
COMPUTATIONAL UNIVERSALS IN LINGUISTIC THEORY:
USING RECURSIVE PROGRAMS FOR PHONOLOGICAL ANALYSIS

 JANE CHANDLEE ADAM JARDINE

 Haverford College Rutgers University
This article presents boolean monadic recursive schemes (BMRSs), adapted from the math-

ematical study of computation, as a phonological theory that both explains the observed computa-
tional properties of phonological patterns and directly captures phonological substance and
linguistically significant generalizations. BMRSs consist of structures defined as logical predi-
cates and situated in an ‘if … then … else’ syntax in such a way that they variably license or
block the features that surface in particular contexts. Three case studies are presented to demon-
strate how these grammars (i) express conflicting pressures in a language, (ii) naturally derive
elsewhere condition effects, and (iii) capture typologies of repairs for marked structures.*
Keywords: phonology, computation, logic, mathematical linguistics, elsewhere condition, feature-
based representations

1. Introduction.
1.1. Computational theories of language. A central goal of generative linguis-

tics is to determine abstract universals that govern the shape and structure of language
(Chomsky 1957, Baker 2009). An abstract computational universal of natural lan-
guage phonology is that it is regular (Johnson 1972, Kaplan & Kay 1981, 1994).
Briefly, a pattern is regular if and only if it can be computed with constant memory: that
is, there is some fixed amount of memory for which the pattern can be computed for
any input string, regardless of its length. (This means that regular patterns can be com-
puted by finite-state machines, whose finite numbers of states represent this fixed mem-
ory.) For example, progressive vowel harmony is regular because it requires only
remembering the relevant feature value in the trigger vowel closest to a span of target
vowels (Heinz & Lai 2013). In contrast, consider that the majority-rules vowel har-
mony pathology, in which the output value of a feature in a target vowel is determined
by the value that occurs most often in the underlying form (Baković 2000), is not regu-
lar (Heinz & Lai 2013). This is because it requires counting the number of feature val-
ues in the word, which requires more memory the longer the word is.

As a universal of natural language, the property of being regular was first explored in
the domain of sentence well-formedness, with Chomsky (1956) concluding that long-
distance syntactic dependencies are incompatible with a regular grammar.1 This assess-
ment of the expressive power needed by the syntax motivated instead a theory of phrase
structure and transformational grammar.

When the regular property came back into the picture as an assessment of the phono-
logical grammar, the difference between these two domains could then be identified in
computational terms. The regular/nonregular divide between phonology and syntax en-
ables varying predictions about what constitutes a possible pattern in each domain and
points to a need for distinct learning mechanisms (Heinz & Idsardi 2011, 2013). It also
introduces the question of where morphology fits in and whether a further computa-

485

* We sincerely thank Siddharth Bhaskar for introducing us to recursive schemes, as well as Steven Lindell,
Jeffrey Heinz, Eric Baković, Adam McCollum, Anna Mai, Eric Meinhardt, and the Rutgers Math Ling re-
search group for their input and suggestions.

1 Chomsky’s actual argument based on English nested embedding was in fact flawed (see Daly 1974, Pul-
lum 2011), but the conclusion that natural language syntax is not regular was later confirmed by others, in-
cluding Pullum and Gazdar (1982), Shieber (1985), and Kobele (2006).

Printed with the permission of Jane Chandlee & Adam Jardine. © 2021.

tional distinction can or should be made between morphophonology and morphosyntax
(Heinz & Idsardi 2013, Chandlee 2017).

Recent work has in fact pursued even stronger computational universals for phonol-
ogy by positing subregularity (i.e. properly less expressive than regular) as a better
characterization of the phonological grammar (Heinz 2009, Heinz & Lai 2013, Chan-
dlee & Heinz 2018). Such work argues that a subregular approach to phonology allows
for restrictive yet robust typological generalizations about the shape and structure of
phonology that are unavailable to existing rule- and constraint-based theories (Chan-
dlee et al. 2018, Heinz 2018, Jardine 2019). These computational characterizations also
help us make progress on the question of how children learn linguistic generalizations
from positive examples (Heinz 2009, 2010, 2018). Furthermore, they have drawn even
more attention to the interaction of computation and representation, as a given pattern
will have different computational properties depending on how it is represented. Deter-
mining the best characterization of some patterns involves a tradeoff between computa-
tional and representational complexity; for example, a regular pattern over strings may
be subregular over autosegmental representations (see Chandlee & Jardine 2019). As
Chomsky’s (1956) findings for syntax were based on string representations, it is per-
haps not surprising that the work on subregularity in phonology has led some to revisit
the earlier conclusions for syntax. A variety of current and recent studies are exploring
tree-based equivalents of the subregular properties established for strings (Graf 2019,
2020, Graf & Shafiei 2019, Vu et al. 2019, Ikawa et al. 2020, Ji & Heinz 2020).

1.2. Computational theories and linguistic generalizations. In the context
of phonology, however, a criticism of a perspective that focuses on computational uni-
versals is that it does not allow for a theory that intensionally represents phonological
generalizations in the way phonologists recognize them. Writes Pater (2018:156): ‘it is
a mistake to conceive of [such computational work] as an alternative to [optimality the-
ory] (and other theories with similar goals)’ because ‘it provides no obvious way of stat-
ing the kinds of substantive restrictions on phonological systems that are needed to
delimit phonological typology’.

In this article, we refute this criticism by presenting a computational formalism that
retains the important discoveries about the computational restrictiveness of phonology
but in a way that better aligns with commonly held assumptions about phonological
representations and grammars. Indeed, prior work on the computational complexity of
optimality theory (OT) revealed that it can generate nonregular patterns such as ma-
jority-rules vowel harmony (for a simple proof that OT can generate nonregular maps,
see Gerdemann & Hulden 2012). Various proposals followed for curbing OT’s compu-
tational overgeneration by altering one or more of its core mechanisms, such as bound-
ing the number of violations a constraint can assign (Frank & Satta 1998, Karttunen
1998), forcing local rather than global evaluation of constraints (Eisner 1997, 2000), or
reducing the candidate set to only those that are not harmonically bounded by others
(Riggle 2004). What is needed then is a formalism that has OT’s ability to incorporate
phonological substance but without the computational cost of optimization.

As a solution, we propose here boolean monadic recursive schemes (BMRSs)
and demonstrate their utility for phonological analysis. As we will show and discuss,
this formalism has a well-understood complexity bound that corresponds to previous
results in the study of computational phonology, but it also provides a way to imple-
ment phonological substance. As such it addresses several prior criticisms of computa-
tional approaches to phonology. Furthermore, we argue that it addresses problems of
both rule-based, derivational frameworks and constraint-based grammars. Thus, the

486 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

BMRS formalism enables a theory of phonology that captures both intensional and
computational generalizations about phonology in a way that is unavailable to previous
frameworks.

1.3. Boolean monadic recursive schemes. BMRSs are based on the well-studied
concept of recursive program schemes, which are an abstract way of studying the com-
plexity of algorithms (Moschovakis 2019). Algorithms are crucial to linguistic theory,
no less so in either rule- or constraint-based phonological frameworks. Algorithms are
commonly posited in derivational phonology (e.g. syllabification, autosegmental asso-
ciation, metrical structure building, etc.). And a single algorithm that does all of these
things is central to theories like OT, which implements them all via optimization over
an infinite set of candidates.

BMRSs implement a simple ‘if … then … else’ structure over properties of elements
in phonological representations. Here we give a brief, simple example of what a BMRS
analysis looks like, with a more thorough explanation of the formalism to follow in §3.
The heart of a BMRS analysis is a system of logical predicates that establish the condi-
tions under which a segment holds a particular feature value in the output. For example,
consider a process in which a high (H) tone, marked below as an acute accent, spreads
from an underlying syllable rightward, up to the penult.

 (1) /σσ́σσσ/ → [σσ́σ́σ́σ]
The crucial question here in computing the output is determining whether an output syl-
lable has the property of carrying an H tone. The BMRS predicate in 2 describes how to
compute this. The variable x refers to any given input syllable, ⊤ means true, and ⊥
means false. Subscript is and os indicate reference to the input and output representa-
tion, respectively.

 (2) □́o(x) = if finali(x) then ⊥ else
 if □́o(p(x)) then ⊤ else
 □́i(x)

The predicate in 2 defines when □ó(x) is true: that is, when x is H-toned in the output.
The first line on the right-hand side of the equation states that if x is final, then □́o(x)
evaluates to ⊥ (false). This implements a nonfinality condition on H-tone spreading. If
x is not final, then evaluation goes to the second line, which states that if the syllable
immediately preceding x (denoted p(x)) is H-toned in the output (□́o(p(x))), then □́o(x)
evaluates to ⊤ (true): that is, x is H-toned in the output. This implements the iterative
nature of spreading. The final line simply states that (nonfinal) H tones are copied over
faithfully from the input to the output.

BMRSs maintain one of the main strengths of OT in implementing a ranking of con-
straint-like predicates that identify particular structures in either the input or output.
These structures may alternately license or block particular feature values in the output,
depending on how they are fit into the overall BMRS template. For example, in 2, fi-
nali(x) is a blocking structure for an output H tone, because it blocks it from surfac-
ing on x. In contrast, □́o(p(x)) is a licensing structure for an output H tone, because
it causes it to surface on x. Furthermore, the BMRS syntax arranges these structures into
a hierarchy of local structures that functions not unlike a constraint ranking in OT.
For example, in 2, the blocking structure finali(x) supersedes the licensing structure
□́o(p(x)), and thus any x that satisfies both will not surface with an H tone.

In contrast to OT, however, the evaluation of a BMRS hierarchy is necessarily local
in nature, and therefore avoids the computational overgeneration that has been attrib-
uted to OT’s global evaluation strategy (Frank & Satta 1998, Gerdemann & Hulden

 Computational universals in linguistic theory 487

2012, Lamont 2019). In fact, BMRSs are guaranteed to describe a strict subclass of the
regular functions (Bhaskar et al. 2020).

Thus, through BMRSs, we have a computational characterization of a phonological
grammar that offers the following advantages. One, it captures both input- and output-
based mappings, because output predicates such as □ó(x) can refer to either the input
structure or the output structure, or both. Two, it intensionally expresses phonologically
significant generalizations (as opposed to e.g. automata). Three, it directly captures ‘do
X unless Y’-type behavior using the ‘if … then … else’ syntax and interpretation. Four,
it captures typological conspiracies by implementing markedness constraints that can
variably serve as licensing and blocking structures. And five, it is connected to previous
formal results on the computational complexity and learnability of phonology.

1.4. Outline. The remainder of the article is structured as follows. We first situate
BMRS analyses in the context of a theory that captures the computational nature of
phonology (§2) and explain in detail how BMRSs are defined and how they represent a
phonological input-output map (§3). Then in §4 we present BMRS analyses of three
significant phonological case studies that demonstrate the advantages of this formalism.
These case studies include the interaction of stress and length in Hixkaryana (§4.1),
elsewhere condition effects (§4.2), and the typology of *NC

˚
 (§4.3). Section 5 dis-

cusses a few potential questions and points of interest raised by the analyses, and we
conclude in §6.

2. Motivation. We first take some time to detail and motivate the computational
characterizations of phonology that BMRS analyses are meant to capture. Readers al-
ready familiar with this work can safely skip to §3.

From the perspective of typology, one goal of a generative theory of phonology is to
characterize possible phonological generalizations as opposed to impossible ones. The
result—that phonological generalizations which can be described with ordered rewrite
rules are regular (Johnson 1972, Kaplan & Kay 1994, Heinz 2018)—distinguishes
phonological generalizations from many logically possible ones, as most computations
are not regular (see e.g. Immerman 1980). For example, consider a hypothetical un-
bounded tone spreading pattern that spreads to the centermost syllable of the word. An
example mapping for this pattern is given in 3.

 (3) /σ́σσσσσσ/ → [σ́σ́σ́σ́σσσ]
Any procedure that finds the center of a word requires an amount of memory propor-
tional to the length of the word, because it must keep track of the number of syllables in
the word. Because regular computations can have only a fixed memory, the statement
that phonology is regular thus explains why 3 is unattested. Incorporating the observa-
tion that phonology is regular into a generative theory of phonology thus provides for a
restrictive theory of phonological typology that characterizes precisely what kinds of
processes should be possible versus what kinds of processes should be impossible
(Heinz 2018).

Even more restrictive statements can be made. Heinz and Lai (2013) posit the hy-
pothesis that phonological processes are subsequential (Mohri 1997). Subsequential
processes are those that both are regular and can be computed deterministically. That
is, at any point in reading the input, there is exactly one choice that can be made for the
output. For example, the deterministic finite-state transducer (FST) in Figure 1
computes the attested unbounded H-tone spreading pattern given in 1. (Here and
throughout the article we use the symbols ⋊ and ⋉ to represent the start and end of a
string, respectively.)

488 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

The FST in Fig. 1 operates on an underlying string of syllables as follows. It begins
in state 0 (states are depicted as circles), reading the beginning word boundary ⋊ and
outputting the empty string (λ). From state 0, it reads in the next symbol in the input. If
the next symbol is a toneless syllable, it takes the transition labeled ‘σ:σ’, meaning
that upon reading a toneless syllable in the input (marked on the left of the colon), it
outputs a toneless syllable (marked on the right of the colon). Note that this transition
loops on state 0, so this process repeats for any number of toneless syllables. However,
if an input H-toned syllable is read from state 0, the transition labeled ‘σ́:λ’ is taken to
state 1. This means that the syllable is first output as nothing (‘σ́:λ’), because the ma-
chine does not yet know if that syllable is final (and thus should not receive an H tone).
From state 1, any subsequent syllable produces an output H-toned syllable. This repre-
sents assigning H to the preceding syllable, which has now been determined to be non-
final (and thus susceptible to spreading). Upon seeing the end-of-word boundary, the
machine outputs a single nonhigh syllable (‘⋉:σ’), which realizes the final syllable as
not H-toned.2

Importantly, the FST in Fig. 1 is deterministic: at any point in the input, there is only
one transition that can be taken. Deterministic FSTs are strictly less expressive than
nondeterministic ones (Mohri 1997), essentially because they have a ‘bounded looka-
head’. That is, the determinism forces any change to a target in the input to be made
some fixed number of steps after it has been seen.

Heinz and Lai (2013) point out that spreading in phonology operates in this way, and
that the subsequential hypothesis correctly distinguishes attested spreading processes
from possible yet unattested processes. Two examples they give are ‘sour grapes’ (Wil-
son 2003, 2006) and ‘majority rules’ (Baković 2000), both of which are generable in
OT but require unbounded lookahead. This aligns with the independent characterization
of spreading as myopic (Wilson 2003, 2006). Empirically, this hypothesis has also been
borne out with studies of long-distance consonant harmony (Luo 2017) and dissimila-
tion (Payne 2017). It is also connected to learnability, as subsequential functions are
learnable from positive data (Oncina et al. 1993, Jardine et al. 2014), but it is likely that
the full regular class is not (which follows from the fact, demonstrated by Gold (1967),
that regular languages are not learnable). Exceptions to this hypothesis in tone (Jardine
2016) and vowel harmony (McCollum et al. 2020) have been noted, but the fact re-
mains that a significant amount of phonology is subsequential.

Aside from typological concerns, however, another goal of a generative theory of
phonology is to capture linguistically significant generalizations (Chomsky & Halle

 Computational universals in linguistic theory 489

2 Note that this FST would delete the H tone from a monosyllabic form, under the assumption that final syl-
lables cannot bear a tone. However, that assumption is not necessary for the map to be deterministic.

0 1

2

�: �:

�

Figure 1. An FST computing unbounded H-tone spread to the penult. States are represented as circles, and
transitions are represented as arrows, with labels of the form ‘input:output’.

1968). A theory that both incorporates computational characterizations and intensionally
captures linguistically significant generalizations has so far proved to be elusive. For ex-
ample, the FST in Fig. 1 extensionally captures unbounded spreading to the penult,
and it makes explicit that the pattern is regular (because the FST has a fixed memory, rep-
resented by the states) and subsequential (by the determinism of the FST). However, it
does not intensionally capture the motivations for the pattern in the usual vocabulary
of phonological analysis. For example, the constraint on nonfinality (Prince & Smolen-
sky 1993, Walker 2001, Yip 2002) is not explicit anywhere in the formalism.

Furthermore, the feature-based representations prominent throughout phonological
theorizing have not been widely pursued in finite-state analyses of phonological patterns
(see Heinz & Koirala 2010 for one example), with transitions instead being labeled with
unanalyzed segments. This is due in part to the need to preserve determinism. As noted
above, determinism requires that there be exactly one possible transition from a given
state for an input symbol, and this restriction is lost when processing feature bundles. For
example, if a given state had outgoing transitions for [+voice], [−voice], [+son], [−son],
[+labial], [+nasal], and so on, then more than one transition would be possible for an
input segment like /b/. The FST would then be nondeterministic, which loses the desir-
able computational restrictions of subregularity. The use of segment transition labels
maintains determinism, but at the cost of generalization. Natural classes of segments
might be treated the same by the FST, but that fact is not made explicit in any way.

Logical descriptions, instead, can capture the same generalizations about the com-
plexity of phonological patterns (Rogers et al. 2013) and can do so with more realistic
phonological representations, such as features, syllable structure, or autosegmental rep-
resentations (Strother-Garcia et al. 2016, Jardine 2017a, Strother-Garcia 2017). How-
ever, previous work applying logical descriptions to phonological processes has been
defined entirely on the input (Heinz 2021), thereby missing generalizations about out-
put-based constraints motivating processes.

In this article we propose BMRSs as a means of addressing all of these limitations.
We apply BMRSs to various phonological analyses and show that they can intension-
ally capture phonological generalizations—using features, reference to the output, and
the interaction of constraints. Computational restrictiveness is still guaranteed, as
Bhaskar et al. (2020) show that BMRSs are a logical description of the subsequential
functions. In addition, the advantages of automata—in particular, that they make the
computational properties of the processes they model clear and that they come with
proofs of formal learnability—are preserved with BMRSs.

3. Boolean monadic recursive schemes.
3.1. Basic structure. Recursive schemes are definitions of the output value of an

element based on a fixed set of (unary) predicates that refer to the input and output
structures local to that element. We illustrate with representations of words as strings of
feature bundles, but this easily extends to other structures—for instance, the strings of
syllables and tone values used in the introductory example above. (We leave detailed
investigation of the consequences of varying structure to future work.)

As BMRSs are rather intuitive, readers who are satisfied by the example given in the
introduction may skip ahead to §4 to see how BMRSs can be applied to more compli-
cated phonological analyses. The purpose of this section is to define BMRSs from the
ground up. It serves both as a reference and to show that BMRSs are a precise, well-
defined system.

Input feature predicates. The primitives of BMRSs are the Boolean values ⊤
(true) and ⊥ (false) and a finite set of monadic predicates P(t) that take a single argu-
ment t and return ⊤ or ⊥. We can apply this to strings of feature bundles as follows.

490 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

For a set 𝔽 = {[(±)F], [(±)G], …, [(±)Z]} of valued features and boundary symbols ⋊,
⋉, we use a set ℐ = {[F]i(t), [G]i(t), …, [Z]i(t), ⋊i(t), ⋉i(t)} of input feature predi-
cates (marked with a subscript i) as well as a set of output feature predicates
𝒪 = {[F]o(t), [G]o(t), …, [Z]o(t), ⋊o(t), ⋉o(t)} (marked with subscript o).

The argument t stands for some term that ranges over the elements in a word—in our
case, the segments and boundaries. Terms are defined inductively as follows: the vari-
able x is a term, and if t is a term, then p(t) is a term referring to the predecessor of t,
and s(t) is a term referring to the successor of t.

We first focus on explaining the input feature predicates, using the word model in
Figure 2 as an example. Figure 2 represents the word /tɛd/, with each feature bundle in-
dicated with its usual IPA value and the predecessor and successor of each segment ex-
plicitly marked with arrows. The distinct elements in the representation—the three
segments and the word boundaries—are numbered with indices.

 Computational universals in linguistic theory 491

�

1

t

2

E

3

d

4

�

5

s s s s

p p p p

Figure 2. An example model of the word /tɛd/.

Table 1 gives some example input predicates, given a standard set of features, taking
various terms as arguments. They are listed with their truth values for each element in
Fig. 2. For example, [son]i(x) is true when x is interpreted as the [+son] element 3 in
Fig. 2: in other words, the sole vowel [ɛ]. The predicate evaluates to false for all other
segments. Similarly, [voi]i(x) is true only for 3 and 4, and ⋉i(x) is true only for 5.

 ⋊ t ɛ d ⋉
 1 2 3 4 5

[son]i(x) ⊥ ⊥ ⊤ ⊥ ⊥
[voi]i(x) ⊥ ⊥ ⊤ ⊤ ⊥
⋉i(x) ⊥ ⊥ ⊥ ⊥ ⊤
⋉i(s(x)) ⊥ ⊥ ⊥ ⊤ ⊥
[cor]i(p(p(x))) ⊥ ⊥ ⊥ ⊤ ⊥

Table 1. The values of some input predicates given the segments in Fig. 2.

We assume the usual representation of segments as bundles of features in 𝔽 and inter-
pret the feature predicates as follows. When F is a binary feature, [F]i(t) is true for a po-
sition t when t is [+F] in the input, and false when t is [−F] in the input. Clearly, this
equates the plus and minus values of a feature to the Boolean values of true and false.
When F is a privative feature, [F]i(t) is true for position t when t is [F] in the input, and
false otherwise. We do this because in a binary feature system, it is redundant to have
separate predicates [+F]i(t) and [−F]i(t) (as the former is true if and only if the latter is
false). While this conflates binary and privative features and does not explicitly repre-
sent unspecified feature values, this is not a crucial assumption for the main points in
the article. To keep the exposition focused on the logic of BMRSs, we maintain this
simplification throughout the article, but revisit an implementation of three (or more)-
valued feature systems in the discussion section.

The last two rows show predicates whose arguments refer to successors and prede-
cessors. We can read ⋉i(s(x)) as ‘the successor of x is ⋉’; thus, this is true only when x
is evaluated to 4. Likewise, [cor]i(p(p(x))) can be read ‘the predecessor of the predeces-

sor of x is coronal’—in other words, the element two elements preceding x is coronal. In
Fig. 2, this is also true only for 4.3

Logical control and defining local structures. The logical backbone of
BMRSs is expressions built out of the basic predicates identified in the previous sub-
section and an ‘if … then … else’ structure as defined inductively below.

 (4) a. ⊤ and ⊥ are expressions;
b. any predicate P(t) is an expression;
c. if E1, E2, and E3 are expressions, then ‘if E1 then E2 else E3’ is an expres-

sion;
d. nothing else is an expression.

The definition in 4 makes explicit what is and what is not a BMRS expression.
An expression E of the form ‘if E1 then E2 else E3’ returns a value as follows. First E1

is evaluated; if it is true, then E returns the result of evaluating E2. If E1 is false, then E
returns the result of evaluating E3. The left-hand side of Figure 3 gives a schematic rep-
resentation of this evaluation. Note that BMRS conditionals evaluate like ‘if … then’
statements in programming languages, not like logical implication. That is, E1 does not
directly contribute to the output of E. This is in contrast to a logical implication such
as ‘if E1 then E2’, in which the value of the entire statement is understood to be true if
E1 is false.

492 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

3 Note that for the initial element p(x) is undefined (e.g. there is no predecessor of 1 in Fig. 2), and likewise
for the final element s(x) is undefined (e.g. there is no successor of 5 in Fig. 2). We adopt the convention that
P(t) evaluates to ⊥ (false) whenever t is undefined.

4 A referee asks how a predicate like (x), with only negative feature values, would be defined. The ‘if
… then … else’ structures can be embedded, such that this expression would be defined as follows.

[–son] (i) –voi i(x) = if [son]i(x) then ⊥ else if [voi]i(x) then ⊥ else ⊤
We will see more examples of embedded structures throughout the article.

E1

E2 E3

� ⊥
[son]i(x)

⊥ [voi]i(x)

� ⊥

Figure 3. Evaluation of ‘if … then … else’ statements (left), with 5 as an example (right).

To illustrate, the expression in 5 defines what it means to be a voiced obstruent.

[–son]  (5) +voi i(x) = if [son]i(x) then ⊥ else [voi]i(x)
As shown in the right-hand side of Fig. 3, 5 first checks if x is [son] (= E1). If [son] re-
turns ⊤, then ⊥ (= E2) is returned—this implements the logic that if a segment is a
sonorant, then it cannot be a voiced obstruent. If [son] returns ⊥, then the value of
[voi]i(x) (= E3) is returned. If [voi]i(x) is true, then we know that x is both voiced and an
obstruent. Thus, 5 returns ⊤ if and only if x is a voiced obstruent. The reader can con-
firm via Table 2 that this is true for the segments in the example word from Fig. 2.4 Note
that in this and future tables, cells are filled in only if that row’s predicate is evaluated

[–son] –voi

Before moving on, it is important to note that 5 names an expression with the short-
hand predicate       (x). In this way, we can derive new predicates that are not in the
original set of primitive predicates we started with. However, because the right-hand
side of the equation is a BMRS expression,      (x) is also a BMRS expression. In
other words, we have defined nothing new. This is important because we know that we
have not extended the computational power of BMRSs—we have simply defined a
shorthand that allows us to easily refer to natural classes.

We now show how we can derive local structures around x—that is, we can de-
rive new predicates that refer not only to the properties of x but also to the properties of
elements within a fixed distance of x. This allows us to define predicates that perform a
function similar to structural descriptions in SPE rules (Chomsky & Halle 1968) or
markedness constraints in OT.

For example, the expression defined in 6 identifies word-final voiced obstruents.5
Note that in the name of the expression,       has been set in boldface to indicate x’s
position in the structure. This notation is used throughout the article.

[–son]  (6) +voi ⋉i(x) = if       (x) then ⋉i(s(x)) else ⊥
This expression is evaluated similarly to the definition for
itself is used as the initial conditional E1. If it is false, then ⊥ is returned. If it is true,
then the value for ⋉i(s(x)) is returned. Recall that ⋉i(s(x)) returns ⊤ if and only if the
successor of x is the word boundary—in other words, if x is word-final. Thus,
⋉i(x) returns ⊤ if and only if x is both a voiced obstruent and word-final. Examples of
how this expression is evaluated are given in Table 3.

The following section shows how local structures such as 6 can be used to define a
map from underlying forms to surface forms by defining output feature predicates that
refer to the input feature predicates defined in this section.

Defining output feature predicates. Predicate logics can model maps by defin-
ing the output in terms of the input (Courcelle 1994, Engelfriet & Hoogeboom 2001).6
This means that we can define a phonological map using featural representations

 Computational universals in linguistic theory 493

[–son] +voi i

[–son] +voi i

[–son] +voi

[–son] +voi

[–son] +voi i
[–son] +voi i [–son] +voi i(x)(x) in 5. Here,

 ⋊ t ɛ d ⋉
 1 2 3 4 5

E1 [son]i(x) ⊥ ⊥ ⊤ ⊥ ⊥
  E2 ⊥ ⊥
  E3 [voi]i(x) ⊥ ⊥ ⊤ ⊥

  [–son]    +voi i(x) ⊥ ⊥ ⊥ ⊤ ⊥

Table 2. Evaluation of 5 given the segments in Fig. 2. A cell in a column for a segment is filled
only if the predicate on the left is evaluated for that segment.

for that column’s element. Whether or not a predicate is evaluated is determined by the
‘if … then … else’ structure. So, for example, the cell for E2 and element 1 is blank in
Table 2: since 1 evaluates to ⊥ for E1, E2 is skipped and E3 is evaluated instead.

5 Equivalently, we could use the standard logical conjunction (i.e. [−son,+voice]i(x) ∧ ⋉i(s(x))), as the ‘if
… then … else’ syntax is equally expressive as the Boolean connectives (Moschovakis 2019). (Note, how-
ever, that there is nothing equivalent to quantifiers in the BMRS syntax.) For the sake of consistency, how-
ever, we use the ‘if … then … else’ syntax for all definitions in the article.

6 For those familiar with the concept, this is an extension of the well-studied notion of logical interpre-
tations (as defined in e.g. Enderton 1972).

through a BMRS definition that specifies the featural content of each output element.
These definitions describe exactly when an input segment will have that feature in the
output.

For example, consider the following word-final obstruent devoicing rule.
 (7) [−son] → [−voice] / __ ⋉

Clearly, the crux of describing this rule is determining when a segment surfaces as
[+voice] and when a segment surfaces as [−voice]. We can do this with the following
BMRS definition of the output feature predicate [voi]o(x) in 8.

 (8) [voi]o(x) = if       ⋉i(x) then ⊥ else [voi]i(x)
This states: the value of [voi]o(x) for x is false—that is, x is [−voi] in the output—if it is
a word-final voiced obstruent. Otherwise, [voi]o(x) takes the value x has for [voi](x) in
the input—that is, it is output faithfully. In other words, as long as it is not a word-final
voiced obstruent, x surfaces as [+voi] if it was [+voi] in the input and as [−voi] if it was
[−voi] in the input. This is illustrated in Table 4.

494 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

The output values for other features, such as [±sonorant], [coronal], [labial], and so
forth, do not change. We can then simply define the output feature predicates for these
features to be faithful to their inputs, as in 9.

 (9) [son]o(x) = [son]i(x)
[cor]o(x) = [cor]i(x)
[lab]o(x) = [lab]i(x)

Assuming, as a toy example, that this is an exhaustive set of features for our representa-
tions ([±voi], [±son], [cor], [lab]), then we have defined all we need in order to deter-
mine the output for any input segment.

[–son] +voi

 ⋊ b æ d ⋉
 1 2 3 4 5

E1 [–son] +voi i(x) ⊥ ⊤ ⊥ ⊤ ⊥
  E2 ⋉i(s(x)) ⊥ ⊤
  E3 ⊥ ⊥ ⊥ ⊥

   [–son]    +voi ⋉i(x) ⊥ ⊥ ⊥ ⊤ ⊥

Table 3. Evaluation of 6 given the segments in the word /bæd/. A cell in a column for a segment is filled only
if the predicate on the left is evaluated for that segment.

 ⋊ b æ d ⋉
 1 2 3 4 5

[–son] +voi ⋉i(x) ⊥ ⊥ ⊥ ⊤ ⊥
  ⊥ ⊥
  [voi]i(x) ⊥ ⊤ ⊤ ⊥

  [voi]o(x) ⊥ ⊤ ⊤ ⊥ ⊥

Table 4. Evaluation of the output predicate definitions in 8 for devoicing given the input /bæd/. The bottom
table shows the value for [±voi] for each output segment i′ corresponding to input segment i.

 ⋊ b æ d ⋉
 1′ 2′ 3′ 4′ 5′

[voi] − + + − −

More generally, a full BMRS definition of a map for featural representations is
as follows.

(10) Given a set of input valued features 𝔽 = {[(±)F], [(±)G], …, [(±)Z]}, a BMRS
definition of a map is a list of definitions:
out(x) = E0
[F]o(x) = E1
[G]o(x) = E2
 …
[Z]o(x) = En

Here each Ei is a BMRS expression and out(x) is a special output predicate that deter-
mines whether x has a corresponding output segment (i.e. whether it is deleted).

Thus, 11 is a BMRS definition of word-final obstruent devoicing. We assume for
now as a notational simplification that word boundaries are not included in the output
(this allows us to write our output feature definitions without worrying about assigning
features to boundaries). Table 5 shows how these predicates evaluate for each segment
in the example input /bæd/, producing the correct output [bæt].

(11) out(x) = if ⋊i(x) then ⊥ else
 if ⋉i(x) then ⊥ else ⊤
[voi]o(x) =       ⋉i(x) then ⊥ else [voi]i(x)
[son]o(x) = [son]i(x)
[cor]o(x) = [cor]i(x)
[lab]o(x) = [lab]i(x)

 Computational universals in linguistic theory 495

As none of the analyses to follow in §4 include epenthesis, we abstract away from
how to implement the addition of an element. However, there are established ways of
doing so in logical transductions, by specifying copies of input elements. We refer inter-
ested readers to Strother-Garcia 2017 for examples.

3.2. Licensing and blocking. In the definition for [voi]o(x) in 8, the predicate
     ⋉i(x) acts as a markedness constraint: if x is in this position in this structure,
then [voi]o(x) evaluates to ⊥. Likewise, [voi]i(x) acts like a faithfulness constraint—
it states that x’s input value for [±voi] should be reproduced faithfully in the output.
Like a faithfulness constraint, it can be violated—exactly in the case when x satisfies
     ⋉i(x), which takes precedence over [voi]i(x) in the conditional structure of the
 definition.

This illustrates how the general structure of BMRSs defines the output in terms of
structure-based conditions that may be violated. In general, the output property Ao(x) is
defined as a BMRS expression with the structure in 12.

[–son] +voi

[–son] +voi

[–son] +voi

 ⋊ b æ d ⋉
 1 2 3 4 5

out(x) ⊥ ⊤ ⊤ ⊤ ⊥
[voi]o(x) ⊥ ⊤ ⊤ ⊥ ⊥
[son]o(x) ⊥ ⊥ ⊤ ⊥ ⊥
[cor]o(x) ⊥ ⊥ ⊥ ⊤ ⊥
[lab]o(x) ⊥ ⊤ ⊥ ⊥ ⊥

 1′ 2′ 3′ 4′ 5′
 b æ t

Table 5. Evaluation of the BMRS definition for word-final obstruent devoicing in 11
for the example input /bæd/.

(12) Ao(x) = if STRUCT1(x) then {⊤, ⊥} else
 if STRUCT2(x) then {⊤, ⊥} else
 …
 if STRUCTn(x) then {⊤, ⊥} else
 Ai(x)

Here STRUCTi for any line of the form ‘if STRUCTi(x) then ⊤’ is a licensing struc-
ture, because if it evaluates to ⊤ it causes Ao(x) to be true in the output. Likewise, for
any line of the form ‘if STRUCTi(x) then ⊥’, STRUCTi is a blocking structure, be-
cause if it evaluates to ⊤ it causes Ao(x) to be false in the output.

Importantly, the entire definition of Ao(x) is an ordering of licensing structures and
blocking structures. This is depicted graphically in Figure 4. If STRUCTi appears be-
fore STRUCTj in the definition, then STRUCTi takes priority over STRUCTj. In
other words, the licensing and/or blocking condition expressed by STRUCTj(x) can be
violated if and only if some STRUCTi earlier in the order has been satisfied. The analy-
ses that follow in this article give concrete examples of this logic of computation of
the output.

496 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

3.3. Recursion and output structures. From the discussion so far, the boolean
part of BMRSs should be clear.7 But the true power of BMRSs lies in their potential for
recursive predicate definitions. This means that when defining output predicates we
can refer to other output predicates, including the one we are currently defining. In the
context of a phonological analysis, this means that BMRS definitions of maps can refer
to local output structures as well.

To illustrate, consider unbounded spreading, as in H-tone spreading in Shambaa
(Odden 1982). In Shambaa, an underlying H tone spreads to the right, until it reaches
the penult.

(13) Shambaa (Bantu; Odden 1982)
/ku-hand-a/ [ku-hand-a] ‘to plant’
/ku-fúmbatiʃ-a/ [ku-fúmbátíʃ-a] ‘to tie securely’
/ku-fúmbatiʃ-ij-an-a/ [ku-fúmbátíʃ-íj-án-a] ‘to tie securely for each other’

{�,⊥}

{�,⊥} . . .

{�,⊥}

� ⊥

� ⊥

⊥

� ⊥

Figure 4. Ordering of structures in a BMRS definition of an output property Ao(x).

7 The monadic part comes from the limitation to a single variable in each term.

We can schematize this spreading using the following rule. For expository purposes
we describe this map in terms of strings of syllables (which we arbitrarily choose as the
tone-bearing unit) instead of autosegmental representations.

(14) a. σ → σ́ / σ́ __ σ (iterative)
b. /σσ́σσσ/ → σσ́σ́σσ → σσ́σ́σ́σ → [σσ́σ́σ́σ]

The rule in 14a states that a nonfinal syllable takes an H tone when following another
H-toned syllable, and that this process applies iteratively. Thus, the rule applies repeat-
edly until it no longer can, as illustrated in 14b.

We can capture this map using recursion in a BMRS definition as follows. We use the
input predicates □́i to represent the privative property of having an H tone and σi to in-
dicate being a syllable.8 The truth values of each of these predicates for the input
/σσ́σσσ/ are given in Table 6.

 Computational universals in linguistic theory 497

8 We use □í instead of σ́ to explicitly represent tone as a property of the syllable.

 ⋊ σ σ́ σ σ σ ⋉
 1 2 3 4 5 6 7

⋊i(x) ⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⋉i(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤
σi(x) ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥
□́i(x) ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥

Table 6. Values for the input predicates ⋊i(x), ⋉i(x), σi(x), and □́i(x) for the input /σσ́σσσ/.

As finality is clearly important to this generalization, we first define a predicate
final(x) that identifies a word-final syllable.

(15) finali(x) = if ⋉i(s(x)) then ⊤ else ⊥
With our input predicates established, we can define unbounded tone spread with the
BMRS definition below, which defines the output versions of σi(x) and □́i(x).

(16) a. σo(x) = σi(x)
b. □́o(x) = if finali(x) then ⊥ else
 if □́o(p(x)) then ⊤ else
 □́i(x)

The definition of σo(x) states that all syllables are mapped faithfully to the output, and
the definition of □́o(x) states three conditions that govern whether a syllable is H-toned
in the output. The first is that, if a syllable is final, then it cannot be high (‘if finali(x)
then ⊥’). The second states that if the preceding syllable is high in the output, then x
is high (‘if □́o(p(x)) then ⊤’). The final line states that any underlying H-toned syllable
is mapped faithfully with an H tone.

In the second condition of 16 we see that the output predicate □ó(x) is used in its own
definition, to state that an x is high in the output if its predecessor is. This is evaluated
as shown in Table 7. Recall that empty cells indicate expressions that are not evaluated
for that particular element.

The top three lines of Table 7 give the truth values for the three conditions tested by
□́o(x). For example, element 2, the first syllable, satisfies none of these conditions: it is
not final (finali(x) evaluates to ⊥), its predecessor is not high in the output (□́o(p(x)) eval-
uates to ⊥—see n. 3), and it itself is not high in the input (□́i(x) evaluates to ⊥). Thus
□́o(x) evaluates to ⊥ for 2. Turning to element 3, it also evaluates to ⊥ for □́o(p(x)), be-
cause its predecessor, 2, does. However, because 3 is itself high in the input and thus sat-
isfies □́i(x), it does satisfy □́o(x).

Because □́o(p(x)) is a licensing structure for □́o, □ó(x) is also true for 4. Likewise, be-
cause □́o(p(x)) is true for 5, □́o(x) is true for 5 as well. This implements the iterativity of
the rule: the output value of the preceding segment affects the output of a subsequent
segment.

Note that □́o(p(x)) is also true for element 6. Crucially, however, finali(x) is also true
for 6, and finali(x) is a blocking structure for □́o. Because this blocking structure out-
ranks (i.e. takes priority over) the licensing structure □́o(p(x)), □́o(x) evaluates to ⊥ for
element 6. This captures the generalization that nonfinality is a crucial condition for
H-tone spreading.

Because we allow output predicates in their own definitions, it is possible to write
BMRS definitions that are circular, or nonterminating. An example is given in §4.3
below. It is possible to define exactly the conditions under which this circularity can
occur, but that is beyond the scope of this article (see discussion in Bhaskar et al. 2020).
For present purposes, we consider such circular grammars to be noninterpretable and
therefore excluded from the typology of possible grammars.

This brief demonstration has shown how BMRSs use recursion to refer to output
structures. It has also illustrated how BMRSs capture linguistically significant general-
izations through the ranking of licensing and blocking structures. Both of these aspects
of BMRSs are more thoroughly illustrated in the analyses to follow in §4.

3.4. Expressive power. While recursion is a potentially powerful tool, BMRSs are
also restricted in their expressivity, as has been noted. Recursive schemes are a useful
way of studying algorithms abstractly because their behavior is well understood (Mos -
chovakis 2019). In particular, Bhaskar et al. (2020) prove that, as long as the recursion
goes in one direction—that is, the definitions can embed multiple ps or ss but never
combine them—BMRSs describe exactly the subsequential functions. Thus, as a theory
of phonology BMRSs correctly exclude unattested patterns like the ‘spread to center’
pattern mentioned in 3, as well as other nonsubsequential pathologies (Heinz & Lai
2013, Jardine 2016).

We briefly explain why this is the case. Roughly, the recursively defined monadic
predicates correspond to states in an FST. Determinism requires bounded lookahead in
at least one direction, while recursion enables unbounded lookahead. If we recurse only
over p, for example, the transduction can ‘look’ backward an unbounded amount, but its
ability to look ahead will be bounded (see Smith & O’Hara 2019 for more on the rela-
tionship between lookahead and subsequentiality in the context of phonological maps).
The analyses in the following sections all have this property of recursing in at most only
one direction.

4. Analyses. In this section we provide BMRS analyses of three phonological phe-
nomena. These three case studies were chosen to showcase the ability of BMRSs to

498 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

 ⋊ σ σ́ σ σ σ ⋉
 1 2 3 4 5 6 7

finali(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
□́o(p(x)) ⊥ ⊥ ⊥ ⊤ ⊤ ⊥
□́i(x) ⊥ ⊥ ⊤ ⊥

□́o(x) ⊥ ⊥ ⊤ ⊤ ⊤ ⊥ ⊥
σo(x) ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥

Output: σ σ́ σ́ σ́ σ

Table 7. Evaluation of 16 given an input /σσ́σσσ/. Empty cells indicate predicates that
are not evaluated for that element.

capture important aspects of phonological generalization in three particular areas. The
analysis of Hixkaryana stress in §4.1 shows how the hierarchy of licensing and block-
ing structures in a BMRS analysis captures the conflicting pressures that give rise to
phonological patterns. In §4.2, an analysis of English stress shows how elsewhere con-
dition effects are derived from the manner in which BMRSs are evaluated. Finally, the
typology of *NC

˚
 effects in §4.3 shows how varying whether a marked sequence ap-

pears as a blocking or licensing structure captures the different repairs languages
choose to avoid that marked sequence.

4.1. Stress and length in hixkaryana. Stress in Hixkaryana (Derbyshire 1985) is
predictable, and Kager’s (1999) analysis of the interaction between stress and weight in
Hixkaryana is a well-known argument for OT’s ability to capture the interaction of con-
flicting generalizations in a language. Here we give a BMRS analysis that not only cap-
tures these same conflicts, but also addresses some of Halle and Idsardi’s (2000)
criticisms of Kager’s analysis. The following are taken from Kager’s (1999) discussion
of the data.

In strings of open syllables, Hixkaryana stress has an iterative, iambic pattern, with
long vowels in the stressed syllables. As in Kager 1999, we put aside the distinction be-
tween primary and secondary stress.

(17) Hixkaryana (Cariban; Kager 1999)
a. [to.róː.no] ‘small bird’
b. [ne.móː.ko.tóː.no] ‘it fell’
c. [a.tʃóː.wo.wo] ‘wind’
d. [kwáː.ja] ‘red and green macaw’

Furthermore, as illustrated in 17c [a.tʃóː.wo.wo] ‘wind’, Hixkaryana has a nonfinality
condition that prevents this iteration from reaching the end of the word (cf.
*[a.tʃóː.wo.wóː]). In bisyllabic words such as 17d [kwáː.ja] ‘red and green macaw’, this
forces the initial syllable to be stressed (cf. *[kwa.jáː]).

Because stress and length in open syllables are entirely predictable, neither need be
present in underlying forms. Using a schematic representation of L for light syllables
and H for heavy syllables, we can represent this map as in 18. Like the Kager analysis,
this schematic abstracts away from the portion of the grammar that implements syllabi-
fication, and takes syllables as the input.9

(18) a. LLL ↦ [LH́L] (= 17a)
b. LLLLL ↦ [LH́LH́L] (= 17b)
c. LLLL ↦ [LH́LL] (= 17c)
d. LL ↦ [H́L] (= 17d)

Additionally, Hixkaryana allows closed syllables, which are also treated as heavy
and receive stress.

 Computational universals in linguistic theory 499

9 A referee points out that just marking syllables as H or L ignores a potential underlying distinction, if one
adopts a richness-of-the-base-style analysis, between underlying closed syllables, which should interrupt
the iteration of stress, and underlying long vowels, which should only surface exactly in the case in which
they get stress. For simplicity, the analysis presented here assumes (closer to older derivational analyses) that
long vowels do not appear in the underlying forms. A similar analysis adhering to richness of the base could
be accomplished by replacing Hi(x) with a predicate closedi(x), indicating a closed syllable, and longi/o(x),
governing whether a syllable contains a long vowel.

(19) a. [ák.ma.táː.ri] ‘branch’
b. [tóh.ku.rjéː.ho.na] ‘to Tohkurye’
c. [nák.ɲóh.játʃ.ke.náː.no] ‘they were burning it’
d. [kha.náː.níh.no] ‘I taught you’
e. [mi.háː.na.níh.no] ‘you taught him’

As 19a [ák.ma.táː.ri] ‘branch’ shows, for example, iterative stress over light syllables
resets following a heavy syllable. In terms of our schematic notation, we can represent
these examples as below.

(20) a. HLLL ↦ [H́LH́L] (= 19a)
b. HLLLL ↦ [H́LH́LL] (= 19b)
c. HHHLLL ↦ [H́H́H́LH́L] (= 19c)
d. LLHL ↦ [LH́H́L] (= 19d)
e. LLLHL ↦ [LH́LH́L] (= 19e)

A BMRS analysis of the Hixkaryana facts defines when a syllable is heavy in the out-
put (Ho(x)), when it is light in the output (Lo(x)), and when it is stressed in the output
(□́o(x)), given the input predicates Li(x) and Hi(x). The following captures this with iter-
ation governed by the notions of clash and lapse (Prince 1983, Selkirk 1984, Gordon
2002). A stress clash is when adjacent syllables are stressed, and a stress lapse is when
adjacent syllables are unstressed.

The following define what a syllable is (essentially, any H or L)10 and when a sylla-
ble x is potentially in a clash or lapse situation.

(21) a. σi(x) = if Li(x) then ⊤ else Hi(x)
b. clash(x) = if σi(x) then □́o(p(x)) else ⊥
c. lapse(x) = if □ó(p(x)) then ⊥ else
 if σi(p(x)) then σi(x) else ⊥

The predicate clash(x) defines a structure in which x is preceded by a stressed syllable
in the output. Note that this is defined recursively, using the output predicate □́o(x). The
predicate lapse(x) is defined essentially as the opposite situation—x is in a lapse struc-
ture exactly when it is a syllable preceded by another syllable but not in a clash struc-
ture.11 Note that as both of these predicates are defined using both input (σi(x)) and
output (□́o(x)) predicates, they receive neither an input nor an output subscript (a con-
vention we follow throughout the remainder of the article).

We also make use of a predicate only(x), which identifies the first syllable of disyl-
labic words (monosyllables are disallowed; Hayes 1995:206), as these syllables are al-
ways stressed.

(22) onlyi(x) = if finali(s(x)) then initiali(x) else ⊥
The full definition is given in 23. The basic iterative pattern of stress is given by the
final three lines, which show the critical role played by the clash and lapse structures.

(23) □́o(x) = if onlyi(x) then ⊤ else
 if finali(x) then ⊥ else
 if Hi(x) then ⊤ else
 if initiali(x) then ⊥ else
 if clash(x) then ⊥ else
 lapse(x)

500 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

10 This is needed to distinguish syllables from word boundaries.
11 Note that the definition of lapse(x) is more complicated than that of clash(x) because of the use of □́ to

identify a stressed syllable. The absence of stress cannot be detected by just checking whether the predecessor
is σ, because it could still also be stressed.

Setting clash(x) as a blocking structure and lapse(x) as a licensing structure captures ex-
actly left-to-right binary stress. Setting initiali(x) as a blocking structure makes the iter-
ation iambic. This is illustrated with the derivation in Table 8 for an input LLLLL
([ne.móː.ko.tóː.no] ‘it fell’; 17b).

 Computational universals in linguistic theory 501

First, the output of LLLL is [LH́LL], not *[LH́LH́], because stress avoids the final
syllable. This is accomplished by ranking finali(x) as a blocking structure above the li-
censing structure lapse(x). Thus, the final L in LLLL (element 5) would satisfy the li-
censing structure lapse(x) (note that its predecessor evaluates to ⊥), but it first satisfies
final(x)i. This means that □ó(x) immediately evaluates to ⊥, leaving lapse(x) not evalu-

 ⋊ L L L L L ⋉
 1 2 3 4 5 6 7

initiali(x) ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ ⊥ ⊤ ⊥ ⊤ ⊥
lapse(x) ⊥ ⊤ ⊤ ⊥

□́o(x) ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ⊥

Table 8. Evaluation of 23 given the input /LLLLL/.

As shown in Table 8, element 2 in the representation—that is, the first L in LLLLL—
satisfies initiali(x). This is a blocking structure in the definition of □́o(x), and so 2 eval-
uates to ⊥ for the entire expression and will not receive stress. The second L, element 3,
is not initial, so the evaluation moves on to the next line. This evaluates clash(x), which
again is true if and only if □́o(p(x)) is true. Since element 2 evaluates to ⊥, clash(x)
evaluates to ⊥ for element 3. Conversely, because element 2 evaluates to ⊥ for □́o(x),
lapse(x) evaluates to ⊤ for 3. As lapse(x) is a licensing structure for □́o(x), □́o(x) evalu-
ates to ⊤ for 3. Thus, element 3 will be stressed in the output. In turn, this means that
the blocking structure clash(x) evaluates to ⊤ for 4, so □́o(x) evaluates to ⊥ for 4. This
in turn means that the licensing structure lapse(x) evaluates to ⊤ for 5, and so it evalu-
ates to ⊤ for □́o(x), and so on.

We now turn to the second and third lines in the definition of □́o(x) in 23, which are
repeated below in 24.

(24) if finali(x) then ⊥ else
if Hi(x) then ⊤ else

As with the unbounded spreading example in §3.3, nonfinality is implemented by set-
ting finali(x) as a blocking structure. Likewise, setting Hi(x) as a licensing structure im-
plements the weight-to-stress principle (Prince 1980, Kager 1999, 2007). Crucially,
both of these statements take precedence over the structures responsible for iterative
stress. This means that both of them will interrupt the normal iterative placement of
stress. This is illustrated in Table 9 for an input LLLL ([a.tʃóː.wo.wo] ‘wind’; 17c).

 ⋊ L L L L ⋉
 1 2 3 4 5 6

finali(x) ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
Hi(x) ⊥ ⊥ ⊥ ⊥ ⊥
initiali(x) ⊥ ⊤ ⊥ ⊥ ⊥
clash(x) ⊥ ⊥ ⊤ ⊥
lapse(x) ⊥ ⊤ ⊥

□́o(x) ⊥ ⊥ ⊤ ⊥ ⊥ ⊥

Table 9. Evaluation of 23 for the input /LLLL/.

ated. Thus, any final L will not be assigned stress. (As final syllables cannot be under-
lyingly heavy (Hayes 1995:206), it is impossible to know whether final heavy syllables
would receive stress, but we have also ranked finali(x) over Hi(x).)

Conversely, any H syllable must receive stress. By ordering Hi(x) as a licensing
structure above the blocking structures initiali(x) and clash(x), this assigns stress to Hs
that are in either of these positions. This is illustrated in Table 10 for an input HLLLL
([tóh.ku.rjéː.ho.na] ‘to Tohkurye’; 19b) and in Table 11 for HHHLLL ([nák.ɲóh.játʃ.ke.
náː.no] ‘they were burning it’; 19c).

502 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

 ⋊ L L ⋉
 1 2 3 4

onlyi(x) ⊥ ⊤ ⊥ ⊥
finali(x) ⊥ ⊤ ⊥
Hi(x) ⊥ ⊥
initiali(x) ⊥ ⊥

□́o(x) ⊥ ⊤ ⊥ ⊥

 ⋊ H L L L L ⋉
 1 2 3 4 5 6 7

finali(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
Hi(x) ⊥ ⊤ ⊥ ⊥ ⊥ ⊥
initiali(x) ⊥ ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ ⊤ ⊥ ⊤ ⊥
lapse(x) ⊥ ⊤ ⊥

□́o(x) ⊥ ⊤ ⊥ ⊤ ⊥ ⊥ ⊥

Table 10. Evaluation of 23 for the input /HLLLL/.

 ⋊ H H H L L L ⋉
 1 2 3 4 5 6 7 8

finali(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
Hi(x) ⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥
initiali(x) ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ ⊤ ⊥ ⊥
lapse(x) ⊥ ⊤ ⊥

□́o(x) ⊥ ⊤ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥

Table 11. Evaluation of 23 for the input /HHHLLL/.

In Table 10, the initial H (element 2) satisfies the licensing structure Hi(x) and thus
□́o(x) evaluates to ⊤. This is despite the fact that H is initial and would otherwise satisfy
the blocking structure initiali(x). Ranking Hi(x) over initiali(x) then allows initial Hs to
receive stress. Likewise, ranking Hi(x) over clash(x) captures the generalization that as-
signing stress to heavy syllables outweighs the drive for placing stress on alternating
syllables. Thus, the first three Hs in Table 11 evaluate to ⊤ for □ó(x), even though they
would satisfy the blocking structure clash(x).

The analysis in 23 captures stress assignment for all forms of three syllables or more.
But as exemplified in [kwáː.ja] ‘red and green macaw’ (17d), shorter words do not fol-
low the above generalizations. Instead, in disyllables the first syllable is stressed.

As shown in Table 12, for an input LL, setting onlyi(x) as a licensing structure and or-
dering it before the blocking structures finali(x) and initiali(x) correctly assigns stress to
the initial syllable. (The remaining parts of the definition of □́o(x) are omitted.)

Table 12. Evaluation of relevant statements in 23 for input /LL/.

With stress captured, the definitions for the output weight of syllables is simple.
(25) a. Ho(x) = if □́o(x) then ⊤ else Hi(x)

b. Lo(x) = if □́o(x) then ⊥ else Li(x)
Definition 25a for Ho(x) implements the stress-to-weight principle: any syllable that re-
ceives stress becomes heavy. This captures the (near) equivalence of weight and stress.
As a default any input heavy syllable also becomes heavy in the output (this applies
only to final H syllables that did not receive stress). Definition 25b is the converse: any
syllable that does not receive stress in the input, and was L in the input, surfaces as L.

How 23 and 25 work together to produce the correct outputs for the inputs LLHL
([kha.náː.níh.no] ‘I taught you’; 19d) and HHHLLL ([nák.ɲóh.játʃ.ke.náː.no] ‘they were
burning it’; 19c) is shown in the full derivations in Table 13. The individual lines of the
definition of □ó(x) are given for clarity.

 Computational universals in linguistic theory 503

 ⋊ L L H L ⋉
 1 2 3 4 5 6

onlyi(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
finali(x) ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
Hi(x) ⊥ ⊥ ⊥ ⊤ ⊥
initiali(x) ⊥ ⊤ ⊥ ⊥
clash(x) ⊥ ⊥ ⊥
lapse(x) ⊥ ⊤ ⊥

□́o(x) ⊥ ⊥ ⊤ ⊤ ⊥ ⊥

Ho(x) ⊥ ⊥ ⊤ ⊤ ⊥ ⊥

Lo(x) ⊥ ⊤ ⊥ ⊥ ⊤ ⊥

Output: L H́ H́ L

 ⋊ H H H L L L ⋉
 1 2 3 4 5 6 7 8

onlyi(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
finali(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥
Hi(x) ⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥
initiali(x) ⊥ ⊥ ⊥ ⊥
clash(x) ⊥ ⊤ ⊥ ⊥
lapse(x) ⊥ ⊤ ⊥

□í(x) ⊥ ⊤ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥

Ho(x) ⊥ ⊤ ⊤ ⊤ ⊥ ⊤ ⊥ ⊥

Lo(x) ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

Output: H́ H́ H́ L H́ L

Table 13. Evaluation of 23 and 25 for inputs /LLHL/ and /HHHLLL/.

This concludes our BMRS analysis of stress and length in Hixkaryana, which clearly
illustrates the ability of BMRSs to state conflicting pressures in the language: overall
there is an iterative left-to-right alternating stress pattern, but this is overridden by exist-
ing heavy syllables. This is captured in the BMRS analysis by ordering the licensing and
blocking structures responsible for iterative stress below the licensing structure respon-
sible for assigning stress to heavy syllables. It also captures the relationship between
stress and weight by literally equating output heavy syllables with accented syllables.

It is worth making a few remarks comparing this analysis to previous analyses. It is
similar to Hayes’s (1995) analysis, in that it builds iterative stress and then assigns
weight based on this stress. However, it is distinct from a derivational procedure in that
conflicting licensing and blocking structures are primitives of the system that defines
stress. For example, instead of marking final syllables as extrametrical, the BMRS
analysis ranks a blocking structure finali(x) above the licensing structures (except for
onlyi(x)) responsible for the usual assignment of stress.

This latter aspect of the BMRS analysis is somewhat like an OT analysis, in that it im-
plements stress assignment based on a series of ranked structures reminiscent of con-
straints (e.g. nonfinality, clash, lapse). However, the evaluation of these structures given
a particular input is fundamentally local, as opposed to OT’s global evaluation. This is
perhaps clearest in the example of an input /LLHL/, which, as Halle and Idsardi (2000)
point out, is incorrectly output under Kager’s (1999) analysis as *[LLH́L] (as opposed to
the attested [LH́H́L], e.g. [kha.náː.níh.no] ‘I taught you’ (19d)). This is due to the fact that,
in OT, *[LLH́L] is directly compared to [LH́H́L], and the former turns out to be more har-

monic than the latter given Kager’s (1999) high ranking of Uneven-Iamb, which penal-
izes iambs of the form (LĹ) and (H́). The BMRS analysis obtains the correct output
[LH́H́L] by assigning stress exactly as Halle and Idsardi (2000:202) describe the gener-
alization in Hixkaryana: iterating from left to right ‘instead of “looking ahead” to skip a
single light syllable in order to form a single canonical iamb’. The way the statements in
a BMRS analysis are evaluated crucially limits its ability to look ahead.

Another point of divergence between the analysis presented here and those of Hayes
(1995) and Kager (1999) is that, like that of Gordon (2002), this analysis does not ex-
plicitly refer to feet. This is not to refute feet as a psychologically real part of the gram-
mar, but rather was an expository choice to focus on how BMRSs function, instead of
on how they can be extended to build structures. Logical characterizations can also cap-
ture structure building; see, for example, the work of Jardine (2017b) and Strother-
Garcia (2019).

Finally, a potential weakness of this analysis is the need for the licensing structure
onlyi(x) to identify the initial syllable in disyllabic forms. This licenses stress in exactly
the case in which cumulativity of stress seems to force stress to appear, even if violating
other constraints. However, while the use of this structure is somewhat stipulative,
treating disyllabic forms differently is unavoidable, and as Halle and Idsardi (2000)
point out, even Kager’s (1999) analysis does not capture this by appealing to a cumula-
tivity constraint on stress. As noted by Halle and Idsardi (2000), both the OT analysis in
Kager 1999 and the rule-based analysis of Hayes 1995 require additional machinery
that refers specifically to disyllabic forms. In Kager’s (1999:160) analysis, the ranking
Ft-Bin >> Dep-IO motivates lengthening in bisyllabic words, whereas the separate
ranking Uneven-Iamb >> Dep-IO motivates lengthening in longer words. In Hayes’s
rule-based analysis, an additional rule is required, as pointed out by Kager (1999:149):
‘When the entire metrical domain is a single light syllable, assign (L) to it’ (ex. 17, step
4). Thus, in its special treatment of short forms, this BMRS analysis is not significantly
different from other analyses.

4.2. Elsewhere condition effects. The hierarchy of structures in a BMRS defini-
tion admits a characterization not unlike Pānịni’s theorem on constraint ranking
in OT (Prince & Smolensky 2004, Baković 2006, 2013), from which elsewhere condi-
tion (EC; Kiparsky 1973) effects can be derived.12 We state this characterization as the
strict substructure ordering theorem, or SSOT.
Theorem 1. Strict substructure ordering theorem (SSOT): For any ranking of
structures in a BMRS definition, whenever STRUCTj(x) implies STRUCTi(x) but the
converse is not true (i.e. STRUCTi is a strict substructure of STRUCTj), if i < j in the
order, then STRUCTj(x) will never evaluate to ⊤ and thus never take effect.

The theorem follows directly from the logic of the ‘if … then … else’ syntax. The
proof, given below, is therefore straightforward.
Proof. Let A and B be two structures such that whenever B is true, A is true, but the con-
verse does not hold. Now assume A precedes B in a ranking of structures. For B to take
effect there must be at least one x such that A evaluates to ⊥ and B evaluates to ⊤. But
since whenever B is true, A is true, no such case exists. Therefore for B to ever take ef-
fect it must precede A. □

504 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

12 We thank Chris Oakden for discussion on the points in this section.

To illustrate, consider the structures Ci(x), indicating that x is a consonant, and
VCVi(x), indicating an intervocalic consonant. Intuitively, VCVi(x) implies Ci(x)—an
intervocalic consonant must, of course, be a consonant. Formally, VCVi(x) can only be
true for any x for which Ci(x) is also true. In other words, Ci(x) is a strict substructure of
VCVi(x).

According to theorem 1, the strict substructure relationship fixes the order in which
Ci(x) and VCVi(x) can appear in a BMRS analysis. To see why, consider the definition
for [voi]o(x) in 26, in which VCVi(x) serves as a licensing structure ranked over Ci(x) as
a blocking structure. Table 14 shows the evaluation of this predicate for the inputs
/papa/ and /baba/. (Evaluation of the vowels has been omitted.)

(26) [voi]o(x) = if VCVi(x) then ⊤ else
 if Ci(x) then ⊥ else
 [voi]i(x)

 Computational universals in linguistic theory 505

 p a p a b a b a

Ci(x) ⊤ ⊤ Ci(x) ⊤ ⊤
VCVi(x) VCVi(x)

[voi]o(x) ⊥ ⊥ [voi]o(x) ⊥ ⊥

 p a p a p a p a

Table 15. Evaluation of 27 for inputs /papa/ and /baba/.

 p a p a b a b a

VCVi(x) ⊥ ⊤ VCVi(x) ⊥ ⊤
Ci(x) ⊤ Ci(x) ⊤

[voi]o(x) ⊥ ⊤ [voi]o(x) ⊥ ⊤

 p a b a p a b a

Table 14. Evaluation of 26 for inputs /papa/ and /baba/.

If VCVi(x) evaluates to ⊤, then [voi]o(x) evaluates to ⊤. If not, then evaluation
passes down the line, and if it reaches Ci(x) and evaluates to ⊤, then [voi]o(x) evaluates
to ⊥. In both examples in Table 14, [voi]o(x) evaluates to ⊥ for the initial consonant,
and to ⊤ for the intervocalic consonant.

If the priority of the two were instead reversed, as in 27, then VCVi(x) would never
get a chance to serve as a licensing structure, because for any x for which VCVi(x) is
true, Ci(x) will be true. In this case, Ci(x) will always take effect and VCVi(x) will never
have a chance. This is illustrated in Table 15. Note that now the truth value for [voi]o(x)
for all consonants is ⊥, because even though the intervocalic consonants satisfy
VCVi(x), Ci(x) always preempts it. In other words, VCVi(x) might as well not be pres-
ent in the definition at all.

(27) [voi]o(x) = if Ci(x) then ⊥ else
 if VCVi(x) then ⊤ else
 [voi]i(x)

To give a more concrete example, the reader can confirm that, with the structures
onlyi(x) and initiali(x) in the BMRS definition for Hixkaryana stress in the previous sec-
tion, initiali(x) is a strict substructure of onlyi(x). The SSOT then fixes the relative rank-
ing of these two predicates, such that the ordering of onlyi(x) before initiali(x) in 23 is
the only way in which the former can play a role in the grammar.

To see how the SSOT predicts EC effects, we turn to stress and length in English. As
discussed by Baković (2006, 2013) (following Chomsky & Halle 1968, Myers 1987,
Halle 1995), long and short vowels in English are in complementary distribution in
stressed syllables in certain metrical configurations. In general, the stressed vowel in a
binary foot is short. Following the above authors, we likewise assume that the final suf-
fixed syllables in these forms are extrametrical.

(28) a. (nătu)ral (cf. nāture)
b. di(vı̆ni)ty (cf. divīne)
c. (rădi)cal

However, when stressed [−high] vowels in this configuration are followed by an [i]
vowel in hiatus, they are long instead of short.

(29) a. re(mēdi)al *re(mĕdi)al
b. co(lōni)al *co(lŏni)al
c. (rādi)al *(rădi)al

Stressed vowels in binary feet are then long when followed by an [iV] sequence, and
short elsewhere. Because this generalization has a ‘do X unless the more specific situa-
tion in Y holds’ flavor, rule-based analyses have argued for the disjunctive ordering of
rules according to the EC. The EC is discussed more below, but first we give a BMRS
analysis of these facts.

We assume a predicate brhdi(x) that is true exactly when x is the head of a binary
branching foot, as well as a predicate [−hi]CiVi(x) that identifies a [−hi] segment fol-
lowed by the sequence CiV. To identify the environment for lengthening, we combine
these into the predicate in 30.

(30) brhd&[−hi]CiVi(x) = if brhdi(x) then [−hi]CiVi(x) else ⊥
The BMRS definition for the feature [±long] in English is then defined as in 31.

(31) [long]o(x) = if brhd&[−hi]CiVi(x) then ⊤ else
 if brhdi(x) then ⊥ else
 [long]i(x)

This definition involves one licensing structure, brhd&[−hi]CiVi(x) (the lengthening
environment), ordered before a blocking structure brhdi(x) (the shortening environ-
ment). Note that this order is fixed by the SSOT: brhd&[−hi]CiVi(x) implies bhrdi(x),
so the former must take priority over the latter. The definition in 31 is evaluated as
shown in Table 16, with the examples radical and radial.

506 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

 (radi)cal (radi)al

brhd&[−hi]CiVi(x) ⊥ brhd&[−hi]CiVi(x) ⊤
brhdi(x) ⊤ brhdi(x)

[long]o(x) ⊥ [long]o(x) ⊤

Output: rădical Output: rādial

Table 16. Evaluation of 31 for inputs radical and radial.

As illustrated in Table 16, the stressed vowel in radical fails brhd&[−hi]CiVi(x), so
evaluation passes along to brhdi(x). This evaluates to ⊤, and since bhrdi(x) is a blocking
structure for [long]o(x), the entire predicate evaluates to ⊥. This produces the correct
output rădical. In contrast, the stressed vowel in radial satisfies brhd&[−hi]CiVi(x). As
this is a licensing structure for [long]o(x), the predicate immediately evaluates to ⊤,
skipping the evaluation of brhdi(x). This produces the correct output rādial.

Note that if the order of the two structures were reversed, the licensing structure
brhd&[−hi]CiVi(x) would never have an effect. This is illustrated in Table 17.

 Computational universals in linguistic theory 507

 (radi)cal (radi)al

brhdi(x) ⊤ brhdi(x) ⊤
brhd&[−hi]CiVi(x) brhd&[−hi]CiVi(x)

[long]o(x) ⊥ [long]o(x) ⊥

Output: rădical Output: *rădial

Table 17. Incorrect output due to violation of the SSOT.

Exactly as in the example with onlyi(x) and initiali(x), bhrdi(x) is a strict substructure
of brhd&[−hi]CiVi(x); logically, the latter implies the former. This means that for any
element for which brhd&[−hi]CiV(x)i is true, so is bhrdi(x). Thus, if we were to order
bhrdi(x) before brhd&[−hi]CiVi(x), the latter would never have an effect and would be
extraneous in the grammar.

Note also that under the BMRS analysis the lengthening and shortening processes
behave disjunctively: each vowel is either lengthened or shortened, depending on which
structure it satisfies. This is not due to any independent principle, but is simply a result
of how the grammar operates. To contrast this behavior of BMRSs with a rule-based
analysis, we briefly discuss how derivational analyses invoke the EC to effect this dis-
junctive behavior. Kenstowicz (1994:218, ex. 36) formulates the rules for lengthening
and shortening as in 32.

(32) English lengthening and shortening (Kenstowicz 1994)
a. Shortening

V̄ → V̆ / __ C0 V
 | |
 (σ́ σ)

b. Lengthening
V̆ → V̄ / __ C i V
 | |
 (σ́ σ)

As Kenstowicz (1994) argues (see also Halle 1995, Halle & Idsardi 1998), ordering
these rules serially is problematic. Ordering lengthening before shortening produces the
wrong forms (shortening would undo any changes made by lengthening; see 33a), and
ordering shortening before lengthening produces a ‘Duke of York’ effect in which
shortening makes a change that is then undone (see 33b; and see Halle & Idsardi 1998
for discussion).

(33) Nondisjunctive ordering of shortening and lengthening
a. /radical/ /radial/ b. /radical/ /radial/

Length. — (rādi)al Short. (rădi)cal (rădi)al
Short. (rădi)cal (rădi)al Length. — (rādi)al

Output: rădical *rădial Output: rădical rādial
Instead, Kenstowicz (1994) notes, the structural description of the lengthening rule in

32b is strictly more specific than that of 32a. This is exactly the situation in which the
EC states that shortening and lengthening should be disjunctively ordered, with length-
ening (32b) applying in the specific situations in which its environment is met, and
shortening (32a) elsewhere. The derivations in 34 illustrate.

(34) /radical/ /radial/

Shortening (rădi)cal blocked by EC
Lengthening — (rādi)al

Output: rădical rādial
This produces the correct forms. However, as pointed out by Baković (2006, 2013), the
EC is an external principle independent of the operation of the SPE rule system.13 In
other words, we must stipulate the additional mechanism of the EC in order to obtain a
satisfactory analysis of ‘do X unless Y’ generalizations like shortening and lengthening
in English. With BMRSs, this disjunctive behavior instead falls out automatically from
how the grammar is evaluated.

4.3. The typology of *NC
˚
. Our third case study is the well-known typology of

*NC
˚
 effects, in which different languages apply different repair strategies to avoid a se-

quence of a nasal followed by a voiceless consonant. The separation of markedness and
faithfulness in OT grammars captures the generalization missed in rule-based gram-
mars, which is that the single markedness constraint in 35 is responsible for the diverse
set of repairs.

(35) *NC
˚
: No nasal/voiceless obstruent sequences (Pater 1999)

Pater (1999) demonstrates how the typology of repairs is captured through permuta-
tions of ranking various faithfulness constraints with *NC

˚
. In contrast, rule-based

analyses assign each language its own rule (depending on the chosen repair), and this
set of rules just happens to share a structural description.

In this section we demonstrate how the licensing and blocking structures in a BMRS
analysis handle the conspiratorial nature of a constraint like *NC

˚
. As in the previous analy-

ses, the placement of these structures is constrained by the inherent logic of BMRSs.
We first address nasal place assimilation, which plays a role in all of these grammars.

All analyses in this section assume a definition of the output place features as given for
[lab]o(x) in 36.14 We assume comparable definitions for [cor]o(x) and [dor]o(x).

(36) [lab]o(x) = if [nas][lab]i(x) then ⊤ else
 if [nas][cor]i(x) then ⊥ else
 if [nas][dor]i(x) then ⊥ else
 [lab]i(x)

Next we define the two predicates in 37, which identify the two segments in an NC
˚

structure. The reason two predicates are needed is because the repair strategies vary in
whether they target the nasal or the obstruent in these structures. One might object to
this need for two predicates, given that in OT only a single markedness constraint is

508 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

13 A referee points out that the SSOT echoes the proper inclusion precedence principle of Sanders
(1974) and Koutsoudas et al. (1974), which states that a rule A must apply before a rule B iff A’s structural de-
scription properly includes that of B. Like the EC, proper inclusion precedence is an external constraint on the
SPE system and cannot be derived from the system itself. We thank the referee for bringing this connection to
our attention.

14 There are at least two ways to make a more succinct statement that deviate slightly from the BMRS
syntax we have been using. To directly state place assimilation to a following consonant, we could instead
write (i).

 (i) [lab]o(x) = if [nas]Ci(x) then [lab]i(s(x)) else [lab]i(x)
This states that a nasal must take on the value for [lab] of a following consonant, if one exists. Another way is
with a three-valued predicate [place]o(x) that takes one of the values in {lab, cor, dor}.

 (ii) [place]o(x) = if [nas]Ci(x) then [place]i(s(x)) else [place]i(x)
Both of these deviate from the BMRS structure established in §3.1, in that x takes on a place value rather than
a Boolean value. However, this is still valid BMRS syntax.

needed. But the relationship between the two predicates is structured, in that they are
mirror images of each other. They represent equally valid ways of referring to a pair of
segments, so we can posit that whenever one is available, so is the other.15

(37) a. NC
˚ i(x) = if [nas]i(x) then       (s(x)) else ⊥

b. NC
˚ i(x) = if       (x) then [nas]i(p(x)) else ⊥

Given these predicates, we can then examine their various effects as licensing and
blocking structures for the definitions of the predicates out(x), [nas]o(x), and [voi]o(x)
determining whether x is output, nasal, and voiced, respectively.

We show that, like Pater’s (1999) factorial typology of *NC
˚
 and various faithfulness

constraints, the variable placement of these structures in a BMRS definition describes
the typology of nasal-voiceless consonant repairs. Furthermore, the following defini-
tion, similar to the SSOT in the previous section, governs where these structures can be
placed. We use this definition to explain why certain logically possible repairs do not
occur. Also like the SSOT, this definition is not an artificial restriction on BMRS gram-
mars, but rather the description of a consequence of how they are evaluated.
Definition 1. Meaningful structures in BMRSs: We consider BMRS transductions
whose licensing and blocking structures are meaningful. In a BMRS of the structure
‘if X then B else Y’, X is meaningful iff neither of the following conditions holds: B is ⊤
(i.e. X is a licensing structure) and X implies Y, or B is ⊥ (i.e. X is a blocking structure)
and X implies ¬Y .

As in the SSOT, ‘X implies Y’ means that whenever X is true, Y is true. For example,
the default for out(x) is ⊤. Thus, unless some other blocking structure intervenes in the
order, using either NC

˚ i(x) or NC
˚ i(x) as a licensing structure is not meaningful, because

out(x) in this case would be evaluated to ⊤ anyway. To see this, in the definition of
out(x) in 38a, NC

˚ i(x) is a licensing structure. However, it also implies ⊤—whenever
NC
˚ i(x) is true, ⊤ is true (somewhat vacuously, as ⊤ is always true). Therefore, by defi-

nition 1, NC
˚ i(x) is not meaningful.

(38) a. out(x) = if NC
˚ i(x) then ⊤ else ⊤

b. out(x) = if NC
˚ i(x) then ⊤ else

 if [nas]i(x) then ⊥ else
 ⊤

However, if we add another intervening blocking structure, such as [nas]i(x) in 38b, then
NC
˚ i(x) is now meaningful, because it does not imply all of ‘if [nas]i(x) then ⊥ else ⊤’.
Thus, NC

˚ i(x) on its own cannot function as a licensing structure for out(x), and for sim-
ilar reasons neither can NC

˚ i(x). However, they can act as blocking structures for out(x),
which results in deletion. Deletion of the consonant results from using NC

˚ i(x). This is at-
tested in Indonesian (Onn 1980, Herbert 1986, Pater 1999), in which the infinitive prefix
/məN/ causes alternations in roots beginning with a voiceless obstruent. As shown below,
this initial obstruent deletes and the nasal takes on its place of articulation.16

 Computational universals in linguistic theory 509

15 We thank a referee for suggesting this response to such an objection.
16 As noted in Pater 1999, this alternation occurs only at morpheme boundaries; for example /əmpat/ ‘four’

surfaces faithfully as [əmpat], not as *[əmat]. Root faithfulness in this case can be implemented by defining a
structure rt-internal(x) and assigning it as a higher-ranked licensing structure for out(x) as below.

 (i) rt-internal(x) = if +i(p(x)) then ⊥ else root(x)
 (ii) out(x) = if rt-internal(x) then ⊤ else

 if NC
˚ i(x) then ⊥ else

 ⊤
Here +i(p(x)) indicates that x follows a morpheme boundary, and root(x) indicates that x is in a root.

[–son] –voi i

[–son] –voi i

(39) Fusion in Indonesian (Austronesian; Onn 1980)
/məNpilih/ [məmilih] ‘to choose, vote’

(40) out(x) = if NC
˚ i(x) then ⊥ else ⊤

[nas]o(x) = [nas]i(x)
[voi]o(x) = [voi]i(x)

Note that the place assimilation is accomplished through the definition in 36, which ap-
plies even in the case of deletion of the consonant because it is defined in terms of the
input. Note also that this analysis is similar in spirit to derivational analyses in which
both assimilation and deletion occur (e.g. Onn 1980, Zaleska 2018), rather than Pater’s
(1999) linearity-based fusion analysis. This is an artifact of our abstraction away
from changes to the order of segments, though see below for arguments against this ex-
planation for Indonesian. At the same time, this analysis does not occur in ‘two steps’,
as Pater points out about analyses like that of Onn (1980)—the BMRS analysis de-
scribes a single mapping from input to output.

Deletion of the nasal instead is achieved by using NC
˚ i(x) as a blocking structure for

out(x), as in 41. This is attested in Swahili (Choti 2015), for example, as seen in 42.
(41) out(x) = if NC

˚ i(x) then ⊥ else ⊤
[nas]o(x) = [nas]i(x)
[voi]o(x) = [voi]i(x)

(42) Nasal deletion in Swahili (Bantu; Choti 2015)
/Nbaya/ [mbaya] ‘class9/10.bad’
/Nkubwa/ [kubwa] ‘class9/10.big’

Repairs that change voicing and nasality then result from using NC
˚ i(x) or NC

˚ i(x) as li-
censing or blocking structures for [voi]o(x) and [nas]o(x), respectively. We go through
these various options in turn. First, when NC

˚ i(x) appears as a licensing structure in
[voi]o(x), as in 43, the result is postnasal voicing. This occurs in Puyo Pongo Quechua
(Orr 1962), as shown in 44.

(43) out(x) = ⊤
[nas]o(x) = [nas]i(x)
[voi]o(x) = if NC

˚ i(x) then ⊤ else [voi]i(x)
(44) Postnasal voicing in Puyo Pungo Quechua (Quechua; Orr 1962)

/kampa/ [kamba] ‘yours’
NC
˚ i(x) cannot, however, serve as a blocking structure for [voi]o(x), because it would

not be meaningful according to definition 1. This is because NC
˚ i(x) identifies a voice-

less segment and therefore it does imply ¬[voi]i(x).
We now consider NC

˚ i(x) as a licensing structure for [voi]o(x). First we recognize that
in most languages, nasality implies voicing. This can be captured by adding [nas]i(x) as
a licensing structure for the definition of [voi]o(x).

(45) [voi]o(x) = if [nas]o(x) then ⊤ else [voi]i(x)
Given 45, either NC

˚ i(x) is not meaningful as a licensing structure or it violates the SSOT.
(46) a. [voi]o(x) = if NC

˚ i(x) then ⊤ else
 if [nas]o(x) then ⊤ else
 [voi]i(x)
b. [voi]o(x) = if [nas]o(x) then ⊤ else
 if NC

˚ i(x) then ⊤ else
 [voi]i(x)

Consider first 46a. Whenever NC
˚ i(x) is true, [nas]o(x) is also true (unless it is blocked in

that exact configuration). Therefore, NC
˚ i(x) implies ‘if [nas]o(x) then ⊤ else [voi]i(x)’,

510 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

in violation of definition 1. So 46a is excluded by being meaningless. Likewise, the re-
verse ordering in 46b violates the SSOT, because [nas]i(x) is a proper substructure of
NC
˚ i(x). Thus, both possible orderings of NC

˚ i(x) and [nas]i(x) as licensing structures are
forbidden by either theorem 1 or definition 1.

However, NC
˚ i(x) can appear as a blocking structure for [voi]o(x), causing devoicing

of the nasal. This is shown in 47, with a hypothetical example in 48.

(47) out(x) = ⊤
[nas]o(x) = [nas]i(x)
[voi]o(x) = if NC

˚ i(x) then ⊥ else [voi]i(x)
(48) Nasal devoicing

/ampa/ [am̥pa]

Whether this repair is attested is controversial, as noted by Pater (1999). Herbert (1986)
cites Ndonga (Viljoen & Amakali 1978) and Pokomo (Hinnebusch 1975) as having
nasal devoicing in this context, though Huffman and Hinnebusch (1998) argue that it is
only a phonetic effect in Pokomo.

Finally, we consider NC
˚ i(x) and NC

˚ i(x) as licensing and blocking structures for
[nas]o(x). As a licensing structure for [nas]o(x), NC

˚ i(x) predicts nasalization of the ob-
struent. This occurs in Konjo (Friberg & Friberg 1991:84–86), as shown in 49. The
predicate definitions are given in 50.

(49) Nasalization in Konjo (Niger-Congo; Friberg & Friberg 1991)
a. /aŋpinahaŋ/ [əmminahaŋ] ‘to follow’
b. /aŋkanre/ [əŋŋanre] ‘to eat’

(50) out(x) = ⊤
[nas]o(x) = if NC

˚ i(x) then ⊤ else [nas]i(x)
[voi]o(x) = if [nas]o(x) then ⊤ else [voi]i(x)

Note that the definition of [voi]o(x) includes the fact that nasality implies voicing, pro-
ducing a voiced nasal.

As a blocking structure for [nas]o(x), NC
˚ i(x) prevents a voiceless obstruent from

nasalizing. On its face, this seems redundant, as obstruents are typically not nasal
(though see Durvasula 2010). This implication can be captured by using [−son]o(x) as a
blocking structure for [nas]o(x).

(51) a. [−son]o(x) = if [son]o(x) then ⊥ else ⊤
b. [nas]o(x) = if [−son]o(x) then ⊥ else [nas]i(x)

But whenever this implication is present for [nas]o(x), as a blocking structure, NC
˚ i(x) is

either meaningless or is blocked by the SSOT, for reasons parallel to those given above
for NC

˚ i(x) when nasality implied voicing. The predicates in 52 demonstrate.
(52) a. [nas]o(x) = if NC

˚ i(x) then ⊥ else
 if [−son]o(x) then ⊥ else
 [nas]i(x)
b. [nas]o(x) = if [−son]o(x) then ⊥ else
 if NC

˚ i(x) then ⊥ else
 [nas]i(x)

Turning to NC
˚ i(x), as a blocking structure for [nas]o(x) it causes denasalization, as in

Mandar (Mills 1975).
(53) Gemination in Mandar (Austronesian; Mills 1975)

/mantunu/ [mattunu] ‘to burn’

 Computational universals in linguistic theory 511

(54) out(x) = ⊤
[nas]o(x) = if NC

˚ i(x) then ⊥ else [nas]i(x)
[voi]o(x) = if [−voi]i(s(x)) then ⊥ else
 [voi]i(x)

As a blocking structure for [nas]o(x) in 54, NC
˚ i(x) prevents the N in an NC

˚
 sequence

from surfacing as nasal. (While it is unclear from the discussion in Mills 1975 why ex-
actly the nasal is also devoiced, we provisionally analyze this with [−voi]i(s(x)) as a
blocking structure for [voi]o(x).) Finally, as a licensing structure for [nas]o(x), NC

˚ i(x) is
meaningless. This is because whenever NC

˚ i(x) is true, then clearly the default predicate
[nas]i(x) is also true.

Table 18 thus summarizes the processes predicted by varying NC
˚ i(x) and NC

˚ i(x) as
licensing and blocking structures for [nas]o(x), [voi]o(x), and out(x).

512 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

As a final example, we consider a case where both structures appear in the same gram-
mar. In Umbundu, roots beginning with a voiceless obstruent surface with an initial nasal
at the same place of articulation when inflected for first-person singular. A systematic ex-
ception is roots that begin with fricatives, which never nasalize. Schadeberg (1982) ac-
counts for the pattern with an unspecified nasal prefix, as in the examples in 55.

(55) Umbundu (Bantu; Schadeberg 1982)
/Ntuma/ [numa] ‘I send’
/Nseva/ [seva] ‘I cook’

In a BMRS analysis, the pattern is captured by placing NC
˚ i(x) as a blocking structure

for out(x) and NC
˚ i(x) as a licensing structure for [nas]o(x), as in 56.

(56) out(x) = if NC
˚ i(x) then ⊥ else ⊤

[nas]o(x) = if [cont]i(x) then ⊥ else
 if NC

˚ i(x) then ⊤ else
 [nas]i(x)
[voi]o(x) = [voi]i(x)

In /Ntuma/ ‘I send’, the initial /N/ returns ⊥ for out(x) and is thus deleted; additionally,
the /t/ is also nasalized. This yields the output [numa]. The fact that noncontinuant con-
sonants nasalize after a nasal is captured in 56 by placing NC

˚ i(x) as a licensing structure
for [nas]o(x). That continuants exceptionally do not nasalize is captured by placing the
blocking structure [cont]i(x) above the licensing structure NC

˚ i(x). Thus, for /Nseva/ ‘I
cook’, the nasal deletes, but the continuant does not nasalize, yielding [seva].

In this section we have demonstrated how BMRSs can derive typological generaliza-
tions by varying a marked structure as a blocking or licensing structure for different
output predicates. Of course, as in OT, this approach faces a ‘too many solutions’ prob-
lem. As Pater (1999) points out, epenthesis is never attested as a repair for NC

˚
 se-

 NC
˚

 NC
˚

 licensing blocking licensing blocking
out (meaningless) nasal deletion (Swahili) (meaningless) consonant deletion
   (Indonesian)
[nas]o (meaningless) denasalization (Mandar) nasalization (Konjo) (meaningless when
   [−son] → ¬[nas])
[voi]o (meaningless when nasal devoicing voicing (Quechua) (meaningless)
   [nas] → [voi])   (Ndonga(?),
   Pokomo(?))

Table 18. Summary of *NC
˚

typology.

quences, though it is predicted by his typology of constraints. While we have not here
discussed how to implement epenthesis in BMRSs, it is reasonable to suppose that once
we do, BMRSs will similarly predict this unattested repair.

5. Discussion. The analyses presented in the previous sections have demonstrated
several of the strengths of the BMRS formalism: namely, it can capture the interaction
of multiple generalizations in a local way, which maintains the desirable computational
restrictiveness of previous implementations of subregularity but with representations
that are more intuitive from a phonological perspective. In this section we discuss a few
potential extensions of this approach to phonological analysis.

The case studies presented in this article demonstrate how BMRSs can capture mul-
tiple generalizations directly, rather than representing each generalization separately
(i.e. as a separate rule or set of constraints) and then combining them (i.e. via ordering
or ranking). None of the examples, however, incorporated the entire phonology of the
language, raising the question of how that task might be accomplished. In other words,
is a combination operation of some type still needed, and if so, what is that operation?

The most apparent option for combining functions is function composition, as was
used in the early finite-state models of SPE grammars (Johnson 1972, Kaplan & Kay
1981, 1994) and OT grammars (e.g. Karttunen 1993, Frank & Satta 1998, Riggle 2004,
Gerdemann & Hulden 2012). Composition can be studied as a syntactic operation that
combines two BMRS transductions such that the function described by this combined
transduction is equal to the composition of the two functions. This has yet to be worked
out in formal detail, but there is a clear path forward for doing so. Briefly, to compose
two BMRS transductions A and B, we combine both systems of equations and replace
the input feature predicates of B with the output feature predicates of A. This imple-
ments the notion that the output of A becomes the input of B.

A second question involves long-distance interactions, such as long-distance nasal
harmony in Kikongo (Ao 1991, Odden 1994, Rose & Walker 2004). In Kikongo, a suf-
fix liquid becomes nasal following a nasal in the root, regardless of how many other
segments intervene. Examples are given in 57.

(57) Kikongo (Niger-Congo; Ao 1991, Odden 1994)
a. /sakid-ila/ [sakid-ila] ‘congratulate for’
b. /ku-toot-ila/ [ku-toot-ila] ‘to harvest for’
c. /ku-kin-ila/ [ku-kin-ina] ‘to dance for’
d. /ku-dumuk-ila/ [ku-dumuk-ina] ‘to jump for’
e. /ku-dumuk-is-ila/ [ku-dumuk-is-ina] ‘to make jump for’

To capture this long-distance pattern with a BMRS system of equations, we first need a
recursively defined predicate follows-[nas]i(x), as in 58.

(58) follows-[nas]i(x) = if ⋊i(x) then ⊥ else
 if [nas]i(p(x)) then ⊤ else
 follows-[nas]i(p(x))

Note that follows-[nas]i(x) is explicitly recursive as it refers to itself: follows-[nas]i(x) is
⊥ if x is the starting word boundary, ⊤ if the immediate predecessor of x is nasal, or ⊤
if follows-[nas]i(x) is true of x’s predecessor. Thus, it will recurse backward in a word
until it finds a nasal segment (and then returns ⊤) or finds the initial word boundary
(and then returns ⊥).

We can use this predicate to define a predicate N…Li(x), which identifies a liquid
that follows a nasal anywhere in the word.

 Computational universals in linguistic theory 513

(59) N…Li(x) = if [lat]i(x) then follows-[nas]i(x) else ⊥
The transformation then is captured with the output predicates in 60, in which the pred-
icate in 59 serves as a licensing structure for nasality.

(60) [nas]o(x) = if N…Li(x) then ⊤ else
 [nas]i(x)
[lat]o(x) = if [nas]o(x) then ⊥ else
 [lat]i(x)

Note that, because it is explicitly recursive, follows-[nas]i(x) must be part of the sys-
tem of equations. This is in contrast to the licensing and blocking structures defined in
previous systems of equations, which make reference only to existing input or output
predicates. This does not increase the expressive power of the BMRS formalism; these
transformations are still subsequential (Bhaskar et al. 2020). However, it does highlight
an interesting difference between output-local transformations—like the unbounded
spreading definition in 16—and truly long-distance transformations like in Kikongo.
Namely, there is an explicitly recursive predicate that is part of the BMRS system of
equations but is not itself an output predicate. This is a point that warrants further work,
particularly in the context of how to best characterize the distinction between local and
long-distance phonology.

Finally, recursive schemes are flexible enough that they can be defined to hew more
closely to phonological representation. For example, instead of functions that return
Boolean values, we can define featural functions ℐ = {[F]i(t), [G]i(t), …, [Z]i(t)} that
take values in {+, −, 0}. Doing so would allow featural predicates to make distinctions
between binary and privative features.

For example, a word-final devoicing definition would work as in 61.
(61) [voi]o(x) =      ⋉i(x) then − else [voi]i(x)

This predicate states that the value of the feature voice for x in the output is ‘−’ if it is a
word-final voiced obstruent; otherwise it takes whatever value x has for voice in the
input (i.e. it is output faithfully).

We would, however, still need expressions that evaluate to Boolean values: the eval-
uation of the ‘if E1 then E2 else E3’ syntax requires E1 to be a Boolean expression (oth-
erwise the if/then/else logical control cannot function). We can accomplish this by
adding to our formalism the (standard; see e.g. Enderton 1972) single Boolean expres-
sion E1 ≈ E2, which takes two expressions that evaluate to one of {+, −, 0} and returns
⊤ iff E1 and E2 return the same value, ⊥ otherwise. For example, [F]i(x) ≈ + returns ⊤
if [F]i(x) evaluates to +; otherwise it returns ⊥. From this we can define more complex
Boolean expressions such as in 62.

(62)       (x) = if [son]i(x) ≈ − then [voi]i(x) ≈ + else ⊥
While this approach would change the details of the definitions of predicates such as
      (x), the definitions of maps (such as the final devoicing map in 8) would not
change at all. In other words, the logic of transductions defined with recursive schemes
is not dependent on how the user-defined predicates are defined; it remains constant as
long as the truth values of the user-defined predicates remain constant. Therefore, while
considering predicates that return feature values instead of Boolean values would make
the formalism no longer boolean, it would still be monadic (i.e. the predicates still
take a single argument), and thus there would be no change in the expressiveness of the
formalism.

514 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

[–son] +voi

[–son] +voi i

[–son] +voi i

Finally, extending recursive schemes to representations that explicitly include binary
relations, such as association in autosegmental representations (Goldsmith 1976, Cole-
man & Local 1991) or dominance in the prosodic hierarchy (Selkirk 1980, Nespor &
Vogel 1986), would necessitate allowing binary predicates and functions (such as e.g.
A(x, y)) to be true iff x and y are associated. The consequences of this remain to be ex-
plored; however, recent research on logical transductions in such representations
(Strother-Garcia 2017, Chandlee & Jardine 2019, Koser et al. 2019) can serve as a start-
ing point for this work.

6. Conclusion. Generative phonology, like all formal linguistic theories, aims to un-
derstand the nature of the computations that underlie patterns in natural language. This
article has illustrated how analyses with Boolean monadic recursive schemes directly
capture phonological generalizations, while adhering to results showing the computa-
tionally restrictive nature of phonological typology. While many open questions re-
main, the examples in this article demonstrate that this formalism shows great promise
as a theory of the computational nature of phonological transformations.

REFERENCES
Ao, Benjamin. 1991. Kikongo nasal harmony and context-sensitive underspecification.

Linguistic Inquiry 22.193–96. Online: https://www.jstor.org/stable/4178713.
Baker, Mark C. 2009. Language universals: Abstract but not mythological. Behavior and

Brain Sciences 32.448–49. DOI: 10.1017/S0140525X09990604.
Baković, Eric. 2000. Harmony, dominance and control. New Brunswick, NJ: Rutgers Uni-

versity dissertation. DOI: 10.7282/T3TQ60BJ.
Baković, Eric. 2006. Elsewhere effects in optimality theory. Wondering at the natural fe-

cundity of things: Essays in honor of Alan Prince, ed. by Eric Baković, Junko Ito, and
John J. McCarthy, 23–70. Santa Cruz: University of California, Santa Cruz. Online:
https://escholarship.org/uc/item/1m56m1ht.

Baković, Eric. 2013. Blocking and complementarity in phonological theory. (Advances in
optimality theory.) London: Equinox.

Bhaskar, Siddharth; Jane Chandlee; Adam Jardine; and Christopher Oakden.
2020. Boolean monadic recursive schemes as a logical characterization of the subse-
quential functions. Language and Automata Theory and Applications (LATA 2020),
157–69. DOI: 10.1007/978-3-030-40608-0_10.

Chandlee, Jane. 2017. Computational locality in morphological maps. Morphology 27.
599–641. DOI: 10.1007/s11525-017-9316-9.

Chandlee, Jane, and Jeffrey Heinz. 2018. Strict locality and phonological maps. Lin-
guistic Inquiry 49.23–60. DOI: 10.1162/LING_a_00265.

Chandlee, Jane; Jeffrey Heinz; and Adam Jardine. 2018. Input strictly local opaque
maps. Phonology 35.171–205. DOI: 10.1017/S0952675718000027.

Chandlee, Jane, and Adam Jardine. 2019. Autosegmental input strictly local functions.
Transactions of the Association for Computational Linguistics 7.157–68. DOI: 10.1162
/tacl_a_00260.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on
Information Theory 2.113–24. DOI: 10.1109/TIT.1956.1056813.

Chomsky, Noam. 1957. Aspects of the theory of syntax. The Hague: Mouton.
Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English. New York:

Harper & Row.
Choti, Jonathan. 2015. Phonological asymmetries of Bantu nasal prefixes. Annual Con-

ference on African Linguistics 44.37–51. Online: http://www.lingref.com/cpp/acal/44
/paper3125.pdf.

Coleman, John, and John Local. 1991. The ‘no crossing constraint’ in autosegmental
phonology. Linguistics and Philosophy 14.295–338. DOI: 10.1007/BF00627405.

Courcelle, Bruno. 1994. Monadic second-order definable graph transductions: A survey.
Theoretical Computer Science 126.53–75. DOI: 10.1016/0304-3975(94)90268-2.

 Computational universals in linguistic theory 515

https://www.jstor.org/stable/4178713
https://doi.org/10.1017/S0140525X09990604
https://doi.org/10.7282/T3TQ60BJ
https://escholarship.org/uc/item/1m56m1ht
https://doi.org/10.1007/978-3-030-40608-0_10
https://doi.org/10.1007/s11525-017-9316-9
https://doi.org/10.1162/LING_a_00265
https://doi.org/10.1017/S0952675718000027
http://dx.doi.org/10.1162/tacl_a_00260
http://dx.doi.org/10.1162/tacl_a_00260
http://dx.doi.org/10.1162/tacl_a_00260
https://doi.org/10.1109/TIT.1956.1056813
http://www.lingref.com/cpp/acal/44/paper3125.pdf
http://www.lingref.com/cpp/acal/44/paper3125.pdf
http://www.lingref.com/cpp/acal/44/paper3125.pdf
https://doi.org/10.1007/BF00627405
https://doi.org/10.1016/0304-3975(94)90268-2

Daly, Richard T. 1974. Applications of the mathematical theory of linguistics. The Hague:
Mouton.

Derbyshire, Desmond C. 1985. Hixkaryana and linguistic typology. Dallas: SIL Interna-
tional.

Durvasula, Karthik. 2010. Understanding nasality. Newark: University of Delaware dis-
sertation.

Eisner, Jason. 1997. Efficient generation in primitive optimality theory. 35th annual meet-
ing of the Association for Computational Linguistics and 8th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics, 313–20. DOI: 10.3115
/976909.979657.

Eisner, Jason. 2000. Directional constraint evaluation in optimality theory. Proceedings of
the 18th Conference on Computational Linguistics (COLING 2000), 257–63. DOI: 10
.3115/990820.990858.

Enderton, Herbert. 1972. A mathematical introduction to logic. Cambridge, MA: Aca-
demic Press.

Engelfriet, Joost, and Hendrik Jan Hoogeboom. 2001. MSO definable string transduc-
tions and two-way finite-state transducers. ACM Transactions on Computational Logic
2.216–54. DOI: 10.1145/371316.371512.

Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the generative complex-
ity of constraint violability. Computational Linguistics 24.307–15. Online: https://www
.aclweb.org/anthology/J98-2006.

Friberg, Timothy, and Barbara Friberg. 1991. Notes on Konjo phonology. Studies in Su-
lawesi linguistics, part II, ed. by James Neil Sneddon, 71–117. (NUSA linguistic stud-
ies of Indonesian and other languages in Indonesia 33.) Jakarta: Universitas Katolik
Indonesia.

Gerdemann, Dale, and Mans Hulden. 2012. Practical finite state optimality theory. Pro-
ceedings of the 10th International Workshop on Finite State Methods and Natural Lan-
guage, 10–19. Online: http://www.aclweb.org/anthology/W12-6202.

Gold, Mark E. 1967. Language identification in the limit. Information and Control
10.447–74. DOI: 10.1016/S0019-9958(67)91165-5.

Goldsmith, John. 1976. Autosegmental phonology. Cambridge, MA: MIT dissertation.
Online: http://www.ai.mit.edu/projects/dm/theses/goldsmith76.pdf.

Gordon, Matthew. 2002. A factorial typology of quantity-insensitive stress. Natural Lan-
guage and Linguistic Theory 20.491–552. DOI: 10.1023/A:1015810531699.

Graf, Thomas. 2019. A subregular bound on the complexity of lexical quantifiers. Proceed-
ings of the 22nd Amsterdam colloquium, ed. by Julian J. Schlöder, Dean McHugh, and
Floris Roelofsen, 455–64.

Graf, Thomas. 2020. Curbing feature coding: Strictly local feature assignment. Proceed-
ings of the Society for Computation in Linguistics 3:35. DOI: 10.7275/f7y5-xz32.

Graf, Thomas, and Nazila Shafiei. 2019. C-command dependencies as TSL string con-
straints. Proceedings of the Society for Computation in Linguistics 2:22. DOI: 10.7275
/4rrx-x488.

Halle, Morris. 1995. Comments on Burzio (1995). Glot International 1.27–28.
Halle, Morris, and William J. Idsardi. 1998. A response to Alan Prince’s letter. Glot In-

ternational 3.1–22.
Halle, Morris, and William J. Idsardi. 2000. Stress and length in Hixkaryana. The Lin-

guistic Review 17.199–218. DOI: 10.1515/tlir.2000.17.2-4.199.
Hayes, Bruce. 1995. Metrical stress theory. Chicago: The University of Chicago Press.
Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology 26.303–

51. DOI: 10.1017/S0952675709990145.
Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry 41.623–61.

DOI: 10.1162/LING_a_00015.
Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. Phono-

logical typology, ed. by Larry Hyman and Frans Plank, 126–95. Berlin: De Gruyter
Mouton. DOI: 10.1515/9783110451931-005.

Heinz, Jeffrey. 2021. Doing computational phonology. Oxford: Oxford University Press,
to appear.

Heinz, Jeffrey, and William Idsardi. 2011. Sentence and word complexity. Science
333.295–97. DOI: 10.1126/science.1210358.

516 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

http://dx.doi.org/10.3115/976909.979657
http://dx.doi.org/10.3115/976909.979657
http://dx.doi.org/10.3115/976909.979657
https://doi.org/10.3115/990820.990858
https://doi.org/10.3115/990820.990858
https://doi.org/10.3115/990820.990858
https://doi.org/10.1145/371316.371512
https://www.aclweb.org/anthology/J98-2006
https://www.aclweb.org/anthology/J98-2006
https://www.aclweb.org/anthology/J98-2006
http://www.aclweb.org/anthology/W12-6202
https://doi.org/10.1016/S0019-9958(67)91165-5
http://www.ai.mit.edu/projects/dm/theses/goldsmith76.pdf
https://doi.org/10.1023/A:1015810531699
https://doi.org/10.7275/f7y5-xz32
https://doi.org/10.7275/4rrx-x488
https://doi.org/10.7275/4rrx-x488
https://doi.org/10.7275/4rrx-x488
https://doi.org/10.1515/tlir.2000.17.2-4.199
https://doi.org/10.1017/S0952675709990145
https://doi.org/10.1162/LING_a_00015
https://doi.org/10.1515/9783110451931-005
https://doi.org/10.1126/science.1210358

Heinz, Jeffrey, and William Idsardi. 2013. What complexity differences reveal about
domains in language. Topics in Cognitive Science 5.111–31. DOI: 10.1111/tops.12000.

Heinz, Jeffrey, and Cesar Koirala. 2010. Maximum likelihood estimation of feature-
based distributions. Proceedings of the 11th Meeting of the ACL Special Interest Group
on Computational Morphology and Phonology, 28–37. Online: https://www.aclweb
.org/anthology/W10-2204.

Heinz, Jeffrey, and Regine Lai. 2013. Vowel harmony and subsequentiality. Proceedings
of the 13th Meeting on Mathematics of Language, 52–63. Online: https://www.aclweb
.org/anthology/W13-3006.

Herbert, Robert K. 1986. Language universals, markedness theory, and natural phonetic
processes. Berlin: Mouton de Gruyter.

Hinnebusch, Thomas J. 1975. A reconstructed chronology of loss: Swahili class 9/10.
Ohio State Working Papers in Linguistics (Proceedings of the sixth Conference on
African Linguistics) 20.32–41. Online: http://hdl.handle.net/1811/81394.

Huffman, Maria, and Thomas Hinnebusch. 1998. The phonetic nature of ‘voiceless’
nasals in Pokomo: Implications for sound change. Journal of African Languages and
Linguistics 19.1–19. DOI: 10.1515/jall.1998.19.1.1.

Ikawa, Shiori; Akane Ohtaka; and Adam Jardine. 2020. Quantifier-free tree transduc-
tions. Proceedings of the Society for Computation in Linguistics 3:49. DOI: 10.7275
/k1gj-bq24.

Immerman, Neil. 1980. First-order expressibility as a new complexity measure. Ithaca, NY:
Cornell University dissertation. Online: https://hdl.handle.net/1813/6272.

Jardine, Adam. 2016. Computationally, tone is different. Phonology 33.247–83. DOI: 10
.1017/S0952675716000129.

Jardine, Adam. 2017a. The local nature of tone-association patterns. Phonology 34.363–
84. DOI: 10.1017/S0952675717000185.

Jardine, Adam. 2017b. On the logical complexity of autosegmental representations. Pro-
ceedings of the 15th Meeting on the Mathematics of Language, 22–35. DOI: 10.18653
/v1/W17-3403.

Jardine, Adam. 2019. The expressivity of autosegmental grammars. Journal of Logic, Lan-
guage, and Information 28.9–54. DOI: 10.1007/s10849-018-9270-x.

Jardine, Adam; Jane Chandlee; Rémi Eyraud; and Jeffrey Heinz. 2014. Very efficient
learning of structured classes of subsequential functions from positive data. Proceed-
ings of Machine Learning Research (The 12th International Conference on Grammati-
cal Inference) 34.94–108. Online: http://proceedings.mlr.press/v34/jardine14a.html.

Ji, Jing, and Jeffrey Heinz. 2020. Input strictly local tree transducers. Language and
Automata Theory and Applications (LATA 2020), 369–81. DOI: 10.1007/978-3-030
-40608-0_26.

Johnson, C. Douglas. 1972. Formal aspects of phonological description. The Hague:
Mouton.

Kager, René. 1999. Optimality theory. Cambridge: Cambridge University Press.
Kager, René. 2007. Feet and metrical stress. The Cambridge handbook of phonological

theory, ed. by Paul de Lacy, 195–227. Cambridge: Cambridge University Press.
Kaplan, Ronald M., and Martin Kay. 1981. Phonological rules and finite-state transduc-

ers. Abstract of paper presented at the 56th annual meeting of the Linguistic Society of
America, New York. Online: https://www.linguisticsociety.org/sites/default/files/1981
_searchable.pdf.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems.
Computational Linguistics 20.331–78. Online: https://www.aclweb.org/anthology
/J94-3001.

Karttunen, Lauri. 1993. Finite-state constraints. The last phonological rule, ed. by John
Goldsmith, 173–94. Chicago: The University of Chicago Press.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational phonology.
Finite State Methods in Natural Language Processing 1998.1–12. Online: https://www
.aclweb.org/anthology/W98-1301.

Kenstowicz, Michael. 1994. Phonology in generative grammar. Hoboken, NJ: Black-
well.

Kiparsky, Paul. 1973. Abstractness, opacity, and global rules. Three dimensions in linguis-
tic theory, ed. by Osamu Fujimura, 57–86. Tokyo: TEC.

 Computational universals in linguistic theory 517

https://doi.org/10.1111/tops.12000
https://www.aclweb.org/anthology/W10-2204
https://www.aclweb.org/anthology/W10-2204
https://www.aclweb.org/anthology/W10-2204
https://www.aclweb.org/anthology/W13-3006
https://www.aclweb.org/anthology/W13-3006
https://www.aclweb.org/anthology/W13-3006
http://hdl.handle.net/1811/81394
https://doi.org/10.1515/jall.1998.19.1.1
https://doi.org/10.7275/k1gj-bq24
https://doi.org/10.7275/k1gj-bq24
https://doi.org/10.7275/k1gj-bq24
https://hdl.handle.net/1813/6272
https://doi.org/10.1017/S0952675716000129
https://doi.org/10.1017/S0952675716000129
https://doi.org/10.1017/S0952675716000129
https://doi.org/10.1017/S0952675717000185
http://dx.doi.org/10.18653/v1/W17-3403
http://dx.doi.org/10.18653/v1/W17-3403
http://dx.doi.org/10.18653/v1/W17-3403
https://doi.org/10.1007/s10849-018-9270-x
http://proceedings.mlr.press/v34/jardine14a.html
https://doi.org/10.1007/978-3-030-40608-0_26
https://doi.org/10.1007/978-3-030-40608-0_26
https://doi.org/10.1007/978-3-030-40608-0_26
https://www.linguisticsociety.org/sites/default/files/1981_searchable.pdf
https://www.linguisticsociety.org/sites/default/files/1981_searchable.pdf
https://www.linguisticsociety.org/sites/default/files/1981_searchable.pdf
https://www.aclweb.org/anthology/J94-3001
https://www.aclweb.org/anthology/J94-3001
https://www.aclweb.org/anthology/J94-3001
https://www.aclweb.org/anthology/W98-1301
https://www.aclweb.org/anthology/W98-1301
https://www.aclweb.org/anthology/W98-1301

Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity in
language and grammar. Los Angeles: University of California, Los Angeles disser -
tation. Online: https://linguistics.ucla.edu/general/dissertations/Kobele06Generating
Copies.pdf.

Koser, Nathan; Christopher Oakden; and Adam Jardine. 2019. Tone association and
output locality in non-linear structures. Proceedings of the 2018 Annual Meeting on
Phonology. DOI: 10.3765/amp.v7i0.4476.

Koutsoudas, Andreas; Gerald Sanders; and Craig Noll. 1974. The application of
phonological rules. Language 50.1–28. DOI: 10.2307/412007.

Lamont, Andrew. 2019. Precedence is pathological: The problem of alphabetical sorting.
West Coast Conference on Formal Linguistics (WCCFL) 36.243–49. Online: http://www
.lingref.com/cpp/wccfl/36/paper3468.pdf.

Luo, Huan. 2017. Long-distance consonant agreement and subsequentiality. Glossa: A
Journal of General Linguistics 2(1):52. DOI: 10.5334/gjgl.42.

McCollum, Adam G.; Eric Baković; Anna Mai; and Eric Meinhardt. 2020. Un-
bounded circumambient patterns in segmental phonology. Phonology 37.215–55. DOI:
10.1017/S095267572000010X.

Mills, Roger F. 1975. Proto South Sulawesi and proto Austronesian phonology. Ann
Arbor: University of Michigan dissertation.

Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing. Com-
putational Linguistics 23.269–311. Online: https://www.aclweb.org/anthology/J97
-2003.

Moschovakis, Yiannis N. 2019. Abstract recursion and intrinsic complexity. (Lecture
notes in logic 48.) Cambridge: Cambridge University Press. DOI: 10.1017/978110823
4238.

Myers, Scott. 1987. Vowel shortening in English. Natural Language and Linguistic The-
ory 5.485–518. DOI: 10.1007/BF00138987.

Nespor, Marina, and Irene Vogel. 1986. Prosodic phonology. Dordrecht: Foris.
Odden, David. 1982. Tonal phenomena in Kishambaa. Studies in African Linguistics

13.177–208. Online: https://journals.linguisticsociety.org/elanguage/sal/article/view
/1117.html.

Odden, David. 1994. Adjacency parameters in phonology. Language 70.289–330. DOI:
10.2307/415830.

Oncina, José; Pedro García; and Enrique Vidal. 1993. Learning subsequential trans-
ducers for pattern recognition tasks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 15.448–58. DOI: 10.1109/34.211465.

Onn, Farid M. 1980. Aspects of Malay phonology and morphology: A generative ap-
proach. Kuala Lumpur: Universiti Kebangsaan Malaysia.

Orr, Carolyn. 1962. Ecuador Quichua phonology. Studies in Ecuadorian Indian lan-
guages, ed. by Benjamin Elson, 60–77. Norman, OK: Summer Institute of Linguistics.

Pater, Joe. 1999. Austronesian nasal substitution and other NC
˚
 effects. The prosody-mor-

phology interface, ed. by René Kager, Harry van der Hulst, and Wim Zonneveld, 310–
43. Cambridge: Cambridge University Press.

Pater, Joe. 2018. Substance matters: A reply to Jardine (2016). Phonology 35.151–56.
DOI: 10.1017/S0952675717000409.

Payne, Amanda. 2017. All dissimilation is computationally subsequential. Language
93.e353–e371. DOI: 10.1353/lan.2017.0076.

Prince, Alan S. 1980. A metrical theory for Estonian quantity. Linguistic Inquiry 14.511–
62. Online: https://www.jstor.org/stable/4178178.

Prince, Alan S. 1983. Relating to the grid. Linguistic Inquiry 14.19–100. Online: https://
www.jstor.org/stable/4178311.

Prince, Alan, and Paul Smolensky. 1993. Optimality theory: Constraint interaction in
generative grammar. RuCCS Technical Report. New Brunswick, NJ: Rutgers Univer-
sity.

Prince, Alan, and Paul Smolensky. 2004. Optimality theory: Constraint interaction in
generative grammar. Hoboken, NJ: Blackwell.

Pullum, Geoffrey K. 2011. On the mathematical foundations of Syntactic structures.
Journal of Logic, Language and Information 20.277–96. DOI: 10.1007/s10849-011
-9139-8.

518 LANGUAGE, VOLUME 97, NUMBER 3 (2021)

https://linguistics.ucla.edu/general/dissertations/Kobele06GeneratingCopies.pdf
https://linguistics.ucla.edu/general/dissertations/Kobele06GeneratingCopies.pdf
https://linguistics.ucla.edu/general/dissertations/Kobele06GeneratingCopies.pdf
https://doi.org/10.3765/amp.v7i0.4476
https://doi.org/10.2307/412007
http://www.lingref.com/cpp/wccfl/36/paper3468.pdf
http://www.lingref.com/cpp/wccfl/36/paper3468.pdf
http://www.lingref.com/cpp/wccfl/36/paper3468.pdf
http://doi.org/10.5334/gjgl.42
https://doi.org/10.1017/S095267572000010X
https://www.aclweb.org/anthology/J97-2003
https://www.aclweb.org/anthology/J97-2003
https://www.aclweb.org/anthology/J97-2003
https://doi.org/10.1017/9781108234238
https://doi.org/10.1017/9781108234238
https://doi.org/10.1017/9781108234238
https://doi.org/10.1007/BF00138987
https://journals.linguisticsociety.org/elanguage/sal/article/view/1117.html
https://journals.linguisticsociety.org/elanguage/sal/article/view/1117.html
https://journals.linguisticsociety.org/elanguage/sal/article/view/1117.html
https://doi.org/10.2307/415830
https://doi.org/10.1109/34.211465
https://doi.org/10.1017/S0952675717000409
https://doi.org/10.1353/lan.2017.0076
https://www.jstor.org/stable/4178178
https://www.jstor.org/stable/4178311
https://www.jstor.org/stable/4178311
https://www.jstor.org/stable/4178311
https://doi.org/10.1007/s10849-011-9139-8
https://doi.org/10.1007/s10849-011-9139-8
https://doi.org/10.1007/s10849-011-9139-8

Pullum, Geoffrey K., and Gerald Gazdar. 1982. Natural languages and context-free
languages. Linguistics and Philosophy 4.471–504. DOI: 10.1007/BF00360802.

Riggle, Jason. 2004. Generation, recognition, and learning in finite state optimality the-
ory. Los Angeles: University of California, Los Angeles dissertation. Online: https://
linguistics.ucla.edu/general/dissertations/riggle/riggle04_1up.pdf.

Rogers, James; Jeffrey Heinz; Margaret Fero; Jeremy Hurst; Dakotah Lambert;
and Sean Wibel. 2013. Cognitive and sub-regular complexity. Formal Grammar: FG
2013, FG 2012, ed. by Glyn Morrill and Mark-Jan Nederhof, 90–108. New York:
Springer. DOI: 10.1007/978-3-642-39998-5_6.

Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement as corre-
spondence. Language 80.475–531. DOI: 10.1353/lan.2004.0144.

Sanders, Gerald A. 1974. Precedence relations in language. Foundations of Language
11.361–400. Online: https://www.jstor.org/stable/25000783.

Schadeberg, Thilo C. 1982. Nasalization in Umbundu. Journal of African Languages and
Linguistics 4.109–32. DOI: 10.1515/jall.1982.4.2.109.

Selkirk, Elisabeth O. 1980. The role of prosodic categories in English word stress. Lin-
guistic Inquiry 11.563–605. Online: https://www.jstor.org/stable/4178179.

Selkirk, Elisabeth O. 1984. On the major class features and syllable theory. Language
sound structure: Studies in phonology, ed. by Morris Halle, Mark Aronoff, and Richard
T. Oehrle, 107–13. Cambridge, MA: MIT Press.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Lin-
guistics and Philosophy 8.333–43. DOI: 10.1007/BF00630917.

Smith, Caitlin, and Charlie O’Hara. 2019. Formal characterizations of true and false
sour grapes. Proceedings of the Society for Computation in Linguistics 2:41. DOI: 10
.7275/vd79-kt51.

Strother-Garcia, Kristina. 2017. Imdlawn Tashlhiyt Berber syllabification is quantifier-
free. Proceedings of the Society for Computation in Linguistics 1:16. DOI: 10.7275
/R5J67F4D.

Strother-Garcia, Kristina. 2019. Using model theory in phonology: A novel characteri-
zation of syllable structure and syllabification. Newark: University of Delaware disser-
tation. Online: http://udspace.udel.edu/handle/19716/25084.

Strother-Garcia, Kristina; Jeffrey Heinz; and Hyun Jin Hwangbo. 2016. Using
model theory for grammatical inference: A case study from phonology. Proceedings of
Machine Learning Research (Proceedings of the 13th International Conference on
Grammatical Inference) 57.66–78. Online: http://proceedings.mlr.press/v57/strother
-garcia16.html.

Viljoen, Johannes, and P. Amakali. 1978. A handbook of Oshiwambo. Pretoria: Univer-
sity of South Africa.

Vu, Mai Ha; Nazila Shafiei; and Thomas Graf. 2019. Case assignment in TSL syntax: A
case study. Proceedings of the Society for Computation in Linguistics 2:28. DOI: 10
.7275/sywz-xw23.

Walker, Rachel. 2001. Mongolian stress, licensing, and factorial typology. Santa Cruz:
University of California, Santa Cruz, ms. Online: http://roa.rutgers.edu/article/view/183,
version date 27 July 2001.

Wilson, Colin. 2003. Analyzing unbounded spreading with constraints: Marks, targets,
and derivations. Baltimore: Johns Hopkins University, ms.

Wilson, Colin. 2006. Unbounded spreading is myopic. Paper presented at the Current Per-
spectives on Phonology workshop, Phonology Fest, Indiana University.

Yip, Moira. 2002. Tone. Cambridge: Cambridge University Press.
Zaleska, Joanna. 2018. Coalescence without coalescence. Leipzig: Universität Leipzig

dissertation.

[jchandlee@haverford.edu] [Received 24 March 2020;
[adam.jardine@rutgers.edu] revision invited 14 July 2020;

 revision received 7 October 2020;
 accepted pending revisions 29 November 2020;
 revision received 28 December 2020;
 accepted 6 January 2021]

 Computational universals in linguistic theory 519

https://doi.org/10.1007/BF00360802
https://linguistics.ucla.edu/general/dissertations/riggle/riggle04_1up.pdf
https://linguistics.ucla.edu/general/dissertations/riggle/riggle04_1up.pdf
https://linguistics.ucla.edu/general/dissertations/riggle/riggle04_1up.pdf
https://doi.org/10.1007/978-3-642-39998-5_6
https://doi.org/10.1353/lan.2004.0144
https://www.jstor.org/stable/25000783
https://doi.org/10.1515/jall.1982.4.2.109
https://www.jstor.org/stable/4178179
https://doi.org/10.1007/BF00630917
https://doi.org/10.7275/vd79-kt51
https://doi.org/10.7275/vd79-kt51
https://doi.org/10.7275/vd79-kt51
https://doi.org/10.7275/R5J67F4D
https://doi.org/10.7275/R5J67F4D
https://doi.org/10.7275/R5J67F4D
http://udspace.udel.edu/handle/19716/25084
http://proceedings.mlr.press/v57/strother-garcia16.html
http://proceedings.mlr.press/v57/strother-garcia16.html
http://proceedings.mlr.press/v57/strother-garcia16.html
https://doi.org/10.7275/sywz-xw23
https://doi.org/10.7275/sywz-xw23
https://doi.org/10.7275/sywz-xw23
http://roa.rutgers.edu/article/view/183
mailto:jchandlee@haverford.edu
mailto:adam.jardine@rutgers.edu

