
Lesson 4

Identification in the Limit

1

Learnability – October 18, 2022 © Jeffrey Heinz

4.1 One reason defining learning is hard
A definition of a learning problem requires specifying the instances of the problem and specifying
what counts as correct answers for these instances. This means thinking carefully about an
interaction between three items: the learning targets, the learning algorithm, and the input to
the learning algorithm, which can be thought of as the available evidence.

This is difficult because we have to confront the question “Which inputs is it reasonable to
expect the learning algorithm to succeed on?” For example, if we are trying to identify a stringset
S which is of infinite size but the evidence for S contains only a single string s ∈ S then we may
feel this places an unreasonable burden on the learning algorithm. What is at stake here was
expressed by Charles Babbage:

On two occasions I have been asked [by members of Parliament], “Pray, Mr. Bab-
bage, if you put into the machine wrong figures, will the right answers come out?” I
am not able rightly to apprehend the kind of confusion of ideas that could provoke
such a question. as quoted in de la Higuera (2010, p. 391)

It’s unfair to expect a summation algorithm to succeed if the input is wrong. More generally,
how do we define learning in such a way so that the input to the algorithm is not “wrong”. What
does it mean to have input of sufficient quality in learning? We want to only consider instances
of the learning problem that are reasonable or fair. But nailing that down precisely is hard! In
fact, what we will see is that this is an ongoing issue and there are many attempts to address it.
The issue is a live one today.

4.2 Identification in the limit
Gold (1967) provided some influential definitions of learning. He called his approach identifica-
tion in the limit. He provided not one, but several definitions, and he compared what kinds of
stringsets were learnable in these paradigms.

No one I know knows what happened to Gold. He seems to have disappeared from academia
in the 1980s.

Gold conceptualized learning as a never-ending process unfolding in time. Evidence is pre-
sented piece by piece in time to the learning algorithm. The learning algorithm outputs a program
with each piece of evidence it receives based on its experience up to the present moment. As time
goes on, the programs the learning algorithm outputs must be identical and they must exactly
represent the target concept to be learned. In the case of learning formal languages, this means
that given a data presentation for a formal language L, the learning algorithm must begin to
consistently output a grammar G and that the language of G must equal L.

Let us explain the notation in the figure. The notation t(n) means the evidence presented at
time n. This notation suggests that evidence can be understood as a function with domain N.

The notation tn refers to the sequence of evidence up to the nth one. For example, t3 means
the finite sequence t(1), t(2), t(3). In mathematics, angle brackets are sometimes used to denote
sequences so some mathematicians would write this sequence as 〈t(1), t(2), t(3)〉.

2

Learnability – October 18, 2022 © Jeffrey Heinz

Time t 1 2 3 4 … n …

Evidence at time t t(1) t(2) t(3) t(4) … t(n) …

Input to Algorithm at time t t1 t2 t3 t4 … tn …

Output of Algorithm at time t G1 G2 G3 G4 … Gn …

Figure 4.1: A schema of the Identification in the Limit learning paradigm

The notation Gn refers to the program output by the algorithm with input tn. If A is the
algorithm and n is any point in time, we can write A(tn) = Gn.

There are two important ideas in this paradigm. First, a successful learning algorithm is one
that converges over time to a correct generalization. At some time point n, the algorithm must
output the same program and this program must solve the membership problem for S. This
means the algorithm can make mistakes, but only finitely many times.

Second, which infinite sequences of evidence learners must succeed on? Which are the ones
of sufficient quality? Gold defined required these sequences to be representative of the target
stringsets. Each possible piece of evidence occurs at some point in the unfolding sequence of
evidence. Lest we think this is too good to be true, recall that the input to the learner at any
given point n in time is the finite sequence tn, and that to succeed, it is only allowed to make
finitely many mistakes.

4.2.1 Definition of identification in the limit from positive data
The box below precisely defines the paradigm when learning from positive data. Let us define
the “evidence” when learning from positive data more precisely. A positive presentation of a
stringset S is a function t : N → S such that t is onto. Recall that a function f is onto provided
for every element y in its co-domain there is some element x in its domain such that f(x) = y.
Here, this means for every string s ∈ S, there is some n ∈ N such that t(n) = s.

Definition 1 (Identification in the limit from positive data).

Algorithm A identifies in the limit from positive data a class of stringsets C provided
1

for all stringsets S ∈ C ,2

for all positive presentations t of S,3

there is some number n ∈ N such that4

for all m > n,5

• the program output byA on tm is the same as the the program output
by A on tn, and

6

7

• the program output by A on tm solves the membership problem for
S.

8

9

Here is breakdown of what these lines mean.
Line 1 Establishes the name of the relationship between an algorithm A and a collection of

stringsets C provided the definition holds.

3

Learnability – October 18, 2022 © Jeffrey Heinz

Line 2 The algorithm must succeed for all S ∈ C .
Line 3 The algorithm must succeed for all positive presentations t of S.
Line 4 It succeeds on t for S if there is a point in time n
Line 5 such that for all future points in time m,
Lines 6-7 the output of A converges to the same program, and
Lines 8-9 the output of A correctly solves the membership problem for S.
This paradigm is also called learning from text.

4.3 Examples: Learning from positive data

4.3.1 The Strictly k-Piecewise Stringsets
Here we present an algorithm and prove that it identifies the Strictly k-Piecewise (SPk) stringsets
in the limit from positive data. SP stringsets were proposed to model aspects of long-distance
phonotactics Heinz (2010a), motivated on typological and learnability grounds. The learning
scheme discussed here exemplifies more general ideas Heinz (2010b); Heinz et al. (2012).

The notion of subsequence is integral to SP stringsets. Informally, a string u is subsequence of
string v if one is leftwith u after erasing zero ormore letters in v. For example, ab is a subsequence
of ccccccacccccccccbccccccc. Formally, u is a subsequence of v (u v v) provided there are strings
x1, x2, . . . xn and strings y0, y1, . . . yn such that u = x1x2 . . . xn and v = y0x1y1x2y2 . . . xnyn. It
is the yi strings that erased in v to leave u.

A stringset S is Strictly Piecewise if and only if it is closed under subsequence. In other words,
if s ∈ S then every subsequence of s is also in S.

A theorem shows that every SP stringset S has a basis in a finite set of strings (Rogers et al.,
2010). These strings can be understood as forbidden subsequences. That is any string s ∈ Σ∗

containing any one of the forbidden subsequences is not in S. Conversely, any string s which
does not contain any forbidden subsequence belongs to S.

The same theorem shows that a SP stringset S can be defined in terms of a finite set of per-
missible subsequences. Because the set is finite, there is a longest string in this set. Let its length
be k. In this case, any s ∈ Σ∗ belongs to S if and only if every one of its subsequences of length
k or less is permissible.

In other words we can define SPk stringsets as follows. Let a grammar G be a finite subset
of Σ∗ and let k be the length of a longest string in G. Let subseqk(s) = {u | u v s, |u| ≤ k}.
The “language of the grammar” L(G) is defined as the stringset {s | subseqk(s) ⊆ G}. We are
going to be interested in the collection of stringsets SPk, defined as those stringsets generated
from grammars G with a longest string k. Formally,

SPk
def
= {S | G ⊆ Σ≤k, L(G) = S} .

This is the collection C of learning targets.
For any presentation φ and time n, define k-SPIA (Strictly k-Piecewise Inference Algorithm)

as follows

k-SPIA
(
tn
)
=

{
∅ if t = 0
k-SPIA(tn−1) ∪ subseqk(t(n)) otherwise

4

Learnability – October 18, 2022 © Jeffrey Heinz

Note that we are being a little sloppy here. Technically, the output of k-SPIA given some
input sequence is a set of subsequences G, not a program. What we really mean with the above
is that k−SPIA outputs a program which uses G to solve the membership problem for L(G) =
{w | subseqk(w) ⊆ G}. This program looks something like this.

1. INPUT: any word w.
2. If subseqk(w) ⊆ G then OUTPUT Yes, otherwise OUTPUT No.

All k−SPIA does is update this program simply by updating the contents of G.

Theorem 1. For each k, k−SPIA identifies in the limit from positive data the collection of stringsets
SPk.

Proof. Consider any k ∈ N. Consider any S ∈ SPk. Consider any positive presentation t for S. It
is sufficient to show there exists a point in time n` such that for all m ≥ n` the following holds:

1. k-SPIA(tm) = k−SPIA(tn`
) (convergence), and

2. k-SPIA(tm) is a program that solves the membership problem for S.
Since S ∈ SPk, there is a finite set G ⊆ Σ≤k such that S = L(G).
Consider any subsequence g ∈ G. Since g ∈ G there is some wordw ∈ S which contains g as

a k-subsequence. SinceG is finite, there are finitely many such w, one for each g inG. Because t
is a positive presentation for S, there is a time t where each of these w occurs. For each w let nw

be the first occurrence of w in t. Let n` denote the latest time point of all of these time points nw.
Consider any m ≥ n`. The claim is that k-SPIA(tm) = k−SPIA(tn`

) = G. For each g in G, a
word containing g as a subsequence occurs at or earlier than n` and so g ∈ k−SPIA(tm). Since g
was arbitrary in G, G ⊆ k−SPIA(tm).

Similarly, for each g ∈ k−SPIA(m), there was some word w in t such that w contains g
as a subsequence. Since t is a positive presentation for S, w is in S. Since w belongs to S,
subseqk(w) ⊆ G and so g belongs to G. Since g was arbitrary in k-SPIA(m) it follows that
k-SPIA(m) ⊆ G.

It follows k-SPIA(m) = G.
Since m was arbitrarily larger than n` we have both convergence and correctness.
Since t was arbitrary for S, S arbitrary in SPk and k arbitrary, the proof is concluded.

4.3.2 The Strictly k-Local Stringsets
Here we present an algorithm and prove that it identifies the Strictly k-Local (SLk) stringsets in
the limit from positive data. The first proof of this result was presented by Garcia et al. (1990),
though the Markovian principles underlying this result were understood in a statistical context
much earlier. The learning scheme discussed there exemplifies more general ideas (Heinz, 2010b;
Heinz et al., 2012).

The notion of substring is integral to SL stringsets. Formally, a string u is substring of string
v (u E v) provided there are strings x, y ∈ Σ∗ and v = xuy. Another term for substring is factor.
So we also say that u is a factor of v. If u is of length k then we say u is a k-factor of v.

A stringset S is Strictly k-Local if and only if there is a number k such that for all strings
u1, v1, u2, v2, x ∈ Σ∗ such that if |x| = k and u1xv1, u2xv2 ∈ S then u1xv2 ∈ S. We say S is
closed under suffix substitution (Rogers and Pullum, 2011).

A theorem shows that every SLk stringset S has a basis in a finite set of strings (Rogers and
Pullum, 2011). These strings can be understood as forbidden substrings. Informally, this means

5

Learnability – October 18, 2022 © Jeffrey Heinz

any string s containing any one of the forbidden substrings is not in S. Conversely, any string s
which does not contain any forbidden substring belongs to S.

The same theorem shows that a SL stringset S can be defined in terms of a finite set of permis-
sible substrings. In this case, s belongs to S if and only if every one of its k-factors is permissible.

We formalize the above notions by first defining a function the factork, which extracts the
substrings of length k present in a string, or those present in a set of strings. If a string s is of
length less than k then factork just returns s.

Formally, let factork(s) equal {u | u E s, |u| = k} whenever k ≤ |s| and let factork(s) =
{s}whenever |s| < k. We expand the domain of this function to include sets of strings as follows:
factork(S) =

⋃
s∈S factork(s).

To formally define SLk grammars, we introduce the symbols o and n, which denote left and
right word boundaries, respectively. These symbols are introduced because we also want to be
able to forbid specific strings at the beginning and ends of words, and traditionally strictly local
stringsets were defined to make such distinctions (McNaughton and Papert, 1971). Then let a
grammar G be a finite subset of factork({o}Σ∗{n}).

The “language of the grammar” L(G) is defined as the stringset {s | factork(osn) ⊆ G}.
We are going to be interested in the collection of stringsets SLk, defined as those stringsets gen-
erated from grammars G with a longest string k. Formally,

SLk
def
= {S | G ⊆ factork({o}Σ∗{n}), L(G) = S} .

This is the collection C of learning targets.
For all S ∈ SLk, for any presentation φ and time n, define k-SLIA (Strictly k-Local Inference

Algorithm) as follows

k-SLIA
(
tn
)
=

{
∅ if t = 0
k-SLIA(tn−1) ∪ factork(ot(n)n) otherwise

Exercise 1. Prove algorithm k-SLIA identifies in the limit from positive data the collection of stringsets
SLk.

Note that we are being a little sloppy here. Technically, the output of k-SLIA given some
input sequence is a set of factors G, not a program. What we really mean with the above is that
k-SLIA outputs a program which uses G to solve the membership problem for L(G) = {w |
factork(own) ⊆ G}. This program looks something like this.

1. INPUT: any word w.
2. If factork(own) ⊆ G then OUTPUT Yes, otherwise OUTPUT No.

All k-SLIA does is update this program simply by updating the contents of G.

Theorem 2. For each k, k-SLIA identifies in the limit from positive data the collection of stringsets
SLk.

Proof. Consider any k ∈ N. Consider any S ∈ SLk. Consider any positive presentation t for S. It
is sufficient to show there exists a point in time n` such that for all m ≥ n` the following holds:

1. k-SLIA(tm) = k-SLIA(tn`
) (convergence), and

2. k-SLIA(tm) is a program that solves the membership problem for S.

6

Learnability – October 18, 2022 © Jeffrey Heinz

Since S ∈ SLk, there is a finite set G ⊆ Σ≤k such that S = L(G).
Consider any factor g ∈ G. Since g ∈ G there is some word w ∈ S which contains g as a

k-factor. Since G is finite, there are finitely many such w, one for each g in G. Because t is a
positive presentation for S, there is a time t where each of these w occurs. For each such w let
nw be the first occurrence of w in t. Let n` denote the latest time point of all of these time points
nw.

Consider any m ≥ n`. The claim is that k-SLIA(tm) = k-SLIA(tn`
) = G. For each g in G, a

word containing g as a factor occurs at or earlier than n` and so g ∈ k-SLIA(tm). Since g was
arbitrary in G, G ⊆ k-SLIA(tm).

Similarly, for each g ∈ k-SLIA(tm), there was some word w in t such that w contains g as a
factor. Since t is a positive presentation for S, w is in S. Since w belongs to S, factork(w) ⊆ G
and so g belongs to G. Since g was arbitrary in k-SLIA(tm) it follows that k-SLIA(tm) ⊆ G.

It follows k-SLIA(m) = G.
Since m was arbitrarily larger than n` we have both convergence and correctness.
Since t was arbitrary for S, S arbitrary in SLk and k arbitrary, the proof is concluded.

4.4 Results
In this chapter review general results in the identification in the limit paradigm. We begin with
some theorems for learning from positive data.

We have already seen that the following classes of languages are identifiable in the limit from
positive data.

1. For each k ∈ N, SPk

2. For each k ∈ N, SLk

3. BAR-X = {x̄ | x ∈ Σ∗}. Recall x̄ def
= {w ∈ Σ∗ | w 6= x}.

The following classes of stringsets are fundamental ones in formal language theory so itmakes
sense to be curious about their learnability.

1. The class of finite stringsets (FIN).
2. The class of regular stringsets (REG).
3. The class of context-free stringsets (CF).
4. The class of context-sensitive stringsets (CS).

These are in the following relationship: FIN (REG (CF (CF.

4.5 Identification in the limit from positive data
Theorem 3. FIN is identifiable in the limit from positive data.

Exercise 2. Prove this theorem. (Hint: FIN can be learned with string extension learning.)

Any class which includes every finite language and at least one more is a superfinite class of
languages.

Theorem 4. No superfinite class of stringsets is identifiable in the limit from positive data.

There are different ways to prove this theorem. Here is one based on (de la Higuera, 2010,
p. 151).

7

Learnability – October 18, 2022 © Jeffrey Heinz

sketch. Consider any superfinite class of languages C . By definition C includes all finite lan-
guages and at least one infinite language L∞.

Let x1, x2, . . . be the infinitely many words of L∞.
Let L1 = {x1}, L2 = L1 ∪ {x2}, L3 = L2 ∪ {x3}, and so on. So Lk = Lk−1 ∪ {xk}. For each

k ∈ N, Lk ∈ C since Lk is finite.
For the sake of contradiction, assume there is an algorithm A that identifies C in the limit

from positive data. We will show there is a presentation for L∞ for which A fails to converge.
Pick a presentation t1 for L1. Since A identifies L1 in the limit, there is a convergence point

i1 such that A outputs a grammar for L1 on t1[i1]. Let t2 be some presentation of L2 such that for
all j < i1, t2(j) = t1(j). In other words t2 is the same as t1 up to point ii. Since A identifies L2

in the limit, there is a convergence point i2 > i1 such that A outputs a grammar for L2 on t2[i2].
More generally, let tk be some presentation of Lk such that for all j < ik−1, tk(j) = tk−1(j) and
tk(ik−1 + 1) = xk. Since A identifies Lk in the limit, there is a convergence point ik such that A
outputs a grammar for Lk on tk[ik].

In this manner we construct a presentation t∞ for L∞ as follows. For any i ∈ N, there exists
j, j + 1 such that ij < i ≤ ij+1. Let k equal j + 1. Then t∞(i) equals tk(i).

How does A behave on t∞? It does not converge. This is because for all k ∈ N, at time point
ik, A will output a program for Lk. So it never converges to a grammar for L∞ even though t∞
is a positive presentation for L∞.

Gold explains the idea behind his result this way.

It is of great interest to find why information presentation by text is so weak and
under what circumstances it becomes stronger. Therefore, it is worthwhile to under-
stand the method used in Theorems I.8 and I.9 to prove that any class of languages
containing all finite languages and at least one infinite language is not identifiable in
the limit from a text in five out of six of the models using text.

The basic idea is proof by contradiction. Consider any proposed guessing algorithm.
It must identify any finite language correctly after a finite amount of text. This makes
it possible to construct a text for the infinite language which will fool the learner into
making a wrong guess an infinite number of times as follows. The text ranges over
successively larger, finite subsets of the infinite language. At each stage it repeats
the elements of the current subset long enough to fool the learner. Thus, the method
of proof of the negative results concerning text depends on the possibility of there
being a huge amount of repetition in the text. Perhaps this can be prevented by some
reasonable probabilistic assumption concerning the generation of the text. In this
case one would only require identification in the limit with probability one, rather
than for every allowed text.

I have been asked, “If information presentation is by means of text, why not guess
the unknown language to be the simplest one which accepts the text available?” This
is identification by enumeration. It is instructive to see why it will not work for most
interesting classes of languages: The universal language (if it is in the class) will have
some finite complexity. If the unknown language is more complex, then the guessing
procedure being considered will always guess wrong, since the universal language
is consistent with any finite text. This follows from the fact that, if L is the unknown

8

Learnability – October 18, 2022 © Jeffrey Heinz

language and if L’ ⊃ L, then L’ is consistent with any finite segment of any text for
L. The problem with text is that, if you guess too large a language, the text will never
tell you that you are wrong.

It immediately follows that the class of regular, context-free, context-sensitive, and com-
putably enumerable classes of stringsets are not identifiable in the limit from positive data.

Furthermore, for every finite stringset S, there is some k such that S is Strictly k-Local. Thus
FIN(SL. Hence neither SL nor LT nor LTT nor TSL is identifiable in the limit from positive data.

Theorem 5 (Angluin 1980). A class C is identifiable in the limit from positive data iff for each
S ∈ C there is a finite set D ⊆ S such that for all S ′ ∈ C such that D ⊆ S ′ it holds that S ′ 6⊆ S.

Pictorially, Figure 4.2 is the situation that cannot obtain.

Figure 4.2: No such L’ in every class identifiable in the limit from positive data!

Corollary 1. Every finite class of languages is identifiable in the limit from positive data.

Gold’s theorems and Angluin’s theorems above are the basis for the so-called “subset prob-
lem” in the linguistics literature on learning (Wexler and Culicover, 1980; Berwick, 1985).

The proof of the previous theorem ought to be presented.

4.6 Identification in the limit from positive and negative
data

A positive and negative presentation of a stringset S provides example strings not in S in
addition to example strings in S. This can be formalized using the characteristic function of S.
Every set S has a characteristic function with domain Σ∗ defined as follows.

fS(s) =

{
1 iff s ∈ S
0 otherwise

9

Learnability – October 18, 2022 © Jeffrey Heinz

Characteristic functions are total functions, which means defined for all s ∈ Σ∗. Also recall, that
we write (x, y) ∈ f whenever f(x) = y. So we can think of fS as a set of points where (s, 0)
means s 6∈ S and (s, 1) means s ∈ S.

Then a positive and negative presentation of a stringset S is a function ϕ : N → fS
such that ϕ is onto. Here, this means for every string s ∈ Σ∗, there is some n ∈ N such that
ϕ(n) = (s, fs(s)).

Definition 2 (Identification in the limit from positive and negative data).

Algorithm A identifies in the limit from positive and negative data a class of stringsets C
provided

1

2

for all stringsets S ∈ C ,3

for all positive and negative presentations t of S,4

there is some number n ∈ N such that5

for all m > n,6

• the program output byA on tm is the same as the the program output
by A on tn, and

7

8

• the program output by A on tm solves the membership problem for
S.

9

10

The only difference between the definition above and the one in Definition 1 is in line 3. This
paradigm is also called learning from an informant.

Theorem6. The computable class of languages is identifiable in the limit from positive and negative
data.

sketch. The algorithm proceeds by enumeration over programs. Since programs are strings, we
can essentially use the enumeration for strings we used before.

The learning algorithm finds the first program in the enumeration that successfully classifies
all of the data it has observed so far in t.

How does it do this? Well, it looks at the first program in the enumeration and submits
to it each data point ti. If the first program fails to compute anything, or classifies any one of
the data points incorrectly, the learning algorithm moves to the next program and checks again.
This repeats. Eventually, it must find a program which classifies all of the observed data points
correctly. At this point, it outputs this program.

How do we know this algorithm converges to a correct program for S? Well, there is a
program for S in the enumeration. There may bemore than one such program so let P be the first
program in the enumeration for S. Once the learning algorithm reaches P it will output P since
P will classify all data points from t correctly because t is a positive and negative presentation
of S.

How do we know the learning algorithm will eventually output P on any positive and neg-
ative data presentation t for S? Consider any program P ′ prior to P in the enumeration. Since
P is the first program in the enumeration for S, P ′ is not a program for S. It follows that there
is some w ∈ S, or w 6∈ S that P ′ misclassifies. It follows that there is some point in time i such
that t(i) = (w, x) with x ∈ {0, 1}. At this point the learning algorithm will conclude that P ′

10

Learnability – October 18, 2022 © Jeffrey Heinz

does not classify everything it has seen in t[i] correctly, and will move to the next program in
the enumeration. Since P ′ was arbitrary, it follows that the algorithm will eventually reach and
output program P .

4.7 Identification in the limit fromprimitive recursive texts
Recall that algorithms have to succeed for any text or from any informant. As we discuss later,
this has been one source of criticism of Gold’s learning paradigm.

Let’s consider texts for the moment. That is, let’s consider positive presentations for some
stringset S which has at least two strings in it. How many positive presentations are there? It
should be easy to see that there are infinitely many. If u, v are distinct words in S then a text
could start either u, v or u, u, v or u, u, u, v or u, u, u, u, v and so on. In fact, there are uncountably
many presentations for S. This can be shown by the same diaganolization argument that we used
earlier to show that there are uncountably many subsets of Σ∗.

We can also ask howmany of these presentations are computable? Provided there are at least
two strings in S, the answer is only countably many.

This situation is exactly analogous to the number of real numbers between 0 and 1, inclusive,
and the number of computable real numbers between 0 and 1, inclusive.

In other words, most of the presentations that the Gold paradigm is required to succeed on
are uncomputable. Some have argued this is not reasonable.

Regardless of whether it is or not, we may be interested in what changes if we change the
definition of learning to only require success on computable texts.

A particularly strong form of computability is computability via primitive recursion. This is
weaker than Turing-machine computable. For example, Turing machines are not guaranteed to
halt on input, but primitive recursive programs are guaranteed to halt. See Rogers (1967) for
details on primitive recursion.

Definition 3 (Identification in the limit from primitive recursive texts).

Algorithm A identifies in the limit from positive data a class of stringsets C provided
1

for all stringsets S ∈ C ,2

for all positive presentations t of S definable with primitive recursive functions,3

there is some number n ∈ N such that4

for all m > n,5

• the program output byA on tm is the same as the the program output
by A on tn, and

6

7

• the program output by A on tm solves the membership problem for
S.

8

9

The only difference between the definition above and the ones in Definitions 1 and 2 is in line
3.

Theorem 7. The recursive (computable) class of languages is identifiable in the limit from primitive
recursive texts.

11

Learnability – October 18, 2022 © Jeffrey Heinz

I’m not able at present to explain in detail this proof, so it is omitted. I think the basic ideas
are that (1) primitive recursive texts are enumerable and (2) it is possible to translate a primitive
recursive text into a grammar which recognizes a language equal to the content of the text (set
of strings in the text). So an algorithm can identify by enumeration the primitive recursive text
and thus the language the text is from.

Note there are distinctions between primitive recursive, recursive, and Turing computable.
Another result of Gold’s is that identification in the limit of superfinite language classes from
positive data definable with recursive functions is still impossible. These are worth studying in
more detail.

4.8 Gold’s interpretation of these results
From (Heinz, 2016):

Gold (1967:453-454) provides three ways to interpret his three main results:

1. The class of natural languages is much smaller than one would expect from
our present models of syntax. That is, even if English is context-sensitive, it is
not true that any context-sensitive language can occur naturally…In particular
the results on [identification in the limit from positive data] imply the follow-
ing: The class of possible natural languages, if it contains languages of infinite
cardinality, cannot contain all languages of finite cardinality.

2. The child receives negative instances by being corrected in a way that we do
not recognize…

3. There is an a priori restriction on the class of texts [presentations of data; i.e.
infinite sequences of experience] which can occur…

The first possibility follows directly from the fact that no superfinite class of languages is identi-
fiable in the limit from positive data. The second and third possibilities follow from Gold’s other
results on identification in the limit from positive and negative data and on identification in the
limit from positive primitive recursive data …

Each of these research directions can be fruitful, if honestly pursued. For the case of language
acquisition, Gold’s three suggestions can be investigated empirically. We ought to ask

1. What evidence exists that possible natural language patterns form subclasses of major re-
gions of the Chomsky Hierarchy?

2. What evidence exists that children receive positive and negative evidence in some, perhaps
implicit, form?

3. What evidence exists that each stream of experience each child is exposed to is guaranteed
to be generated by a fixed, computable process (i.e. computable probability distribution or
primitive recursion function)? More generally, what evidence exists that the data presen-
tations are a priori limited?

My contention is that we have plenty of evidence with respect to question (1), some evidence
with respect to (2), and virtually no evidence with respect to (3).

Finally, Gold concludes his paper this way.

Concerning inductive inference, philosophers often occupy themselves with the fol-
lowing type of question: Suppose we are given a body of information and a set of

12

Learnability – October 18, 2022 © Jeffrey Heinz

possible conclusions, from which we are to choose one. Some of the conclusions
are eliminated by the information. The question is, of the conclusions which are
consistent with the in- formation, which is “correct”?

If some sort of probability distribution is imposed on the set of conclusions, then the
problem is meaningful. But if no basis for choosing between the consistent conclu-
sions is postulated a priori, then inductive inference can do no more than state the
set of consistent conclusions.

The difficulty with the inductive inference problem, when it is stated this way, is
that it asks, “What is the correct guess at a specific time with a fixed amount of in-
formation?” There is no basis for choosing between possible guesses at a specific
time. However, it is interesting to study a guessing strategy. Now one can investi-
gate the limiting behavior of the guesses as successively larger bodies of information
are considered. This report is an example of such a study. Namely, in interesting
identification problems, a learner cannot help but make errors due to incomplete
knowledge. But, using an “identification in the limit” guessing rule, a learner can
guarantee that he will be wrong only a finite number of times.

4.9 Criticisms
1. Identification in the limit from positive data is too hard. The texts can be adversarial and

exact convergence is unreasonable.
2. Identification in the limit doesn’t address time or resource complexity of learning, which

is also unreasonable.
The first point, particularly the adversality of the texts, is argued by Clark and Lappin (2011). Of
course the texts are also complete in the sense that every string in the target language eventually
occurs. So while there are adversarial texts, the adversity is somewhat constrained.

The second point is about feasibility. Learning by enumeration is very, very far from efficient.
So even if every finite class of languages is identifiable in the limit from positive data, large
finite classes may not be efficiently learnable because learning by enumeration is awfully slow!
Similarly, Even if the recursive class is identifiable in the limit from primitive recursive text, it is
not efficiently learnable. So we need some way to identify feasibly learnable subclasses. On the
other hand, as defined identification in the limit paradigms can be understood about what is even
possible; that is, whether any algorithm even exists which can exhibit the desired behavior.

Much research since Gold has aimed to incorporate feasibility into learning. The Probably
Approximately Correct learning model is one influential example (Valiant, 1984; Anthony and
Biggs, 1992; Kearns and Vazirani, 1994).

Many researchers advocate a learning settingwhere the aim is not to learn categorical stringsets
but to learn probability distributions over them (“stochastic stringsets.”) We will talk about this
next.

The most repeated refrain ever in cognitive science, computational linguistics about the the-
ory of learning languages is this: “Gold (1967) showed that context-free grammars are not learn-
able but Horning (1969) showed that probabilistic context-free grammars are.” There is so much
confusion about this, I wrote about it: (Heinz, 2016).

13

Learnability – October 18, 2022 © Jeffrey Heinz

14

Bibliography

Angluin, Dana. 1980. Inductive inference of formal languages from positive data. Information
Control 45:117–135.

Anthony, M., and N. Biggs. 1992. Computational Learning Theory. Cambridge University Press.

Berwick, Robert. 1985. The acquisition of syntactic knowledge. Cambridge, MA: MIT Press.

Clark, Alexander, and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the Stimulus.
Wiley-Blackwell.

Garcia, Pedro, Enrique Vidal, and José Oncina. 1990. Learning locally testable languages in the
strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory , 325–338.

Gold, E.M. 1967. Language identification in the limit. Information and Control 10:447–474.

Heinz, Jeffrey. 2010a. Learning long-distance phonotactics. Linguistic Inquiry 41:623–661.

Heinz, Jeffrey. 2010b. String extension learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, 897–906. Uppsala, Sweden: Association for Compu-
tational Linguistics.

Heinz, Jeffrey. 2016. Computational theories of learning and developmental psycholinguistics. In
The Oxford Handbook of Developmental Linguistics, edited by Jeffrey Lidz, William Synder, and
Joe Pater, chap. 27, 633–663. Oxford, UK: Oxford University Press.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structured hypoth-
esis spaces. Theoretical Computer Science 457:111–127.

de la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press.

Horning, J. J. 1969. A study of grammatical inference. Doctoral dissertation, Stanford University.

Kearns, Michael, and Umesh Vazirani. 1994. An Introduction to Computational Learning Theory .
MIT Press.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata. MIT Press.

Rogers, Hartley. 1967. Theory of Recursive Functions and Effective Computability . McGraw Hill
Book Company.

15

Learnability – October 18, 2022 © Jeffrey Heinz

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome, and
Sean Wibel. 2010. On languages piecewise testable in the strict sense. In The Mathematics of
Language, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol. 6149 of Lecture
Notes in Artifical Intelligence, 255–265. Springer.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition experiments and the sub-
regular hierarchy. Journal of Logic, Language and Information 20:329–342.

Valiant, L.G. 1984. A theory of the learnable. Communications of the ACM 27:1134–1142.

Wexler, Kenneth, and Peter Culicover. 1980. Formal Principles of Language Acquisition. MIT Press.

16

	Identification in the Limit
	One reason defining learning is hard
	Identification in the limit
	Definition of identification in the limit from positive data

	Examples: Learning from positive data
	The Strictly k-Piecewise Stringsets
	The Strictly k-Local Stringsets

	Results
	Identification in the limit from positive data
	Identification in the limit from positive and negative data
	Identification in the limit from primitive recursive texts
	Gold's interpretation of these results
	Criticisms

