Lesson 6

Stochastic Stringsets
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6.1 Stochastic Stringsets and Parametric Language Models

So far, we have mostly studied the problem of learning grammars which classify strings as belong-
ing to some formal language or not. That is we have studied the learning of functions of the form
f:¥* — {0,1}. Many are also interested in learning probability distributions over Sigma*, that
is functions of the form f : ¥* — [0, 1] subject to the constraint that ) 0 ... f(w) = 1. Functions
which classify strings yield formal languages (i.e. stringsets), and functions which assign prob-
abilities to strings yield stochastic formal languages (stochastic stringsets). This section is about
learning stochastic stringsets, for which there is a vast literature we only scratch the surface of
here.

Nonetheless, there are a few major lessons I want to get across.

1. Both long-term (e.g. PAC) and short-term learning criteria (e.g MLE) exist which can be
used to understand the general behavior of learning algorithms.

2. The problem of learning functions which assign probabilities to strings typically comes
down to assigning values to parameters. In other words, the concept class and possible hy-
potheses are defined parametrically. Learning the correct function then means finding the
true values of the parameters. (There are also non-parametric models and methods. These
actually do not eliminate parameters altogether, but they do have a bit more flexibility
about what the parameters are. The parameters are not fixed.)

3. The problem of learning functions which assign probabilities to strings typically assumes
that the data has been generated i.i.d. according to the true values of the parameters.

4. When the parametric models are deterministic, theoretical solutions exist. Still, additional
heuristics are usually needed in real-world applications (Jurafsky and Martin, 2008).

5. When the parametric models are non-deterministic, there are guarantees to find “local op-
tima” but not the true parameter values, unless various additional assumptions are made
on the hypothesis space.

6. In general, independence-like assumptions (that factor the concept class in a natural way)
are extremely useful for both deterministic and non-deterministic models (Ghahramani and
Jordan, 1997; Hsu et al., 2012; Shibata and Heinz, 2019).

7. How do stochastic stringsets relate to linguistics? Many equate likelihood with acceptabil-
ity but this is a conceptual error (Heinz and Idsardi, 2017).

8. That said, there is a lot of really interesting work on learning stochastic stringsets and
functions of the form f : ¥* — R more generally.

6.1.1 Parametric Models

We begin with the simplest parametric model I know of: the unfair coin. A fair coin has equal
probability of landing heads or tails when flipped. An unfair coin has probabilty § of landing
heads and probability 1 — 6 of landing tails. So a fair coin is the special case of an unfair coin
when 6 = 0.5. This probability 6 is the sole parameter in our model of unfair coins.’

Another very simple parametric model is often called a unigram model. In this model, there
are parameters for each symbol in the alphabet in addition to a parameter signaling the end of
the sequence. It assumes that the probability of the next event in the sequence are completely

This unfair coin model does not yield a probability distribution over {H,T}* because there is no end to the
sequence of flips.
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independent. For example if > = {a, b, ¢} then there are four parameters: 6,, 0, 0., and 6,.. These
must sum to 1. The probability of a string 0,03 . .. 0, is simply the product 0,,0,, ...0,,0,,.

For both simple parametric models above, the concept class is defined simply by considering
all possible values the parameters can take on. We will denote this set of possible parameter values
with ©. Since the parameters are real numbers in [0, 1], these hypothesis spaces are infinite in
size (but obviously very well structured).

6.1.2 What does learning mean?

With these two simple models in mind, we can begin to formulate learning problems. In both
cases we want algorithms which provide “good” estimations of the parameter values from data.
Parametric models usually have more than one parameter, but they only ever have finitely many
parameters. Notationally, a single symbol § € O is used to represent all parameter values.

In the case of the unfair coin, what kind of procedure gives us a good estimate of § from
observed coin flips of some unfair coin? In the case of the unigram model, what kinds of procedure
gives us a good estimate of ¢ from an observed sample of strings? Both these questions amount
to coming up with values for the parameters in the model that are “close” to the true values. In
both examples, the assumption is that the function we want to find is the function generating the
data.

6.1.3 Learning Criteria

Here are some common learning criteria in this setting.

+ A learning algorithm A is a consistent estimator for a parametric model M iff for
all # € O, given data randomly presented i.i.d. according to 0, the algorithm’s estimates of
the parameters A(D) = 0 approaches the true value of 6. Formally, foralle > 0, 3n such
that Vin > n we have [0,, — 0 < .

+ A learning algorithm A is a maximum likelihood estimator for a parametric model
Mpg iff given any finite set of data D randomly presented i.i.d. according to 6, the al-
gorithm’s estimates of the parameters A(D) = f maximizes the probability of D with
respect to all other possible values of the parameters in M. Formally, for all theta’ € ©
Pry (D | 6) > Pry (D | #). (Note Pry (D | 6) is often called the likelihood function.)

It is well-known that estimators that maximize the likelihood are also consistent estimators.

Other learning criteria of course have been studied too. We start here because they are simple,

straightforward, and encompass both long-term and short-term criteria for understanding the
general behavior of learning algorithms.

6.1.4 Finding the MLE

There are generally two strategies for finding MLE: analytic solutions and hill-climbing.

The simple parametric models above, the unfiar coin and the unigram model, have analytic
solutions. In both cases, one can prove that the relative frequencies of the observed symbols
yields the MLE. Specifically, for the unfair coin, given n flips of the coin,a the estimate = @

is the MLE where c¢(H) is the number of times the coin landed heads. For the unigram model,
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for each symbol o € X, the estimate 0; = % is the MLE. For a proof of the latter, see the
appendix.

In the absence of analytic solutions, the hill-climbing strategy is used. This strategy first sets
the parameter values arbitrarily, and then repeats the following process. It finds the direction of
steepest ascent—called the gradient—and adjusts the paremeters a small amount in that direction.
This is repeated until the new parameter values are not that different from the previous parameter
values. In that case, we are at, or arguably very close, to the top of the hill. Hill-climbing is not
guaranteed to find the MLE, though is is guaranteed to find local optima. Hill-climbing is a
general strategy to find local optima of any kind (not just for finding the MLE).

6.1.5 Probabilistic Determinsitic Finite-State Acceptors

Every deterministic finite-state acceptor (DFA) is a parametric model defining a family of stochas-
tic stringsets. The parameters are probabilities on the transitions at each state (including ending)
subject to the constraint that these sum to 1. The analytic solution for unigram model gener-
alizes to every state in the DFA (see appendix). This yields the general strategy for finding the
MLE classes defined with DFA. Pass the dataset D through the DFA counting each time a transi-
tion is passed. Once all the counts have been obtained convert the counts into probabilities via
normalization.

Note there are many interesting classes of DFA, most of which have not been studied in this
way.

6.1.6 N-gram Models

N-gram models are stochastic strictly k-local stringsets where n = k. The states correspond to
the most recent n— 1 symbols. Each transition is thus the probability that a symbol o is generated
given the previous n — 1 symbols. So a trigram’s models parameters are of the form Pr(c | ab)
where a,b,c € Y. This corresponds to the transition from state ab with input c. In the figure
they correspond to the class D (Definite).

6.1.7 Smoothing and Interpolation

The MLE may not make good predictions in practice, especially in the context of sparse data.
Smoothing and interpolation are two common techniques (Jurafsky and Martin, 2008).

I find interpolation interesting because at its heart the idea is to combine models. Suppose
you have three models M, M,, and M3 (say three DFA). Given a data set D you can find the MLE
estimates for each their parameters. Interpolation would be a meta model with three hyperpa-
rameters iy, ho, hs which sum to 1 in order to assign a probability to a string as follows.

PT(U)) = thl(w) -+ thg(’w) -+ thg(U))
In practice, values for the hyperparameters are found using the validation/development data set.
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6.1.8 Probabilistic Non-determinstic Finite-State Acceptors

PNFA are equivalent in expressivity to Hidden Markov Models. The main method used here is
expectation-maximization ().

6.1.9 Probabilistic Context Free Grammars
6.1.10 Entropy

6.1.11 Maximum Entropy Models

6.1.12 Perplexity

6.1.13 Likelihood and Acceptability
Appendix

Probability distributions over words

A stochastic language is a probability distribution over all logically possible words. This distribu-
tion is given by a vector of parameters © and some formula for how probabilities of words are
determined given ©. The range of values O can take while preserving a well-formed probability
distribution over words yields a family of distributions. A sample of data D from the stochastic
language is a (multi)set of words drawn from this distribution (i.i.d).

The likelihood function is the probability of the data D given a vector of parameters O (so the
likelihood function is always discussed in the context of some family of stochastic languages).

Le(D) = [ Pre(w) (6.1)

The maximum likelihood estimate of the data D with respect to the vector of parameters ©
are those parameter values which maximize the likelihood function.

MLEg(D) = © = argmax Le(D) (6.2)
S

Unigram models

There are |X| 4 1 parameters. For all ¢ € ¥, we write 6, for the Pr (o), and 6; for the probability
of the word ending. We refer to these parameters collectively as ©.

Let ¥y = ¥ U {#}. By definition
> 0, =1 (6.3)
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The probability of a word according to a unigram model is

PT‘@(IU =01. ~-Um) = ( H 601‘) Qﬁ (6.4)

1<i<m

= (H egdff)) 0, (6.5)

oEY

It follows for some (multi)set D that the likelihood function is

Pre(D) = (H 9;“”) 07! (6.6)

oeX

For convenience we let ¢(f) denote | D|, and so we can rewrite Equation 6.6 as

L@(D) = PT’@(D)

= (H 900(‘7)> Qﬁc(ﬁ) (6.7)

oeY

=[] ¢ (6.8)

O‘EEu

We want to find the values of 6, that maximize the likelihood function. For reasons that will
become clear momentarily, we first rewrite the likelihood form in a slightly more complex form,
by singling out some other 7 € >J;. Recall by definition that

O,=1- > 0, (6.9)

oeXy/{7}

In other words, once the |3| other parameters are fixed, 0, is too. This is because the parameters
are not independent (recall Equation 6.3).
Thus:

o= II ¢ |6 (6.10)

oEDy oexy/{r}

e(7)

_ H 9, 1 Z 0, (6.11)

oexy/{r} oexy/{r}

We take the partial derivative of Equation 6.11, for all ¢ € X;/{7}, with respect to each 6,
using the product and chain rules below.

product rule:  -(f() g()) = L f(2) g(z) + F9(z) f(2)

7
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chainrule: £ f(g(x)) = £ [(g(x)) Lg(x)

The partial derivatives yield a system of equations. Each equation has the form shown in
Equation 6.12.

c(7)
oL ~
T (5)pce)—1 c(o) _
90, c(0)05 | | 0, 1 E 0,

€%y /{r,5} o€y /{r}

c(r)—-1

—cm) | JI 6" [1- > 6 (6.12)

oexy/{r} oexy/{r}

We substitute 0, back in and simplify

oL _
Y= —\p c(a)-1 c(o) c(t) _ c(o) e(r)—1
0.~ ()05 11 7 0, 0. cr) | I ¢ 0. (6.13)
oeXy/{r,c} oexy/{r}
= c(a)0:" | I 0| —etn | ] 670 (6.14)
oexy/{o} o€y /{r}
=070, T 0,57 | (c(8)6: — e(7)05) (6.15)
oexy/{o,m}

For each ¢ € X;/{7}, we obtain an equation and we want solve this system of equations
where, for each ¢ € ¥;/{7}, it is the case that gTL& = 0.

In order to make gTLT = (), either the left term or the right term in Equation 6.15 must equal 0.
The left term can equal zero by making any of the parameters 6, (¢ # 7) equal to zero. However,
assuming the nonzero counts, the likelihood function (Equation 6.8) will also be zero.” This is
probably not going to be a maximum. Therefore we consider what is necessary to make the
right term equal to zero. In other words for each & € 3;/{7} , we want to solve this system of
equations.

c(0)f, —c(1)0; =0 (6.16)
proof 1
We can solve for both 65 and 0.
05, = ()6 (6.17)
c(7)
And similarly, solving for 6. yields
g — 1) (6.18)

2 Also assuming that 0° = 1.
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Note the equations above hold for any ¢ € ¥;/{7}. Thus for any 0,6 € ¥;/{7}, 05 and 6,
can be related by substituting Equation 6.18 for 6. in Equation 6.17 as follows.

(o) ()05
0, = o(r) (o) (6.19)
which simplifies to
6, = (o)l (6.20)

c(a)

We use this result in Equation 6.20 back in Equation 6.16 since, for all o € ¥ /{7, 7}, every 6, can
be written in terms of 65, ¢(0), and ¢(7).

This substitution happens in Equation 6.23. We can then solve for 65 in terms of the counts
c(o) for all o € ¥4/{7}. Here is Equation 6.16 again.

c(0)0, —c(1)b; =0 (6.16)

@)1= D b0, | —c(r)b=0 (6.21)
oexy/{r}

@) [1-0,— > b, | —c(r)b=0 (6.22)
oeXy/{o,7}

@) [1-6,— > A9)0s ) _ (v, = 0 (6.23)

oexy/{o,m} c(o)
(o) = c()bs — > (o) —c(T)05 =0 (6.24)
oexy/{a,7}

c(3) = > c(0)by =0 (6.25)

oEYy
c(a) — 05 c(o) =0 (6.26)
o€y
@) _y (6.27)

And there we have it! In fact the MLE estimate of 0; is the relative frequency of 5’s occurences
with respect to all other o € 4. Since 7 was arbitrarily selected, the value of 6, is determined in
exactly the same way (and of course is fixed as this by the results of the other 0,).

9
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Proof 2

Recall the system of equations for all & € ¥;/{7}:
c(0)0, —c(1)8; =0

Summing all of these equations yields an equation that allows us to solve for 0.

D> (c(0)by —c()8,) =0

oexy /{r}
Y oelo)— D )b, =0
oeXy/{1} oeXy/{1}
0, Z c(o) —c(7) Z 0, =0
oeXy/{1} oexy/{r}
0, > clo)—c(r)(1-06,)=0
oexy/{r}

Solving for 6, yields
0, > clo)—c(r)(1-06.)=0

oeXy/{}

0, Z c(o) —c(r) +e(1)0 =0

oeXy/{r}

0. Z clo)+ce(r) | —e(r)=0

oexy /{r}

0, > clo)—c(r)=0

oEDy
0, =
Since 7 was aribitrary, it follows this true for all o € ;.

Rational deterministic stochastic languages

o(7)
Zaezu c(0)

(6.16)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

Consider any deterministic finite-state automata A. Let () refer to the states of this automata, and
let gy € @ be the intial state. Let the transition function be a partial function 6 : @ x ¥ — Q.

This is extended to strings in ¥* in the usual way. So d(¢q, ) = q etc.

10
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A describes a family of stochastic languages with |Q|(|X| 4 1) parameters. These parameters
are, forall g € ) and 0 € X,
Pr(c|q) =0,

In other words, the probabilities at each state of following path labeled o or ending. The proba-
bilities of words can be determined as follows.

Pr(oy---on) = (H 95(qo,ai)ai+1>> Os(qo.01--) (6.38)
i=0
By convention let d(qo, 09) = 0(qo, A). For example, let w = abcde. Then
Pr(w) = 95((]0,/\)a 65(qo,a)b eé(qo,ab)c 95(q0,abc)d eé(qo,abcd)e eé(qo,abcde)ﬁ
Forall ¢ € Q, 0 € ¥, and w € ¥*, define the counting function ¢,,(¢qo) as follows
cw(qo) = {ur € Pfx(w) : 0(qo,u) = qgand 7 = o}

When w is clear from context, it is omitted. We extend the domain of the count function from
words to multisets of words in the normal way.
Then we can rewrite Equation 6.38 as follows.

Pr(w) = [ J] 0 | Ostqo0 (6.39)
oEeY
q€Q

It follows for some (multi)set D that the likelihood function is

Pr(D) = | [] 6s (H eqﬂqﬁ)) (6.40)

oEY qeQ
q€Q

= | ] 00" (6.41)
O'Ezu
q€qQ

where for convenience we let ¢(¢ff) denote the number of words in D which ended at state ¢.
For each g € (@), it is the case (by definition) that

Thus for any 7 € Xy, it is the case that

O =1= D Oy (6.42)

oexy/{r}

11
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And thus the likelihood function in Equation 6.41, for each ¢ € (), can be rewritten as follows.

c(qr)
PriD)=1| I 0™ |{1= D 6w (6.43)
oexy/{r} oexy/{r}
9€Q
And now, for each ¢ € ¥;/{7} and ¢ € ), we take the partial derivative with respect to each
0o

e(qr)
aL - c(qo)— clgo
o= (qo) 0z H 0,017 1— Z 050
qo oesy/{r,} oexy/{1}
q€Q
(6.44)
c(qr)—1
—c@) | JI 6|1 > b
aezé/{T} oexy/{r}
qem

This is virtually identical to Equation 6.12. The same treatment used in the unigram case will
yield that, For any ¢ € 7 and & € X, the maximum likelihood estimate of 0 is

c(qo)

o = 1T __
! ZO’GEu C<q0)

(6.45)
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