EVOLUTIONARY PHONOLOGY

BLEVINS [2006]

LEO CHENG AND WILLIAM OLIVER

ROAD MAP

- I. Overview Evolutionary Phonology
- 2. Case Study: Word-Final Devoicing
- 3. Three Distinct Features of Evolutionary Phonology
- 4. Conclusion/Key Takeaways

WHAT IS EVOLUTIONARY PHONOLOGY

- Evolutionary phonology looks at sound change and what causes sound change.
 - -Why are some sound patterns common and others rare?
 - -What factors determine sound patterns across languages?
 - -Why do we find trends in how sound patterns change?

(ALMOST) UNIVERSAL SOUND PATTERNS

- Why are some sound patterns <u>common</u>?
 - -All spoken languages have consonants and vowels.
 - -Most languages with only three vowels have [a], [i], and [u].
 - -No language has more than 5 tones.

(ALMOST) UNIVERSAL SOUND PATTERNS

- Why are some sound patterns <u>common</u>?
 - No languages have short vowels consistently stressed over long vowels.
 - -/n/ is often pronounced as [m] when followed by /p/, $/p^h/$, or /b/.
 - -/b/, /d/, and /g/ are often pronounced voiceless [p], [t], and [k], respectively, at the end of the word

EXTREMELY RARE AND ALMOST NONEXISTENT SOUND PATTERNS

- Why are some sound patterns <u>rare</u>?
 - -CCCCCC word initial clusters
 - Georgian has clusters like in /gvbrdyvnis/ 'he is plucking us'
 - -Rule that all words must start with a vowel
 - Eastern Arrernte spoken in Australia has this rule
 - $-\{t,d\} \rightarrow s / _m$
 - /t/ and /d/ change to [s] before an m happens in Ancient Greek

SYNCHRONIC VS. DIACHRONIC

- To better understand how languages evolve evolutionary phonology incorporates:
 - synchronic (looking at language at the present) analysis and
 - diachronic (looking at language over time) analysis

PHONOLOGICAL EVOLUTION IS LIKE BIOLOGICAL EVOLUTION

- One BIG IDEA in evolutionary phonology is that sound change is similar in many ways to animal evolution.
 - Direct genetic inheritance
 - Adaptation by natural selection
 - -Physical constraint on form and function
 - -"Non-natural" or external factors
 - Chance

PHONOLOGICAL EVOLUTION IS LIKE BIOLOGICAL EVOLUTION

Table 1. Sources of Similarity

Source of Similarity		Biological	Linguistic	
a.	Direct genetic inheritance	Shared genetic traits of identical twins, e.g. eye color	Shared inherited features of British and Australian English, e.g. r-loss	
b.	Adaptation by natural selection	Independent development of toepads in <i>Iguanidae</i> , <i>Scincidae</i> , and <i>Gekkonidae</i>	Independent development of final obstruent devoicing in Indo-European, Turkic, Cushitic, etc.	
c.	Physical constraints on form & function	Patterns of spots and stripes on cats and seashells, as determined by chemistry/ physics	Universal gross category boundaries for consonant types, as determined by categorical perception	
d.	"Non-natural" or external factors	Grafting, hybridization, genetic modification	Language contact/diffusion, prescriptive norms, literacy and second language learning	
e.	Chance	Arctic hares and albino rabbits have white coats, but	Japanese and Gilbertese only allow nasal Cs word-finally, but	

PHONOLOGICAL EVOLUTION IS EXPLANATORY

- Another BIG IDEA in evolutionary phonology is that looking at the history of sound changes leads us to see why phonological rules and constraints are as they are.
 - -human anatomy \rightarrow phonetics \rightarrow phonological trends
- SPE and OT do not explain why the rules and constraints exist besides an appeal to innateness, but evolutionary phonology does.

EVOLUTIONARY PHONOLOGY CASE STUDY

- In the next slides, we will overview what an evolutionary phonological analysis looks like.
- The focus of this evolutionary phonology analysis is word-final devoicing.
- Word final devoicing is a common phonological pattern where a voiced consonant in final-syllable position becomes voiceless.

 $-/bad/ \rightarrow [bat]$

CASE STUDY: THEORY OF FINAL DEVOICING

- Completely unrelated languages have had <u>parallel</u> evolution.
- For instance, we see parallel evolution with unrelated languages having word-final devoicing.
- Blevins (2006) explains why these unrelated languages have word-final devoicing using the evolutionary phonology way of analysis.

CASE STUDY: THEORY OF FINAL DEVOICING

- Innate (Optimality Theory) VS. Emergent (Evolutionary Phonology)
- Optimality theory implies that marking word-final voicing is innate to humans, so humans intrinsically prefer word-final devoicing.
- Evolutionary Phonology claims that this is nothing innate about word-final devoicing, instead word-final devoicing **emerges** from contributing factors throughout history that have made it more common to devoice the end of the word than to voice it.

HOW LANGUAGES EVOLVE

- Language Contact
- Direct Inheritance
- Independent Development
 - *Major Interest in Evolutionary Phonology
 - The red arrows point to languages from protolanguages that did not have word-final devoicing but now have word-final devoicing (No direct inheritance).
 - These same languages also never came into other languages with word-final devoicing (No language contact).

Table 2. Final-devoicing sound patterns in unrelated languages

Alternations	Data Source
yes	Bliese (1981: 242, 215)
yes	Zeltner & Tourneux (1986: 15-16)
yes	Halle (1959)
yes	Geurin (2001: 90-92)
yes (rare)	Sakel (2002)
* '	Johansson & Csató (1998)
no	Quigley (2003)
no	Saltarelli (1998)
no	Sagart (1999: 25, 51)
no (levelled)	Moeliono & Grimes (1995: 451)
no	Nettle (1998)
no	Smyth (2002: 5-6)
	yes yes yes yes (rare) yes (stops only) ¹⁵ no no no no no (levelled)

PHONETIC SOURCES FOR FINAL DEVOICING

- human anatomy \rightarrow phonetics \rightarrow phonological trends
 - -Laryngeal gestures at phrase-boundaries
 - -Phrase-final lengthening
 - -Absence of audible release

PHONETIC SOURCES FOR FINAL DEVOICING

- The three phonetic factors below give rise to more environments that favor word-final devoicing.
- More potentially influential phonetic factors \rightarrow A common phonological change
- But, this does not mean that word-final voicing is impossible (as we will see)

Phonetic Factors Favoring Word-Final Devoicing

- I. Laryngeal gestures at phrase-boundaries
- 2. Phrase-final lengthening
- 3. Absence of audible release

PHONETIC SOURCES FOR FINAL DEVOICING

- Evolutionary phonology predicts a <u>process of development</u>.
- <u>Domain factor</u>: utterance final devoicing can lead to syllable devoicing final in a process.

utterance final \rightarrow phrase final \rightarrow word final \rightarrow syllable final

AERODYNAMIC SOURCES FOR FINAL DEVOICING

- There are also <u>aerodynamic</u> factors that lead to final devoicing.
- Aerodynamic factors have to do with the human anatomy of vocal cord movement.
- These factors make devoicing more likely in coronals.
- In early stages, final devoicing may be sensitive to aerodynamic properties

 Frisian ca. 1900/Germanic (Tiersma 1985: 30)

 /g/ is devoiced finally, but not /b, d/.

 Tonkawa/Isolate of Central Texas (Hoijer 1933: 4)

 /g/ is devoiced finally, but not /b, d/.

 Haisla/Wakashan (Lincoln & Rath 1986: 11):

 Word-final devoicing/frication of consonants posterior to /d/; but variable devoicing of /d/ (no word-final /b/).

FINAL VOICING PATHWAYS

- Although word-final devoicing is common, some languages have word-final voicing
- Potential Pathways to Final Voicing:
 - (i) singleton/geminate opposition turns into a voiceless/voiced one (Welsh)
 - (ii) intervocalic obstruent voicing \rightarrow word-final voicing when final vowel is lost (Proto-Indo European)
- Kiparsky: Against Potential Pathways Because They Can Be Invented/Imagined
- Belvins: Supports Potential Pathways Because She Finds Historical Evidence

- Welsh: geminate/singleton opposition turns into a voiceless/voiced one
 - Before: geminate (long/fortis) consonants contrasted with singleton (short/lenis) consonants
 - Now: /p/, /t/, /k/ contrast with /b/, /d/, /g/

```
(12) Predictable distribution of final /b d g/ vs. /p t k/ in Welsh (Wells 1979: 347)

Short vowel + fortis Long vowel + lenis [map] /map/ 'map' [ma:b] /mab/ 'son' [brat] /brat/ 'apron; rag' [bra:d] /brad/ 'treason' [dot] /dot/ 'dot; vertigo' [do:d] /dod/ 'to come'
```

- Proto Indo-European is an ancestor of Proto-Italic.
- From Proto Indo-European the intervocalic /t/ becomes word final /d/ in Proto Italic with loss of word-final vowel.
 - I. Proto Indo-European: $VtV\#/ \rightarrow [VdV\#]$
 - 2. Proto Italic: $Vt\#/ \rightarrow Vd\#$

BENEFITS OF EVOLUTIONARY PHONOLOGY

- Blevins (2006) points out three features that distinguish evolutionary phonology from other theories:
 - Predictive Value
 - Testable Nature of Hypothesis
 - Explanatory Nature

BENEFITS OF EVOLUTIONARY PHONOLOGY: 1. PREDICTABLE VALUE

- There are recurrent patterns with how languages change.
- Blevins (2006) claims that evolutionary phonology is comparable to OT with respect to having constraints.
- However, OT does not tell us why some sound patterns are more common than others.
- In contrast, evolutionary phonology works to explain why, where, and when certain sound patterns occur.

BENEFITS OF EVOLUTIONARY PHONOLOGY: 2. TESTABLE NATURE OF HYPOTHESIS

- Laboratory phonology can test the hypothesis developed in the evolutionary phonology framework to explore the why behind articulatory and perceptual trends in human speech.
- Acoustic analyses test physical constraints on speech production and perception that influence how languages evolve.
- Innate aspects of language can be tested as well with new technology.

BENEFITS OF EVOLUTIONARY PHONOLOGY: 3. EXPLANATORY NATURE

- Evolutionary phonology looks at the sources (a-e) in Table I to explain:
 - Sound patterns
 - Trajectories of change
 - Phonological stability
 - Relationships between phonological domains

Table 1. Sources of Similarity

Source of Similarity		Biological	Linguistic	
a.	Direct genetic inheritance	Shared genetic traits of identical twins, e.g. eye color	Shared inherited features of British and Australian English, e.g. r-loss	
b.	Adaptation by natural selection	Independent development of toepads in <i>Iguanidae</i> , <i>Scincidae</i> , and <i>Gekkonidae</i>	Independent development of final obstruent devoicing in Indo-European, Turkic, Cushitic, etc.	
c.	Physical constraints on form & function	Patterns of spots and stripes on cats and seashells, as determined by chemistry/ physics	Universal gross category boundaries for consonant types, as determined by categorical perception	
d.	"Non-natural" or external factors	Grafting, hybridization, genetic modification	Language contact/diffusion, prescriptive norms, literacy and second language learning	
e.	Chance	Arctic hares and albino rabbits have white coats, but	Japanese and Gilbertese only allow nasal Cs word-finally, but	

CONCLUSION: KEY TAKEAWAYS

- Evolutionary phonology incorporates <u>synchronic</u> (looking at language at the present) and <u>diachronic</u> (looking at language over time) to better understand how languages evolve.
- Unlike OT and SPE, evolutionary phonology does not rely on "innateness" for explanations but rather looks at "emergence" to find out why phonological patterns exist.
- human anatomy \rightarrow phonetics \rightarrow phonological trends

- Tundra Nenets: /p/ and /b/ alternation
 - Word final voicing /b/: historically postvocalic "weakening"
 - No synchronic evidence: no intervocalic voicing
 - Fortis/lenis

```
initial devoicing
pangkor, pakor 'gaff'
                           < bagór [29, 127]
payənâ 'sauna'
                           < báina [30]
pore 'wooded country'
                           < bor [31]
pakəlasəkâ 'flask'
                           < baklázhka [5]
syllable-final voicing
xorøbko 'box'
                           < koró[p]ka
                           < trú[p]ka 'pipe' [M 499; Oks
təru:bkâ 'cigarette, pipe'
                               499]
yubkâ 'skirt'
                           < yú[p]ka [p. 14]
                               kóftochka [p. 13]
xobtocyakâ 'jacket, blouse'
final/medial epenthesis
popa 'priest'
                           < pop [86]
no change (VpV showing that ii. is not post-vocalic voicing)
lapâ 'paw'
                           < lápa [135]
xâpu:sətâ 'cabbage'
                           < kapústa [p. 13]
xapitanə 'ship captain'
                           < kapitán [p. 13]
turubâ 'chimney'
                           < trubá [53]
pulyəkâ 'bullet'
                           < púľka
```

- Somali: path (ii) intervocalic voicing + loss of final vowel
- Although really aspiration vs. no aspiration
- But in slow careful speech, voiced with schwa
- Still analyzed as phonologically voiced

Somali word-final voicing (Saeed 1999: 24, 27)						
arkay '(I) saw'	árag 'see!'					
guntay '(I) knotted'	gúnud 'knot it!'					
ilkó 'teeth'	íli g 'tooth'					
adkaa 'hard-PST'	adá g 'hard'					
ed g ó 'lamb pens'	édeg 'lamb pen'					
gorgor 'vultures'						
dirdir 'send rep.'						
ayaandarró 'bad luck'						
aayadó 'miracles'	aayád 'miracle'					
	arkay '(I) saw' guntay '(I) knotted' ilkó 'teeth' adkaa 'hard-PST' edgó 'lamb pens' gorgor 'vultures' dirdir 'send rep.' ayaandarró 'bad luck'					

- Lezgian: synchronic final voicing
 - Kiparsky: word-initial devoicing, "onset degemination and onset fortification"
 - Problem:
 - Word-initial onset strong
 - Positing voiced geminates but not voiceless ones
 - Unnatural context of pre-approximant coda: tsegw 'ant' tsekw-re 'ant.erg'

	`	_V	V_] _{Wd}
a.	/D/	D	D
b.	/T'/	T'	T'
c.	$/\mathrm{T^h}/$	T^h	T^h
d.	/T/	T	D:
e.	$/T_{2}^{2}/$	T'	D:
f.	T_3'	T' (GÜNE)	T^h

PHONOLOGICAL STABILITY

- Contributing factors vs. innate constraint
 - Only factors, can make one phenomenon (e.g. final devoicing) more common, but other factors may lead to different direction (final voicing)
 - Has to do with the nature of the phenomenon(final voicing is universally marked)
- Phonetic adjustments mitigate the original contributing factors
 - Correlation between final voicing and medial long (geminate) voiced obstruents
 - May be the same phonetic adjustments
- Language internal factors that enhance the stability of a sound pattern?
 - Paradigmatic contrast
 - Independent phonetic contrast (singleton/geminate)
 - Cannot really be studied in synchronic terms > mis-generalization and misanalysis