
Lesson 5

Studying Learning
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5.1 Ways to Study Learning
Themainstream approach to studying learning is task-based. The idea iswe obtain better learning
algorithms if we can show a learning algorithm exhibits measurable performance improvement
on data sets. This approach emphasizes running algorithms on specific data sets and measuring
performance results.

The other approach is interested in understanding the general behavior of the learning algo-
rithm. In this line of research, learning algorithms are studied with respect to different kinds
of criteria. This approach emphasizes mathematical analysis of the behavior of algorithms in
different kinds of settings.

Both methods are important; however, the former is mostly taught nowadays. This is one
reason why this course focuses on the second method.

Niyogi (2006) comments on these two methods are instructive.

Another aspect of the book is its focus on mathematical models where the re-
lationship between various objects may be formally (provably) studied. A comple-
mentary approach is to consider the larger class of computational models where one
resorts to simulations. Mathematical models with their equations and proofs and
computational models with their programs and simulations provide different and
important windows of insight into the phenomena at hand. In the first, one con-
structs idealized and simplified models but one can now reason precisely about the
behaviour of such models and therefore be sure of one’s conclusions. In the second,
one constructs more realistic models but because of the complexity, one will need to
resort to heuristic arguments and simulations. In summary, for mathematical mod-
els the assumptions are more questionable but the conclusions are more reliable —
for computational models, the assumptions are more believable but the conclusions
more suspect.

If our route to understanding learning is solely through measuring performance, then we
neglect understanding the general behavior of our learning strategies. When we observe that a
learning programA achieves some performance measurem on a test set T after being exposed to
a set of training dataD, it is not clear what we can conclude about A or the relationship between
A,D and T becauseAmight give very different results on other testing data T ′ and other training
data D′. As Heinz and Riggle (2011) put it “The goal of determining which properties of the data
critically underlie learnability …is precisely why learning theory focuses mainly on the properties
of classes of languages or the general behaviour of specific algorithms, as opposed to the specific
behaviour of specific algorithms [emphasis in original].”

I agree with Niyogi that both are important and that they are complimentary approaches.
However, given the propensity of the task-based performance approaches in conferences, articles,
and classrooms, this view that Niyogi and I share appears to be very much in the minority. In my
view, this course serves as a small but important counterweight.

5.2 Performance on Tasks
Figure 5.1 shows the general workflow of implementing and running a ML system on a corpus
of data split into a training and testing sets, and evaluating the result. An important principle at
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work is that the testing and training sets should come from the same source, but they should not
overlap. If we do well on a test set with this training set, what confidence do we have we will do
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Figure 5.1: Empirical investigation of ML system performance on a corpus.

well on some other corpus?
One method to increase our confidence without increasing our data is to use cross-fold vali-

dation. The idea is that we can take a given corpus and turn it into k-corpora by dividing it into
k disjoint blocks. Then we can train on k − 1 blocks and test on the leftover block. Figure 5.2
illustrates with k = 10. If we get comparable performance with cross-validation (for example

Figure 5.2: Illustration of cross-fold validation with 10 folds. (Source: DOI:10.3390/ijms19072071)

the standard deviation is small) then we have more confidence that the initial result is not due to
very particular aspects of the training corpus.
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Of course the results may be due to aspects of the particular corpus that preserved across
the different training folds. For this reason we may also want to repeat this entire procedure on
different corpora. For ML systems designed to learn natural languages, for example, we may run
the same ML algorithm on data sets from corpora collected from different languages.

One complication is that many ML systems have hyperparameters. A simple example is a
n-gram language model. Which n will get the best result? We could train on several n values
and report their results on the test set. However, this has the downside that we are using the test
set for a dual purpose. We are using it to set the hyperparameters and we are using it to evaluate
our best model. The test set should only be used to measure model performance, once it has been
set.

So how do we set the hyperparameters? Well the idea is to split the corpus into three sets:
training, validation, and testing. The validation set is sometimes called the development set.
When finding the best hyperparameters, train the model and test it on the validation set. Re-
peat with different hyperparameter settings until you are satisfied. The process of finding good
hyperparameter values is often called “tuning the model.” Once satisfied, the model is evalu-
ated against the testing set. Figure 5.3 shows a workflow incorporating the validations set. Of-
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Figure 5.3: Empirical investigation of ML system performance on a corpus.

ten cross-fold validation is used in the model tuning phase (see https://www.statology.org/
validation-set-vs-test-set/ for example.)

These procedures – use of validation set, cross-validation, testing on multiple corpora – do
improve our confidence that the ML system is doing what we want. However, what about the
next corpus? Are there any guarantees?
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5.3 Behavioral Analysis
I take analysis of algorithms to be important precisely because it give us guarantees regarding
the outcome of following some procedure. If there were no guarantees, there would be no field
of computer science. Instead it would look a lot like experimental psychology. Let’s see what
happens when we run this experiment! This may be unfair to experimental psychology, and I
don’t doubt there are productive experimental paradigms in the psychological sciences. But that
is not the same as knowing something in advance about the outcome of running some procedure.

Multiple criteria for understanding the general behavior of a ML system can be understood
by observing its behavior over time, as training data is fed to it one piece at a time, as shown in
Figure 5.4. There the notation t[n] refers to the sequence t(1), t(2), . . . t(n).

Time t 1 2 3 4 … n …

Evidence at time t t(1) t(2) t(3) t(4) … t(n) …

Input to ML system at time t t[1] t[2] t[3] t[4] … t[n] …

Output of ML system at time t G1 G2 G3 G4 … Gn …
Language of G at time t L1 L2 L3 L4 … Ln …

Figure 5.4: Analyzing a ML algorithm’s behavior over time.

• AML system identifies a class of languages in the limit from positive data iff for each
language L in the class, for each positive presentation t of L, there is some n such that for
all m > n, we have Gm = Gn and Ln = L.

• AML systemprobably approximately identifies a class of concepts iff for each concept
C in the class, for each distribution D over the instance space, there is some n such that
for all m > n, we have Pr[errorD(C,Lm) < ε] > 1− δ.

• A ML system is a consistent estimator for a parametric model iff for each parameter
Θ in the model, if the data is randomly presented i.i.d. according to Θ, the ML system’s
estimate Θ̂ approaches the true value of Θ. (formally: ∀ε > 0,∃n such that ∀m > n
[Θ̂m −Θ < ε].

Incidentally, historically consistent estimators are the oldest. I suspect Gold was influenced by
the notion of consistent estimators in his development of the identification in the limit paradigm.
The infinite sequence is an idealization, and it is not novel to Gold. Its true origin is statistics.
Valiant developed the PAC framework to address perceived weaknesses in the identification in
the limit paradigm.

These learning criteria are important, and while I would argue they are necessary to under-
standing the general behavior of a learning algorithm, I would also argue they are not sufficient.
The reason they are not sufficient, is that they do not tell you about the behavior of the algo-
rithm in the short term, only in the long term. How is the learning algorithm behaving before
convergence? This is also an important aspect of the algorithm’s general behavior.

Computational learning theory (and statistical learning theory) addresses short term general
behavior as well. In the context of the identification in the limit paradigm, we have already seen
some properties that can be attributed to a learning algorithms φ such as the following. For any
finite set of strings D, let G = φ(D) and let L = L(G). We assume a class of languages C .
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• For any finite set D, we have D ⊆ L. (consistency)
• Whenever D ⊆ D′, we have L ⊆ L′. (monotonicity)
• For any finite setD, L is the smallest (closest?) language inC consistent withD. (formally:
for all L′ ∈ C such that D ⊆ L′ then L′ 6⊆ L).

Many other similar kinds of statements have been studied (Jain et al., 1999) and it can be useful
to show your learning algorithms exhibit these kinds of behaviors.

As another example, consider algorithms φ that aim to learn the parameters Θ of a paramet-
ric model M which establishes a probability distribution over which the data is assumed to be
generated in an i.i.d. fashion. Here we let φ(D) = Θ̂.

• For any finite set of dataD, we have, for allΘ′ ∈ M , the following: PrM(D | Θ̂) ≥ PrM(D |
Θ′) (Maximum Likelihood Estimate; MLE).

Parametric models that maximize entropy also maximize likelihood (Murphy, 2012). Incidentally,
estimators that maximize the likelihood are consistent estimators.

The important point I want to make here is that there are two aspects to understanding
the general behavior of an algorithm: short term and long-term. The long-term behavior is a
statement you can make about what will eventually happen with enough data. The short term
statement says something about what happens given any data set. Often these two things go
hand-in-hand. If you have an algorithm that gives you the MLE estimate, you have a consistent
estimator. If you have an algorithm that gives you the smallest language in the class covering the
data (and the class has Angluin’s tell-tale property) then you have an algorithm that identifies
the language in the limit from positive data.

Not all learning algorithms’ short term behavior is understood. For example, we understand
the long-term behavior of RPNI, but not it’s short term behavior. If you haven’t see the charac-
teristic sample yet, we don’t know what we can say about the quality of the DFA that is returned.
All bets are off. The same goes (I believe) for its descendants which can learn probabilistic de-
terministic finite-state acceptors (ALERGIA), deterministic string-to-string transducers (OSTIA),
and other such algorithms (e.g. SOSFIA). See de la Higuera (2010) for details on RPNI, ALERGIA,
and OSTIA and Jardine et al. (2014) for SOSFIA.

Backing up a bit, a striking difference between all of these criteria (and these are not the only
ones) and the performance-based approaches is the presence of the class of concepts, languages,
parameter values that could be source of the data we are learning from, as well as the range of
data-generating processes potentially underlying the data. These are necessary to analyze the
general behavior of a learning algorithm because they are necessary to define the instance space
of the computational problem.

• Which concepts to do you wish to learn?
• What kinds of data do you wish to learn them from?
• What counts as successful learning?

5.4 An Analogy with Maze Solving
I often use the analogy of sorting algorithms. Every library has algorithms that sorts lists. These
algorithms were developed and their general behavior is well-understood. We can prove that the
quicksort algorithm, for example, can sort any list and there are bounds on how much “work” it
takes in terms of its time and space complexity.
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Suppose instead we only had only tested sorting programs on some lists. Suppose we had a
library of 10,000 lists and we had a program that could sort some of the at least mostly correctly.

It helps that sorting is a well-defined problem, and an algorithmic solution is not hard to
develop and prove that it succeeds on any list.

Another analogy I want to try to draw here maze solving, which is a more complicated prob-
lem than sorting lists.

How can we solve a maze? We have to define the problem we are trying to solve.
• Which mazes to do you wish to solve?
• What kind of information do you have about the maze?
• What counts as success?

The analogy I want to draw is along these lines.
• formal language ∼ maze
• classes of languages ∼ classes of mazes
• learning strategy ∼ maze-solving strategy
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