Votic Vowel Harmony in Substance-Free Logical Phonology

Marjorie Leduc, Charles Reiss, & Veno Volenec

Narrated by: Anastasiia Voznesenskaia, Ryan Biks.

Substance Free

- Innate set of binary phonological features
- "The motor and perceptual correlates of a feature are not accessible to the phonological computation system"
- 'Substance free' ~ 'markedness free'

Logical Phonology

- Really really substance free!!
- Using simple mathematico-logical notions: basic set theory
- Only need 2 operations: Merge and Agree
 - Set subtraction for feature deletion
 - Set unification for feature insertion

Substance free Logical Phonology

Segments and natural classes

• Segments as sets of valued features

 $/m/ = \{+NAS, +LAB, -COR, -CONT, ...\}$ $/n/ = \{+NAS, -LAB, +COR, -CONT, ...\}$

Natural classes

Definition: If $S = \{s_1, s_2...s_k\}$ is a subset of the segments occurring in a language *L*, and $Q = (s_1 \cap s_2 \cap ... \cap s_k)$ is the (generalized) intersection of *S*, then the **smallest natural class** *N* in *L* containing the members of *S* is the set of all segments that are supersets of *Q*. So, $N = \{x : x \supseteq Q\}$.¹

Natural classes: e.g.

• Natural classes

Definition: If $S = \{s_1, s_2...s_k\}$ is a subset of the segments occurring in a language *L*, and $Q = (s_1 \cap s_2 \cap ... \cap s_k)$ is the (generalized) intersection of *S*, then the **smallest natural class** *N* in *L* containing the members of *S* is the set of all segments that are supersets of *Q*. So, $N = \{x : x \supseteq Q\}$.¹

If a rule targets S={i,o}, then it must target N={i, e, o, u}. All four of those vowels are supersets of features at i ∩ o = {-Lo}. So, an apparent rule targeting just i and o must correspond to separate rules.

Unification

- Unification = regular set union + safeguard in case union is not consistent.
- Consistent = the set doesn't have two oppositely valued features.

If *A* and *B* are sets, then $A \sqcup B = A \cup B$ if $A \cup B$ is consistent. Otherwise, $A \sqcup B$ is undefined. (Bale and Reiss (2018): 567)

Unification

Four sets of features:

 $A = \{+Hi, -Rd\}$

 $B = \{+Hi, -Bk\}$

 $C = \{-Lo, +Rd\}$

 $D = \{+Hi\}$

Unifications:

 $A \sqcup B = \{+HI, -RD, -BK\}$ $A \sqcup C \text{ is undefined because } A \cup C \text{ is not consistent}$ $B \sqcup C = \{+HI, +RD, -BK, -LO\}$ $A \sqcup D = \{+HI, -RD\}$

Votic Language

• Finnic language spoken in Ingria, northern Russia.

Back harmony: each suffix vowel agrees with the preceding (or last root) vowel

-BACK V in root		+BACK V in root		
a.[vævy-æ]	'son-in-law.PART.'	[savvə-a]	'clay.PART.'	
b.[ø-heː]	'night.ILLAT.'	[so-həː]	'marsh.ILLAT.'	
c.[væsy-nny]	'tired.PAST.ACT.'	[arva-nnu]	'guessed.PAST.ACT.'	
d. [sətamehe-nnæ]	'soldier, warrior.ESS.'	[lenno-l ^j l ^j a]	'tree.ADDESS.PL'	

• /i/ does not trigger harmony

Table 2: Transparency of /i/						
-BACK V in root		+BACK V IN ROOT				
a. [tšæs-i-næː]	'hand.COMIT. II.PL'	[pəl ^j v-i-naː]	'knee.COMIT. II.PL.'			
b. [pehmi:-se:]	'soft.ILLAT.PL'	[vəttim-iː-səː]	'key.ILLAT.PL'			

• /i/ in suffixes doesn't participate in harmonic alternations

-BACK V IN ROOT		+BACK V IN ROOT	
[ylepæ-ssi]	'chief.TRANSL.'	[antə-ssi]	'as forgiveness.TRANSL.'
[teh-tiː]	'it was done, made'	[tul ^j -tiː]	'one had come'

• There are non-alternating suffixes.

-BACK V IN ROOT		+BACK V IN ROOT	
[tø-ka:]	'work.COMIT.'	[jal ^j gaː-kaː]	'foot.COMIT.'
[tyttær-ikko]	'girl'	[kot-ikko]	'little bag'
[seipæ-dde:]	'stake, pole.GEN.PL'	[pu-ddeː]	'tree.GEN.PL.'
[øː-nikkaː]	'night lodger'	[pul ^j ma-nikkaː]	'wedding guest'

• Roots with just /i/: harmonizing vowels surface as -BACK.

```
'hedgehog.PART.'
[si:li-æ]
```

Data: Votic Vowel Harmony Overview

- Backness harmony controlled by the last root vowel.
- /i/ is transparent and doesn't participate.
- If /i/ is the only environment, harmony yields -BACK.
- /ø/ and /o/ only trigger harmony but don't participate (no [ø] in suffixes).

Analysis: Vowel Specifications

• 10 fully-specified vowels that appear in roots and non-alternating suffixes, like so:

/e/: {	-HIGH -Low	/ə/: {	-HIGH -Low	/æ/: <	-HIGH +Low	> /a/: {	-HIGH +Low	ļ
	-ROUND -BACK		+BACK		-BACK	1011220194011	+BACK	

• 3 vowels unspecified for BACK that appear in alternating suffixes:

	(+HIGH)	100000	(-HIGH)	1	(-HIGH)	P
/U/: {	-Low }	/E/: {	-Low >	/A/: {	+Low	>
	(+ROUND)		-ROUND	l	-ROUND	į,

• These form natural classes that cannot be realized as [i], [o], or [ø], regardless of backness specification – those are always fully specified in suffixes or don't appear

Analysis: A Preliminary Rule

- [+SYL] as natural class of vowels
- Search & Unify approach to rules, based on Search & Copy (Shen 2016):
 - Derivation searches for first segment that meets a featural specification, then unifies with that set of features
- Initial rule:

BACK harmony (first try): $[+SYL] \sqcup \{\alpha BK\}$ / when the first vowel to the left is in $[\alpha BK]$

- Applies plenarily, but vacuously for all other vowels: either they gain a feature they already have, or attempt to unify with a feature set that would render their union inconsistent, so they remain unchanged
 - Underscores importance of feature binary

Analysis: Reckoning with /i/

- The previous rule is too general, as it would trigger vowel harmony with /i/ in all cases, rather than passing to the preceding vowel
- LP cannot appeal to markedness, only natural classes, so we cannot specify "unify with the first vowel that is not /i/" must be a natural class
- No such class exists, but we can capture it in two classes, with a rule for each:
 - (13) Harmony with Non-High Vowel (NHVH): [+SYL] $\sqcup \{\alpha B \kappa\}$ of the first vowel to the left that is in [-HI, $\alpha B \kappa$]
 - (14) Harmony with High Round Vowel (HRVH): [+SYL] \sqcup { α BK} of the first vowel to the left that is in [+HI, +RD, α BK]

Analysis: Reckoning with /i/

- Assuming /i/ never transmits a BACK feature, then, we can add one final rule to cover roots with only /i/, which applies after the first two: all vowels unify with {-BACK}
 - Vacuous in all instances except when vowel unspecified for backness still remains

(15) Default
$$-BK$$
 (DF):
[+SYL] \sqcup { $-BK$ }

Analysis: Rule Ordering

- Which applies first?
 - (13) Harmony with Non-High Vowel (NHVH): $[+SYL] \sqcup \{\alpha BK\}$ of the first vowel to the left that is in $[-HI, \alpha BK]$
 - (14) Harmony with High Round Vowel (HRVH): [+SYL] \sqcup { α BK} of the first vowel to the left that is in [+HI, +RD, α BK]
- In a word like /toky/, (14) would have to apply first to achieve the attested pattern; in /tyko/, (13) would need apply first, due to specifications of Search
- However, /toky/-type roots are unattested: no {-HI, αBACK} {+HI, +RD, βBACK} in Votic
- Therefore, we order (13) before (14), to match needs of attested /tyko/-type roots

Analysis: Sample Derivations

• Using these three rules, we can derive the attested forms of alternating suffixes:

	1	Table 5: D	erivations	
UR	'key.ILLAT.PL' /vəttim-i:-sE:/	'tree.ILLAT.' /pu-hE:/	'hedgehog.PART' /si:li-A/	ʻgirl.PART' /tyttær-ikko-A/
NHVH	[vəttimi:sə:]		_	[tyttærikkoɑ]
HRVH	_	[puhə:]	—	
DF			[si:liæ]	
SR	[vəttimi:sə:]	[puhəː]	[siːliæ]	[tyttærikkoɑ]
comments	αBk spreads from ə	αBk spreads from u	Default –Bk	NHVH bleeds HRVH

Previous Analyses

- Blumenfeld and Toivonen (2010) assert that /i/ is [+BACK, -BACK] featurally inconsistent; what does this mean for phonetic interpretation?
- Hall (2017, 2018) specifies /i/ as [CORONAL] rather than [±BACK] needlessly abstract when no distinction is based on /i/, as opposed to abstractions based on y/u/U, e/ə/E, æ/a/A

Conclusions

- Logical Phonology:
 - Segments as consistent sets of binary features; not necessarily complete
 - Rule environments as natural classes wherein all segments are a superset of given features
 - Does not make use of phonetic notions such as markedness
- Votic vowel harmony analyzed as three rules that appeal to different natural vowel classes to unify featurally and specify backness on alternating suffixes
 - Draws on vacuous rule application to avoid crashes
 - As the third rule doesn't harmonize with any preceding backness feature, overall "vowel harmony" is a conspiracy of other phenomena
- Surface well-formedness not encoded in phonologic grammar ([o-e] as ill-formed alternating suffix vs. well-formed non-alternating suffix depending on underlying process); computations free of phonetic substance

References

- Leduc, M., Reiss, C., & Volenec, V. 2020. Votic vowel harmony in Substance Free Logical Phonology. To appear in *The Oxford Handbook of Vowel Harmony*, ed. H. Van der Hulst, Oxford: Oxford University Press.
- All other references cited therein.