means that the domain of the output structure is potentially

{11, 12, 21, 22, 31, 32, 41, 42}, but, as shown in Figure 22.9, not all of these po-
sitions are actually labeled, and not all of them are included in the domain

and definition of the predecessor and successor functions. We describe

first how these positions receive labels, and then how they are correctly

ordered.

7The vowel inventory of Karo Batak includes two front vowels {i, e}, two central
vowels {ə, a}, and three back vowels {ɯ, u, o}.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

418CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

d o w h

a

p

s s

s
s

p

s

p

pp

Figure 22.9: The output dowah, where Ud = {11}, Uo = {21}, Uw =
{31}, U a = {32}, and Uh = {41}. Nodes drawn with dashed lines are
omitted from the domain.

As in the previous example, an output position’s label depends on which

state we are in in the FST. Since again k = 2, which state we are in depends
only on one preceding position. At position 3 (where the epenthesis will

take place), the formula in 22 is true, meaning we are in state o.

(22) θo(x) ≡ Uo(p(x))∧ψ2(x) [meaning that the previous

symbol was ‘o’]

Since position 3 is itself labeled a, the relevant transition in the FST is
δ1(o, a) = wa. The length of this output string is 2, so the two formulas in
23 establish the labels of the output copies 31 and 32.

(23) a. αw(x
1) ≡ θo(x) ∧ Ua(x)

b. αa(x
2) ≡ θo(x) ∧ Ua(x)

What’s left is to define the predecessor and successor functions to ensure

that the output positions are ordered [dowah], as opposed to anything else

(e.g., [doawh], [dohwa], [odhaw], etc.) This is done by cases, which we

will go through it turn. (We will not go through the cases of the successor

function, which parallel predecessor.) The predecessor arcs that fall under

each case are color-coded in Figure 22.10.

For any copy that isn’t the first, the predecessor is simply the prior copy.

This is shown in red in Figure 22.10, for the copies of position 3.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.3. INTUITION OF THE PROOF 419

d o w h

a

p

p

p

pp

Figure 22.10: Defining the predecessor function

Otherwise, the predecessor is some copy of the preceding position,

though importantly it needs to be the last copy of the preceding position.

Since the number of copies can vary with position, we use a set of formula

that indicate whether a given copy ‘exists’ (i.e., is labeled and should be

included in the definition of predecessor/successor). These formulas are

defined again in terms of the transition function, as whether a given copy

exists depends on the length of the output string when a given position

is read from a given state. A copy only exists if its number is less than or

equal to the length of the output string at that point.

For example, we know copy 32 exists because 2 ≤ |δ1(o, a)| and the
formula in 24 is true when x = 3.

(24) ϕ2(x) ≡ θo(x) ∧ Ua(x)

But copies 12, 22 and 42 do not exist, because the output strings of the
FST for these positions are of length 1.

Getting back to the definition of predecessor, these ϕc(x) formulas are
used to verify that a prior position’s copy exists and that it is the last one.

For example, the predecessor of position 31 is 21, because 21 exists (i.e.,
ϕ1(2) is true) and 2

2 does not (i.e., ϕ2(2) is false). The predecessor arcs that
fall under this case are shown in blue Figure 22.10.

Lastly, if none of the above cases are true, then the position must be

the first one, and therefore it is its own predecessor.

This same method of ordering output copies extends straightforwardly

to cases of deletion, an example of which we present in the next subsection.

22.3.3 Deletion

Our final example is an apocope process found in Mecayapan Isthmus

Nahuat (Law, 1958; Kenstowicz and Kisseberth, 1979). As exemplified

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

420CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

in 26, unstressed vowels are (optionally) deleted word-finally when they

follow a sequence of a vowel plus a voiced sonorant.

(25) V→ ∅ / V [+son, +voice] #

(26) Mecayapan Isthmus Nahuat (Uto-Aztecan; Mexico; Law, 1958; Ken-

stowicz and Kisseberth, 1979)
a. /ʃikalili/ [ʃikalil] ‘put it in it’

b. /kitaja/ [kitaj] ‘he already sees it’

c. /kikowa/ [kikow] ‘he buys it’

d. /tami/ [tam] ‘it ends’

The minimized FST for this process is shown in Figure 22.11. The

alphabet is Σ = {V, L, D}, where V = vowel, L = sonorant consonant, and
D = nonsonorant consonant.

λ L LV

D,V

L

L

D

V:λ

L:VL

D:VD, V:VV

Figure 22.11: A third-degree (k = 3) ISL FST for word-final vowel deletion
map.

We demonstrate the transduction using the example input /tami/, whose

structure is below.

t a m ip

s s s

s

ppp

Figure 22.12: The input structure for tami, where U t = {1}, U a = {2}, Um =
{3}, and U i = {4}.

Again we start with formulas that indicate which state we are in for

each position. Since this process is third-order, these formulas reference

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.3. INTUITION OF THE PROOF 421

up to two prior positions. The formulas that evaluate to true for positions

1, 2, 3, and 4 of Figure 22.12 are given in 27a-27d, respectively. Recall

that ψ1(x), ψ2(x), ψ3(x) indicate that we examine 0, 1, and 2 prior positions,
respectively.

(27) a. θλ(x) ≡ ψ1(x)

b. θt(x) ≡ Ut(p(x)) ∧ ψ2(x)

c. θta(x) ≡ Ut(p
2(x)) ∧ Ua(p(x)) ∧ ψ3(x)

d. θam(x) ≡ Ua(p
2(x)) ∧ Um(p(x)) ∧ ψ3(x)

Up until the final vowel, all output positions are labeled straightfor-

wardly using the FST transition function as in the previous examples. For

example, copy 21 is labeled a because of the transition δ1(t, a) = a: the
formula in 28 is true when x = 2 and c = 1.

(28) αa(x
c) ≡ θt(x) ∧ Ua(x)

The ‘deletion’ takes place because copy 41, which corresponds to the
input final vowel, does not receive a label and is not included in the output

predecessor and successor functions (i.e., ¬ϕ1(x) is true when x = 4 and so
the copy does not exist).

The resulting output structure is shown in Figure 22.13.

t a mp

s s

s

pp

Figure 22.13: The structure for the string tam, where U t = {11}, U a = {21},
and Um = {31}

In the previous subsection we saw how the copy set and the definition

of predecessor/successor by cases handles output strings of length > 1, and
now we’ve seen a case where that length < 1. This example of deletion
though in fact combines both of these scenarios, when a vowel follows

a sonorant consonant but is not word-final. The FST handles this by

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

422CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

outputting λ for any vowel that follows a sonorant, but if it turns out to
not be word-final (i.e., if anything else follows it), the vowel is ‘returned’

to the output on the subsequent transition.

In our logical translation of the FST, this means the returned vowel

appears as one of the copies of the following position. For example, Figure

22.14 shows the output structure for the hypothetical input /lami/, in

which both vowels follow a sonorant but only the second is word-final.

l a

m

p

s

p sp

s

Figure 22.14: The structure for the string lam, where U l = {11}, U a = {31},
and Um = {32}

Collectively, these examples of substitution, epenthesis, and deletion

show how the local nature of the computation allows us to construct the

output graph with quantifier-free formulas. The needed information for

determining the output at any point is a bounded number of positions (i.e.,

a bounded number of calls to predecessor) away.

In the next section we formalize these results with a theorem of the

equivalence between ISL FSTs (without null cycles) and quantifier-free

logical interpretations.

22.4 Main Result

Chandlee (2014) and Chandlee et al. (2014) prove the equivalence of ISL

FSTs (like those used in the previous section) and the class of ISL functions

(Definition 8). Here we prove the equivalence of quantifier-free logical

interpretations and ISL FSTs without null cycles. In other words, we prove

that these interpretations describe exactly the class of ISL functions that

are finite-to-one. This result is stated in Theorem 7.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.4. MAIN RESULT 423

We present the proof in two parts. First, we show that every ISL FST

without null cycles can be translated into a quantifier-free logical interpre-

tation over strings. Second, we show that a quantifier-free interpretation

over strings can be computed by an ISL FST.

To state the theorem, we first define an interpretation as monotone if

copies of an element maintain the same order as their originals. An example

of a non-monotone interpretation is string reversal (e.g., any string w is
mapped to the string with all symbols in w in reverse order). Such a map
is phonologically implausible and falls outside of the ISL class (i.e., there

is no k such that a k-ISL function can compute string reversal for strings of
any length). In the following definition of monotone, we write x+ 1 and
x− 1 for the successor and predecessor of x respectively, and write x ≤ y
to mean x precedes y (or equivalently y succeeds x).

Definition 14. An interpretation is monotone if (x−1)c
′ ≤ xc ≤ (x+1)c

′
for

any copies c and c′. That is, any copy of x± 1 occurs after/before any copy
of x. This means all copies of a given element remain together in blocks.

We now state the main result as Theorem 7.

Theorem 7. A function f : Σ∗ → Γ∗ is input strictly local and finite-to-one if and

only if it can be described by a monotone quantifier-free monadic interpretation.

22.4.1 Every finite-to-one ISL function can be described

by quantifier-free formulas

First we show that every finite-to-one ISL function can be described by

quantifier-free formulas. We work from the function’s FST, using the state

labels to guide our formulas.

Let M be a kth-degree local automaton without null cycles which com-
putes f , with standard transitions between states recording the past k − 1
symbols. For each state q ∈ Σ<k = Q and a ∈ Σ, let δ1(q, a) ∈ Γ∗ be

the output string associated with each transition, and let ρ(q) be the final
output associated with each state.

State formulas

We first define formulas to describe what state we are in, based on the

position in the input string, as represented by the variable x. Using pi to

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

424CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

denote the ith iterate of p (where p0 is the identity), we can define formulas
that monitor how close we are to the beginning:

ψ1(x) ≡ p(x) = x (we are at the first position)

ψj(x) ≡ pj(x) = pj−1(x) 6= pj−2(x) (we are at position j, for 1 < j < k)

ψk(x) ≡ pk−1(x) 6= pk−2(x) (we are at position k or higher)

The formula θq(x) ≡ Ua1(p
i(x))∧...∧Uai(p(x))∧ψi+1(x) says the machine

is in state q = a1...ai at position x of the input, for any i = 0, ..., k − 1.

Size of the output structure

We create the output domain by interleaving copies of the input domain.

The number of copies m required is given by the maximum length output
string for any single input symbol, plus the maximum size of the final

output (set m = max{|δ1(q, a)|+ |ρ(q)| : q ∈ Q, a ∈ Σ}).

The construction is complicated by the fact that the number of output

symbols per input symbol can vary over the course of the computation. But

using the state formulas, we can ascertain exactly how many copies of each

input element are required by looking at the length of the output (anywhere

from 0 tom) at that point in the automaton. The only complication is there
might be final output ρ(q) from any state q when we at the last element
of the input, when s(x) = x. This increases the number of copies by the
length of that output.

Let the output domain be defined as:

ϕc(x) ≡ s(x) 6= x ∧
∨
{θq(x) ∧ Ua(x) : when q ∈ Q and a ∈ Σ, for c = 1, ..., |δ1(q, a)|}

s(x) = x ∧
∨
{θq(x) ∧ Ua(x) : when q ∈ Q and a ∈ Σ, for c = 1, ..., |δ1(q, a)|+ |ρ(q)|}

That is to say, there will be one copy for each symbol in the output

string δ1(q, a) whenever we are in state q reading symbol a (none if the
output string is empty). The second case is required to make additional

copies for the final output.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.4. MAIN RESULT 425

Ordering the copies

We interleave the copies in such a way as to keep all outputs of a given

input element x consecutive in copy order x1, x2, ..., ensuring monotonicity.

Here is the definition by cases for just the predecessor function, because

the successor is similar. For clarity, let us say that xc exists when ϕc(x)
holds and that it doesn’t when ¬ϕc(x). Also, we will use the more common
notation (x− i) instead of pi(x). Also, note the predecessor is by definition
only applied to extant copies. So defining p(xc) = (xc − 1) implies that xc

exists in the following.

xc − 1 =



xc−1 for c > 1, else (c = 1)

x1 if x− 1 = x

(x− 1)c
′

if (x− 1)c
′
exists and (x− 1)c

′+1 doesn’t, else
...

...

(x− |Q|)c′ if (x− |Q|)c′ exists and (x− |Q|)c′+1 doesn’t

The first line says that the (c−1)st copy of an element is the predecessor
of the cth copy, whenever c > 1 (recall that if the cth copy exists, so do all
smaller copies). Otherwise, we need to find the last input position that has

output. If there is no previous element because we are at the beginning,

then just return oneself. If the previous element doesn’t have any output

(no copies of it exist) then we continue looking back. There is only a fixed

distance backwards to look, because if there were more than |Q| successive
input positions without output, then the machine would contain a null

cycle (by the pigeonhole principle).

To summarize, the predecessor of an output element is the preceding

extant copy of that element, or else the last copy of the previous extant

element. Failing that, we must be at the first copy of the first element,

whose predecessor is itself.

Labeling the copies

Finally, we can define which symbols appear at each position of the output.

Let

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

426CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

αγ(x
c) ≡ s(x) 6= x ∧

∨
{θq(x) ∧ Ua(x) : when q ∈ Q and a ∈ Σ, for c = 1, ..., |δ1(q, a)|}

s(x) = x ∧
∨
{θq(x) ∧ Ua(x) : when q ∈ Q and a ∈ Σ, for c = 1, ..., |δ1(q, a)ρ(q)|}

which means that γ ∈ Γ is placed on copy xc of the output string.

22.4.2 Every quantifier-free interpretation is computable

by an ISL FST

Preliminary steps

Although quantifier-free formulas can only see a local neighborhood, unlike

local machines they can look both behind and ahead of the current location.

But before we deal with this problem, we first straighten interpretations

by rearranging copies so the output is generated in canonical order.

Recall that copies of the input domain used to define the output domain

must preserve adjacency. In the output any copy of x±1 must succeed/pre-
cede any copy of x. This means the blocks of copies retain the same order
as the input. However, that leaves room for individual copies to be out of

canonical order within each block. We rectify this by defining formulas

βi(x
c) which detect if copy c of x is in position i within its own block, for

1 ≤ i, c ≤ m, using the polymorphic definition of the predecessor function
π(x) given by the interpretation. In the formula below, the notation (... =
xd) means ϕd(...), and π

i refers to the ith iterate of π.

βi(x
c) ≡

∨
{πi−1(xc) = xd : 1 ≤ d ≤ m}∧

[
∧

{πi(xc) 6= xd : 1 ≤ d ≤ m} ∨ πi(xc) = πi−1(xc) 6= πi−2(xc)]

where we leave off the very last inequality in case i = 1. It says the
output position xc − (i− 1) stays within its own block and that xc − i does
not, unless of course we are in the first block, in which case xc − (i− 1) is
just at the bottom and xc − (i− 2) is not (this last condition is left off when
i = 1).
With this information in hand, we can rewrite the interpretation, so

all copies are now in canonical order i = 1, ...,m. The original σ and π
are replaced by the canonical σ′ and π′, like the definition by cases given

in the previous direction of the proof. To rearrange the output formulas,

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.4. MAIN RESULT 427

suppose αγ(x
c) is the formula which tells us when copy c of x in the original

interpretation was assigned to output symbol γ. Then define:

α′
γ(x

i) ≡
∨

{βi(xc) ∧ αγ(x
c) : 1 ≤ c ≤ m}

which says we now output γ at position i in the canonical order just in
case we originally output γ on copy c of x which was in position i of the
original order. Observe that the domain information is already implicitly

contained in the formulas βi(x
c), because copy c of x exists if and only if it

is in some position i of its block. So, the new polymorphic domain formula
is given by:

ϕ′(xc) ≡
∨

{βi(xc) : 1 ≤ i ≤ m}

But since we have not actually changed the domain by re-ordering,

this must be equivalent to the original ϕ. Now that we have put our
interpretation in canonical order, we move on to the FST construction.

Construction of ISL FST

Definition 15. The width of a formula is its maximum embedding of

predecessors or successors. The width of an interpretation is the maximum

width of all of its formulas.

Intuitively, a width k formula is determined by the interval [x−k, ..., x+
k] around its free variable. More precisely, it does not depend on any
information farther than k symbols away from that location.

Lemma 1. Let ϕ(x) have width k, and let l refer to a position within a
nonempty string a1...an, 1 ≤ l ≤ n. The prefix u = a1...al−k−1 contains those

symbols more than k positions before l (empty if l ≤ k + 1). The suffix
w = al+k+1...an contains those symbols more than k positions after l (empty
if l ≥ n− k). Let v be the substring that remains from removing the prefix
u and suffix w, so that a1...an = uvw. Then uvw |= ϕ[l] ⇐⇒ v |= ϕ[l − |u|].

Proof. A straightforward induction on the width k of ϕ(x).

In the lemma above, 1 ≤ |v| ≤ 2k + 1, as v consists of al along with at
most k symbols on either side. We can think of v as al−k...al...al+k, where any

subscript out of bounds is vacuous. When k < l ≤ n− k all those symbols

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

428CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

are in play and we can renumber them to let v = b1.....bk+1....b2k+1 (see

figure below). So the totality of ϕ[1...n] can be determined by evaluating
ϕ on substrings of length at most 2k + 1. Since a local machine of degree
2k+1 has access to the previous 2k symbols along with the current one, we
need to evaluate ϕ[l] when the machine is at the end of v. We accomplish
this by delaying the output for k steps, and producing the last k outputs as
final output.

We construct a local transducer of degree 2k + 1 for which Q = Σ<2k+1

and ∀q ∈ Q, a ∈ Σ, δ2(q, a) = S2k(qa), as defined in §22.2.1.8 We determine
the output transitions δ1(q, b) for a given state q = b1...bi and current symbol
b ∈ Σ as follows. The cth symbol of δ1(q, b)will be γ if qb |= αγ[(i+1−k)c], for
1 ≤ c ≤ m. Notice that this means there is no output until |qb| = i+ 1 > k,
so δ1(q, b) is empty for the first k steps when 0 ≤ i < k. At step k we
begin producing output which corresponds to the first position in the

input string. For the final output, we wrap up the last k values of the
interpretation in one fell swoop, computing q |= αγ[i − (k − 1)...i] by
concatenating for j = i − (k − 1), ..., i the outputs whose cth symbol is
γ ⇐⇒ q |= αγ[j

c], 1 ≤ c ≤ m. This relationship between the input and
output is depicted in Figure 22.15.

u︷ ︸︸ ︷
a1.....

v︷ ︸︸ ︷
al−k....al.......al+k

w︷ ︸︸ ︷
.......an |= φ[l]

q q q
⇔ b1.....bk+1....b2k+1 |= φ[k + 1]

⇔ qa |= φ[|v| − k]

Figure 22.15: Illustration of the lemma, when k < l ≤ n− k

Lastly, we show that the resulting machine does not a contain null cycle.

8Note there is a difference in how k is being used here compared to earlier in the
chapter (and in the previous phonological literature). The value of k in the phonological
examples presented throughout this chapter was determined by the length of the structural
description of the process when described as a rule. In our FST construction, however,
k is set to the maximum depth of calls to predecessor or successor, and the ‘window’
that can be examined is wide enough to cover k positions in both directions. In other
words, if we converted the second-degree FST in Figure 22.4 into an interpretation, that
interpretation would have a width of k = 1 (because its formulas contain at most one call
to predecessor). If we then convert that interpretation back into an FST by the method
described here, that FST would have degree 3 (=2k + 1).

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

22.5. CONCLUSION 429

If it did, there would be an input to reach and go around it arbitrarily many

times. This would make the input distance between two adjacent output

positions arbitrarily large, contradicting the finite width of an interpre-

tation defining the successor and predecessor functions. Essentially, the

bounded width of terms in a quantifier-free interpretation prohibits adja-

cency between output elements coming from input elements of unbounded

distance apart.

22.5 Conclusion

We have seen that there is a machine-independent way of characteriz-

ing finite-to-one input strictly local functions. That characterization uses

quantifier-free formulas in logic to monotonically translate between struc-

tures representing strings with adjacency. It is hoped that a similar logical

characterization can be obtained for an analogous notion of output strictly

local functions (Chandlee et al., 2015) and strictly piecewise functions

(Rogers et al., 2010), which are conjectured to be a useful model for long-

distance phonological maps such as vowel and consonant harmony.

The restriction placed on ISL functions—that they be finite-to-one—

means the ISL class defined in this paper is in fact a proper subset of the one

defined in Chandlee (2014). The restriction is a desirable one, however, as

it restores closure under composition.9 We omit the proof of this closure

property because the details are complicated, but the intuition is as follows.

A quantifier-free interpretation of a quantifier-free interpretation would

involve only the substitution of terms—specifically the substitution of the

input of one formula for the output of another. Thus no quantifiers are

introduced, and so the resulting interpretation is also quantifier-free.

It is an empirical question whether there exist local phonological maps

that do not hold this property of being finite-to-one (i.e., ones that map an

infinite domain onto a finite co-domain), but under the assumption that no

such phonological maps exists the class of functions defined in this chapter

is in fact a better characterization of local phonology.

9Indeed the counterexample to closure under composition presented in Chandlee et al.
(2018) includes a function with a null cycle.

October 31, 2024 © Jeffrey Heinz

D
R
A
F
T

430CHAPTER 22. LOGICAL PERSPECTIVES ON STRICTLY LOCAL TRANSFORMATIONS

22.6 Appendix: Deciding adjacency

Not every quantifier-free interpretation with the right kind of input and

output signature necessarily determines a valid string to string mapping.

The problem is that the defined predecessor and successor functions may

not determine a valid adjacency relation. Indeed, they may not even be

corresponding inverses of each other over the finite domain in question.

We can effectively check that a given interpretation determines a valid

adjacency relation because monadic second-order logic is decidable over

finite strings. To sketch the idea let π(x) and σ(x) be the purported prede-
cessor and successor functions, respectively. A left endpoint is any element

l that is not the successor of anything (∀xσ(x) 6= l) and is its own predeces-
sor (π(l) = l). Similarly, a right endpoint is any element r that is not the
predecessor of anything (∀xπ(x) 6= r) and is its own successor (σ(r) = r).
First say there is exactly one left endpoint l, exactly one right endpoint

r, and that predecessor and successor are mutually inverses of each other
except at the endpoints: x 6= l → σ(π(x)) = x, and x 6= r → π(σ(x)) = x.
Every finite model satisfying these first-order conditions must consist

of a single chain together with zero or more disjoint cycles. To remove

the possibility of these additional cycles we need to say that either the

structure is acyclic or connected (either one is sufficient). We can do this

by universally quantifying over subsets of the domain that are closed under

both predecessor and successor: S(x) → S(π(x)) ∧ S(σ(x)).
These finite models are acyclic iff every nontrivial closed subset S

contains an endpoint: ∀S 6= ∅ [S(x) → S(π(x)) ∧ S(σ(x))] → S(l) ∨ S(r).
Alternatively, we could say they are connected by stating every closed set

containing an endpoint must be the entire structure. In either case, we

have demonstrated that it is possible to write a sentence of monadic second-

order logic which determines whether or not the purported predecessor

and successor functions form the constituents of a valid adjacency relation.

October 31, 2024 © Jeffrey Heinz

