
Using Recursive Programs for
Phonological Analysis

Jane Chandlee & Adam Jardine

Presented by Alexa Agathos, Leo Cheng, and Logan Swanson

Introduction

This paper proposes a framework for using computational methods to do
phonological analyses.

Chandlee and Jardine would like to use Boolean Monadic Recursive Schemes
(BMRSs) to:

-explain observed computational properties of phonological patterns.

-capture phonological substance and linguistically significant generalizations.

Basics of a BMRS

-BMRSs consist of structures defined as logical predicates.

-Similarly to OT the predicates are constraint-like and able to be ranked

-They have an if … then … else syntax.

-The primitives of BMRSs are the boolean values of True (⊤) and False (丄).

-There is also a finite set of monadic predicates P(t).

-These predicates take a single argument t and return true or false.

BMRS are evaluated locally which prevents computational overgeneration

Differs from the global evaluation strategy of Optimality Theory

BMRS captures both input and output based mappings

What is included as a BMRS Expression?

is an expression

Nothing else is an expression.

Evaluate E1,
If it is true, then E returns the result of evaluating E2.
If it is false, then E returns the result of evaluating E3.

Licensing and Blocking in BMRS

An expression is considered to be a licensing structure when it allows something to
surface on the output form.

An expression is considered to be a blocking structure when it prevents a certain
feature from surfacing on the output form.

Defining BMRS Formally, Input Feature Predicates

Given the set of features 𝐅 = {[F], [G], …, [Z]} and boundary symbols {⋊,⋉}

Input Feature Predicates 𝐈 = {[F]i(t), [G]i(t), …, [Z]i(t), ⋊i(t),⋉i(t)}, where t is the argument (segment,
syllable, etc) >> values are T or F

Output Feature Predicates 𝐎 = {[F]o(t), [G]o(t), …, [Z]o(t), ⋊o(t),⋉o(t)}

E.g. Input /tɛd/

⋊ t ɛ d ⋉ [son]i(2) = F [son]i(3) = T [son]i(1) = F [vowel]i(3) = T [vowel]i(2) = F

1 2 3 4 5 ⋊i(1) = T ⋊i(2) = F

Predecessor p(x) p(4) = 3 i.e. predecessor of /d/ is /ɛ/

Successor s(x) s(4) = 5 i.e. successor of /d/ is ⋉

[son]i(p(4)) = ? [son]i(p(p(4))) = ? ⋊i(p(2)) = ? ⋊i(p(p(2))) = ?

Building Logical Expressions if…then…else

So far: T/F are values and Predicates P(t) after evaluation also gives T/F

Now, we can build these into logical expressions (again gives T/F values)

If E1 then E2 else E3

E.g. voiced obstruent in the input

if [son]i(x) then F else [voi]i(x)

Conveniently, we can give a shorthand to the above statement

 (x) := if [son]i(x) then F else [voi]i(x) ~ similar to the familiar feature matrix

Another notation, specifying the position (e.g. word-final voiced obstruent)

 ⋊i(x) :=if (x) then ⋊i(s(x)) else F

Defining Output Feature Predicates

Where the mapping takes place, not just a shorthand

Basic structure is the same as building complex input predicates

[voi]o(x) = if ⋊i(x) then F else [voi]i(x) F==blocking, T==licensing

 Markedness/blocking faithfulness

The entire mapping will consist of all individual maps for all features

Suppose only [voi] feature changes, we need also

[son]o(x) = [son]i(x), [cor]o(x) = [cor]i(x), [lab]o(x) = [lab]i(x) and

out(x) = if ⋊i(x) then F else accounts for deletion

 if ⋉i(x) then F else T ⋊o(t),⋉o(t) ? Out?

Recursion

More powerful side O-O recursion, potentially unbounded

E.g. Shambaa, underlying H tone spreading to the penultimate syllable

 (2) = T (3) = F finali(5) = T finali(4) = F

1 2 3 4 5

Order matters, need to
know the value of the
previous syllable
Still subsequential (regular
+ deterministic)

Case Study 1: Interaction of Stress & Length in Hixkaryana

Stress in Hixkaryana is predictable.

There is an iterative, iambic pattern with long vowels in the stressed syllables.

There is a nonfinality condition which prevents this iteration from reaching the end
of the word aka the final syllable is not stressed.

In disyllabic words the first syllable is stressed because of this condition.

Stress in Open Syllables

Stress in Closed Syllables

Closed syllables are treated as heavy and receive stress

BMRS Analysis of Hixkaryana Facts

Need to define:

When a syllable is heavy in the output (Ho(x))

When a syllable is light in the output (Lo(x))

When a syllable is stressed in the output

Defining Predicates

If syllable is light in the input, then True, else the syllable is heavy in the input

We also need to define when a syllable is potentially in a clash or lapse.

We also need to define a predicate to identify the first syllable of disyllabic words.

Ranking of Predicates for Stressed Syllables

Blocking

Licensing

Blocking

Blocking

Licensing

Licensing

Motivations for blocking or licensing

-Onlyi(x) is licensing to account for disyllabic word

-Finali(x) is blocking in order to prevent stress from appearing on final syllable

-Hi(x) is licensing to allow for weight-to-stress principle

-Initiali(x) as a blocking structure allows for the iambic pattern

-Clash(x) as a blocking structure and lapse(x) as a licensing structure allows for the
left-to-right binary stress pattern

Definition for output weight of syllables

Any syllable that receives stress becomes heavy.

If the syllable is stressed then it is True for Ho(x)

Else: Any heavy syllable in the input becomes heavy in the output.

If the syllable is stressed then it is False for Lo(x)

Any light syllable in the input becomes light in the output

Input /LLLLL/

Initiali(x) and clash(x) are blocking
structures, so when they evaluate as
true, the syllable won’t receive stress in
the output. (2,4,6)

When licensing structure lapse(x)
evaluates as true, the syllable
gets stress in the output. (3,5)

Input /LLLL/

Finali(x), initiali(x), and clash(x) are blocking
structures so when they evaluate as true the
syllable is not stressed in the output. (2,4,5)

Lapse(x) is licensing so when True the syllable
gets stress in the output. (3)

Input /HLLLL/

Finali(x) blocks stress from output of 6
Hi(x) is evaluated as true for 2, this licenses
stress in the output

Lapse(x) licenses stress in output for 4

Clash(x) is true for 3 and 5, blocking stress

Input /HHHLLL/

Finali(x) blocks element 7 from receiving stress

Hi(x) licenses 2, 3, and 4 to receive stress

Clash(x) blocks element 5 from receiving stress

Lapse(x) licenses 6 to receive stress

Input /LL/

onlyi(x) being true licenses stress on syllable 2

finali(x) being true blocks stress on syllable 3

Input /LLHL/

Finali(x) being true blocks stress in element 5

Hi(x) being true licenses stress in element 4

initiali(x) being true blocks stress in element 3

lapse(x) being true licenses stress in element 2

Case Study 2: Elsewhere Condition Effects

Strict Substructure Ordering Theorem (SSOT):

For any ranking of structures in a BMRS definition, whenever STRUCTj(x)
implies STRUCTi(x) but the converse is not true, if i < j in order, then STRUCTj(x)
will never evaluate to T and thus never take effect.

E.g. [voi]o(x) = if VCVi(x) then T else VCVi(x) => Ci(x)

 if Ci(x) then F else

 [voi]i(x)

where VCVi(x) indicates an intervocalic consonant, Ci(x) indicates a consonant

How SSOT predicts EC effect

English Vowel Shortening/Lengthening

a. shortening b. lengthening

brhdi(x) ~ head of binary branching

[-hi]CiVi(x) , brhd&[-hi]CiVi(x)

[long]o(x) = if brhd&[-hi]CiVi(x) then T else >> lengthening

 if brhdi(x) then F else >> shortening

 [long]i(x)

if lengthening applies, by SSOT, shortening will not apply; in order for shortening to apply, lengthening can not apply

Case Study 3: Typology of Repairs for *NT

● Many (though not all) languages avoid NT-type sequences, and different
languages employ different repair strategies to avoid these sequences:

○ Deletion
○ (de) nasalization
○ (de) voicing

● BMRS can elegantly generate these typologies by altering the
licensing/blocking relationships between structures and features

○ The combinatorics are restricted by the inherent logic of BMRS, since not all structures will
meaningfully block or licence all features

Inherent Logic: Meaningful Structures

X is meaningful iff:

● It is NOT the case that (B is T and X → Y)

AND

● It is NOT the case that (B is F and X → ¬Y)

Examples (non-meaningful structures):

 = [nas]i(x)

meaningless

meaningful

Typologies: Nasal Deletion

→

(Bantu; Choti 2015)

NT(x) blocks out(x)

Typologies: Consonant Voicing

→

(Quechua; Orr 1962)

NT(x) licenses voi(x)

Full Paradigm

Long-Distance Processes

● Although the previous examples have been output-local, BMRS can also
capture truly long-distance transformations, like harmonies

○ Notably, because of the limits placed on recursion, BMRS can only do unbounded search in one
direction

○ Unlike some other approaches to harmony processes that we have seen, BMRS do not make
reference to tiers, instead using recursion to perform unbounded search for the relevant types
of segments

● In contrast to the output-local transformations, modeling these types of
processes requires at least one explicitly recursive predicate that is part of the
system of equations, but not itself an output predicate

Conclusion

● BMRS offer formal logical representations that are intuitive from a phonological
perspective

● They maintain appropriate computational restrictiveness: all and only the
subsequential functions can be represented this way

● BMRS can capture the interactions of multiple generalizations, enabling them
to capture conflicting constraints or pressures, Elsewhere Condition Effects,
and typologies of repairs for marked structures

Additional Materials: Place Assimilation

Additional Materials: Recursive Helper

Output-local Long-Distance

