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Learning Subsequential Transducers for 
Pattern Recognition Interpretation Tasks 

Jose Oncina, Pedro Garcia, and Enrique Vidal 

Abstract-The “interpretation” framework in pattern recogni- 
tion (PR) arises in the many cases in which the more classical 
paradigm of “classification” is not properly applicable generally 
because the number of classes is rather large or simply because 
the concept of “class” does not hold. A very general way of 
representing the results of interpretations of given objects or 
data is in terms of sentences of a “semantic language” in which 
the actions to be performed for each different object or da- 
tum are described. Interpretation can therefore be conveniently 
formalized through the concept of formal transduction, giving 
rise to the central PR problem of how to automatically learn 
a transducer from a training set of examples of the desired 
input-output behavior. This paper presents a formalization of the 
stated transducer learning problem, as well as an effective and 
efficient method for the inductive learning of an important class of 
transducers, namely, the class of subsequential transducers. The 
capabilities of subsequential transductions are illustrated through 
a series of experiments that also show the high effectiveness of 
the proposed learning method in obtaining very accurate and 
compact transducers for the corresponding tasks. 

Index Terms-Formal languages, inductive inference, learning, 
rational transducers, subsequential functions, syntactic pattern 
recognition. 

I. INTRODUCTION 

YNTACTIC pattern recognition (SPR) is currently seen S as a very appealing approach to many pattern recog- 
nition (PR) problems for which the most traditional deci- 
sion-theoretic or statistical approaches fail to be effective 
[1]-[3]. One of the most interesting features of SPR consists 
of the ability to deal with highly structured (representations 
of) objects and to uncover the underlying structure by means 
of parsing. In fact, it is often claimed that such a distinctive 
feature is indeed what would enable SPR to go beyond the 
capabilities of other traditional approaches to PR. However, 
though parsing is perhaps the most fundamental and widely 
used tool of SPR, it is often used simply to determine the (like- 
lihood of)  membership of the test objects to a set of classes, 
each of which is modeled by a different syntactic model. Any 
possible structural byproduct of the parsing process is therefore 
discarded, thus considerably wasting the high potential of SPR. 

Nevertheless, membership determination is in fact all that is 
needed if the problem considered is simply one of classifica- 
tion. However, SPR can be seen as particularly useful for many 
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other interesting PR problems for which the classification par- 
adigm is not properly applicable-simply because the concept 
of “class” does not hold or because the number of underlying 
classes is very large or infinite. In order to properly deal with 
these problems, one should move from the traditional, rather 
comfortable classification point of view to the most general 
paradigm of interpretation (see e.g., [4] and [5]) .  

Within this framework, a PR system is assumed to accept 
(convenient representations of) a certain class of objects as 
input and must produce, as output, adequate interpretations 
of these objects that are consistent with the a priori knowl- 
edge (model) with which the system’s universe is embodied. 
Without loss of generality, interpretation results can be seen 
as “semantic messages” (SM) out of a (possibly infinite) set, 
which constitutes the “semanfic universe” (SU) of the problem 
considered [4]. The complexity of the interpretation task is 
therefore determined by the complexity (size) of this universe. 
If the SU is “small” (i.e., a small number of different SM’s 
is expected), interpretation can be viewed as the traditional 
process of classification by letting the output consist simply 
of a label specifying the obtained SM (class). On the other 
hand, if the SU is ‘‘large,’’ a simple label can be inadequate to 
completely specify an SM, and the output should now consist 
of some type of structured information. In this case, rather than 
speaking of (pattern) “recognition,” the term “understanding” 
is usually adopted instead [4]. 

One convenient and general way of representing SM’s is 
by means of sentences from a “semantic language,” which 
specifies the actions to be carried out as a response to the 
interpretation of a given object. For instance, the sequence of 
operations to be performed by a robotized machine tool in 
order to correctly position and mechanize a hypothesized (in- 
terpreted) input piece can be properly specified by a sentence 
of the command language of the machine. 

Clearly, this calls for applying formal language techniques 
and then quite naturally places interpretation within the SPR 
framework. However, one should realize that the interpretation 
paradigm no longer supports the traditional assumption of 
one (syntactical) model per class; rather, all the system’s a 
priori knowledge should now be represented as a whole into 
a single global model. In the theory of formal languages, 
such a representation can be properly accomplished through 
the concept of transduction. A transducer is a formal device 
that inputs structural representations of objects (strings) from 
a given input set (language) and outputs strings from another 
(usually different) output language. Many interesting results on 
properties of rational or finite-state transducers are well known 
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from the classical theory of formal languages (sec e.g., [6]), 
and some examples of their application to SPR are often given 
in the textbooks of SPR [ l ] ,  [2]. However, for the transduction 
framework to be really fruitful, it is absolutely necessary to 
first solve the important problem of how to learn or “train ” 
these models from known instances of input-output strings. 

This problem, which is central from a PR point of view, 
has very rarely been dealt with in the literature. Apart from 
the particular treatment involved in Gold’s study of the com- 
plexity of automata identification [7], only very limited and/or 
heuristic work seems to have been carried out so far. Perhaps 
one of the earliest works is that of Velenturf [8], in which a 
(nonincremental) algorithm is proposed to obtain a (reduced) 
Mealy machine, which is compatible with the given training 
data. If the source transducer is a (canonical) n-state Mealy 
machine and the training data contains all the input-utput 
pairs of lengths smaller than 271. - 1, then the algorithm is 
shown to identify a machine that is exactly equivalent to the 
source transducer. Another related work is that of Luneau et 
al. [9], in which a heuristic incremental procedure is proposed 
to infer Moore machines. Apart from the “heuristic” nature 
of this method, an important drawback is that the obtained 
transducers are not guaranteed to be compatible with the 
training data. One still more recent reference to the transducer 
inference problem is given in [lo] in relation to a context- 
free grammar inference technique. The main drawback of all 
these works, however, is that they are strictly restricted to the 
inference of sequential transductions that, as will be discussed 
below, introduce strong limitations that are inadmissible in 
many cases of interest. Finally, Vidal et al. [ l l ]  proposed 
a (heuristic) methodology for the inference of transducers, 
which was reminiscent of the “morphic generator grammatical 
inference methodology” (MGGI) [20] for the inference of 
general regular languages. Although this work was based on 
rather sound theoretical arguments and produced interesting 
empirical results, no properties of identifiability were given, 
and the (heuristic) application of the methodology to each 
particular task required considerable skills on the part of the 
designer. 

In this paper, we present a first step towards a formalization 
of the transducer learning (TL) problem from the point of 
view of its applicability within the interpretation paradigm. 
We have adopted a framework that is somewhat similar to that 
of grammatical inference (GI) [12]-[ 151, though one should 
realize that many important differences between GI and TL 
exist. In particular, we have tried to develop our work in 
the same direction as that of the so-called “characterizable” 
methods of GI [14], [16]-[17], that is, we have identified a 
(characterized) class of transductions and have developed a TL  
method that, under suitable conditions and using only positive 
presentations of input-output pairs, can be proved to correctly 
identify such a class. 

This class is the class of subsequential transductions that 
is a subclass of the most general rational or finite-state 
transductions and properly contains the class of sequential 
transductions [6]. A sequential transduction is one that pre- 
serves the increasing length prefixes of input4utput strings. 
Although this can be considered as a rather “natural property” 

of tranductions, there are many real-world situations in which 
such a strict sequentiality is clearly inadmissible. The class 
of subsequential transductions makes this restriction milder, 
therefore allowing application in quite interesting practical 
situations. 

Although a detailed theoretical study of the subsequential 
TL  problem has been carried out [18], (221, only those key 
formal issues needed for a convenient description of the 
proposed approach will be dealt with here. Instead, greater 
attention will be devoted to presenting the results in such 
a way that their possible application to pattern recognition 
problems can be easily understood. For this purpose, examples 
are used throughout the paper to clarify concepts and results. 
In addition, a number of experiments that illustrate both the 
usefulness of subsequential transduction and the ability of 
our lerning methods to actually obtaining the corresponding 
tranducers from positive training data will be presented. 

I t  should be emphasized that both the methods and the 
experiments presented in  the forthcoming sections are mainly 
aimed at illustrating the great potential of the proposed ap- 
proach to the interpretation problems in PR. Obviously (rather 
direct), further developments of the methods introduced here, 
such as stochastic and/or error correcting extensions, are 
required before these methods can be properly applied to the 
kind of noisy and distorted data usually encountered in real 
PR situations. Nevertheless, we consider that the contents of 
this paper constitute, in fact, a required first step toward a 
new framework that would eventually launch SPR beyond the 
boundaries of the classification paradigm. 

11. MATHEMATICAL BACKGROUND AND NOTATION 

Let X be a finite set or alphabet and X* the free monoid 
over X .  For any string .I: E X*, 1 . ~ 1  denotes the length of 2,  and 
X is the symbol for the string of length zero. For every :r3 y E 
X * ,  :txj is the concatenation of :E and y, with lzyl = IzI + IyI. 
If is a string in X * ,  then X * u  denotes the set of all strings of 
X *  that end with U ;  i.e., X*,u = {.r E X *  : 7 ~ 7 1  = :I;, 7~ E X*}. 
Similarly, ,uX* = { x  E X ”  : <u!o = X . I I  E X*}. On the 
other hand, Vx E X * .  Pr ( : r )  denotes the set ofprefixes or left 
factors of :r, that is Pr(.c) = ( 1 1  E X *  : 7 ~ 2 1  = : r ,u  E X*}. 
Given ‘71,. ii E X*, with E Pr(~ri), the right quotient 7 1 , - ~ 7 i  is 
the suffix of 7) that results after eliminating its prefix 11, that 
is, ‘ f i ,p l rI  = U li = 7 1 , ’ ~ .  Given a set L C X * ,  the longest 
common prefuc of I, is denoted as l q ( L ) ,  where 

lrp(1,) z iffsw E nrELPr( . r )  A ifw’ 

(11:’ E nrEr,Pr(.r)  + 1d1 5 I i 1 ~ 1 ) .  

In general, a transduction from X* to Y *  is a relation 
t 2 (X* x Y * ) .  In what follows, only those transductions that 
are (partial) functions from X *  to Y * will be considered. For 
a partial function t : X *  + I-*. Dorri,(t) denotes the subset of 
X * ,  where t is defined. In order to simplify the forthcoming 
presentation and without loss of generality, all the functions 
t will be assumed to be defined on X, with t ( A )  = A. A 
function t is finite if Dom(t )  is finite. 

A finite state or rational transducer r is defined as a six- 
tuple 7 = ( Q . X . Y , ~ ~ . Q F . E ) ,  where Q is a finite set of 
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states, qo E Q is the initial state, QF C Q is a set of 
final states, and E is a finite subset of ( C )  x X *  x Y* x C)) 
whose elements are called edges. Associated with an edge 
(q ’ ,  2 ,  y3 q ) ,  there is a transition (4’. r. (I) E (Q x Ik* x ()), 
which corresponds to the conventional concept in automata. 

A sequential transducer is a rational transducer in which 
E.c  (Q x X x Y *  x Q ) .  QF = Q and (I!. a. 1 1 .  7.). ((I. a.  I ! .  s)  
E + (U = I )  A 7’ = %s) (determinism condition) [6]. Corre- 
spondingly, Q F  can be omitted, and a sequential transducer 
is completely specified as a five-tuple 7 = (C).X.Y.qo.E). 
Sequential transducers are also called “generalized sequential 
machines” (GSM’s), from which Mealy and Moore machines 
are restricted instances. 

A path in a sequential transducer T is a sequence of edges 
! I r l .  ( I , , ) .  ( I 1  E 

E X ,  y; E Y * .  1 5 i 5 7 ~ .  Whenever the intermediate 
7r 

states involved in a path are not of particular 
will be written as 7r = ( q o .  :1’1 .1:2 . . . .r,, . :VI !/2 

IT, be the set of all possible paths over 7 .  The transduction 
realized by a sequential transducer T is the partial function 
t : X *  + Y* defined as t(:r)  = !J iff 3(qo..r. !I. (I) E r IT.  

Sequential transduction has the property of preserving left 
factors, that is, t ( X )  = X and if f ( c i o )  exists, then t (  / I / ! )  E 
t(u)Y *. Such a seemingly “natural” property (a restriction, 
in fact), however, can be quite inadmissible in many cases 
of interest. For instance, there are finite functions that are 
not sequential. In order to make this restriction milder. the 
following extension is introduced [6]. 

A subsequential transducer is defined as a six-tuple T = 
(Q. X. 1’. qo. E .  U ) ,  where 7’ = ((2. A-. Y. q o .  E )  is a sequen- 
tial transducer, and U : (2 + I.’* is a (partial) function 
that assigns output strings to the states of 7 ’ .  The partial 
function t : X *  + Y *  that is realized by T is defined as 
t ( :r)  = y a ( q )  iff cr(q)  is defined, and (qo. .r . ! / .  q )  E TIT. The 
class of subsequential functions properly contains the class of 
sequential functions. In the same way as for conventional finite 
transducers, a subsequential transducer can be represented as a 
graph with the only difference that nodes are labeled as pairs 

By using an additional input symbol “#,” not in X, to mark 
the end of the input strings, any subsequential transduction 
t : X* + Y *  can be obtained as a restriction to A$**# of 
a sequential transduction f’ : ( X  U { # } ) *  + IT* SO that 
V.1; E X*. t ( :c )  = t’(:r#) [6]. If 7 = ( Q .  A-. I-. qo. E .  U )  is a 
subsequential transducer that realizes t ,  then t’ can be realized 
by the sequential transducer 7’ = ( C 2 . X  U (#}.I’.clo.E’), 
where E’ = E U {((I. # . U ( ( I ) . ( I ~ )  : q E C ) } .  Note that 
any given subsequential transducer admits several different 
sequential representations. For instance, an alternative to the 
above sequential representation of T can be obtained by adding 
an extra state ij for every state q of C )  and replacing every 
((I. #> a(q ) ,  qo)  in E’ for ((1. #. a(q ) .  (I). In what follows, the 
term “subsequential transducer” will be used, at convenience, 
either to denote a subsequential transducer as defined by 
(Q9 X, Y ,  qo. E ,  a )  or a sequential representation thereof. Fig. 
1 shows an example of a subsequential transducer and a 
sequential representation. 

( q o .  :I:i. r / i .  ( I i ) (qi .  Z 2 .  TJ2. (12)  ’ ‘ ’ ( ( Ir7 - i .  

(q .a(q) ) ,  where (I E 0. 

Fig. I .  Subsequential transducer of Example 1 and a sequential represen- 
tation. 

Example 1: The function f : {n}*  - {b .c}*  defined by 

R = 0 
t(.”) = b”+1  71 odd r b c 71 even 

is subsequential, but not sequential, since it does not 
preserve left factors. The function f  is realized by 
the subsequential transducer 7 = (Q. X, Y. qo, E .  a) in 
which t) = { q [ ) . q l . q 2 } . v X  = { n } , v Y  = {b .c} . rE  = 
{ ( q o . u . b 2 . q 1 ) .  ( q ~ . a .  X . q 2 ) .  ( q 2 . a .  b 2 . q 1 ) } ,  and a(q0) = 
X . ~ ( q l )  = X . U ( I ~ ? )  = c. The graph of 7 and that of a 

0 
Following, e.g., [ 121 and [ 141, an appropriate framework for 

thc TL problem can be established as follows: Let f : X *  + 

I.-* be a partial recursive function, a TL algorithm A is said 
to identify f in the limit if, for any (positive) presentation 
of the input-output pairs (graph) of f ,  A converges to a 
transducer 7 that realizes a function y : X’ 4 Y* such that 
V.r E D o 7 n ( f ) . , y ( : r )  = f ( . r ) .  

sequential representation of 7 are shown in Fig. 1. 

111. ONWARD SUBSEQUENTIAL TRANSDUCERS 

The TL algorithm to be presented in the next section 
requires some additional new concepts to be introduced. An 
onward subsequential transducer (OST) is one in which the 
output strings are assigned to the edges in such a way that they 
are as “close” to the initial state as they can be. Formally, a 
subsequential transducer 7 = ((2. X .  Y. ( I O .  E ,  a)  is an OST if 

VT) E C )  - { q o } k p ( { y  € E’*l(p.n.y.q) E E }  U { a ( p ) } )  = A. 

Much in the same way as happens in regular languages, any 
subsequential transduction admits a characterization in terms 
of a canonical transducer in onward form; in other words, for 
any subsequential transduction t ,  there exists an OST that has 
a minimum number of states and is unique up to isomorphism. 
Let ~ ( t )  denote such a transducer. A construction for ~ ( t )  can 
be developed using the concept of set of tails: 

Let f : X* + Y* be a partial function, and let z E X*. The 
set of tuils of :I’ in t .  T,(:r) is defined as 

Tt(.r) = {(y. /j)lt(.r:y) = ‘ / / , U .  1L = I c p ( t ( z X * ) ) }  

with T t ( x )  = (4 if .I‘ f Pr.(Do7ra(f)). 
I t  can be seen that if f is subsequential, the number of 

different sets of tails in {T+(:r;)l.r E Pr(Dom( t ) ) }  is finite 
[ 181. Therefore, these sets can be used to build a subsequential 
transducer ~ ( t )  = (0. X. I*. I/[). E .  cr) as follows: 

() = {Tt(,L)l,/, E P7.(D0711(1))}: qo = T,(X): 

E = { ( T+ ( .I’ ) . (1,. Icp ( f ( .I: X * ) ) 1 cp(  t (sax * ) ) . 
Tt (.m)) ITt (r). Tt (:In) E C)} 
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Fig. 2. Canonical transducer for the subsequential function of Example 2. 

if r E Dom(t) 
otherwise. 

It can be easily seen [18] that such a transducer is onward 
and that any other OST for t either has a greater number of 
states or is isomorphic to ~ ( t ) .  

Example 2: Let t : {a}*  --+ {b ,c}*  be a function defined 
as in Example 1. The different sets of tails are: 

Tt(X) = { ( A X ) }  U { ( a 2 n + V n + * ) l n  2 O} 

U {(a2n,b2nc) (n  2 l} 

U {(a2n.b2n)Jn 2 1) 

T t ( a )  = {(X ,X) }  U { ( ~ ~ ~ + ‘ . b ~ ” c ) l n  2 0) 

Tt(a2)  = { ( A ,  c ) }  U {(a2n+l. b211+*)171 2 o} 
U { ( a z n ,  b2TL~)In  2 1) 

Tt(a2n- l )  = Tt(a) ,n  2 1 

T t ( P )  = T+(a2) .  n > 1 

and the canonical OST that realizes t ,  which is shown in Fig. 
2, is isomorphic with the corresponding transducer shown in 

The transduction learning algorithm to be presented in the 
next section requires a finite sample of input-output pairs 
T c (X’ x Y’), which is assumed to be nonambiguous 
or single-valued, i.e., ( T ,  y) ,  (r, y’) E T + y = y’. Such a 
sample can be properly represented by a “tree subsequential 
transducer” (TST) r = (Q, X ,  Y,  qo, E ,  U ) ,  with 

Fig. 1. 0 

Q U ( u , L ‘ ) ~ ~ P ~ ( 7 ~ ) .  40 = 
E = ((711, a, A, ?un) lu~,  1110 E Q } .  

A possible sequential representation r’ of this TST can be 
of T and extending its set of states obtained by eliminating 

and edges as follows: 

Q’ = Q U { ? L # ~ ( ? L .  71) E T } :  
E’ = EU { ( T ~ . # , ~ I , ? L # ) ~ ( ? ~ . ~ I )  E T } .  

Whenever such a sequential representation is used, the 
training pairs ( U ,  11) will be written as (U#, 71). 

Given T ,  an onward tree subsequential transducer (OTST) 
representing T ,  O T S T ( T )  can be obtained by building an OST 
equivalent to the TST of T.  Let r’ = (Q’, X U { #}, Y,  40, E’) 
be a given (sequential representation) of a TST. In order to 
obtain the OTST equivalent to r’, the states of r’ must be 
considered in an orderly fashion, starting from the leaves and 
in each state q # q ~ :  

i f ru  = Icp(71 E Y * l ( q , a , i i . ~ )  E E’} A W  # Xthen 

1) substitute every outgoing edge of q :  (q ,a .7uz3r )  for 
( q .  a ,  2 .  T )  

(b) 

Fig. 3. Tree subsequential transducer (TST): (a) Onward tree subsequential 
transducer OTST(T); (b) representing the sample T = { (#. A) .  ( a # .  hb). 
( n o # .  hhf ). ( r m # .  hbbb). (ocrrco#. bbbhf ) } .  

2) substitute the ingoing edge of q :  ( p , b , y , q )  for 

Example3: Let T = {(#.X).(u#,bb),(au#,bbc).(a~a#, 
bbbb), (aana#, bbbbc)}. This sample has been drawn from the 
transduction in Example 1. Sequential representations of the 

n 

( P ,  b ,  Y7‘I ,4) .  

TST of T and OTST(T) are as shown in Fig. 3. 

Iv. THE TRANSDUCER LEARNING ALGORITHM 

Let T C ( X * #  x Y * )  be a finite single-valued training 
set. The proposed algorithm consists of a nonincremental 
procedure that starts building the OTST(T),r  = ( Q , X  U 
{ #}, Y, 40, E )  and then proceeds by orderly trying the merge 
of states of r. This state merging may result in transducers 
that are not subsequential as defined in Section 11. In par- 
ticular, they may often violate the condition of determinism: 
(4, a ,  7 4  T )  , ( q ,  a, 71, s )  E E + (U = 71 A T = s). In these cases, 
we may still insist on preserving the subsequential nature of 
the resulting transducers. For this to be possible, some output 
(sub)strings associated with the edges of r often need to be 
“pushed back” towards the leaves of T in a process that, to a 
limited extent, reverses the forward (sub)string displacements 
carried out to transform the initial TST associated with T into 
T .  The test as to whether a transducer T is subsequential, 
as defined in Section 11, is assumed to be supplied by a 
(hypothetical) procedure “subseq” that takes a transducer and 
outputs true if such a property holds or false otherwise. One 
should realize, however, that when embedded in the algorithm 
to be described below, such a test can be carried out at no 
cost as a byproduct of the remaining operations of the core 
of the algorithm. 

The merging process mentioned above requires the states of 
r to be successively taken into account in a lexicographic 
order of the names given to these states through the TST 
construction (Section 111) [18]. Let “<” be such an order on Q, 
with first(r) and Inst(.r) being the first and last states with 
respect to “<,” and Vq E Q - { l a s t ( r ) } ,  and let nezt(r,q) 
denote the state that immediately follows q in the order “<.” 
The merging of any two states q‘ ,q  E Q, with q’ < q, results 
in a new transducer r’ = (Q’, X U {#}, Y, 90, E’) in which 
the state q no longer exists in Q’, and all the outgoing edges 
of q in E are assigned to q’ in E’. Let r’ = merge(r,q’q) 
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z f. 

2‘ = push_back(2,b,(a~,a,bb,a~)) 

Fig. 4. Example of a push-back operation 

INPUT: Single-valued finite set of input-output pairs T c  (X’# x Y * )  

OUTPUT: Onward Subsequential Transducer 7 consistent with ’I 
7 := OTST(T) 
q:=first(7 ) 

while q < h r ( 7  ) do 

q:= nexr(7.q); 

while p < q do 

p:= firsr(7 ); 

7,:= 7 

7 := merge(7.p.q) 
while -subseq(r ) do 

let (r,a,v.s), (r,a.w,t) be two edges of 7 

if  ((vtw) and (a=#)) or (s<q and ve Pr(w)) then exit while 

u:= /cp(v,w) 

7 := push-buck(7, u-‘v,(r,a,v,s)) 
7 := pirsh-buck(7. u-’w,(r,a,w,t)) 
7 := mer;qe(T,s,t) 

that violate the subseq condition, with s < t 

end while Ihsubseci(7 )I/ 
i f  -subseq(T ) then 7 := 7’ else exit while 

p:= ne.rr(7 .pj 
end while I/ p < q I/ 
i f  -subseq(r j then 7 := ‘5’ 

end while 11 q < lusr(‘c)// 

end IIOSTIAII 

Fig. 5 .  Transducer inference algorithm 

represent this merging operation that is quite similar to the 
merging of states in finite-state automata [16]. 

The process of “pushing back” output substrings in a trans- 
ducer 7 = (Q, X U { #}. Y, qo, E )  requires more explanation. 
Let q E Q be a state of 7 and (q ’ .n , i i i ,q )  E E (one of‘) its 
ingoing edge(s). If 71. E Y’ is a prefix of 711, then the suffix 
i i  = ?~- l i i i  can be “pushed back” to behind q and distributed 
throughout all the outgoing edges of q to produce another 
transducer 7’ = ( Q .  X U { #}, Y. qo. E’) as follows (see Fig. 
4): 

E’= ( E -  { ( q ’ . f l , 7 I i ) , q ) } ) U { ( q ’ . f 1 , t ~ . ~ ) }  

U { ( q .  b.7)z.r) : ( q . b . 2 . r )  E E } .  

Let T’ = push-back ( 7 . 7 1 ,  (9’. 0. t i ) ,  q ) )  denote this operation 
for which the following equivalence property can be easily 
established [18]: 

If ti = A or if (q’. a. 111,  q )  is the only edge that enters q and 
o # #, then transductions are preserved, and the transducer 
T’ is equivalent to T .  

The algorithm that performs the above outlined procedures 
is called the “onward subsequential transducer inference algo- 
rithm (OSTIA)” and is formally presented in Fig. 5.  

The computational cost of this algorithm can easily be 
shown to be polynomial. Let n = C(r,y)ET 1x1, m = 
iiiax(,,y)ET I’yl and IC = 1x1 be parameters measuring the size 
of the input training set T. The initial TST of T has a number 
of states that is linear with n,. The initial O T S T ( T )  has the 
same number of states, and its construction requires computing 
time that grows linearly with 71, . ni, . k .  

The two outer while loops of OSTIA entail, in principle, a 
total number of iterations that is quadratic with the number 
of states of the initial transducer r = OTST(T)-hence, 
with rb. This could be considered exceedingly pessimistic since 
many states could rapidly be eliminated from 7 by successive 
merge operations. Nevertheless, a worst case can be identified 
in which, after having carried out all possible merge operations 
of the inner while loop and having exhausted all the remaining 
states, this loop is exited without success (if condition). In this 
case, the inner loop would perform, at most, O ( n )  iterations, 
resulting in an O ( n 3 )  total number of executions of the core 
of the algorithm. Except for l cp  and push-back, all the other 
operations involved in the OSTIA can be easily implemented 
to run with unit cost, that is, computing time independent of 
71.  r n .  and k .  The l cp  operation can also be easily implemented 
to work in O(711.) time, whereas push-back may require O ( k )  
steps if string indexes rather than actual (sub)strings are used 
to represent the input-output substrings of the edges of T .  

This amounts to a total cost in O ( 7 1 1  + k )  for the core 
operations and a total computing time that can be bounded as 
0(7r3(7n + k )  + nrrak). Obviously, in many cases of interest, 
this bound is, in fact, pessimistic. Real empirical timing results 
will be shown in Section VI. 

The correctness of this algorithm is also clear. The proof 
starts by realizing that the property q < t results in being a loop 
invariant of the algorithm. Given the tree structure of the initial 
OTST, along with the order in which states are considered for 
merging, this invariant implies that only one edge can enter the 
state t .  Correspondingly, from the above equivalence property, 
the push-back operation involving t is always transduction 
preserving. On the other hand, the other push-back operation, 
which involves the state s, can only be executed in two very 
precise situations: 1) s < q, in which case 71 E Pr(71~) and thus 
I L - ~  = X or 2 )  q < s, which implies that only one edge can 
enter s.  Therefore, the equivalence property guarantees that, 
in both cases, the operation also results in being transduction 
preserving. Since the initial OTST is obviously consistent with 
T ,  proceeding by induction, we see that every iteration yields 
a transducer r that is subsequential and consistent with T .  

Similar arguments support the assertion that the resulting 
transducer is onward. The initial OTST is obviously onward, 
which is a property that is clearly preserved by the successive 
executions of the operation “7ne7.,9e(~, p .  q).” However, the 
two push-back operations (which aim at trying to recover the 
subseq condition after its possible violation by the merge of 
two states) may result in losing the onward property. However, 
in this case, the subsequent “merge(r, s .  t)” operation directly 
restores the property, yielding again an onward transducer. 

Following this discussion, it can be seen that the OSTIA 
produces a subsequential transducer that is a state-merging- 
based generalization of the initial subsequential tree transducer 
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( g )  

Fig. 6. Some key steps of the OSTIA as applied to the OTST in Fig. 3(h) 

representing the given sample T .  This generalization, however, 
tends to progressively shrink as T gets larger and includes 
more training pairs that are “representative” of the unknown 
(subsequential) transduction from which T is assumed to have 
been drawn. As will be discussed in the next section, this 
leads to the important result that using the OSTIA, the class of 
subsequential functions can be identified in the limit. 

Using the training pairs of Example 3, Fig. 6 illustrates some 
key steps of the OSTIA. Starting from the OTST of Fig. 3(b), 
the algorithm attempts the merging of states X and #. Fig. 6(a) 
shows the resulting transducer. Then, OSTIA goes on trying 
the merging of states fr. with X (Fig. 6(b)). This transducer 
has the two edges (A, n ,  bb. A) and (A. a. A. o n )  that violate 
the subseq condition. Given that X < n and, bb $! Pv(X)  the 
innermost loop of OSTIA is exited, and states X and a# are 
merged in the previous transducer (Fig. 6(a)), resulting in the 
transducer of Fig. 6(c). The next step tries the merging of 
the states X and an. The existence of edges ( X . # . A , X )  and 
(A, #. c,  a.#) (Fig. 6(d)) causes the exit of the innermost loop 
of OSTIA. Similarly, the attempt of merging the states n and 
aa is unsuccessful. After merging the states X with no# and 
given the imposibility of merging X with nao, Fig. 6(e) shows 
the result of the merging of the states non with n .  The edges 

(0. a. A, aa)  and ( a ,  ( I ,  c ,  nnno) of the :suiting transduce 
violate the subseq condition; nevertheless Irp( { A. r } )  = 
A, and the operations piLsh-bnrk(r. A, ( a ,  a ,  A, aa)) and 
p i~~h-bnck ( r .  c,  ( a .  a .  c,  naan)) produce the transducer shown 
in Fig. 6(f).  The rest of the work carried out by the innermost 
loop of OSTIA finally leads to the subsequential transducer of 
Fig. 6(g) that is the inferred result from the training sample 
of Example 3. 

v. IDENTIFICATION O F  SUBSEQUENTIAL 
TRANSDUCTIONS IN THE LIMIT 

In this section, we will show how the OSTIA identifies 
the class of subsequential functions from positive data (in- 
put-output pairs) in the limit. To this end, we start defining a 
finite representative sample T of a total subsequential function 
t. We will show that the transducer O T S T ( T )  contains a 
subset of states (referred to as kernel), which induces a subtree 
in O T S T ( T )  that contains representations of every and all 
the edges of the canonical OST of t ,  ~ ( t ) .  This result will 
allow us to establish that if a representative sample is input to 
OSTIA, then the output will be r ( t ) .  Given that any positive 
presentation of t will eventually include a representative 
sample, the property of the identification in the limit will result. 
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In what follows, only the main arguments of the proofs will 
be sketched. A full account of the complete results can be 
found in [18]. 

Definition I: Let t : X *  + Y* be a subsequential function. 
The string U] is a short prefix of t iff ‘(11 E P r ( D o m ( f ) ) ,  and 
Vv E X * ( T t ( w )  = Tt(71) + 71 2 U)). The set of short prefixes 
of t is denoted SP( t ) .  

The set S P ( t )  includes a short prefix for every different set 
of tails in {Tt(w)lw E P r ( D o m ( t ) ) ) .  Given that the sets of 
tails are just the states of the canonical OST of t (Section H I ) ,  
the set of short prefixes constitutes a minimal set of shortest 
strings that allow reaching every state of ~ ( t ) .  

Definition 2: Let t : X *  -+ Y* be a subsequential function. 
The kernel of t is the set K ( t )  = ( S P ( f ) X  fl Pr(D07r1(1))) U 

In other words, K ( t )  contains the empty string along with 
the extensions of all of the strings in S P ( t )  with all the 
symbols in X ,  as long as these extensions are prefixes of 
strings in the domain of t .  

Definition 3: Given a total subsequential function t : X* -+ 

I”, a sample T of t is said to be representative of t iff 

{ A > .  

1) v71, E K ( t )  3(71.?/1) E TI?/, E Pr(lf) 
2 )  Q71, E S P ( t )  Q71 E K ( t )  ( T ~ ( u )  # Tt( / l )  3 

3 ( 1 L 7 1 1 ,  U’lli’), (71111, 71’1”’’) E TI 
(711, 711’) E Tt(U). (? l l ,  711”) E Tt(7J). 11’’ # //)”) 

3 )  Q7L E K ( f )  3(?L’/l, ?/,”!)’), (1L711. 1/, ’7/1’) E T (  
( 7 1 ,  I ! ) ,  (711. 711’) E T ~ ( u ) ,  l ~ p ( { 7 ~ ’ .  111’)) A. 

Example 4: The set of short prefixes of the transduction t 
of Example 1 is S P ( t )  = {A,  a. na}  (c.f., Example 2) ,  and 
the kernel is K ( t )  = { A ,  a. r i a ,  aao,}. An example of a repre- 
sentative sample is T = { ( A ,  A),  (0,. bo).  ( M I L  6 6 r : ) .  (i,(ia> b666),  

0 
In the theorems given below, condition 1) of Definition 

3 will guarantee that all the states and transitions of the 
canonical OST ~ ( t )  are represented in OTST(T) .  Condition 
2 )  will distinguish those states of O T S T ( T )  for which the 
corresponding states of r ( t )  are different. Finally, condition 
3) will make i t  possible that for every state of OTST(T)  that 
is reachable by a string in the kernel of f ,  the edges will be 
identical to the corresponding edges in T ( t ) .  

In the forthcoming theorems the following notation 
will be used: TT = (QT .X .Y .A .ET>(TT) ,  and 7 ( t )  = 
( Q t ,  X, Y, qo. Et:  o t )  will denote the OTST(T)  and the 
canonical OST of t ,  respectively; T; = (Qi .  X U { # }. 1’. A. E ? )  
will denote the OST obtained after the ith iteration of the 
outermost while loop of the OSTIA with input T c (X*# x 

Theorem 1: Let T be a representative sample of t : X ”  + 

Y * .  A function cp : QT + Q, exists such that Vu. MI, E 

K ( t )  ((U, a ,  71, 7 m )  E ET e ( c p ( 7 ~ ) .  a.  I J .  ~ ( w I , ) )  E E t ) ,  and 

Proof: If $11. E K ( t )  and t’ : X ”  -+ Y* is the finite 
function realized by q-, the third condition for a repre- 
sentative sample (Definition 3) allows us to establish that 
k p ( t ’ ( u X * ) )  = l c p ( t ( u X * ) ) .  Then, by defining p : QT 3 Q ,  
as q(u) = Tt(u).u E QT and using the first condition of 
representative sample (Definition 3), the theorem follows. 0 

(naan, 6 6 6 6 ~ ) )  (c.f., Example 3). 

Y *). 

vu E K ( t )  OT(?L) = cr t (cp(71 , ) ) .  

Theorem 2: Let (I E Q; be the state of T? considered in 
the i + 1 iteration of the outermost while loop of OSTIA, let 
(2: = {q’ E C);Jq’ < q } ,  and let T! = (Q:.XU {#}.Y.X,El)  
be the subtransducer induced by Q:. If T is a representative 
sample of a total subsequential function t : X *  - Y*, 
then T: is isomorphic with a sequential representation of a 
subtransducer of T (  t ) .  

Proof: Let p : Q: + Qt be defined as p(u) = 
I”,(!/). 11, E Q:. By induction in the number of iterations 
and given that the second condition of the definition of 
representative sample guarantees us that OSTIA will perform 
the merge of two states only if both have the same image with 
9. we can establish that 

a) ( U .  ( I , . I I .  ( 1 0 )  E I?: 3 (p(u). (1,. 1 1 .  ~ ( u o , ) )  E Et 
b) ( 1 1 .  #. 1 ’ .  I / # )  E E: 3 ( T ~ ( ~ ( I L ) )  = 71 

and, using an appropriate sequential representation, the theo- 
rem follows. 0 

Corolary 1: If  the input to OSTIA is a representative 
sample of a total function t ,  then the output is an OST that 
is isomorphic with T ( t ) .  

Theorem 3: Using the OSTIA, the class of subsequential 
functions can be identified in the limit with positive presen- 
tation. 

Proof: I f  t : X* -+ 1” is a total function, then any 
positive presentation of t will eventually include a representa- 
tive sample. Hence, OSTIA will converge to a subsequential 
transducer that is isomorphic with ~ ( t ) .  If t is not total, the 
second condition of the definition of representative sample is 
not guaranteed. Correspondingly, OSTIA may merge states 
that are associated to states of T ( f )  that are different from 
each other. However, in this case, no finite information se- 
quence can effectively distinguish such states. Thus, OSTIA 
would converge to a subsequential transducer T that realizes 
a function t’ such that V.r E Do,rri.(t) t ‘ ( x )  = t ( : r : ) ,  which is 
precisely the condition assessing the identification of t in the 
limit (Section 11). 0 

VI. EXPERIMENTS 

Theoretical properties assessing the adequate behavior in 
the limit (convergence) of subsequential transduction identifi- 
cation using the OSTIA have been discussed in the previous 
section. However, from PR viewpoint, results concerning finite 
data behavior seem to be of greater interest. In order to obtain 
such results and at the same time illustrate the capabilities 
of subsequential transduction and their OSTIA learning, a 
number of experiments have been carried out. Some of these 
experiments and their results will be presented in this section. 

For thc first group of experiments, the task of translating 
roman numerals into their decimal representation has been 
chosen. I t  should be taken into account that such a task can 
by no means be supported by pure sequential transduction 
since many input-utput pairs exist in which identical input 
prefixes must lead to different output substrings. As will be 
seen below, subsequential transduction casily overcomes this 
difficulty, allowing the task to be properly accomplished. 

For the first experiment, a series of 50 increasing-size 
random training sets, each including the previous ones, were 
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Fig. 7. Sample of selected training pairs tor the roman to decimal translation 
task. 
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Fig. 8. Behavior of the OSTIA in the roman to decimal tran4ation task. 

drawn from a uniform distribution in the range of (roman and 
decimal) numbers from 1 to 1O4- l .  The random procedure was 
prevented from generating repeated samples, and the test set 
consisted of all the roman numerals from 1 to 10’-1 that were 
not included in the corresponding training sets. Some selected 
training pairs are shown in Fig. 7. 

Every training set was submitted, in turn, to the OSTIA, and 
each resulting subsequential transducer was used to translate 
all the roman-numeral strings of the test set. The results of 
this experiment appear in Fig. 8. The items shown are a) the 
test-set error rates, b) the sizes of the learnt transducers, and c) 
the computing time required for each execution of the OSTIA, 
on a - 25 mips conventional RISC computer (HP 9000/835). 

It is worth noting that with small training sets, the inferred 
transducers tend to be rather large and error prone, whereas 
both sizes and errors reduce dramatically as enough source 
structure is made available through the training data. More 
specifically, learning can be considered almost completely 

v 1: 

&!?&- 
Fig. 9. Part of the subsequential transducer that was learned for the roman 
to decimal translation task. The part shown corectly translates the roman 
numbers from I to 99. The initial state is marked as ‘‘(IO.” and the dashed 
lines correspond to cdgcs of the remaining parts (not shown) of the whole 
transducer. 

accomplished (97% performance) after having seen approx- 
imately 3000 random training pairs. 

I t  should be taken into account that these results were 
obtained without concern as to how “relevant” the (random) 
training data were for the considered learning task. The 
existence of a “minimal” relevant training set (representative 
sample) has been proven in the last section; however, without 
a priori knowledge of the source transduction, theory does 
not seem to provide us with adequate means to identify such 
a set in practice. In order to empirically investigate how small 
the training set could become if appropriately selected, an 
additional experiment was carried out involving the following 
greedy procedure. First, starting with a transducer learned 
from a first training pair “(1, l )”  the test data was submitted 
in numerical order to transduction until one roman-numeral 
string that was incorrectly translated appeared. Then, this 
string, along with its correct decimal transduction, was used 
as a training pair. The first phase of this procedure stopped 
when all the strings were correctly translated. In the second 
phase, the roman numeral (training) pairs that were selected 
in the first phase were considered, in turn, to see whether they 
could be discarded without change in the inferred transducer. 
After this second phase, a representative sample of 210 roman- 
decimal pairs that led to the correct identification of an exact 
subsequential transducer that was identical to the one obtained 
in the previous experiment with a random training set of 9000 
pairs was identified. A portion of this transducer is shown in 
Fig. 9. 

A second group of experiments was concerned with the task 
of translating english numbers in the 0 . .  . 10‘-1 range into 
their conventional decimal representation. Although this task 
is rather better suited to sequential transduction than that of the 
roman-decimal task, there are also in this case situations that 
prevent pure sequentiality, e.g., “ninety” + ‘‘90,’’ “nineteen” 
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10. Sample of selected training pairs for the english to decimal 
translation task. 

"1 9," etc. The experimental framework was similar to 
that of the previous experiments, except that in this case, the 
numbers were randomly drawn from a nonuniform distribution 
in which the lengths of the decimal strings were (approxi- 
mately) equiprobable. In this case, 60 training sets of sizes 
increasing from 200 up to 12 000 were used, and the test set 
consisted of the whole range of 10' different english-number 
strings except those used for training. In order to approach 
the conditions of phonemic recognition, these strings were 
written with no separating blanks between the different words, 
which considerably increased the difficulty of the task. Fig. 10 
shows some training pairs that have been selected from the 
training material. The results appear in Fig. 11, which shows 
the same items as Fig. 8, with similar behavior. In this case, 
learning can be considered almost completely accomplished 
(97% performance) after having seen approximately 2500 
random training pairs. In addition, a greedy procedure similar 
to the one described above was carried out, ending with a 
representative sample of 260 input-utput pairs with which a 
perfect transducer is obtained that is exactly the same as that 
obtained from 11 600 random training pairs. 

Apart from these experiments, many other similar exper- 
iments involving these and many other tasks were carried 
out. For instance, number translation from english to Spanish 
and from Spanish to decimal were successfully, learned from 
english-Spanish pairs and spanish-decimal pairs, respectively, 
even though Spanish number rules entail different nonse- 
quentialities and are more involved than the corresponding 
rules in english [21]. In addition, transducers that imple- 
ment integer division of a decimal number by an arbitrary 
divisor and (reversed) multiplication by an arbitrary fac- 
tor were easily learned with the OSTIA from data-result 
examples [19]. The behavior of the OSTIA, which is ob- 
served in all these experiments, was rather similar to that 
shown in the experiments described above. The presentation 
of these experiments has been omitted here for the sake of 
brevity. 

The last group of experiments was aimed at establishing 
some empirical worst-case results on the computational re- 
quirements of the OSTIA. Although a worst-case polynomial 
behavior was easily deduced from the properties of the OSTIA 
(Section IV), a tighter upper bound seems rather difficult 
to establish theoretically. Nevertheless, i t  should be clear 
that worst-case behavior would be exhibited for training data 
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Fig. 11. Behavior of the OSTIA for the english to  decimal translation task. 

corresponding to nonsubsequential transduction. In other case, 
when enough source transducer structure is represented in the 
training data, the state merging process (quickly) reduces the 
(large) number of states of the initial OTST, leading to the 
quasi-linear, low-computing-time growing rates shown in Figs. 
8 and 11 for sufficiently large training sets. Therefore, in order 
to empirically investigate the OSTIA computing-time growth, 
an experiment involving nonsubsequential transduction was 
carried out. 

The chosen task was that of reversing strings (representing 
decimal numbers in the 10' range), which by no means might 
properly be accomplished by subsequential transduction. Using 
a similar experimental setup as in the previous experiments, the 
OSTIA was presented with 20 training sets of sizes increasing 
from 200 up to 4000. Moreover, in order to (as much as 
possible) approach an absolute worst-case data conditioning 
for the OSTIA, the training data were presented in strict 
number ordering within each training set. Obviously, in this 
case, no appropriate transducer was ever obtained, leading 
to a 100% error rate for those strings not used for training. 
The computing times required by the OSTIA in this case are 
presented in Fig. 12 along with the corresponding sizes of 
the inferred transducers. A second-degree polynomial that was 
least-squared fitted to the experimental values is also shown. I t  
is worth noting that although a first-degree fit would clearly be 
inappropriate, the quadratic coefficient of the fitted polynomial 
is relatively small, and for the range of sizes considered, a 
cubic coefficient would have not improved the fit. 
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Fig. 12. Worst-case behavior of the OSTIA as applied to a nonsub- 
sequential transduction learning task. A second-degree polynomial: Time 
= 1 . G .  1 0 ~ ’ r ~ 2 + 0 . 0 0 0 1 3 r ~  +0.2.59.5 is least squared fitted to the computing 
times. 

VII. DISCUSSION AND CONCLUSION 

The results of the experiments described in the last section 
clearly indicate both the versatility of subsequential transduc- 
tion and the effectiveness of the OSTIA to learn subsequential 
transducers from training input-utput examples. For those 
(small) training sets that do not convey enough structure of 
the unknown source transduction, the transducers produced 
by OSTIA tend to be rather large and error prone; however, 
very compact and accurate solutions are always obtained once 
the training data contain a very small number of relevant 
input-output pairs. The existence of such small sets of relevant 
training data was shown through some of the experiments 
reported in the last section, and some theoretical results 
regarding what a “relevant” set of input-output training pairs is 
(representative sample) were presented in Section V. However, 
the only practical hint these results seem to suggest is that such 
training data should contain the “simplest” (usually also the 
shortest) transduction examples, and how to actually choose 
adequate and small sets of training data remains an open issue 
of practical concern. In any case, by relying on chance alone, 
good results (i.e., low error rates) tend to be obtained with 
reasonably small sets of training pairs. 

Another important issue is related to the partial-function 
nature of the transductions dealt with by OSTIA. Since no 
(positive) sample can effectively help teaching how to “cor- 
rectly” translate (“incorrect”) strings that are not in the domain 
of a function of this type, any learning device is granted 
the freedom of conveniently generalizing the training data 
by means of allowing arbitrary translation of these strings. 
For instance, the OSTIA-learned transducer of Fig. 9 outputs 
the string “84” in response to the input string “VIIIIV,” 
which is not a correct roman numeral and therefore is not 
expected to be submitted for transduction in the test phase. 
Obviously, since this string is not in the domain of the 
transduction to be learned, it  could never have the chance to 
appear in any (positive) presentation, thus impeding learning 
to yield just the string “error” as a response. Apart from the 
rather obvious use of such a type of “negative” input-utput 
examples (with output = “error”), we may try to overcome this 
problem by attempting an identification (or at lest an adequate 
restriction) of the function domain, either by using a priori 
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knowledge or by means of more conventional grammatical 
interference methods. Although we have not yet fully pursued 
this approach, we have reason to believe that any available 
knowledge of the transduction domain could significantly help 
not only to produce more “natural” transduction results in 
undefined cases but also to make the learning task being 
considered even easier. 

Apart from training-data selection and domain definition, 
two other interesting (practical) issues remain to be investi- 
gated. First, since the OSTIA is essentially a nonincremental 
learning algorithm, the possibility of small incremental adap- 
tation to new training data of a transducer that was already 
fairly well established from previous (nonincremental) OSTIA 
learning should be worth studying. Second, the possibility 
of incorporating an appropriate (also learned) error model 
into the learned transducers, as well as making the resulting 
transducers stochastic, needs be investigated if dealing with 
real and natural data such as speech or images is required. 

In any case, we think that the work presented in this paper 
constitutes a required step that would eventually allow many 
real interpretation tasks to be dealt with under the transduction 
framework of syntactic pattern recognition. 
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