
448 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 5, MAY 1993

Learning Subsequential Transducers for
Pattern Recognition Interpretation Tasks

Jose Oncina, Pedro Garcia, and Enrique Vidal

Abstract-The “interpretation” framework in pattern recogni-
tion (PR) arises in the many cases in which the more classical
paradigm of “classification” is not properly applicable generally
because the number of classes is rather large or simply because
the concept of “class” does not hold. A very general way of
representing the results of interpretations of given objects or
data is in terms of sentences of a “semantic language” in which
the actions to be performed for each different object or da-
tum are described. Interpretation can therefore be conveniently
formalized through the concept of formal transduction, giving
rise to the central PR problem of how to automatically learn
a transducer from a training set of examples of the desired
input-output behavior. This paper presents a formalization of the
stated transducer learning problem, as well as an effective and
efficient method for the inductive learning of an important class of
transducers, namely, the class of subsequential transducers. The
capabilities of subsequential transductions are illustrated through
a series of experiments that also show the high effectiveness of
the proposed learning method in obtaining very accurate and
compact transducers for the corresponding tasks.

Index Terms-Formal languages, inductive inference, learning,
rational transducers, subsequential functions, syntactic pattern
recognition.

I. INTRODUCTION

YNTACTIC pattern recognition (SPR) is currently seen S as a very appealing approach to many pattern recog-
nition (PR) problems for which the most traditional deci-
sion-theoretic or statistical approaches fail to be effective
[1]-[3]. One of the most interesting features of SPR consists
of the ability to deal with highly structured (representations
of) objects and to uncover the underlying structure by means
of parsing. In fact, it is often claimed that such a distinctive
feature is indeed what would enable SPR to go beyond the
capabilities of other traditional approaches to PR. However,
though parsing is perhaps the most fundamental and widely
used tool of SPR, it is often used simply to determine the (like-
lihood of) membership of the test objects to a set of classes,
each of which is modeled by a different syntactic model. Any
possible structural byproduct of the parsing process is therefore
discarded, thus considerably wasting the high potential of SPR.

Nevertheless, membership determination is in fact all that is
needed if the problem considered is simply one of classifica-
tion. However, SPR can be seen as particularly useful for many

Manuscript received April 15, 1991; revised June 22, 1992. This work was
supported by the Spanish ClCYT under grant TIC-0448189. Recommended
for acceptance by Associate Editor M. Nagao.

The authors are with the Departamento de Sistemas lnformaticos y Com-
putacion, Universidad Politecnica de Valencia, Valencia, Spain.

IEEE Log Number 9208009.

other interesting PR problems for which the classification par-
adigm is not properly applicable-simply because the concept
of “class” does not hold or because the number of underlying
classes is very large or infinite. In order to properly deal with
these problems, one should move from the traditional, rather
comfortable classification point of view to the most general
paradigm of interpretation (see e.g., [4] and [5]) .

Within this framework, a PR system is assumed to accept
(convenient representations of) a certain class of objects as
input and must produce, as output, adequate interpretations
of these objects that are consistent with the a priori knowl-
edge (model) with which the system’s universe is embodied.
Without loss of generality, interpretation results can be seen
as “semantic messages” (SM) out of a (possibly infinite) set,
which constitutes the “semanfic universe” (SU) of the problem
considered [4]. The complexity of the interpretation task is
therefore determined by the complexity (size) of this universe.
If the SU is “small” (i.e., a small number of different SM’s
is expected), interpretation can be viewed as the traditional
process of classification by letting the output consist simply
of a label specifying the obtained SM (class). On the other
hand, if the SU is ‘‘large,’’ a simple label can be inadequate to
completely specify an SM, and the output should now consist
of some type of structured information. In this case, rather than
speaking of (pattern) “recognition,” the term “understanding”
is usually adopted instead [4].

One convenient and general way of representing SM’s is
by means of sentences from a “semantic language,” which
specifies the actions to be carried out as a response to the
interpretation of a given object. For instance, the sequence of
operations to be performed by a robotized machine tool in
order to correctly position and mechanize a hypothesized (in-
terpreted) input piece can be properly specified by a sentence
of the command language of the machine.

Clearly, this calls for applying formal language techniques
and then quite naturally places interpretation within the SPR
framework. However, one should realize that the interpretation
paradigm no longer supports the traditional assumption of
one (syntactical) model per class; rather, all the system’s a
priori knowledge should now be represented as a whole into
a single global model. In the theory of formal languages,
such a representation can be properly accomplished through
the concept of transduction. A transducer is a formal device
that inputs structural representations of objects (strings) from
a given input set (language) and outputs strings from another
(usually different) output language. Many interesting results on
properties of rational or finite-state transducers are well known

0162-8828/93$03.00 0 1993 IEEE

ONCINA et al.: LEARNING SUBSEQUENTIAL TRANSDUCERS FOR PR TASKS 449

from the classical theory of formal languages (sec e.g., [6]),
and some examples of their application to SPR are often given
in the textbooks of SPR [l] , [2]. However, for the transduction
framework to be really fruitful, it is absolutely necessary to
first solve the important problem of how to learn or “train ”
these models from known instances of input-output strings.

This problem, which is central from a PR point of view,
has very rarely been dealt with in the literature. Apart from
the particular treatment involved in Gold’s study of the com-
plexity of automata identification [7], only very limited and/or
heuristic work seems to have been carried out so far. Perhaps
one of the earliest works is that of Velenturf [8], in which a
(nonincremental) algorithm is proposed to obtain a (reduced)
Mealy machine, which is compatible with the given training
data. If the source transducer is a (canonical) n-state Mealy
machine and the training data contains all the input-utput
pairs of lengths smaller than 271. - 1, then the algorithm is
shown to identify a machine that is exactly equivalent to the
source transducer. Another related work is that of Luneau et
al. [9], in which a heuristic incremental procedure is proposed
to infer Moore machines. Apart from the “heuristic” nature
of this method, an important drawback is that the obtained
transducers are not guaranteed to be compatible with the
training data. One still more recent reference to the transducer
inference problem is given in [lo] in relation to a context-
free grammar inference technique. The main drawback of all
these works, however, is that they are strictly restricted to the
inference of sequential transductions that, as will be discussed
below, introduce strong limitations that are inadmissible in
many cases of interest. Finally, Vidal et al. [l l] proposed
a (heuristic) methodology for the inference of transducers,
which was reminiscent of the “morphic generator grammatical
inference methodology” (MGGI) [20] for the inference of
general regular languages. Although this work was based on
rather sound theoretical arguments and produced interesting
empirical results, no properties of identifiability were given,
and the (heuristic) application of the methodology to each
particular task required considerable skills on the part of the
designer.

In this paper, we present a first step towards a formalization
of the transducer learning (TL) problem from the point of
view of its applicability within the interpretation paradigm.
We have adopted a framework that is somewhat similar to that
of grammatical inference (GI) [12]-[151, though one should
realize that many important differences between GI and TL
exist. In particular, we have tried to develop our work in
the same direction as that of the so-called “characterizable”
methods of GI [14], [16]-[17], that is, we have identified a
(characterized) class of transductions and have developed a TL
method that, under suitable conditions and using only positive
presentations of input-output pairs, can be proved to correctly
identify such a class.

This class is the class of subsequential transductions that
is a subclass of the most general rational or finite-state
transductions and properly contains the class of sequential
transductions [6]. A sequential transduction is one that pre-
serves the increasing length prefixes of input4utput strings.
Although this can be considered as a rather “natural property”

of tranductions, there are many real-world situations in which
such a strict sequentiality is clearly inadmissible. The class
of subsequential transductions makes this restriction milder,
therefore allowing application in quite interesting practical
situations.

Although a detailed theoretical study of the subsequential
TL problem has been carried out [18], (221, only those key
formal issues needed for a convenient description of the
proposed approach will be dealt with here. Instead, greater
attention will be devoted to presenting the results in such
a way that their possible application to pattern recognition
problems can be easily understood. For this purpose, examples
are used throughout the paper to clarify concepts and results.
In addition, a number of experiments that illustrate both the
usefulness of subsequential transduction and the ability of
our lerning methods to actually obtaining the corresponding
tranducers from positive training data will be presented.

I t should be emphasized that both the methods and the
experiments presented in the forthcoming sections are mainly
aimed at illustrating the great potential of the proposed ap-
proach to the interpretation problems in PR. Obviously (rather
direct), further developments of the methods introduced here,
such as stochastic and/or error correcting extensions, are
required before these methods can be properly applied to the
kind of noisy and distorted data usually encountered in real
PR situations. Nevertheless, we consider that the contents of
this paper constitute, in fact, a required first step toward a
new framework that would eventually launch SPR beyond the
boundaries of the classification paradigm.

11. MATHEMATICAL BACKGROUND AND NOTATION

Let X be a finite set or alphabet and X* the free monoid
over X . For any string .I: E X*, 1 . ~ 1 denotes the length of 2, and
X is the symbol for the string of length zero. For every :r3 y E
X * , :txj is the concatenation of :E and y, with lzyl = IzI + IyI.
If is a string in X * , then X * u denotes the set of all strings of
X * that end with U ; i.e., X*,u = {.r E X * : 7 ~ 7 1 = :I;, 7~ E X*}.
Similarly, ,uX* = { x E X ” : <u!o = X . I I E X*}. On the
other hand, Vx E X * . Pr (: r) denotes the set ofprefixes or left
factors of :r, that is Pr(.c) = (1 1 E X * : 7 ~ 2 1 = : r ,u E X*}.
Given ‘71,. ii E X*, with E Pr(~ri), the right quotient 7 1 , - ~ 7 i is
the suffix of 7) that results after eliminating its prefix 11, that
is, ‘ f i ,p l rI = U li = 7 1 , ’ ~ . Given a set L C X * , the longest
common prefuc of I, is denoted as l q (L) , where

lrp(1,) z iffsw E nrELPr(. r) A ifw’

(11:’ E nrEr,Pr(.r) + 1d1 5 I i 1 ~ 1) .

In general, a transduction from X* to Y * is a relation
t 2 (X* x Y *) . In what follows, only those transductions that
are (partial) functions from X * to Y * will be considered. For
a partial function t : X * + I-*. Dorri,(t) denotes the subset of
X * , where t is defined. In order to simplify the forthcoming
presentation and without loss of generality, all the functions
t will be assumed to be defined on X, with t (A) = A. A
function t is finite if Dom(t) is finite.

A finite state or rational transducer r is defined as a six-
tuple 7 = (Q . X . Y , ~ ~ . Q F . E) , where Q is a finite set of

450 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 5, MAY 1993

states, qo E Q is the initial state, QF C Q is a set of
final states, and E is a finite subset of (C) x X * x Y* x C))
whose elements are called edges. Associated with an edge
(q ’ , 2 , y3 q) , there is a transition (4’. r. (I) E (Q x Ik* x ()),
which corresponds to the conventional concept in automata.

A sequential transducer is a rational transducer in which
E.c (Q x X x Y * x Q) . QF = Q and (I!. a. 1 1 . 7.). ((I. a. I ! . s)
E + (U = I) A 7’ = %s) (determinism condition) [6]. Corre-
spondingly, Q F can be omitted, and a sequential transducer
is completely specified as a five-tuple 7 = (C).X.Y.qo.E).
Sequential transducers are also called “generalized sequential
machines” (GSM’s), from which Mealy and Moore machines
are restricted instances.

A path in a sequential transducer T is a sequence of edges
! I r l . (I , ,) . (I 1 E

E X , y; E Y * . 1 5 i 5 7 ~ . Whenever the intermediate
7r

states involved in a path are not of particular
will be written as 7r = (q o . :1’1 .1:2r,, . :VI !/2

IT, be the set of all possible paths over 7 . The transduction
realized by a sequential transducer T is the partial function
t : X * + Y* defined as t(:r) = !J iff 3(qo..r. !I. (I) E r IT.

Sequential transduction has the property of preserving left
factors, that is, t (X) = X and if f (c i o) exists, then t (/ I / !) E
t(u)Y *. Such a seemingly “natural” property (a restriction,
in fact), however, can be quite inadmissible in many cases
of interest. For instance, there are finite functions that are
not sequential. In order to make this restriction milder. the
following extension is introduced [6].

A subsequential transducer is defined as a six-tuple T =
(Q. X. 1’. qo. E . U) , where 7’ = ((2. A-. Y. q o . E) is a sequen-
tial transducer, and U : (2 + I.’* is a (partial) function
that assigns output strings to the states of 7 ’ . The partial
function t : X * + Y * that is realized by T is defined as
t (:r) = y a (q) iff cr(q) is defined, and (qo. .r . ! / . q) E TIT. The
class of subsequential functions properly contains the class of
sequential functions. In the same way as for conventional finite
transducers, a subsequential transducer can be represented as a
graph with the only difference that nodes are labeled as pairs

By using an additional input symbol “#,” not in X, to mark
the end of the input strings, any subsequential transduction
t : X* + Y * can be obtained as a restriction to A$**# of
a sequential transduction f’ : (X U { # }) * + IT* SO that
V.1; E X*. t (:c) = t’(:r#) [6]. If 7 = (Q . A-. I-. qo. E . U) is a
subsequential transducer that realizes t , then t’ can be realized
by the sequential transducer 7’ = (C 2 . X U (#}.I’.clo.E’),
where E’ = E U {((I. # . U ((I) . (I ~) : q E C) } . Note that
any given subsequential transducer admits several different
sequential representations. For instance, an alternative to the
above sequential representation of T can be obtained by adding
an extra state ij for every state q of C) and replacing every
((I. #> a(q) , qo) in E’ for ((1. #. a(q) . (I). In what follows, the
term “subsequential transducer” will be used, at convenience,
either to denote a subsequential transducer as defined by
(Q9 X, Y , qo. E , a) or a sequential representation thereof. Fig.
1 shows an example of a subsequential transducer and a
sequential representation.

(q o . :I:i. r / i . (I i) (qi . Z 2 . TJ2. (12) ’ ‘ ’ ((Ir7 - i .

(q .a(q)) , where (I E 0.

Fig. I . Subsequential transducer of Example 1 and a sequential represen-
tation.

Example 1: The function f : {n}* - {b .c}* defined by

R = 0
t(.”) = b”+1 71 odd r b c 71 even

is subsequential, but not sequential, since it does not
preserve left factors. The function f is realized by
the subsequential transducer 7 = (Q. X, Y. qo, E . a) in
which t) = { q [) . q l . q 2 } . v X = { n } , v Y = {b .c} . rE =
{ (q o . u . b 2 . q 1) . (q ~ . a . X . q 2) . (q 2 . a . b 2 . q 1) } , and a(q0) =
X . ~ (q l) = X . U (I ~ ?) = c. The graph of 7 and that of a

0
Following, e.g., [121 and [141, an appropriate framework for

thc TL problem can be established as follows: Let f : X * +

I.-* be a partial recursive function, a TL algorithm A is said
to identify f in the limit if, for any (positive) presentation
of the input-output pairs (graph) of f , A converges to a
transducer 7 that realizes a function y : X’ 4 Y* such that
V.r E D o 7 n (f) . , y (: r) = f (. r) .

sequential representation of 7 are shown in Fig. 1.

111. ONWARD SUBSEQUENTIAL TRANSDUCERS

The TL algorithm to be presented in the next section
requires some additional new concepts to be introduced. An
onward subsequential transducer (OST) is one in which the
output strings are assigned to the edges in such a way that they
are as “close” to the initial state as they can be. Formally, a
subsequential transducer 7 = ((2. X . Y. (I O . E , a) is an OST if

VT) E C) - { q o } k p ({ y € E’*l(p.n.y.q) E E } U { a (p) }) = A.

Much in the same way as happens in regular languages, any
subsequential transduction admits a characterization in terms
of a canonical transducer in onward form; in other words, for
any subsequential transduction t , there exists an OST that has
a minimum number of states and is unique up to isomorphism.
Let ~ (t) denote such a transducer. A construction for ~ (t) can
be developed using the concept of set of tails:

Let f : X* + Y* be a partial function, and let z E X*. The
set of tuils of :I’ in t . T,(:r) is defined as

Tt(.r) = {(y. /j)lt(.r:y) = ‘ / / , U . 1L = I c p (t (z X *)) }

with T t (x) = (4 if .I‘ f Pr.(Do7ra(f)).
I t can be seen that if f is subsequential, the number of

different sets of tails in {T+(:r;)l.r E Pr(Dom(t)) } is finite
[181. Therefore, these sets can be used to build a subsequential
transducer ~ (t) = (0. X. I*. I/[). E . cr) as follows:

() = {Tt(,L)l,/, E P7.(D0711(1))}: qo = T,(X):

E = { (T+ (.I’) . (1,. Icp (f (.I: X *)) 1 cp(t (sax *)) .
Tt (.m)) ITt (r). Tt (:In) E C)}

ONCINA er al.: LEARNING SUBSEQUENTIAL TRANSDUCERS FOR PR TASKS 45 1

Fig. 2. Canonical transducer for the subsequential function of Example 2.

if r E Dom(t)
otherwise.

It can be easily seen [18] that such a transducer is onward
and that any other OST for t either has a greater number of
states or is isomorphic to ~ (t) .

Example 2: Let t : {a}* --+ {b ,c}* be a function defined
as in Example 1. The different sets of tails are:

Tt(X) = { (A X) } U { (a 2 n + V n + *) l n 2 O}

U {(a2n,b2nc) (n 2 l}

U {(a2n.b2n)Jn 2 1)

T t (a) = {(X ,X) } U { (~ ~ ~ + ‘ . b ~ ” c) l n 2 0)

Tt(a2) = { (A , c) } U {(a2n+l. b211+*)171 2 o}
U { (a z n , b2TL~)In 2 1)

Tt(a2n- l) = Tt(a) ,n 2 1

T t (P) = T+(a2) . n > 1

and the canonical OST that realizes t , which is shown in Fig.
2, is isomorphic with the corresponding transducer shown in

The transduction learning algorithm to be presented in the
next section requires a finite sample of input-output pairs
T c (X’ x Y’), which is assumed to be nonambiguous
or single-valued, i.e., (T , y) , (r, y’) E T + y = y’. Such a
sample can be properly represented by a “tree subsequential
transducer” (TST) r = (Q, X , Y, qo, E , U) , with

Fig. 1. 0

Q U (u , L ‘) ~ ~ P ~ (7 ~) . 40 =
E = ((711, a, A, ?un) lu~, 1110 E Q } .

A possible sequential representation r’ of this TST can be
of T and extending its set of states obtained by eliminating

and edges as follows:

Q’ = Q U { ? L # ~ (? L . 71) E T } :
E’ = EU { (T ~ . # , ~ I , ? L #) ~ (? ~ . ~ I) E T } .

Whenever such a sequential representation is used, the
training pairs (U , 11) will be written as (U#, 71).

Given T , an onward tree subsequential transducer (OTST)
representing T , O T S T (T) can be obtained by building an OST
equivalent to the TST of T. Let r’ = (Q’, X U { #}, Y, 40, E’)
be a given (sequential representation) of a TST. In order to
obtain the OTST equivalent to r’, the states of r’ must be
considered in an orderly fashion, starting from the leaves and
in each state q # q ~ :

i f ru = Icp(71 E Y * l (q , a , i i . ~) E E’} A W # Xthen

1) substitute every outgoing edge of q : (q ,a .7uz3r) for
(q . a , 2 . T)

(b)

Fig. 3. Tree subsequential transducer (TST): (a) Onward tree subsequential
transducer OTST(T); (b) representing the sample T = { (#. A) . (a # . hb).
(n o # . hhf). (r m # . hbbb). (ocrrco#. bbbhf) } .

2) substitute the ingoing edge of q : (p , b , y , q) for

Example3: Let T = {(#.X).(u#,bb),(au#,bbc).(a~a#,
bbbb), (aana#, bbbbc)}. This sample has been drawn from the
transduction in Example 1. Sequential representations of the

n

(P , b , Y7‘I ,4) .

TST of T and OTST(T) are as shown in Fig. 3.

Iv. THE TRANSDUCER LEARNING ALGORITHM

Let T C (X * # x Y *) be a finite single-valued training
set. The proposed algorithm consists of a nonincremental
procedure that starts building the OTST(T),r = (Q , X U
{ #}, Y, 40, E) and then proceeds by orderly trying the merge
of states of r. This state merging may result in transducers
that are not subsequential as defined in Section 11. In par-
ticular, they may often violate the condition of determinism:
(4, a , 7 4 T) , (q , a, 71, s) E E + (U = 71 A T = s). In these cases,
we may still insist on preserving the subsequential nature of
the resulting transducers. For this to be possible, some output
(sub)strings associated with the edges of r often need to be
“pushed back” towards the leaves of T in a process that, to a
limited extent, reverses the forward (sub)string displacements
carried out to transform the initial TST associated with T into
T . The test as to whether a transducer T is subsequential,
as defined in Section 11, is assumed to be supplied by a
(hypothetical) procedure “subseq” that takes a transducer and
outputs true if such a property holds or false otherwise. One
should realize, however, that when embedded in the algorithm
to be described below, such a test can be carried out at no
cost as a byproduct of the remaining operations of the core
of the algorithm.

The merging process mentioned above requires the states of
r to be successively taken into account in a lexicographic
order of the names given to these states through the TST
construction (Section 111) [18]. Let “<” be such an order on Q,
with first(r) and Inst(.r) being the first and last states with
respect to “<,” and Vq E Q - { l a s t (r) } , and let nezt(r,q)
denote the state that immediately follows q in the order “<.”
The merging of any two states q‘ ,q E Q, with q’ < q, results
in a new transducer r’ = (Q’, X U {#}, Y, 90, E’) in which
the state q no longer exists in Q’, and all the outgoing edges
of q in E are assigned to q’ in E’. Let r’ = merge(r,q’q)

452 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 5, MAY 1991

z f.

2‘ = push_back(2,b,(a~,a,bb,a~))

Fig. 4. Example of a push-back operation

INPUT: Single-valued finite set of input-output pairs T c (X’# x Y *)

OUTPUT: Onward Subsequential Transducer 7 consistent with ’I
7 := OTST(T)
q:=first(7)

while q < h r (7) do

q:= nexr(7.q);

while p < q do

p:= firsr(7);

7,:= 7

7 := merge(7.p.q)
while -subseq(r) do

let (r,a,v.s), (r,a.w,t) be two edges of 7

if ((vtw) and (a=#)) or (s<q and ve Pr(w)) then exit while

u:= /cp(v,w)

7 := push-buck(7, u-‘v,(r,a,v,s))
7 := pirsh-buck(7. u-’w,(r,a,w,t))
7 := mer;qe(T,s,t)

that violate the subseq condition, with s < t

end while Ihsubseci(7)I/
i f -subseq(T) then 7 := 7’ else exit while

p:= ne.rr(7 .pj
end while I/ p < q I/
i f -subseq(r j then 7 := ‘5’

end while 11 q < lusr(‘c)//

end IIOSTIAII

Fig. 5 . Transducer inference algorithm

represent this merging operation that is quite similar to the
merging of states in finite-state automata [16].

The process of “pushing back” output substrings in a trans-
ducer 7 = (Q, X U { #}. Y, qo, E) requires more explanation.
Let q E Q be a state of 7 and (q ’ .n , i i i ,q) E E (one of‘) its
ingoing edge(s). If 71. E Y’ is a prefix of 711, then the suffix
i i = ?~- l i i i can be “pushed back” to behind q and distributed
throughout all the outgoing edges of q to produce another
transducer 7’ = (Q . X U { #}, Y. qo. E’) as follows (see Fig.
4):

E’= (E - { (q ’ . f l , 7 I i) , q) }) U { (q ’ . f 1 , t ~ . ~) }

U { (q . b.7)z.r) : (q . b . 2 . r) E E } .

Let T’ = push-back (7 . 7 1 , (9’. 0. t i) , q)) denote this operation
for which the following equivalence property can be easily
established [18]:

If ti = A or if (q’. a. 111, q) is the only edge that enters q and
o # #, then transductions are preserved, and the transducer
T’ is equivalent to T .

The algorithm that performs the above outlined procedures
is called the “onward subsequential transducer inference algo-
rithm (OSTIA)” and is formally presented in Fig. 5.

The computational cost of this algorithm can easily be
shown to be polynomial. Let n = C(r,y)ET 1x1, m =
iiiax(,,y)ET I’yl and IC = 1x1 be parameters measuring the size
of the input training set T. The initial TST of T has a number
of states that is linear with n,. The initial O T S T (T) has the
same number of states, and its construction requires computing
time that grows linearly with 71, . ni, . k .

The two outer while loops of OSTIA entail, in principle, a
total number of iterations that is quadratic with the number
of states of the initial transducer r = OTST(T)-hence,
with rb. This could be considered exceedingly pessimistic since
many states could rapidly be eliminated from 7 by successive
merge operations. Nevertheless, a worst case can be identified
in which, after having carried out all possible merge operations
of the inner while loop and having exhausted all the remaining
states, this loop is exited without success (if condition). In this
case, the inner loop would perform, at most, O (n) iterations,
resulting in an O (n 3) total number of executions of the core
of the algorithm. Except for l cp and push-back, all the other
operations involved in the OSTIA can be easily implemented
to run with unit cost, that is, computing time independent of
71. r n . and k . The l cp operation can also be easily implemented
to work in O(711.) time, whereas push-back may require O (k)
steps if string indexes rather than actual (sub)strings are used
to represent the input-output substrings of the edges of T .

This amounts to a total cost in O (7 1 1 + k) for the core
operations and a total computing time that can be bounded as
0(7r3(7n + k) + nrrak). Obviously, in many cases of interest,
this bound is, in fact, pessimistic. Real empirical timing results
will be shown in Section VI.

The correctness of this algorithm is also clear. The proof
starts by realizing that the property q < t results in being a loop
invariant of the algorithm. Given the tree structure of the initial
OTST, along with the order in which states are considered for
merging, this invariant implies that only one edge can enter the
state t . Correspondingly, from the above equivalence property,
the push-back operation involving t is always transduction
preserving. On the other hand, the other push-back operation,
which involves the state s, can only be executed in two very
precise situations: 1) s < q, in which case 71 E Pr(71~) and thus
I L - ~ = X or 2) q < s, which implies that only one edge can
enter s. Therefore, the equivalence property guarantees that,
in both cases, the operation also results in being transduction
preserving. Since the initial OTST is obviously consistent with
T , proceeding by induction, we see that every iteration yields
a transducer r that is subsequential and consistent with T .

Similar arguments support the assertion that the resulting
transducer is onward. The initial OTST is obviously onward,
which is a property that is clearly preserved by the successive
executions of the operation “7ne7.,9e(~, p . q).” However, the
two push-back operations (which aim at trying to recover the
subseq condition after its possible violation by the merge of
two states) may result in losing the onward property. However,
in this case, the subsequent “merge(r, s . t)” operation directly
restores the property, yielding again an onward transducer.

Following this discussion, it can be seen that the OSTIA
produces a subsequential transducer that is a state-merging-
based generalization of the initial subsequential tree transducer

ONCINA el ul.: LEARNING SUBSEQUENTIAL TRANSDUCERS FOR PR TASKS 453

(g)

Fig. 6. Some key steps of the OSTIA as applied to the OTST in Fig. 3(h)

representing the given sample T . This generalization, however,
tends to progressively shrink as T gets larger and includes
more training pairs that are “representative” of the unknown
(subsequential) transduction from which T is assumed to have
been drawn. As will be discussed in the next section, this
leads to the important result that using the OSTIA, the class of
subsequential functions can be identified in the limit.

Using the training pairs of Example 3, Fig. 6 illustrates some
key steps of the OSTIA. Starting from the OTST of Fig. 3(b),
the algorithm attempts the merging of states X and #. Fig. 6(a)
shows the resulting transducer. Then, OSTIA goes on trying
the merging of states fr. with X (Fig. 6(b)). This transducer
has the two edges (A, n , bb. A) and (A. a. A. o n) that violate
the subseq condition. Given that X < n and, bb $! Pv(X) the
innermost loop of OSTIA is exited, and states X and a# are
merged in the previous transducer (Fig. 6(a)), resulting in the
transducer of Fig. 6(c). The next step tries the merging of
the states X and an. The existence of edges (X . # . A , X) and
(A, #. c, a.#) (Fig. 6(d)) causes the exit of the innermost loop
of OSTIA. Similarly, the attempt of merging the states n and
aa is unsuccessful. After merging the states X with no# and
given the imposibility of merging X with nao, Fig. 6(e) shows
the result of the merging of the states non with n . The edges

(0. a. A, aa) and (a , (I , c , nnno) of the :suiting transduce
violate the subseq condition; nevertheless Irp({ A. r }) =
A, and the operations piLsh-bnrk(r. A, (a , a , A, aa)) and
p i~~h-bnck (r . c, (a . a . c, naan)) produce the transducer shown
in Fig. 6(f). The rest of the work carried out by the innermost
loop of OSTIA finally leads to the subsequential transducer of
Fig. 6(g) that is the inferred result from the training sample
of Example 3.

v. IDENTIFICATION O F SUBSEQUENTIAL
TRANSDUCTIONS IN THE LIMIT

In this section, we will show how the OSTIA identifies
the class of subsequential functions from positive data (in-
put-output pairs) in the limit. To this end, we start defining a
finite representative sample T of a total subsequential function
t. We will show that the transducer O T S T (T) contains a
subset of states (referred to as kernel), which induces a subtree
in O T S T (T) that contains representations of every and all
the edges of the canonical OST of t , ~ (t) . This result will
allow us to establish that if a representative sample is input to
OSTIA, then the output will be r (t) . Given that any positive
presentation of t will eventually include a representative
sample, the property of the identification in the limit will result.

454 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHlNt INTELLIGENCE, VOL. 15, NO. 5, MAY 1993

In what follows, only the main arguments of the proofs will
be sketched. A full account of the complete results can be
found in [18].

Definition I: Let t : X * + Y* be a subsequential function.
The string U] is a short prefix of t iff ‘(11 E P r (D o m (f)) , and
Vv E X * (T t (w) = Tt(71) + 71 2 U)). The set of short prefixes
of t is denoted SP(t) .

The set S P (t) includes a short prefix for every different set
of tails in {Tt(w)lw E P r (D o m (t))) . Given that the sets of
tails are just the states of the canonical OST of t (Section H I) ,
the set of short prefixes constitutes a minimal set of shortest
strings that allow reaching every state of ~ (t) .

Definition 2: Let t : X * -+ Y* be a subsequential function.
The kernel of t is the set K (t) = (S P (f) X fl Pr(D07r1(1))) U

In other words, K (t) contains the empty string along with
the extensions of all of the strings in S P (t) with all the
symbols in X , as long as these extensions are prefixes of
strings in the domain of t .

Definition 3: Given a total subsequential function t : X* -+

I”, a sample T of t is said to be representative of t iff

{ A > .

1) v71, E K (t) 3(71.?/1) E TI?/, E Pr(lf)
2) Q71, E S P (t) Q71 E K (t) (T ~ (u) # Tt(/ l) 3

3 (1 L 7 1 1 , U’lli’), (71111, 71’1”’’) E TI
(711, 711’) E Tt(U). (? l l , 711”) E Tt(7J). 11’’ # //)”)

3) Q7L E K (f) 3(?L’/l, ?/,”!)’), (1L711. 1/, ’7/1’) E T (
(7 1 , I !) , (711. 711’) E T ~ (u) , l ~ p ({ 7 ~ ’ . 111’)) A.

Example 4: The set of short prefixes of the transduction t
of Example 1 is S P (t) = {A, a. na} (c.f., Example 2) , and
the kernel is K (t) = { A , a. r i a , aao,}. An example of a repre-
sentative sample is T = { (A , A), (0,. bo). (M I L 6 6 r :) . (i,(ia> b666),

0
In the theorems given below, condition 1) of Definition

3 will guarantee that all the states and transitions of the
canonical OST ~ (t) are represented in OTST(T) . Condition
2) will distinguish those states of O T S T (T) for which the
corresponding states of r (t) are different. Finally, condition
3) will make i t possible that for every state of OTST(T) that
is reachable by a string in the kernel of f , the edges will be
identical to the corresponding edges in T (t) .

In the forthcoming theorems the following notation
will be used: TT = (QT .X .Y .A .ET>(TT) , and 7 (t) =
(Q t , X, Y, qo. Et: o t) will denote the OTST(T) and the
canonical OST of t , respectively; T; = (Qi . X U { # }. 1’. A. E ?)
will denote the OST obtained after the ith iteration of the
outermost while loop of the OSTIA with input T c (X*# x

Theorem 1: Let T be a representative sample of t : X ” +

Y * . A function cp : QT + Q, exists such that Vu. MI, E

K (t) ((U, a , 71, 7 m) E ET e (c p (7 ~) . a. I J . ~ (w I ,)) E E t) , and

Proof: If $11. E K (t) and t’ : X ” -+ Y* is the finite
function realized by q-, the third condition for a repre-
sentative sample (Definition 3) allows us to establish that
k p (t ’ (u X *)) = l c p (t (u X *)) . Then, by defining p : QT 3 Q ,
as q(u) = Tt(u).u E QT and using the first condition of
representative sample (Definition 3), the theorem follows. 0

(naan, 6 6 6 6 ~)) (c.f., Example 3).

Y *).

vu E K (t) OT(?L) = cr t (cp(71 ,)) .

Theorem 2: Let (I E Q; be the state of T? considered in
the i + 1 iteration of the outermost while loop of OSTIA, let
(2: = {q’ E C);Jq’ < q } , and let T! = (Q:.XU {#}.Y.X,El)
be the subtransducer induced by Q:. If T is a representative
sample of a total subsequential function t : X * - Y*,
then T: is isomorphic with a sequential representation of a
subtransducer of T (t) .

Proof: Let p : Q: + Qt be defined as p(u) =
I”,(!/). 11, E Q:. By induction in the number of iterations
and given that the second condition of the definition of
representative sample guarantees us that OSTIA will perform
the merge of two states only if both have the same image with
9. we can establish that

a) (U . (I , . I I . (1 0) E I?: 3 (p(u). (1,. 1 1 . ~ (u o ,)) E Et
b) (1 1 . #. 1 ’ . I / #) E E: 3 (T ~ (~ (I L)) = 71

and, using an appropriate sequential representation, the theo-
rem follows. 0

Corolary 1: If the input to OSTIA is a representative
sample of a total function t , then the output is an OST that
is isomorphic with T (t) .

Theorem 3: Using the OSTIA, the class of subsequential
functions can be identified in the limit with positive presen-
tation.

Proof: I f t : X* -+ 1” is a total function, then any
positive presentation of t will eventually include a representa-
tive sample. Hence, OSTIA will converge to a subsequential
transducer that is isomorphic with ~ (t) . If t is not total, the
second condition of the definition of representative sample is
not guaranteed. Correspondingly, OSTIA may merge states
that are associated to states of T (f) that are different from
each other. However, in this case, no finite information se-
quence can effectively distinguish such states. Thus, OSTIA
would converge to a subsequential transducer T that realizes
a function t’ such that V.r E Do,rri.(t) t ‘ (x) = t (: r :) , which is
precisely the condition assessing the identification of t in the
limit (Section 11). 0

VI. EXPERIMENTS

Theoretical properties assessing the adequate behavior in
the limit (convergence) of subsequential transduction identifi-
cation using the OSTIA have been discussed in the previous
section. However, from PR viewpoint, results concerning finite
data behavior seem to be of greater interest. In order to obtain
such results and at the same time illustrate the capabilities
of subsequential transduction and their OSTIA learning, a
number of experiments have been carried out. Some of these
experiments and their results will be presented in this section.

For thc first group of experiments, the task of translating
roman numerals into their decimal representation has been
chosen. I t should be taken into account that such a task can
by no means be supported by pure sequential transduction
since many input-utput pairs exist in which identical input
prefixes must lead to different output substrings. As will be
seen below, subsequential transduction casily overcomes this
difficulty, allowing the task to be properly accomplished.

For the first experiment, a series of 50 increasing-size
random training sets, each including the previous ones, were

ONCINA el al.: LEARNING SUBSEQUENTIAL TRANSDUCERS FOR PR TASKS

20

16 2

12: .
8 -

4 -

0 , .

455

. * * ’ . * * I * . . I - - 2000

1600

,’, - 1200 . . I - 800

L 400

..’,

I_.*I. - . , .._-.--- r-..

. . , . . . , . . . , . . . , . . . 0

(HI# , 3) (LXXIV#,74)

(IV#, 4) (XCV#, 95)
(VI#, 6) (CXV#, 11 5)
(IX#, 9) (CDII#, 402)
(XI#. 11 j (CMLXXXIX#,YBV)
(XIX#, 19) (MCXI#, 1111)

(XLII#. 42) (MMMMMMMMDCCCLXXXVIII#. 8888)

Fig. 7. Sample of selected training pairs tor the roman to decimal translation
task.

(%j Roman to Decimal ~~ ~ Edges
~ States

1 0?

10’

loo

10-1

10

IO’
0 2000 4000 6000 8000 10000

Tninmg Pam

-Time (sec.) - Edge\

Fig. 8. Behavior of the OSTIA in the roman to decimal tran4ation task.

drawn from a uniform distribution in the range of (roman and
decimal) numbers from 1 to 1O4- l . The random procedure was
prevented from generating repeated samples, and the test set
consisted of all the roman numerals from 1 to 10’-1 that were
not included in the corresponding training sets. Some selected
training pairs are shown in Fig. 7.

Every training set was submitted, in turn, to the OSTIA, and
each resulting subsequential transducer was used to translate
all the roman-numeral strings of the test set. The results of
this experiment appear in Fig. 8. The items shown are a) the
test-set error rates, b) the sizes of the learnt transducers, and c)
the computing time required for each execution of the OSTIA,
on a - 25 mips conventional RISC computer (HP 9000/835).

It is worth noting that with small training sets, the inferred
transducers tend to be rather large and error prone, whereas
both sizes and errors reduce dramatically as enough source
structure is made available through the training data. More
specifically, learning can be considered almost completely

v 1:

&!?&-
Fig. 9. Part of the subsequential transducer that was learned for the roman
to decimal translation task. The part shown corectly translates the roman
numbers from I to 99. The initial state is marked as ‘‘(IO.” and the dashed
lines correspond to cdgcs of the remaining parts (not shown) of the whole
transducer.

accomplished (97% performance) after having seen approx-
imately 3000 random training pairs.

I t should be taken into account that these results were
obtained without concern as to how “relevant” the (random)
training data were for the considered learning task. The
existence of a “minimal” relevant training set (representative
sample) has been proven in the last section; however, without
a priori knowledge of the source transduction, theory does
not seem to provide us with adequate means to identify such
a set in practice. In order to empirically investigate how small
the training set could become if appropriately selected, an
additional experiment was carried out involving the following
greedy procedure. First, starting with a transducer learned
from a first training pair “(1, l)” the test data was submitted
in numerical order to transduction until one roman-numeral
string that was incorrectly translated appeared. Then, this
string, along with its correct decimal transduction, was used
as a training pair. The first phase of this procedure stopped
when all the strings were correctly translated. In the second
phase, the roman numeral (training) pairs that were selected
in the first phase were considered, in turn, to see whether they
could be discarded without change in the inferred transducer.
After this second phase, a representative sample of 210 roman-
decimal pairs that led to the correct identification of an exact
subsequential transducer that was identical to the one obtained
in the previous experiment with a random training set of 9000
pairs was identified. A portion of this transducer is shown in
Fig. 9.

A second group of experiments was concerned with the task
of translating english numbers in the 0 . . . 10‘-1 range into
their conventional decimal representation. Although this task
is rather better suited to sequential transduction than that of the
roman-decimal task, there are also in this case situations that
prevent pure sequentiality, e.g., “ninety” + ‘‘90,’’ “nineteen”

456

Fig.

i

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 15, NO. 5, MAY

~ ~ + - - Edges
-States

(%) English to Decimal (nine#, 9)
(ninety#,90)
(nineteen#, 19)
(ninehundred#, 900)
(nineteenthousandandeight#, 19008)
(ninehundredthousandandeighteen#, 9000 18)
(twohundredandthirteenthousandandtwelve#, 2 130 12)
(fourhundredandonethousandeighthundred#, 40 1800)
(eighthundredandeightthousandeighthundredandseven#, 808807)
(sixhundredandseventeenthousandsixhundredandsixteen#, 6 176 16)
(threehundredandninetyfivethousandonehun~edandsixtythree#, 395 163)
(sevenhundredandeighteenthousandsevenhundredandseventeen#, 7 187 17)

10. Sample of selected training pairs for the english to decimal
translation task.

"1 9," etc. The experimental framework was similar to
that of the previous experiments, except that in this case, the
numbers were randomly drawn from a nonuniform distribution
in which the lengths of the decimal strings were (approxi-
mately) equiprobable. In this case, 60 training sets of sizes
increasing from 200 up to 12 000 were used, and the test set
consisted of the whole range of 10' different english-number
strings except those used for training. In order to approach
the conditions of phonemic recognition, these strings were
written with no separating blanks between the different words,
which considerably increased the difficulty of the task. Fig. 10
shows some training pairs that have been selected from the
training material. The results appear in Fig. 11, which shows
the same items as Fig. 8, with similar behavior. In this case,
learning can be considered almost completely accomplished
(97% performance) after having seen approximately 2500
random training pairs. In addition, a greedy procedure similar
to the one described above was carried out, ending with a
representative sample of 260 input-utput pairs with which a
perfect transducer is obtained that is exactly the same as that
obtained from 11 600 random training pairs.

Apart from these experiments, many other similar exper-
iments involving these and many other tasks were carried
out. For instance, number translation from english to Spanish
and from Spanish to decimal were successfully, learned from
english-Spanish pairs and spanish-decimal pairs, respectively,
even though Spanish number rules entail different nonse-
quentialities and are more involved than the corresponding
rules in english [21]. In addition, transducers that imple-
ment integer division of a decimal number by an arbitrary
divisor and (reversed) multiplication by an arbitrary fac-
tor were easily learned with the OSTIA from data-result
examples [19]. The behavior of the OSTIA, which is ob-
served in all these experiments, was rather similar to that
shown in the experiments described above. The presentation
of these experiments has been omitted here for the sake of
brevity.

The last group of experiments was aimed at establishing
some empirical worst-case results on the computational re-
quirements of the OSTIA. Although a worst-case polynomial
behavior was easily deduced from the properties of the OSTIA
(Section IV), a tighter upper bound seems rather difficult
to establish theoretically. Nevertheless, i t should be clear
that worst-case behavior would be exhibited for training data

1000

too

0 ZOO0 4000 6000 8ooO IO000 12000
Training Purr

100

50

800

600

400

200

1993

0 2000 4000 6000 8000 10000 12000
Training P a n

Fig. 11. Behavior of the OSTIA for the english to decimal translation task.

corresponding to nonsubsequential transduction. In other case,
when enough source transducer structure is represented in the
training data, the state merging process (quickly) reduces the
(large) number of states of the initial OTST, leading to the
quasi-linear, low-computing-time growing rates shown in Figs.
8 and 11 for sufficiently large training sets. Therefore, in order
to empirically investigate the OSTIA computing-time growth,
an experiment involving nonsubsequential transduction was
carried out.

The chosen task was that of reversing strings (representing
decimal numbers in the 10' range), which by no means might
properly be accomplished by subsequential transduction. Using
a similar experimental setup as in the previous experiments, the
OSTIA was presented with 20 training sets of sizes increasing
from 200 up to 4000. Moreover, in order to (as much as
possible) approach an absolute worst-case data conditioning
for the OSTIA, the training data were presented in strict
number ordering within each training set. Obviously, in this
case, no appropriate transducer was ever obtained, leading
to a 100% error rate for those strings not used for training.
The computing times required by the OSTIA in this case are
presented in Fig. 12 along with the corresponding sizes of
the inferred transducers. A second-degree polynomial that was
least-squared fitted to the experimental values is also shown. I t
is worth noting that although a first-degree fit would clearly be
inappropriate, the quadratic coefficient of the fitted polynomial
is relatively small, and for the range of sizes considered, a
cubic coefficient would have not improved the fit.

ONCINA et al.: LEARNING SUBSEQUENTIAL TRANSDUCERS FOR PR TASKS

~ ~ -~ ~ Edges
Time (sec.) Decimal to Reverse Decimal -states .
250 4

100.

Fig. 12. Worst-case behavior of the OSTIA as applied to a nonsub-
sequential transduction learning task. A second-degree polynomial: Time
= 1 . G . 1 0 ~ ’ r ~ 2 + 0 . 0 0 0 1 3 r ~ +0.2.59.5 is least squared fitted to the computing
times.

VII. DISCUSSION AND CONCLUSION

The results of the experiments described in the last section
clearly indicate both the versatility of subsequential transduc-
tion and the effectiveness of the OSTIA to learn subsequential
transducers from training input-utput examples. For those
(small) training sets that do not convey enough structure of
the unknown source transduction, the transducers produced
by OSTIA tend to be rather large and error prone; however,
very compact and accurate solutions are always obtained once
the training data contain a very small number of relevant
input-output pairs. The existence of such small sets of relevant
training data was shown through some of the experiments
reported in the last section, and some theoretical results
regarding what a “relevant” set of input-output training pairs is
(representative sample) were presented in Section V. However,
the only practical hint these results seem to suggest is that such
training data should contain the “simplest” (usually also the
shortest) transduction examples, and how to actually choose
adequate and small sets of training data remains an open issue
of practical concern. In any case, by relying on chance alone,
good results (i.e., low error rates) tend to be obtained with
reasonably small sets of training pairs.

Another important issue is related to the partial-function
nature of the transductions dealt with by OSTIA. Since no
(positive) sample can effectively help teaching how to “cor-
rectly” translate (“incorrect”) strings that are not in the domain
of a function of this type, any learning device is granted
the freedom of conveniently generalizing the training data
by means of allowing arbitrary translation of these strings.
For instance, the OSTIA-learned transducer of Fig. 9 outputs
the string “84” in response to the input string “VIIIIV,”
which is not a correct roman numeral and therefore is not
expected to be submitted for transduction in the test phase.
Obviously, since this string is not in the domain of the
transduction to be learned, it could never have the chance to
appear in any (positive) presentation, thus impeding learning
to yield just the string “error” as a response. Apart from the
rather obvious use of such a type of “negative” input-utput
examples (with output = “error”), we may try to overcome this
problem by attempting an identification (or at lest an adequate
restriction) of the function domain, either by using a priori

457

knowledge or by means of more conventional grammatical
interference methods. Although we have not yet fully pursued
this approach, we have reason to believe that any available
knowledge of the transduction domain could significantly help
not only to produce more “natural” transduction results in
undefined cases but also to make the learning task being
considered even easier.

Apart from training-data selection and domain definition,
two other interesting (practical) issues remain to be investi-
gated. First, since the OSTIA is essentially a nonincremental
learning algorithm, the possibility of small incremental adap-
tation to new training data of a transducer that was already
fairly well established from previous (nonincremental) OSTIA
learning should be worth studying. Second, the possibility
of incorporating an appropriate (also learned) error model
into the learned transducers, as well as making the resulting
transducers stochastic, needs be investigated if dealing with
real and natural data such as speech or images is required.

In any case, we think that the work presented in this paper
constitutes a required step that would eventually allow many
real interpretation tasks to be dealt with under the transduction
framework of syntactic pattern recognition.

REFERENCES

R. C. Gonzilez and M. G. Thomason, Syntactic Pattern Recognition,
An Introduction. MA: Addison-Wesley, 1978.
K. S. Fu, Syntactic Pattern Recognition and Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1982.
L. Miclet, Structural Methods rn Pattern Recognition. Oxford, UK:
North-Oxford Academic, 1986.
R. de Mori (chairman) et al . , “Report of the working group B: Waveform
and speech recognition,” in Proc. NATO Adv. Res. Workshop Syntactic
Structural Putt. Recogn., (Barcelona), Oct. 1986; in Syntactical and
Structural Pattern Recognition. (G. Ferrate, T. Pavlidis, A. San Feliu,
and H. Bunke, Eds.). New York: Springer-Verlag, 1988, pp. 446451.
J . C. Simon, E. Backer, and J. Sallantin, “A structural approach to pattern
recognition,” Signal Processing, no. 2, pp. 5-22, 1980.
J . Berstel, Transductions and Context-Free Languages. Stuttgart: Teub-
ner, 1979.
E. M. Gold, “Complexity of automation identification from given data”
Inform. Contr., vol. 37, pp, 302-320, 1978.
L. P. J. Velenturf, “Inference of sequential machines from sample
computation,” IEEE Trans Comput., vol. 27, pp. 167-170, 1978.
P. Luneau, M. Richetin, and C. Cayla, “Sequential learning from
input4utput behavior,” Roboticu, vol. I , pp. 151-159, 1984.
Y. Takada, “ (k “ I t i c d 1 inference for even linear languages based on
control sets,” Inform. Processing Lett., vol. 28, no. 4, pp. 193-199, 1988.
E. Vidal, P. Garcia, and E. Segarra, “Inductive learning of finite-
state transducers for the interpretation of unidimensional objects,” in
Structural Pattern Analysis, (R. Mohr, T. Pavlidis, and A. San Feliu,
Eds.).
E. M. Gold, “Language identification in the limit,” Inform. Contr., vol.
10, pp. 447474, 1967.
K. S. Fu and T. I-. Booth, “Grammatical inference: Introduction and
survey,” IEEE Trans. Syst. Man Cybern., vol. SMC-5, pp. 95-111;
409423 , pt. I , 2 1975.
D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,”
Comput. Surveys, vol. 1s. no. 3, pp. 237-269, 1983.
L. Miclct, “Grammatical inference,” in Syntactic and Structural Pattern
Recognition (H. Bunke and A. San Feliu, Eds.). New York: World
Scientific, 1990, pp. 237-290.
D. Angluin, “Inference of reversible languages,” J . ACM, vol. 29, no.
3, pp. 741-765, 1982.
P. Garcia and E. Vidal, “Inference of k-testable languages in the strict
sense and application to syntactic pattern recognition” IEEE Trans. Putt.
Anal. Machine Intell.. vol. 12, no. 9, pp. 920-925, 1990.
J . Oncina and P. Garcia, “Inductive learning of subsequential functions,”
Univ. PolitCcnia de Valencia, Tcch. Rep. DSlC 11-34, 1991.

New York: World Scientific, 1990, pp. 17-35.

458 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 5, MAY 1993

I191 A. M. Corbi. “Estudio de un algoritmo de inferencia de transduc-
tores subsecuenciales,” Facultad de Informatica, Univ. PolitCcnica de
Valencia, Proyecto fin de carrera, 1991.

[20] P. Garcia, E. Vidal, and F. Casacuberta. “Local languages, the successor

of regular grammars,” IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-9 no. 6, pp. 841-845, 1987.

1211 J. Oncina, P. Garcia, and E. Vidal, “Transducer learning in pattern
recognition,” in Proc 11th IAPR Int. Con5 Putt. Recogn., 1992.

[22] J. Oncina, “Aprendizaje de lenguajes regulares y funciones subsecucn-
ciales,” Ph.D. dissertation, Univ. PolitCcnica de Valencia, 1991.

Pedro Garcia received the Licenciado in Ciencias
Fisicas degree in 1976 from the University of Va-
lencia and the Doctor of computer science degree in
1988 from the Polytechnic University of Valencia

In 1987, he joined the Department of Informatic
Systems and Computation (DSIC) of the UPV and
has been teaching in the Computer Science Faculty
of the University since that time. He is a member
of the Pattern Recognition and Artificial Intelligence
research group in the DSIC, where he is working on

several scientific projects. His current fields of interest include computational
learning theory and their application to syntactic pattern recognition.

Dr. Garcia is a member of the ACM, the EATCS, and the Spanish

method, and a step towards a general methodology for the inference (UPV).

Jose Oncina received the Licenciatura in Cien- Association for ’
cias Fisicas degree in 1986 from the Universitv society Of i’ an

Complutense of Madrid, Spain, and the Doctor of
computer science degree in 1991 trom the Polytech-
nic University of Valencid (UPV), Spain

Since 1987, he has been with the Depdrtment of
Informatic Systems dnd Computdtion (DSIC) at the
UPV and has been teaching in the Computer Sciencc
College of the University He is also a member of
the Pattern Recognition and Artificial intelligence
Research group in the DSIC, where he I $ working

on several scientific projects He is CO-duthor of a number of scientific
publications in journals and congresses on the subject\ of algorithmic ledrning
and grammatical inference

Recognition and Image Analysis (AERFAI), which
thc IAPR.

Enrique Vidal received the Licenciado en Ciencias
Fisicas degree in 1978 and the Doctor en Ciencias
Fisicas degree in 1985, both from the University of
Valencia.

From 1972 to 1978, he was with several com-
panies, working in electronics and computer engi-
neering. In 1978, he joined the Computer Center
of the University of Valencia, where he served as
a systems analyst, and in 1981, he also joined the
Department of Electronics and Informatics of the
same university as an honorary collaborator. Since

then, he coordinated, in both centers, a research group in the field of automatic
speech recognition. In 1986, he joined the Department of Informatics Systems
and Computation (DSIC) of the Polytechnic University of Valencia and has
been chair professor in the Computer Science Faculty of the University. His
current fields of interest include statistical and syntactic pattern recognition
and their applications to automatic speech recognition, where he is especially
concerned with grammatical inference and, in general, with automatic learning
methodologies.

Dr. Vidal is a member of the International Association for Pattern Recogni-
tion (IAPR) and the Spanish Association for Artificial Intelligence (AEPIA).
He also serves as a member of the governing board of the Spanish Association
for Pattern Recognition and Image Analysis (AERFAI), which is an affiliate
society of the IAPR.

