Syllabification in ITB is QF

Kristina Strother-Garcia

Presented by Anastasiia Voznesenskaia and Logan Swanson

Motivation

- Regular functions are those realized by transducers in Monadic Second Order Logic
- A subset of those correspond to transductions definable by First Order Logic
- A subset of those Quantifier Free definable
- Many regular functions correspond to mappings which aren't actually attested
- Both RBP and OT overgenerate

Basic facts on ITB syllabification

• Sonority Sequencing Principle:

Sonority rises monotonically from a given segment to the sonority peak of its syllable

• Dell and Elmedlaoui (1985):

vcl. stops $<_s$ vcd. stops $<_s$ vcl. fric $<_s$ vcd. fric $<_s$ nas $<_s$ liq $<_s$ HV $<_s$ [a]

Four other principles

- All non-initial syllables must have an onset
- Initial stops and final obstruent are forbidden from being nucleic
- Glide/vowel distinction among HVs: a nucleic HV is vocalic, a non-nucleic HV is a glide
- The SSP is violated in Glide Sonorant (GR) syllables:

o /saulx/ [sa.wLx]

Previous approaches (discussed in class before)

• Dell and Elmedlaoui (1985): ordered set of iterative rules to identify syllabic nuclei. Each refers to a natural class (e.g. voiceless stops)

- Prince and Smolensky (1993): OT account.
 - 2 main constraints penalize: onsetless non-initial syllables, syllables with not most sonorous nuclei
 - Additional constraints for the other principles

Previous approaches (discussed in class before)

- Scobbie (1993): a Declarative Phonology treatment.
 - constraints similar to Prince and Smolensky
 - BUT: inviolable, unranked and defined in FO logic

The Successor Model Theory

$$\mathfrak{M}^{\triangleleft} \stackrel{\text{def}}{=} \langle \mathfrak{D}; \{ R_{\sigma} \mid \sigma \in \Sigma \}; \\ \{ \operatorname{pred}(x), \operatorname{succ}(x) \} \rangle$$

- pred(x) and succ(x) pick out the immediate predecessor and successor of a given position.
- pred(0)=0 (the first position is its own predecessor)
- succ(n)=n (the final position is its own successor)

Successor Model for ball

 $\mathcal{M}_{ball}^{\lhd}$ $\mathcal{D} = \{0, 1, 2, 3\}$ $R_a = \{1\}$ $R_b = \{0\}$ $R_l = \{2, 3\}$ $\operatorname{succ}(x) = \begin{cases} 1 & x = 0 \\ 2 & x = 1 \\ 3 & x = 2 \\ 4 & x \in \{3, 4\} \end{cases}$ $\mathtt{pred}(x) = \begin{cases} 0 & x \in \{0, 1\} \\ 1 & x = 2 \\ 2 & x = 3 \\ 3 & x = 4 \end{cases}$

Figure 1: A visual representation of $\mathcal{M}_{ball}^{\triangleleft}$.

The Modified Successor Model

- Strother-Garcia permits each position to have more than one label
- The alphabet:
 \$\mathcal{F}\$ \end{var} def = {voice, vocoid, high, lab, alv, post, pal, vel, uv, phar, glot, stop, fric, nas, approx, lat}
- Set of relations labelling positions with features: $\mathcal{R}_f \stackrel{\text{def}}{=} \{R_f \mid f \in \mathcal{F}\}$
- Binary sonority relations:
- Modified model:

$$\mathcal{R}_s \stackrel{\text{def}}{=} \{<_s, =_s, \leq_s\}$$

 $\mathfrak{M} \stackrel{\mathrm{def}}{=} \langle \mathfrak{D}; \{ \mathcal{R}_f \cup \mathcal{R}_s \}; \{ \mathtt{pred}(x), \mathtt{succ}(x) \} \rangle$

Graph transductions

• e.g. transduction that changes all bs to as

$$\begin{aligned} R_a^{\omega}(x) \stackrel{\text{def}}{=} R_a(x) \lor R_b(x) \\ R_b^{\omega}(x) \stackrel{\text{def}}{=} \text{FALSE} \\ R_l^{\omega}(x) \stackrel{\text{def}}{=} R_l(x) \\ \text{succ}^{\omega}(x) \stackrel{\text{def}}{=} \text{succ}(x) \\ \text{pred}^{\omega}(x) \stackrel{\text{def}}{=} \text{pred}(x) \end{aligned}$$

Figure 2: A visual representation of $\Gamma_{ba}(\mathcal{M}_{ball}^{\triangleleft})$.

Logics and Locality

• Logics:

$$closed(X) \stackrel{\text{def}}{=} (\forall x, y) (x \in X \land x \triangleleft y)$$

$$\Rightarrow y \in X$$

$$x \prec y \stackrel{\text{def}}{=} (\forall X) (x \in X \land closed(X)$$

$$\Rightarrow y \in X$$

$$(15)$$

- (16): MSO
- (15): FO

• Locality:

$$R_a^{\omega'}(x) \stackrel{\text{def}}{=} R_a(x) \lor (\exists y) [R_b(y)]$$
(17)
$$R_a^{\omega}(x) \stackrel{\text{def}}{=} R_a(x) \lor R_b(x)$$
(18)

 (17) vs (18): in (17) x will be labeled a if the input position is an a or if there's b somewhere in the input

Syllabification Transduction

\mathfrak{M} (Input)

\mathfrak{M}' (Output)

Set of segment positions
voice, vocoid, high, lab, alv, post, pal, vel, uv, phar, glot, stop, fric, nas, approx, lat, \leq_s , $=_s$, \leq_s
pred (X) , succ (X)

Domain	Set of segment positions
Relations	voice, vocoid, high, lab, alv, post, pal, vel, uv, phar, glot, stop, fric, nas, approx, lat, < _, = _, ≤ _, ons, nuc, coda
Functions	pred (x) , succ (x)

Recall: ITB Syllable Structure

- Sonority rises monotonically to the sonority peak of each syllable
 - EXCEPT in glide-sonorant (GR) syllables, which will occur when high vocoids follow another vowel. In this case, the high vocoid is realized as a glide, and becomes the onset for a nucleic sonorant. This prevents hiatus.
- All non-initial syllables must have an onset
- Initial stops and final obstruents cannot be nuclei
- If there is a sonority plateau, the leftmost segment takes prominence

How it Works

- Find the sonority peaks: any segment whose predecessor and successor are either a word boundary or of lower sonority
- Rule out marked segments: word-initial stops and word-final obstruents can never be nuclei
- Find GR nuclei: Any sonorant segment which follows a V(HV) pair will be a GR nucleus
- Find the onsets: Any segment which precedes a nucleus is an onset
- Find the codas: Any segment which is not an onset or nucleus is a coda

Helpers

$$obs(x) \stackrel{\text{def}}{=} stop(x) \lor fric(x)$$
 (21)
 $son(x) \stackrel{\text{def}}{=} \neg obs(x)$ (22)

$$\operatorname{init}(x) \stackrel{\text{def}}{=} \operatorname{pred}(x) = x$$
 (23)

$$fin(x) \stackrel{\text{def}}{=} \operatorname{succ}(x) = x \tag{24}$$

 $\operatorname{med}(x) \stackrel{\text{def}}{=} \neg(\operatorname{init}(x) \lor \operatorname{fin}(x))$ (25)

Finding Sonority Peaks

$$med_pk(x) \stackrel{\text{def}}{=} med(x) \land pred(x) <_s x$$

$$\land succ(x) <_s x$$

$$init_pk(x) \stackrel{\text{def}}{=} init(x) \land succ(x) <_s x$$

$$fin_pk(x) \stackrel{\text{def}}{=} fin(x) \land pred(x) <_s x$$

$$son_pk(x) \stackrel{\text{def}}{=} med_pk(x) \lor init_pk(x)$$

$$\lor fin_pk(x)$$

$$(26)$$

$$(27)$$

$$(27)$$

$$(28)$$

$$(28)$$

$$(28)$$

$$(29)$$

Sonority vs Prominence peaks

- Recall that if two adjacent segments are equal in sonority, the leftmost of the two will be more prominent
- When assigning nuclei, we actually care about **all** the peaks in prominence, including those that are part of a plateau

$$\operatorname{left_prom}(x) \stackrel{\text{def}}{=} x =_s \operatorname{succ}(x) \wedge \operatorname{med}(x) \quad (30)$$
$$\operatorname{prom_pk}(x) \stackrel{\text{def}}{=} \operatorname{son_pk}(x) \vee \operatorname{left_prom}(x) \quad (31)$$

Handling Exceptions

$$mrkd(x) \stackrel{\text{def}}{=} init_stop(x) \lor fin_obs(x)$$
(32)
$$GR_nuc(x) \stackrel{\text{def}}{=} vocoid(pred(x)) \land son(x)$$
$$\land prom_pk(pred(pred(x)))$$
(33)

Assigning Syllable Constituency

$$\operatorname{\mathsf{nuc}}(x) \stackrel{\text{def}}{=} (\operatorname{\mathsf{prom}}_{\mathsf{P}}\mathsf{pk}(x) \land \neg \mathsf{mrkd}(x)) \\ \lor \operatorname{\mathsf{GR}}_{\mathsf{nuc}}(x)$$
(34)

$$\operatorname{ons}_{1}(x) \stackrel{\text{def}}{=} \neg \operatorname{nuc}(x) \wedge \operatorname{nuc}(\operatorname{succ}(x)) \tag{35}$$

$$ons_2(x) \stackrel{\text{def}}{=} init_obs \land ons_1(succ(x))$$
 (36)

$$\operatorname{ons}(x) \stackrel{\text{def}}{=} \operatorname{ons}_1(x) \lor \operatorname{ons}_2(x) \tag{37}$$

$$\operatorname{cod}(x) \stackrel{\text{def}}{=} \neg \operatorname{nuc}(x) \land \neg \operatorname{ons}(x)$$
 (38)

The Transduction

 \mathfrak{M} (Input)

Domain	Set of segment positions
Relations	voice, vocoid, high, lab, alv, post, pal, vel, uv, phar, glot, stop, fric, nas, approx, lat, \leq_s , $=_s$, \leq_s
Functions	pred (x) , succ (x)

$$\Gamma$$

$$\mathsf{nuc}^{\omega}(x) \stackrel{\text{def}}{=} \mathsf{nuc}(x)$$

$$\mathsf{ons}^{\omega}(x) \stackrel{\text{def}}{=} \mathsf{ons}(x)$$

$$\mathsf{cod}^{\omega}(x) \stackrel{\text{def}}{=} \mathsf{cod}(x)$$

\mathfrak{M}' (Output)

Domain	Set of segment positions
Relations	<pre>voice, vocoid, high, lab, alv, post, pal, vel, uv, phar, glot, stop, fric, nas, approx, lat, <_, =_, <_, ons, nuc, coda</pre>
Functions	pred (X) , succ (X)

Example

 $/salx/ \rightarrow [sa.wlx]$

x	0	1	2	3	4
s(x)	1				
a(x)	•	1	•	•	•
u(x)	•	•	1	•	•
I(x)	•	•	•	1	•
x(x)				•	1
$x <_s \verb+succ+(x)$	1				
$x =_s \texttt{succ}(x)$	•	•	•		•
$son_-pk(x)$	•	1	•		•
$left_prom(x)$	•	•		•	•
$prom_{-}pk(x)$		1			•
$fin_obs(x)$					1
mrkd(x)					1
$GR_{-}nuc(x)$	•		•	1	•
nuc(x)	•	1	•	1	•
$ons_1(x)$	1		1	•	•
ons(x)	1		1		
cod(x)	•	•			1

Conclusion

- ITB Syllabification is a QF process
 - le strictly local
- OT or rule-based phonology are both capable of more complex processes, but this suggests they may be *too* powerful

Consequences of the Model: "Maximize Coda"

(35)

(36)

(37)

(38)

Recall:

$$ons_{1}(x) \stackrel{\text{def}}{=} \neg nuc(x) \land nuc(succ(x))$$

$$ons_{2}(x) \stackrel{\text{def}}{=} init_obs \land ons_{1}(succ(x))$$

$$ons(x) \stackrel{\text{def}}{=} ons_{1}(x) \lor ons_{2}(x)$$

$$cod(x) \stackrel{\text{def}}{=} \neg nuc(x) \land \neg ons(x)$$

 $/satgsznra/ \rightarrow [satgszn.ra]$

- Default is to stick leftover segments into the coda
- This is sort of the opposite of "maximize onset", which we see most places
- May need constraints on the underlying representation to prevent this kind of thing

Other Edge Cases: Initial Obstruent Peak

 $/zta/ \rightarrow [z??.ta]$

Recall:

$$ons_1(x) \stackrel{\text{def}}{=} \neg \operatorname{nuc}(x) \land \operatorname{nuc}(\operatorname{succ}(x))$$
(35)

$$ons_2(x) \stackrel{\text{def}}{=} \text{init}_obs \land ons_1(\operatorname{succ}(x))$$
(36)

$$\operatorname{ons}(x) \stackrel{\text{def}}{=} \operatorname{ons}_1(x) \lor \operatorname{ons}_2(x) \tag{37}$$

$$\operatorname{cod}(x) \stackrel{\text{def}}{=} \neg \operatorname{nuc}(x) \land \neg \operatorname{ons}(x)$$
 (38)

	Z	t	а
Prom peak	~	-	~
mrkd			
nuc	~		V
ons ₁	•	~	
ons ₂	V	•	•

Initial Vowel Plateau

Recall:

$$\operatorname{left_prom}(x) \stackrel{\text{def}}{=} x =_s \operatorname{succ}(x) \bigwedge \operatorname{med}(x)$$
(30)
$$\operatorname{prom_pk}(x) \stackrel{\text{def}}{=} \operatorname{son_pk}(x) \lor \operatorname{left_prom}(x)$$
(31)

 $/aark/ \rightarrow [aark]$

	а	а	r	k
Prom peak				
GR nuc	-	-	-	•
nuc	•	•	•	•
ons	-	-	-	
cod	~	~	~	~