Votic Vowel Harmony in Substance-Free Logical Phonology

Marjorie Leduc, Charles Reiss, \& Veno Volenec

Narrated by: Anastasiia Voznesenskaia, Ryan Biks.

Substance Free

- Innate set of binary phonological features
- "The motor and perceptual correlates of a feature are not accessible to the phonological computation system"
- 'Substance free' ~ 'markedness free'

Logical Phonology

- Really really substance free!!
- Using simple mathematico-logical notions: basic set theory
- Only need 2 operations: Alerge and Agree
- Set subtraction for feature deletion
- Set unification for feature insertion

Segments and natural classes

- Segments as sets of valued features

$$
\begin{aligned}
& / \mathrm{m} /=\{+\mathrm{NAS},+\mathrm{LAB},-\mathrm{COR},-\mathrm{CONT}, \ldots\} \\
& / \mathrm{n} /=\{+\mathrm{NAS},-\mathrm{LAB},+\mathrm{COR},-\mathrm{CoNT}, \ldots\}
\end{aligned}
$$

- Natural classes

Definition: If $S=\left\{s_{1}, s_{2} \ldots s_{k}\right\}$ is a subset of the segments occurring in a language L, and $Q=\left(s_{1} \cap s_{2} \cap \ldots \cap s_{k}\right)$ is the (generalized) intersection of S, then the smallest natural class N in L containing the members of S is the set of all segments that are supersets of Q. So, $N=\{x: x \supseteq Q\} .{ }^{1}$

Natural classes: e.g.

- Natural classes

Definition: If $S=\left\{s_{1}, s_{2} \ldots s_{k}\right\}$ is a subset of the segments occurring in a language L, and $Q=\left(s_{1} \cap s_{2} \cap \ldots \cap s_{k}\right)$ is the (generalized) intersection of S, then the smallest natural class N in L containing the members of S is the set of all segments that are supersets of Q. So, $N=\{x: x \supseteq Q\} .{ }^{1}$

- If a rule targets $S=\{i, o\}$, then it must target $N=\{i, e, o, u\}$. All four of those vowels are supersets of features at $\mathrm{i} \cap \mathrm{o}=\{-\mathrm{Lo}\}$. So, an apparent rule targeting just i and o must correspond to separate rules.

Unification

- Unification = regular set union + safeguard in case union is not consistent.
- Consistent = the set doesn't have two oppositely valued features.

If A and B are sets, then $A \sqcup B=A \cup B$ if $A \cup B$ is consistent. Otherwise, $A \sqcup B$ is undefined. (Bale and Reiss (2018): 567)

Unification

Four sets of features: Unifications:

$\mathrm{A}=\{+\mathrm{Hi},-\mathrm{Rd}\}$
$B=\{+H i,-B k\}$
$C=\{-L o,+R d\}$
$D=\{+H i\}$

$$
A \sqcup B=\{+\mathrm{HI},-\mathrm{RD},-\mathrm{BK}\}
$$

$A \sqcup C$ is undefined because $A \cup C$ is not consistent

$$
B \sqcup C=\{+\mathrm{HI},+\mathrm{RD},-\mathrm{BK},-\mathrm{LO}\}
$$

$$
A \sqcup D=\{+\mathrm{HI},-\mathrm{RD}\}
$$

Votic Language

- Finnic language spoken in Ingria, northern Russia.

Votic vowel inventory

Data: Votic Vowel Harmony

- Back harmony: each suffix vowel agrees with the preceding (or last root) vowel

- Back V in root		+ Back V in root	
a.[vævy-æ]	'son-in-law.PART.'	[savvə-a]	'clay.PART.'
b.[ø-he:]	'night.ILLAT.'	[so-hər]	'marsh.ILLAT.'
c.[væsy-nny]	'tired.PAST.ACT.'	$[$ arva-nnu]	'guessed.PAST.ACT.'
d. $[$ sətamehe-nnæ]	'soldier, warrior.ESS.'	$\left[\right.$ lenno- $\left.\mathrm{l}^{\mathrm{j} ~} \mathrm{j}^{\mathrm{j}} \mathrm{a}\right]$	'tree.ADDESS.PL'

Data: Votic Vowel Harmony

- li/ does not trigger harmony

Table 2: Transparency of /i/			
-BACK V In Root		+ BACK V In root	
a. [ť̌æs-i-næ:]	'hand.comit. II.PL'	[pal ${ }^{\text {j }}$ v-i-nas $]$	'knee.comit. II.PL.'
b. [pehmi:-se:]	'soft.ILLAT.PL'	[vəttim-ix-sar]	'key.ILLAT.PL'

- li/ in suffixes doesn't participate in harmonic alternations

- Back V in root		+ Back V in root	
[ylepæ-ssi]	'chief.TRANSL.'	[ant2-ssi]	'as forgiveness.TRANSL.'
[teh-ti:]	'it was done, made'	[tulj-ti:]	'one had come'

Data: Votic Vowel Harmony

- There are non-alternating suffixes.

-BACK V IN ROOT		+ BaCK V In Root	
[tø-ka:]	'work.COMIT.'	[jal ${ }^{\text {j }}$ gas-kar]	'foot.COMIT.'
[tyttær-ikko]	'girl'	[kot-ikko]	'little bag'
[seipæ-dde:]	'stake, pole.GEN.PL'	[pu-dde:]	'tree.GEN.PL.'
[$¢$:-nikka:]	'night lodger'	[pul ${ }^{\text {j ma-nikkas] }}$	'wedding guest'

Data: Votic Vowel Harmony

- Roots with just /i/: harmonizing vowels surface as -BACK.

'hedgehog.PART.'
 [si:li-æ]

Data: Votic Vowel Harmony Overview

- Backness harmony controlled by the last root vowel.
- li/ is transparent and doesn't participate.
- If /i/ is the only environment, harmony yields -BACK.
- / $\varnothing /$ and /o/ only trigger harmony but don't participate (no [ø] in suffixes).

Analysis: Vowel Specifications

- 10 fully-specified vowels that appear in roots and non-alternating suffixes, like so:

$$
\text { le/: }\left\{\begin{array}{c}
- \text { HIGH } \\
- \text { Low } \\
- \text { Round } \\
- \text { BACK }
\end{array}\right\} \quad \text { |d: }:\left\{\begin{array}{c}
- \text { HIGH } \\
- \text { Low } \\
- \text { Round } \\
+ \text { BACK }
\end{array}\right\} \quad \text { |x/: }\left\{\begin{array}{c}
- \text { HIGH } \\
+ \text { Low } \\
- \text { Round } \\
- \text { BACK }
\end{array}\right\} \quad / \mathrm{a} /:\left\{\begin{array}{c}
- \text { HIGH } \\
+ \text { Low } \\
- \text { Round } \\
+ \text { BACK }
\end{array}\right\}
$$

- 3 vowels unspecified for BACK that appear in alternating suffixes:

$$
\text { /U/: }\left\{\begin{array}{c}
+ \text { HIGH } \\
- \text { Low } \\
+ \text { Round }
\end{array}\right\} \quad / \mathrm{E} /:\left\{\begin{array}{c}
- \text { HIGH } \\
- \text { Low } \\
- \text { Round }
\end{array}\right\} \quad / \mathrm{A} /:\left\{\begin{array}{c}
- \text { HIGH } \\
+ \text { Low } \\
- \text { Round }
\end{array}\right\}
$$

- These form natural classes that cannot be realized as [i], [o], or [ø], regardless of backness specification - those are always fully specified in suffixes or don't appear

Analysis: A Preliminary Rule

- [+SYL] as natural class of vowels
- Search \& Unify approach to rules, based on Search \& Copy (Shen 2016):
- Derivation searches for first segment that meets a featural specification, then unifies with that set of features
- Initial rule:

BACK harmony (first try):
 $[+\mathrm{SYL}] \sqcup\{\alpha \mathrm{BK}\}$ / when the first vowel to the left is in $[\alpha \mathrm{BK}]$

- Applies plenarily, but vacuously for all other vowels: either they gain a feature they already have, or attempt to unify with a feature set that would render their union inconsistent, so they remain unchanged
- Underscores importance of feature binary

Analysis: Reckoning with /i/

- The previous rule is too general, as it would trigger vowel harmony with $/ \mathrm{i} /$ in all cases, rather than passing to the preceding vowel
- LP cannot appeal to markedness, only natural classes, so we cannot specify "unify with the first vowel that is not $/ \mathrm{i} /$ " - must be a natural class
- No such class exists, but we can capture it in two classes, with a rule for each:
(13) Harmony with Non-High Vowel (NHVH):
$[+\mathrm{SYL}] \sqcup\{\alpha \mathrm{BK}\}$ of the first vowel to the left that is in $[-\mathrm{HI}, \alpha \mathrm{BK}]$
(14) Harmony with High Round Vowel (HRVH):
$[+$ SYL $] \sqcup\{\alpha \mathrm{BK}\}$ of the first vowel to the left that is in $[+\mathrm{HI},+\mathrm{RD}, \alpha \mathrm{BK}]$

Analysis: Reckoning with /i/

- Assuming /i/ never transmits a BACK feature, then, we can add one final rule to cover roots with only $/ \mathrm{i} /$, which applies after the first two: all vowels unify with \{-BACK $\}$
- Vacuous in all instances except when vowel unspecified for backness still remains

$$
\begin{array}{ll}
\text { (15) } & \text { Default }-\mathrm{BK}(\mathrm{DF}): \\
& {[+\mathrm{SYL}] \sqcup\{-\mathrm{BK}\}}
\end{array}
$$

Analysis: Rule Ordering

- Which applies first?
(13) Harmony with Non-High Vowel (NHVH):
$[+\mathrm{SYL}] \sqcup\{\alpha \mathrm{BK}\}$ of the first vowel to the left that is in $[-\mathrm{HI}, \alpha \mathrm{BK}]$
(14) Harmony with High Round Vowel (HRVH): $[+$ SYL $] \sqcup\{\alpha \mathrm{BK}\}$ of the first vowel to the left that is in $[+\mathrm{HI},+\mathrm{RD}, \alpha \mathrm{BK}]$
- In a word like /toky/, (14) would have to apply first to achieve the attested pattern; in /tyko/, (13) would need apply first, due to specifications of Search
- However, /toky/-type roots are unattested: no $\{-\mathrm{HI}, \alpha \mathrm{BACK}\}\{+\mathrm{HI},+\mathrm{RD}, \beta \mathrm{BACK}\}$ in Votic
- Therefore, we order (13) before (14), to match needs of attested /tyko/-type roots

Analysis: Sample Derivations

- Using these three rules, we can derive the attested forms of alternating suffixes:

	Table 5: Derivations			
UR	'key.ILLAT.PL' /vattim-i:-sE:/	'tree.ILLAT.' /pu-hE:/	'hedgehog.PART' /sili-A/	'girl.PART' /tyttær-ikko-A/
NHVH HRVH DF	vattimi:sə:] -	-	-	[puhə:]

Previous Analyses

- Blumenfeld and Toivonen (2010) assert that $/ \mathrm{i} /$ is [+BACK, -BACK] - featurally inconsistent; what does this mean for phonetic interpretation?
 abstract when no distinction is based on /i/, as opposed to abstractions based on y/u/U, e/ə/E, æ/a/A

Conclusions

- Logical Phonology:
- Segments as consistent sets of binary features; not necessarily complete
- Rule environments as natural classes wherein all segments are a superset of given features
- Does not make use of phonetic notions such as markedness
- Votic vowel harmony analyzed as three rules that appeal to different natural vowel classes to unify featurally and specify backness on alternating suffixes
- Draws on vacuous rule application to avoid crashes
- As the third rule doesn't harmonize with any preceding backness feature, overall "vowel harmony" is a conspiracy of other phenomena
- Surface well-formedness not encoded in phonologic grammar ([o-e] as ill-formed alternating suffix vs. well-formed non-alternating suffix depending on underlying process); computations free of phonetic substance

References

- Leduc, M., Reiss, C., \& Volenec, V. 2020. Votic vowel harmony in Substance Free Logical Phonology. To appear in The Oxford Handbook of Vowel Harmony, ed. H. Van der Hulst, Oxford: Oxford University Press.
- All other references cited therein.

