
Lesson 1

What is the problem of learning?

1



Learnability – August 23, 2022 © Jeffrey Heinz

1.1 What is the problem of learning?
Computational learning theory studies the problem of learning from a computational perspec-
tive. In computer science, algorithms are designed to solve problems. For example, there are
algorithms that can be used to correctly multiply numbers, to correctly sort lists, to calculate
pi to n digits, and to find the sequence of leaves of a tree structure (the ‘yield’). Each of these
algorithms solves a well-defined problem.

What is the well-defined problem of learning? Of language-learning? Let’s begin by thinking
about this in the context of Planet Verorez.

1.2 Planet Verorez
There are many nation-states on Planet Verorez and each has its own distinct official language.
While people debate whether human languages on Planet Earth exhibit finitely or infinitely much
variation, on Planet Verorez, the issue is settled. While there are only finitely many Verorezian
languages spoken at any one time, there are infinitely many possible languages; the variation is
infinite. Nonetheless on Planet Verorez, each typically developing Verorezian child learns the
language of their nation-state relatively quickly from examples alone.

Verorezian scientists have studied the different Verorezian languages to understand how their
children learn them so quickly from positive evidence. They discovered that all Verorezian lan-
guages obey a simple principle. Further, children could use this principle to generalize from
example sentences to the language of their nation-state (whichever one it is). To put it another
way, the principle lends itself naturally to a learning strategy. They have even discovered how
to program a computer which can execute this learning strategy. Let’s imagine further that sci-
entists have conducted acquisition studies and experiments that provide additional evidence that
children employ this learning strategy, or at least its general contours. What a world is Verorez!

1.3 The Universal Grammar of Verorezians
The fundamental principle of language on Planet Verorez:

If then initial fragments of two sentences of a Verorezian language share some tail
then those initial fragments share all tails!

Formally, consider a language L ⊆ Σ∗. The “tails” of a string u with respect to L is the set of
all strings v that can “continue” u to obtain a string in L.

TL(u) = {v : uv ∈ L}

What would it mean for two sentences to share a tail? It would mean that there are two
strings u1v, u2v ∈ L. These two strings share the suffix v. What the principle says then is that
u1 and u2 share all tails with respect to L! Formally the fundamental principle can be expressed
as follows.

if u1v, u2v ∈ L then TL(u1) = TL(u2)

2



Learnability – August 23, 2022 © Jeffrey Heinz

Example
Suppose that the sentences “John laughed” and “John laughed and laughed” belong to L. Let’s
consider how to divide these two sentences into prefixes and suffixes so that they share a tail.
Here is one way to do this.

prefix tail

John laughed
John laughed and laughed

According to Verorezian UG, it will follow that if “smiled” is a tail of “John” then “smiled” will
also be a tail of “John laughed and”. In other words, if “John smiled” also belongs to L, then so
will “John laughed and smiled”.

Another way to divide the sentences is as follows.

prefix tail

John laughed λ
John laughed and laughed λ

Here λ represents the empty string. In other words, these two sentences share the tail λ. It
follows that any way we can extend one of these sentences to a string in L then we can extend
the other one as well. In fact, we can see that “and laughed” is a tail of “John laughed”. Since our
two sentences share one tail (the empty string) they have to share all tails! It follows that “and
laughed” is also a tail of “John laughed and laughed”. In other words, the sentence “John laughed
and laughed and laughed” also belongs to L. And since “John laughed and laughed and laughed”
also has the tail λ it must also have the tail “and laughed”. Therefore, “John laughed and laughed
and laughed and laughed” also belongs to L. And so on.

In other words, from the two sentences “John laughed” and “John laughed and laughed”,
Verorezians can infer that infinitely many strings belong to their language!

1.4 An Inductive Principle

As we have seen, Verorezian UG leads directly to an inductive principle, which we can formalize
as follows.

For all strings u, v, u′, v′, if uv, u′v, uv′ ∈ L then u′v′ ∈ L.

1.5 Finite-state Implementation

One of the most remarkable things about Verorezian UG and the inductive principle is that it has
a concrete computational implementation.

3



Learnability – August 23, 2022 © Jeffrey Heinz

1.5.1 Representing Verorezian Languages with DFA

First, every Verorezian language can be represented with finite-state acceptors (Angluin, 1982).

Theorem 1. Every language on Planet Verorez can be recognized by a finite-state acceptor that is
both forward and reverse deterministic.

In fact, it is also the case that every forward and reverse deterministic finite-state acceptor
recognizes a Verorezian language.

Theorem 2. Every finite-state acceptor that is both forward and reverse deterministic recognizes a
Verorezian language.

Consequently, such automata characterize exactly the Verorezian languages.

1.5.2 Forward and Reverse Determinism

A finite-state acceptor is forward-deterministic if and only if it has only one initial state and for
every state q and symbol a, there is at most one state reachable from q by a. A finite-state acceptor
is reverse-deterministic if and only if it has only one final state and for every state q and symbol
a, q can be reached by at most one transition labeled a.

1.5.3 Implementing the Inductive Principle

Next, the inductive principle can be implementedwith operations over these finite state acceptors.
This leads to an algorithm which learns Verorezian grammars from positive examples. There are
two main operations which this algorithm uses, which I will call “addition” and “merging”. The
algorithm can be succinctly stated as follows.

1. The initial grammar is an acceptorAwith a single non-accepting state with no transitions.
2. When a sentence s ∈ L is heard, add s to A.
3. Recursively merge states in A until it is both forward and reverse deterministic.
4. Repeat from step 2.

Let’s call this VZIA for VeroreZ Inference Algorithm.

1.5.4 Adding Strings to Acceptors

Given a minimal, trim DFAA, a stringw, we are interested in constructing a machine that accepts
L(A)∪{w}. If w ∈ L(A) then it should just return A. While we could use the classic operations
of union (and determinization) to achieve this, there is a more efficient way.

The idea is to submit w to A and trace its path as far as it can go. If A already accepts w, then
we will reaches a final state and we are done. No changes are made to A. However, if w = uv
and u is the maximal prefix of u that we can trace in A, then we need to construct a new branch
recognizing v from the state that u brings us to.

4



Learnability – August 23, 2022 © Jeffrey Heinz

Formally, for any minimal, trim DFA A = add(A,w) equals A′ = 〈Σ′, Q′, q′0, F
′, δ′〉 where

Σ′ = Σ ∪ Σ(w)
Q′ = Q ∪ V
q′0 = q0
F ′ = F ∪ {v}

δ′(q, a) = δ(q, a) (∀q ∈ Q, a ∈ Σ)
δ′(q′, v1) = v1
δ′(q, a) = qa (∀q, qa ∈ V )

where

• w = uv,
• for all nonempty v, v1 is the first symbol of v,
• δ∗(q0, u) = q′ ∈ Q,
• if v is nonempty then δ∗(q0, uv1) is undefined, and
• V = Prefixes(v)\{λ}.

If we begin with an empty acceptor then applying the above procedure to a finite sample of
strings S yields the prefix tree representation of S. Each state in the tree corresponds to a unique
prefix in the sample.

Formally, PT (S) is defined to be the NFA 〈Σ, Q, I, F, δ〉 such that

Σ = Σ(S)
Q = Prefixes(S)
I = {λ}
F = S

δ(q, a) = qa iff q, qa ∈ Q

1.5.5 State Merging
As Heinz et al. (2015) explain, when distinct states in a finite-state machine are merged, they
become a single state. A key concept in state-merging is that transitions are preserved. This is one
way in which generalizations may occur—because the post-merged machine accepts everything
the pre-merged machine accepts, possibly more.

Formally, let A = 〈Σ, Q, I, F, δ〉 be any NFA. Consider any partition π of Q, and let B(q, π)
refer to the set of states in the same block of the partition as state q. Then merging states in
the same blocks of A according to π yields another acceptor A/π = 〈Σ′, Q′, I ′, F ′, δ′〉 defined as
follows:

Σ′ = Σ
Q′ = {B : B(q, π) such that q ∈ Q}
I ′ = {B : B(q, π) such that q ∈ I}
F ′ = {B : B(q, π) such that q ∈ F}

δ′(B0(q0, π), a) = {B1(q1, π) : q1 ∈ δ(q0, a)}
A/π is sometimes called the quotient of A and π. Notice that any block containing at least one
final (initial) state is itself a final (initial) state in the new machine. Similarly, if there is at least
one transition labeled a from any state in block B0 to another state in block B1 then in the new
machine, there is a transition from B0 to B1 labeled a.

5



Learnability – August 23, 2022 © Jeffrey Heinz

1.5.6 Theoretical Results

There are several interesting things that can be shown about VZIA (Angluin, 1982). First, we can
see from its definition that VZIA is incremental. This means it can update each grammar with
each observed sentence.

Second, VZIA is efficient in the size of the sample.

Theorem 3. VZIA can be implemented to run in time O(nα(n)), where n =‖S‖ +1 and α is a
very slowly growing function (Tarjan (1975) defines α.)

Third, every finite sample corresponds to a particular Verorezian language.

Theorem 4. For any finite set of strings S, VZIA(S) returns a DFA which represents the smallest
Verorezian language containing S.

Finally, the behavior of the algorithm “in the limit” guarantees that any Verozian language L
can be learned from any sequence of examples – which meet particular conditions – drawn from
L.

Theorem 5. VZIA identifies every Verorezian language in the limit from positive data.

The last means VZIA solves a particular kind of learning problem. We will study this in
subsequent days.

1.6 Some things to think about

1.6.1 Is this really induction?

It could be said that once the basic principle is known, the learning problem is no longer a prob-
lem of induction. It has become a problem of deduction. We will study the concepts induction,
deduction, and abduction.

1.6.2 How is Planet Verorez like Planet Earth?

Verorezian UG is not like human UG. It is not too difficult to think of examples in human lan-
guages where proper application of the inductive principle leads to ungrammatical sentences.

But the above is instructive because it is a concrete example of what a learning algorithm can
look like that can be said to successfully learn a nontrivial class of languages.

I am particularly taken by the fact that given any lump of clay (any set of strings), VZIA
transforms it into a grammar that obeys a basic principle. I think human children are like this.
Whatever their linguistic environment they construct something out of it that obeys principles
of human language. It is like a flower that grows and takes shape as it is fed water and sunlight.

6



Learnability – August 23, 2022 © Jeffrey Heinz

1.7 Updates since 1982
Clark and Eyraud (2007) study the substitutable languages. Here they are

if xuy, xvy ∈ L then CL(u) = CL(v)

where the CL(u) is defined as the contexts that u can occur in.

CL(u) = {(x, y) : xuy ∈ L}

The fundamental principle of language on Planet Substitutable:

If two strings share one context then they share all contexts!

This paper launched a series of papers on “distributional learning” where the distributions of
strings (as determined by their contexts) is used to make syntactic generalizations. Overviews
are provided in Clark and Yoshinaka (2016) and Chater et al. (2015, chap. 4).

7



Learnability – August 23, 2022 © Jeffrey Heinz

8



Bibliography

Angluin, Dana. 1982. Inference of reversible languages. Journal for the Association of Computing
Machinery 29:741–765.

Chater, Nick, Alexander Clark, John A. Goldsmith, and Amy Perfors. 2015. Empiricism and Lan-
guage Learnability . Oxford University Press.

Clark, Alexander, and Rémi Eyraud. 2007. Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8:1725–1745.

Clark, Alexander, and Ryo Yoshinaka. 2016. Distributional Learning of Context-Free and Multiple
Context-Free Grammars, 143–172. Berlin, Heidelberg: Springer Berlin Heidelberg.

Heinz, Jeffrey, Colin de la Higuera, and Menno van Zaanen. 2015. Grammatical Inference for
Computational Linguistics. Synthesis Lectures on Human Language Technologies. Morgan and
Claypool.

Tarjan, Robert Endre. 1975. Efficiency of a good but not linear set union algorithm. Journal of the
ACM 22:215–225. Https://doi.org/10.1145/321879.321884.

9


	What is the problem of learning?
	What is the problem of learning?
	Planet Verorez
	The Universal Grammar of Verorezians
	An Inductive Principle
	Finite-state Implementation
	Representing Verorezian Languages with DFA
	Forward and Reverse Determinism
	Implementing the Inductive Principle
	Adding Strings to Acceptors
	State Merging
	Theoretical Results

	Some things to think about
	Is this really induction?
	How is Planet Verorez like Planet Earth?

	Updates since 1982


