


Notes

Chapter 1
1. Th is account is adapted from Fritz Alt, “Archeology of Computers: Reminis-

cences, 1945– 47,” Communications of the ACM 15, no. 7 (July 1972): 693– 694.

2. A. M. Turing, “On Computable Numbers, with an Application to the Entschei-

dungsproblem,” Proceedings of the London Mathematical Society, Ser. 2, 42 (1936–

1937): 230– 265.

3. Th e concept of PAC learning was introduced in L. G. Valiant, “A Th eory

of the Learnable,” Communications of the ACM 27, no. 11 (1984): 1134– 1142. Th e

concept was subsequently named “probably approximately correct” in D. Angluin

and P. Laird, “Learning from Noisy Examples,” Machine Learning 2 (1987):

343– 370.

4. N. Taleb, Th e Black Swan (New York: Random House, 2007); D. Kahneman,

Th inking Fast and Slow (New York: Farrar, Straus and Giroux, 2011).

Chapter 2
1. In “How U.N. Chief Discovered U.S., and Earmuff s,” New York Times inter-

view, January 7, 1997.

2. From Foreword by Donald E. Knuth to M. Petkovšek, H. Wilf, and D. Zeil-

berger, A=B (Wellesley, MA: A.K. Peters, 1997).

3. Alfred Russel Wallace proposed the same theory in de pen dently in “On the

Tendency of Species to Form Varieties, and on the Perpetuation of Varieties and

Species by Natural Means of Selection,” Journal of the Proceedings of the Linnean

Society of London, Zoology 3 (1858): 53– 62. Because of Darwin’s much more de-

tailed exposition in his On the Origin of Species (London: Murray, 1959), the theory

has become more closely identifi ed with his name.

4. Th e Weald is an area stretching from Hampshire in the west to Kent in the

east, between the North and South Downs in southern En gland.

5. J. Marchant, Alfred Russel Wallace, Letters and Reminiscences, vol. I (London:

Cassell, 1916), 242, letter dated April 14, 1869.

6. Lord Kelvin (William Th omson), “Th e Age of the Earth as an Abode Fitted for

Life,” Journal of the Transactions of the Victoria Institute 31 (1899): 11– 35.

 | Notes

Chapter 3
1. Th e historical context and the related work of contemporaries Gödel, Post,

Church, and others are described in M. Davis (ed.), Th e Undecidable: Basic Papers

on Undecidable Propositions, Unsolvable Problems and Computable Functions

(Mineola, NY: Dover, 2004).

2. To be more precise, Turing’s paper refers to problems equivalent to the Halt-

ing Problem, including the Printing Problem, which asks whether a certain symbol

will be ever written.

3. K. Gödel, “Remarks Before the Prince ton Bicentennial Conference on Prob-

lems in Mathematics” (1946), reprinted in Davis (ed.), Th e Undecidable, 84– 88.

4. Eugene Wigner, “Th e Unreasonable Eff ectiveness of Mathematics in the Nat-

ural Sciences,” in Communications in Pure and Applied Mathematics, vol. 13, no. 1

(February 1960). New York: John Wiley & Sons.

5. Th e term “computational complexity” was coined by Juris Hartmanis and Rich-

ard Stearns in their pioneering study of the time and space requirements of Turing

machine computations. Earlier, in 1960, Michael Rabin had given an axiomatic theory

of this phenomenon. An earlier reference still, in the context of cryptography, is a let-

ter from John Nash to the National Security Agency in 1955 (www .nsa .gov /public _

info /press _room /2012 /nash _exhibit .shtml). Comprehensive expositions of this fi eld

can be found in C. H. Papadimitriou, Computational Complexity (Boston: Addison-

Wesley, 1994); O. Goldreich, Computational Complexity: A Conceptual Perspective

(New York: Cambridge University Press, 2008); and S. Arora and B. Barak, Complex-

ity Th eory: A Modern Approach (New York: Cambridge University Press, 2009).

6. A function f(n) is O(g(n)) if for some constant k and for all n > 0, f(n) < kg(n). If

one changes the basis of the number repre sen ta tion from 10 to another number,

such as 2 for the case of binary arithmetic that computers use, the long multiplica-

tion algorithm is still O(n) steps.

7. Strictly speaking, P is usually defi ned only for problems with yes/no answers.

For simplicity, in this book we will also use it to include problems with many bit out-

puts, such as integer multiplication, if computing each bit of the output is a P problem

in the more standard sense, and there are only polynomially many output bits.

8. A. Karatsuba and Yu. Ofman, “Multiplication of Multi- Digit Numbers on

Automata,” Soviet Physics Doklady 7 (1963): 595– 596.

9. A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,”

Computing 7 (1971): 281– 292. Th e runtime of their algorithm is O(n log n loglog n)

steps, an expression that grows more slowly than n., or n+ε for any positive ε. In

2007 this was slightly improved by Martin Fürer to a function that still grows a

little more slowly than n log n.

10. For polynomial time algorithms for testing primality, see Robert Solovay

and Volker Strassen, “A Fast Monte- Carlo Test for Primality,” SIAM Journal on

Computing 6, no. 1 (1977): 84– 85; Gary L. Miller, “Riemann’s Hypothesis and Tests

for Primality,” Journal of Computer and System Sciences 13, no. 3 (1976): 300– 317;

Notes | 

M. O. Rabin, “Probabilistic Algorithm for Testing Primality,” Journal of Number

Th eory 12, no. 1 (1980): 128– 138. A deterministic algorithm with higher but still

polynomial complexity was found more recently: M. Agrawal, N. Kayal, and N.

Saxena, “PRIMES Is in P,” Annals of Mathematics 160, no. 2 (2004): 781– 793.

11. R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Sig-

natures and Public- Key Cryptosystems,” Communications of the ACM 21, no. 2

(1978): 120– 126. A general approach to relating cryptography and complexity

theory is given in S. Goldwasser and S. Micali, “Probabilistic Encryption,” Journal

of Computer and System Sciences 28, no. 2 (1984): 270– 299.

12. Turing had used the phrase “intellectual search” for a seemingly similar

concept, but without an explicit polynomial criterion: A. M. Turing, “Intelligent

Machinery” (unpublished manuscript, 1948), reproduced in B. J. Copeland, Th e

Essential Turing (Oxford: Oxford University Press, 2004), 410– 432.

13. Th e notion of NP- completeness was introduced in S. A. Cook, “Th e Complex-

ity of Th eorem Proving Procedures,” Proceedings, Th ird Annual ACM Symposium on

the Th eory of Computing (1971): 151– 158. Th e range of NP- complete problems was

greatly extended by R. M. Karp, “Reducibility among Combinatorial Problems,” in

Raymond E. Miller and James W. Th atcher (eds.), Complexity of Computer Computa-

tions (New York: Plenum Press, 1972), 85– 103. A parallel development occurred in

the Soviet Union: L. Levin, “Universal Search Problems,” Problems of Information

Transmission 9, no. 3 (1973): 265– 266 (in Rus sian), translated into En glish by B. A.

Trakhtenbrot, “A Survey of Rus sian Approaches to Perebor (Brute- Force Searches)

Algorithms,” Annals of the History of Computing 6, no. 4 (1984): 384– 400. Th e

NP- completeness phenomenon as seen a few years later is excellently described in

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Th eory

of NP- Completeness (New York: W.H. Freeman, 1979).

14. K. L. Manders and L. M. Adleman, “NP- Complete Decision Problems for

Quadratic Polynomials,” Proceedings, Eighth Annual ACM Symposium on the

Th eory of Computing (1976): 23– 29.

15. L. G. Valiant, “Th e Complexity of Computing the Permanent,” Th eoretical

Computer Science 8 (1979): 189– 201; L. G. Valiant, “Th e Complexity of Enumera-

tion and Reliability Problems,” SIAM Journal on Computing 8, no. 3 (1979):

410– 421.

16. E. Bernstein and U. Vazirani, “Quantum Complexity Th eory,” SIAM Journal on

Computing 26, no. 5 (1997): 1411– 1473. Th is paper introduced the quantum class BQP.

Earlier formulations of quantum computation had been given by R. P. Feynman,

“Simulating Physics with Computers,” International Journal of Th eoretical Physics

21 (1982): 467– 488, and D. Deutsch, “Quantum Th eory, the Church- Turing Princi-

ple and the Universal Quantum Computer,” Proceedings of the Royal Society of

London, Series A, Mathematical and Physical Sciences 400 (1985): 97– 117.

17. Note that each of these classes contains functions with only yes/no values,

except for #P, which produce numbers. Th e PAC class is illustrated as a subclass of

 | Notes

P, but one could extend it into BQP, for example. It is currently unknown, for any

pair of the classes illustrated, whether they are of equal extent to within polyno-

mial time deterministic reductions. Every two of the classes shown is widely con-

jectured to be diff erent, except for the P =? BPP question, for which some suggestion

of the contrary conjecture can be found in R. Impagliazzo and A. Wigderson,

“P = BPP if E Requires Exponential Circuits: Derandomizing the XOR Lemma,”

Proceedings of the 29th ACM Symposium on Th eory of Computing (1997): 220– 229.

Of course, taking a position on any these mathematical conjectures is a theoryless

activity, and this author is not doing that here.

18. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Th eory of

Brain Mechanisms (Washington, DC: Spartan Books, 1962). A detailed analysis is

given by M. Minsky and S. Papert, Perceptrons: An Introduction to Computational

Geometry, 2nd ed. (Cambridge, MA: MIT Press, 1972).

19. Th is example is suggested by a dataset on iris varieties from R. A. Fisher,

“Th e Use of Multiple Mea sure ments in Taxonomic Problems,” Annual Eugenics 7,

part II (1936): 179– 188.

20. Without loss of generality we can make the right- hand side of any perceptron

0 by adding an extra variable to the left - hand side and extending each example to

have the fi xed value 1 for this last variable. Figure 3.7 implements this idea to fi nd

the separator 3x − 6y > 1 for the six points listed in the rubric of Figure 3.6. Note that

the in e qual ity 2x − 3y > 2 illustrated there also satisfi es these six examples.

Chapter 4
1. Eddington made this remark in Leicester, UK, at the annual meeting of the

British Association for the Advancement of Science: “Star Birth Sudden Lemaître

Asserts,” New York Times, September 12, 1933.

2. A. M. Turing, “Th e Chemical Basis of Morphogenesis,” Philosophical Transac-

tions of the Royal Society of London. Series B, Biological Sciences 237, no. 641 (Au-

gust 1952): 37– 72.

3. Th is viewpoint also has received support from within the biological sciences

community: P. Nurse, “Life, Logic and Information,” Nature 454 (2008): 424– 426.

4. M. H. A. Newman, “Alan Mathison Turing, 1912– 1954,” Biographical Mem-

oirs of Fellows of the Royal Society 1 (1955): 253– 263.

Chapter 5
1. A. M. Turing, “Solvable and Unsolvable Problems,” Science News 31 (1954):

7– 23.

2. Th e nature of the computations that brain- like systems are capable of executing

within realistic resource limitations deserves separate investigation: L. G. Valiant,

Circuits of the Mind (New York: Oxford University Press, 1994, 2000); L. G. Valiant,

“Memorization and Association on a Realistic Neural Model,” Neural Computation

Notes | 

17, no. 3 (2005): 527– 555. Various failings of human memory from an experimental

psychology perspective are described in D. Schacter, Th e Seven Sins of Memory: How

the Mind Forgets and Remembers (New York: Houghton Miffl in, 2002).

3. Aristotle, Posterior Analytics, Book I, translated by G. R. G. Mure (eBooks@

Adelaide, 2007).

4. P. Hallie (ed.), Selections from the Major Writings on Skepticism, Man and

God, translated by S. Etheridge (Indianapolis, IN: Hackett, 1985), 105.

5. A calculation shows that a sample size (2/error) × (n + loge(1/error)) suffi ces:

L. G. Valiant, “A Th eory of the Learnable,” Communications of the ACM 27, no. 11

(1984): 1134– 1142.

6. A sample size similar in terms of n and error to that in Note 5, above, still

suffi ces.

7. Th e study of elimination, but without any quantitative analysis of what it

achieves, has a long history: John Stuart Mill, A System of Logic (London: John W.

Parker, 1843).

8. A purely computational theory is given by E. M. Gold, “Language Identifi ca-

tion in the Limit,” Information and Control 10 (1967): 447– 474. A statistical theory

is provided in V. N. Vapnik, Th e Nature of Statistical Learning Th eory (New York:

Springer- Verlag, 2000), and T. Hastie, R. Tibshirani, and J. H. Friedman, Th e

 Elements of Statistical Learning (New York: Springer- Verlag, 2001).

9. More details on PAC learning and its extensions can be found in M. J. Kearns

and U. Vazirani, An Introduction to Computational Learning Th eory (Cambridge,

MA: MIT Press, 1994).

10. Th e Occam formulation is from A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. K. Warmuth, “Occam’s Razor,” Information Pro cessing Letters 24 (1987): 377–

380. It exemplifi es how the purely statistical criterion of learnability is almost

 tautological if examples and hypotheses are to be represented discretely, which in

reality they always are. For infi nite repre sen ta tions, such as real numbers, an anal-

ogous treatment is still possible, but more involved, via, for example, the VC

 dimension: V. Vapnik and A. Chervonenkis, “On the Uniform Convergence of

Relative Frequencies of Events to Th eir Probabilities,” Th eory of Probability and Its

Applications 16, no. 2 (1971): 264– 280; A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. K. Warmuth, “Learnability and the Vapnik– Chervonenkis Dimension,” Journal

of the ACM 36, no. 4 (1989): 929– 965. Earlier work using related concepts: Th omas

M. Cover, “Capacity Problems for Linear Machines,” in L. Kanal (ed.), Pattern Rec-

ognition (Washington, DC: Th ompson Book Co., 1968).

11. Such a general lower bound on the number of examples needed for learning

is given in A. Ehrenfeucht, D. Haussler, M. Kearns, and L. G. Valiant, “A General

Lower Bound on the Number of Examples Needed for Learning,” Information and

Computation 82, no. 2 (1989): 247– 261.

12. Th e fi rst publication of the notion of public- key cryptosystems was W. Diffi e

and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on

 Information Th eory IT- 22 (November 1976): 644– 654. Th e RSA system is from

 | Notes

R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures

and Public- Key Cryptosystems,” Communications of the ACM 21, no. 2 (1978): 120–

126. Th ere had been earlier unpublished work on these concepts by James Ellis,

Cliff ord Cocks, and Malcolm Williamson at the Government Communications

Headquarters in the UK, and also by Ralph Merkle at UC Berkeley.

13. Here we are regarding the decryption function as outputting a set of yes/no

functions, namely the bits of the original message, and each one would be learned.

In any public-key cryptosystem the encryption algorithm is available to all.

14. N. Chomsky, “Th ree Models for the Description of Language,” IRE Transac-

tions on Information Th eory 2 (1956): 113– 124.

15. M. Kearns and L. G. Valiant, “Cryptographic Limitations on Learning Bool-

ean Formulae and Finite Automata,” Journal of the ACM 41, no. 1 (1994): 67– 95. Pre-

liminary version in Proceedings of the 21st ACM Symposium on Th eory of Computing

(1989): 433– 444.

16. A. Klivans and R. Servedio, “Learning DNF in time 2Õ(n⅓),” Journal of Com-

puter and System Sciences 68, no. 2 (2004): 303– 318.

17. An elegant attribute- effi cient algorithm, called Winnow, for learning dis-

junctions is given in N. Littlestone, “Learning Quickly When Irrelevant Attributes

Abound: A New Linear- Th reshold Algorithm,” Machine Learning 2, no. 4 (1988):

285– 318. It resembles the perceptron algorithm, but the weights are updated by

multiplying rather than by adding appropriate quantities. See also Avrim Blum,

“Learning Boolean Functions in an Infi nite Attribute Space,” Machine Learning 9

(1992): 373– 386.

18. R. I. Arriaga and S. Vempala, “An Algorithmic Th eory of Learning: Robust

Concepts and Random Projection,” Proceedings of the 40th IEEE Symposium on

Foundations of Computer Science (FOCS) (1999): 616– 623.

Chapter 6
1. Th e Royal Tyrrell Museum in Drumheller, Alberta, Canada, is instructive.

2. Questions about the absence of quantitative explanations in evolutionary

theory were raised by various authors in P. S. Moorhead and M. M. Kaplan (eds.),

Mathematical Challenges to the Neo- Darwinian Interpretation of Evolution: A

Symposium, Philadelphia, April 1966 (Philadelphia: Wistar Institute Press, 1967).

An attempt to address the issue in the context of the eye is given in D. E. Nilsson

and S. Pelger, “A Pessimistic Estimate of the Time Required for an Eye to Evolve,”

Proceedings: Biological Sciences 256 (1994): 53– 58.

3. R. A. Fisher, Th e Ge ne tical Th eory of Natural Selection (Oxford: Oxford Uni-

versity Press, 1930); S. Wright, Evolution and the Ge ne tics of Populations, A Treatise

(Chicago: University of Chicago Press, 1968– 1978).

4. Th e award winners in an annual competition for ge ne tic programming can be

found at http:// www .genetic -programming .org /combined .html .

Notes | 

5. Th e term comes from the title of Julian Huxley’s book Evolution: Th e Modern

Synthesis (1942). It refers to the synthesis reached in the preceding de cade of three

disparate strands: natural selection as understood by Darwin and Wallace, Mende-

lian ge ne tics, and the population biology of R. A. Fisher, J. B. S. Haldane, and

Sewall Wright.

6. U. Alon, An Introduction to Systems Biology (Boca Raton, FL: CRC Press,

2006).

7. For simplicity, our terminology assumes deterministic input functions.

However, the discussion is the same if we allow randomized or even quantum

transitions.

8. C. D. Allis, T. Jenuwein, and D. Reinberg, Epige ne tics (Cold Spring Harbor,

NY: CSHL Press, 2007).

9. Th e possible impact on natural selection of learning during life has been
 explored informally since the nineteenth century: M. J. Baldwin, “A New Factor

in Evolution,” Th e American Naturalist 30, no. 354 (June 1896): 441– 451; G. E.

Hinton and S. J. Nowlan, “How Learning Can Guide Evolution,” Complex Systems

1 (1987): 495– 502.

10. N. Eldredge and S. J. Gould, “Punctuated Equilibria: An Alternative to Phy-

letic Gradualism,” in T. J. M. Schopf (ed.), Models in Paleobiology (San Francisco:

Freeman, Cooper and Company, 1972), 82– 115.

11. A. R. Wallace, “Th e Mea sure ment of Geological Time,” Nature, 17 (1870):

399– 341, 452– 455.

12. We are oversimplifying in this exposition, as we did also with regard to

learning in Chapter 5, in not distinguishing the class C of target ideal functions

from the repre sen ta tions used for the hypotheses. Th e latter may be diff erent from

the former.

13. Th e evolvability model described here is from L. G. Valiant, “Evolvability,”

Journal of the ACM 56, no. 1 (2009): 3:1– 3:21. (Earlier versions: Proceedings of the

32nd International Symposium on Mathematical Foundations of Computer Science,

August 26– 31, 2007; Český Krumlov, Czech Republic, Lecture Notes in Computer

Science, vol. 4708 [New York: Springer- Verlag, 2007], 22– 43; and Electronic Collo-

quium on Computational Complexity, Report 120, September 2006.)

14. M. J. Kearns, “Effi cient Noise- Tolerant Learning from Statistical Queries,”

Journal of the ACM 45, no. 6 (1998): 983– 1006.

15. V. Feldman, “Distribution- Independent Evolvability of Linear Th reshold

Functions,” Journal of Machine Learning Research— Proceedings Track 19 (2011):

253– 272.

16. M. J. Kearns, “Effi cient Noise- Tolerant Learning from Statistical Queries.”

17. V. Feldman, “Robustness of Evolvability,” Proceedings of the 22nd Annual Con-

ference on Learning Th eory, Montreal, Quebec, Canada (2009). See also V. Feldman,

“Evolvability from Learning Algorithms,” Proceedings of the 40th Annual ACM

Symposium on Th eory of Computing (2008): 619– 628.

 | Notes

18. L. Michael, “Evolvability via the Fourier Transform” (manuscript, 2007).

Also Th eoretical Computer Science 462 (2012): 88– 98.

19. V. Feldman, “A Complete Characterization of Statistical Query Learning

with Applications to Evolvability,” 50th Annual IEEE Symposium on Foundations of

Computer Science (2009): 375– 384.

20. P. Valiant, “Distribution Free Evolvability of Polynomial Functions over All

Convex Loss Functions,” Proceedings of the 3rd Symposium on Innovations in Th eo-

retical Computer Science (2012): 142– 148.

21. Ibid.

22. V. Kanade, “Evolution with Recombination,” 52nd Annual IEEE Symposium

on Foundations of Computer Science (2011): 837– 846.

23. R. A. Fisher, Th e Ge ne tical Th eory of Natural Selection (Oxford: Clarendon

Press, 1930); J. Maynard Smith, Th e Evolution of Sex (Cambridge: Cambridge Uni-

versity Press, 1978); A. Livnat, C. H. Papadimitriou, J. Dushoff , and M. W. Feldman,

“A Mixability Th eory of the Role of Sex in Evolution” PNAS 105, no. 50 (2008):

19803– 19808.

24. Some evolution algorithms can be shown to be able to tolerate a slowly

changing world: V. Kanade, L. G. Valiant, and J. Wortman Vaughan, “Evolution

with Drift ing Targets,” Conference on Learning Th eory (2010): 155– 167.

Chapter 7
1. I. Ayres, Super Crunchers: Why Th inking- by- Numbers Is the New Way to Be

Smart (New York: Bantam, 2007).

2. Th is formulation is further described in L. G. Valiant, Circuits of the Mind

(New York: Oxford University Press, 1994, 2000).

3. D. B. Lenat, “CYC: A Large- Scale Investment in Knowledge Infrastructure,”

Communications of the ACM 38, no. 11 (1995): 32– 38.

4. Bayesian models and inference are described in J. Pearl, Probabilistic Reason-

ing in Intelligent Systems (San Francisco: Morgan Kaufmann Publishers, 1988).

Further studies of reasoning in uncertain contexts can be found in the Uncertainty

in Artifi cial Intelligence conference series. It has been found empirically that in

 applications where large amounts of general knowledge need to be modeled, some

learning component is essential, as, for example, in IBM’s Watson system for the

Jeopardy! contest.

5. D. Angluin and P. Laird, “Learning from Noisy Examples,” Machine Learning

2 (1987): 343– 370. A generic approach to making learning algorithms resistant to

one kind of noise is given in Michael J. Kearns, “Effi cient Noise- Tolerant Learning

from Statistical Queries,” Journal of the ACM 45, no. 6 (1998): 983– 1006.

6. L. G. Valiant, “Robust Logics,” Artifi cial Intelligence Journal 117 (2000):

231– 253.

7. G. A. Miller, “Th e Magical Number Seven Plus or Minus Two,” Th e Psycho-

logical Review 63 (1956): 81– 97.

Notes | 

8. F. Galton, Inquiries into Human Faculty and Its Development, 1st ed. (London:

Macmillan, 1883).

9. I. Biederman, “Recognition–by- Components: A Th eory of Human Image Under-

standing,” Psychological Review 94 (1987): 115– 147.

10. In this work, discussions of the brain are in terms of what it needs to do, and

not how it does it. For the latter, see Note 2 to Chapter 5.

11. Reaction time experiments show that the visual system can recognize what

object is in a scene extremely rapidly: S. J. Th orpe, D. Fize, and C. Marlot, “Speed of

Pro cessing in the Human Visual System,” Nature 381 (1996): 520– 522.

12. N. Littlestone, “Learning Quickly When Irrelevant Attributes Abound: A

New Linear- Th reshold Algorithm,” Machine Learning 2, no. 4 (1988): 285– 318.

13. Th e one constraint needed for the reasoning part to be polynomial in terms

of the relevant pa ram e ters (such as the size of the rules) is that the number of argu-

ments in all the relations be bounded by a constant, since the reasoning pro cess is

exponential in that quantity.

14. A fuller discussion of how robust logic might be used in intelligent systems is

given in L. G. Valiant, “Knowledge Infusion,” Proceedings of the 21st National Confer-

ence on Artifi cial Intelligence, July 16– 20, Boston, MA (Menlo Park, CA: AAAI Press,

2006), 1546– 1551. Some experimental results are reported in L. Michael and L. G.

Valiant, “A First Experimental Demonstration of Massive Knowledge Infusion, Pro-

ceedings of 11th International Conference on Principles of Knowledge Repre sen ta tion

and Reasoning (Menlo Park, CA: AAAI Press, 2008), 378– 389.

Chapter 8
1. J. Pearl, Causality (Cambridge: Cambridge University Press, 2009).

Chapter 9
1. M. Kearns and L. G. Valiant, “Cryptographic Limitations on Learning Bool-

ean Formulae and Finite Automata,” Journal of the ACM 41, no. 1 (1994): 67– 95.

Preliminary version in Proceedings of the 21st ACM Symposium on Th eory of Com-

puting (1989): 433– 444.

2. R. Schapire, “Strength of Weak Learnability,” Machine Learning 5 (1990):

197– 227.

3. Y. Freund and R. E. Schapire, “A Decision- Th eoretic Generalization of

 On- Line Learning and an Application to Boosting,” Journal of Computer and Sys-

tem Sciences 55, no. 1 (1997): 119– 139.

4. M. Aizerman, E. Braverman, and L. Rozonoer, “Th eoretical Foundations of

the Potential Function Method in Pattern Recognition Learning,” Automation and

Remote Control 25 (1964): 821– 837.

5. B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A Training Algorithm for Opti-

mal Margin Classifi ers,” 5th Annual ACM Workshop on Computational Learning

 | Notes

Th eory (Pittsburgh, PA: ACM Press, 1992), 144– 152; C. Cortes and V. Vapnik,

“Support- Vector Networks,” Machine Learning 20 (1995).

6. T. M. Mitchell et al., “Learning to Decode Cognitive States from Brain Im-

ages,” Machine Learning 57 (2004): 145– 175.

7. A. M. Turing, “Intelligent Machinery” (unpublished manuscript, 1948). Re-

produced in B. J. Copeland, Th e Essential Turing (Oxford: Oxford University Press,

2004), 410– 432.

8. L. G. Valiant, “Functionality in Neural Nets,” Proceedings of the First Workshop

on Computational Learning Th eory (San Francisco: Morgan Kaufmann Publishers,

1988), 28– 39.

9. R. Paturi, S. Rajasekaran, and J. H. Reif, “Th e Light Bulb Problem,” Proceed-

ings of the Second Annual Workshop on Computational Learning Th eory (San

Francisco: Morgan Kaufmann Publishers, 1989), 261– 268; P. Indyk and R. Mot-

wani, “Approximate Nearest Neighbors: Towards Removing the Curse of Dimen-

sionality,” Proceedings of the 30th Annual ACM Symposium on Th eory of Computing

(1998): 604– 614; M. Dubiner, “Bucketing, Coding and Information Th eory for the

Statistical High Dimensional Nearest Neighbor Problem,” arXiv:0810.4182 (2008); G.

Valiant, “Finding Correlations in Subquadratic Time, with Applications to Learning

Parities and Juntas,” 53rd Annual IEEE Symposium on Foundations of Computer Sci-

ence (2012): 11– 20.

10. Th is is discussed more fully in L. G. Valiant, Circuits of the Mind (New York:

Oxford University Press, 1994, 2000).

11. H. Gardner, Frames of Mind: Th e Th eory of Multiple Intelligences (New York:

Basic Books, 1983).

12. A. M. Turing, “Computing Machinery and Intelligence,” Mind 49 (1950):

433– 460. Notwithstanding the title, Turing does not claim in the text a defi nition

of intelligence, but rather a criterion on when a machine could be regarded as “think-

ing.” However, from the beginning, the Turing Test has been regarded as a fi tting

reference point for any discussion of intelligence.

13. Ibid.

Chapter 10
1. Winston Churchill, Speech at Harvard University, September 6, 1943.



Glossary

An accessible target is a function that can be learned or evolved because it is

within a learnable or evolvable class with respect to the available features.

A Boolean function is a function whose inputs and outputs take just true or false

values. Th ese values may be represented by 1 and 0, or by 1 and −1. An example of

a Boolean function of two arguments is the or function, written as or(x, y) and

 defi ned to have value true if and only if at least one of the two arguments x, y has

value true.

BPP (bounded probabilistic polynomial) computations are those that can be per-

formed in polynomial time by a randomized Turing machine.

BQP (bounded quantum polynomial) computations are those that can be per-

formed in polynomial time by a quantum Turing machine.

A circuit is a computation where the dependencies among various input, output, or

intermediate values can be made explicit.

A complexity class is a set of problems characterized by the computations that can

solve them. For example, P and NP are complexity classes.

A function is computable if it can be computed by some Turing machine, in the

sense that for every input the Turing machine produces the answer within some

fi nite number of steps.

Concept is a term used here to denote a function in the context of learning.

A conjunction is a Boolean function that has value true if all of its arguments have

value true.

A disjunction is a Boolean function that has value true if at least one of its argu-

ments has value true.

Ecorithm is a term introduced here to denote an algorithm that takes information

from its environment so as to perform better in that environment. Algorithms for

machine learning, evolution, and for learning for the purpose of reasoning are all

instances of ecorithms.

 | Glossary

A class of functions is evolvable if there is an evolution algorithm that can evolve

every member of it using only polynomial resources and achieving polynomial

 error control.

Th e expression level of a protein in a cell is a mea sure of how much of the protein

is being produced.

Feasible computation is identifi ed here with computations in which the number of

steps is bounded by a polynomial in terms of the number of bits required to write

down the input.

A function is a mathematical assertion of a specifi c dependence of a value on

some variables, pa ram e ters, conditions, or arguments. For example, the function

f (x, y) = 2x + 3y is the dependence that f is the sum of twice the fi rst argument and

thrice the second.

Th e ideal function specifi es for a par tic u lar evolving entity in a par tic u lar environ-

ment the best possible action for every possible combination of conditions.

Th e input function of a protein is the function that determines the expression level

of the protein in terms of all the relevant conditions in the cell.

Intelligence is generally used in the text in the colloquial sense of human intelli-

gence, but the aspect of it that is addressed more technically is that of reasoning on

uncertain, learned knowledge.

A linear in e qual ity is an assertion that the value of some linear combination of

variables is greater or less than some value (e.g., 3x + 6y − 8z < 7).

A linear separator for a set of labeled examples is a linear in e qual ity that satisfi es

all the positive examples and none of the negative examples.

Nondeterministic computations are those that perform an exponential search for

a solution in parallel.

NP (nondeterministic polynomial) is the class of problems for which there are

nondeterministic computations where each of the parallel branches of the search

uses at most a polynomial number of steps in terms of the number of bits of the

input.

A problem is NP- complete if its polynomial time solution would imply polynomial

time solutions for every problem in NP.

P is the class of problems to which solutions can be found by deterministic compu-

tations taking a polynomial number of steps in terms of the number of bits of the

input.

#P (“sharp” P) is the class of problems that count the number of solutions found in

an NP computation.

Glossary | 

PAC (probably approximately correct) learning is the pro cess of learning from

examples, where the number of computational steps is polynomially bounded and

the errors are polynomially controlled.

A class of problems is PAC learnable if there is a learning algorithm that can learn

every member of the class, using only polynomial resources and achieving polyno-

mial error control.

PAC semantics is the sense in which the defi nition of PAC learning guarantees

accuracy.

A parity function is a Boolean function that has value true if and only if an odd

number of its arguments have value true.

Th e Perceptron algorithm is a specifi c method for learning linear inequalities.

Polynomially bounded for a function f(n) is used here to mean that for some fi xed

numbers c and k, for every positive integer value of n , f(n) < cnk.

A computational problem is a function that is to be evaluated. For example, deter-

mining how many factors a number has is a computational problem. A solution to

such a problem is an algorithm that evaluates that function.

Th e protein expression network represents how the expression levels of all the

proteins in a cell are regulated in terms of each other and other relevant factors.

It is sometimes referred to as the gene expression network.

A randomized Turing machine is a Turing machine that at any step may choose

one among a set of possible transitions by making a random decision according to

the toss of a coin.

Resilience to diff erent distributions is the desirable property of a learning algo-

rithm to give reliable answers for wide ranges of distributions of the examples.

Resilience to noise is the desirable property of a learning algorithm to give answers

that are degraded only a little by any noise in the data from which it is learning.

A robust computational model for a phenomenon is one that is provably equiva-

lent to a wide range of alternative defi nitions of computational models for that

phenomenon. Turing machines for the phenomenon of computation off er the ex-

emplary paradigm.

Robust logic is a system in which learning and reasoning have a common seman-

tics and both can be accomplished feasibly in the PAC sense.

Robustness to computation and data is a way of phrasing what PAC learning

 accomplishes, namely the requirement that it should be practicable to drive down

errors arbitrarily by increasing the amounts of training data and computation

appropriately.

 | Glossary

A statistical query algorithm is a learning algorithm that can receive information

about examples only by asking statistical questions about them, rather than by pro-

cessing individual examples.

Target pursuit is the capability in both learning and evolution to pursue a large

number of accessible targets simultaneously.

Th eoryful is a term defi ned here to denote decisions for which there is a good

 explanatory and predictive theory, such as a scientifi c theory.

Th eoryless is a term defi ned here to denote decisions that are not known to be

theoryful.

A Turing machine is a model of computation that is widely believed to encompass

all information pro cessing that one would think of as mechanistic.



Acknowledgments

As the text makes clear, this book is deeply rooted in the visionary ideas of

Alan Turing. Th e synthesis off ered here is within the framework of compu-

tational learning theory. Over the last three decades many have enriched

this fi eld, and I would particularly like to thank Dana Angluin, Avrim

Blum, Andrzej Ehrenfeucht, Vitaly Feldman, Yoav Freund, David Haussler,

Varun Kanade, Michael Kearns, Roni Khardon, Adam Klivans, Ming Li,

Nick Littlestone, Yishay Mansour, Loizos Michael, Lenny Pitt, Ron Rivest,

Dan Roth, Robert Schapire, Rocco Servedio, and Manfred Warmuth. It is

also a pleasure to acknowledge the early pioneers of computational com-

plexity, including Manuel Blum, Stephen Cook, Juris Hartmanis, Richard

Karp, Michael Rabin, and Volker Strassen.

I am grateful to Juliet Harman for her careful and critical reading of the

manuscript and for her many ideas that have improved this book.

I would also like to thank Th omas Kelleher at Basic Books for his valuable

editorial suggestions.

It is traditional for authors to thank their spouse for patiently suff ering

the inevitable hardships as a writer’s companion. I can only report unre-

served enthusiasm for the project, and thank Gayle for that and for her sig-

nifi cant and extensive suggestions on the text.

∀ “for all,” 124, 130

∃ “there exists,” 124, 131, 132

accessible target, 83–84, 95–97, 104, 185g

Adleman, Leonard M., 177nn11, 14,

179–180n12

Agrawal, Manindra, 177n10

Alon, Uri, 181n6

Alt, Fritz, 171n1

Angluin, Dana C., 175n3, 182n5

Annan, Kofi A., 13

Aristotle, 59, 115, 119, 179n3

Arora, Sanjeev, 176n5

Arriaga, Rosa I., 180n18

artifi cial intelligence, 6, 117, 120, 144,

149, 155, 158, 163, 165

attribute-effi cient learning, 85, 134,

180n17

Ayres, Ian, 182n1

Bacon, Francis, 71

Barak, Boaz, 176n5

Bernstein, Ethan, 177n16

Blum, Avrim, 180n17

Blumer, Anselm, 179n10

Boole, George, 116

Boolean function, 100, 108–110,

132, 185g

boosting, 152–153

BPP, 35, 36, 39, 40, 41, 42

BQP, 35, 36, 39, 41, 42, 43, 177–178n17

brittleness, 120, 121, 123, 125, 129

Chervonenkis, Alexey J., 179n10

Chomsky, A. Noam, 79, 80, 180n14

Church, Alonzo, 8, 176n1

Churchill, Winston S., 155, 171

circuit, 6–7, 19–20, 51–53, 71, 113,

118–119, 123

Collatz, Lothar, 44

concept class, 72, 81, 83, 84, 85

computability, 24, 25, 27, 28, 31

computational complexity, 31, 33, 44,

68, 120, 121, 122, 176n5

computational laws, 20, 28

computational learning, 19, 80, 89, 90,

92, 134

conjunctions, 185g; evolving, 91, 97, 99,

107, 109; learning, 68–71,

74, 81, 83, 85

continuous mathematics, 29–30

Cook, Stephen A., 42, 177n13

correlation detection, 160–162

Cortes, Corinna, 183–184n5

counting, complexity of, 41–42

Crick, Francis H. C., 51, 53

Darwin, Charles R., 15–19, 87, 88–89,

93, 112, 114, 148, 169, 173

Darwin, Erasmus, 15

Index

n means note, g means glossary



 | Index

Darwinian evolution, 19, 89–92, 93, 98,

99, 101–108, 112, 168

Davis, Martin D., 176nn1, 3

Deutsch, David E., 177n16

Dijkstra, Edsger W., 23, 149

Dirac, Paul A. M., 167

discrete mathematics, 29–30

disjunctions, g185; evolving 91, 98, 101,

106, 107, 134; learning 70–72, 81

Dubiner, Moshe, 162

Dushoff , Jonathan, 182n23

ecorithm, 1–12, 13–18, 53, 58, 137–138,

146–148, 168, 172–173

Eddington, Arthur S., 51

Ehrenfeucht, Andrzej, 179nn10, 11

Eldredge, Niles, 181n10

elimination algorithm, 69–71, 75, 76,

83, 85, 98, 99

epigenetic, 92

Euclid, 14–15

evolvability, 28, 36, 96, 98, 101,

107–108, 111–112, 181n13

evolvable target pursuit, 94–96, 155

evolving versus learning, 98–101

existential quantifi cation, 124, 133

exponential time, 31, 33, 34, 37–39,

66–68, 80

expression level, 91, 93–95, 110–111, 186g

factorization, integer, 38–39, 81

feasible computation, 34, 39, 41, 61, 72,

80, 186g

feature in machine learning, 67–71,

81–85, 123, 132, 153–154

Feldman, Marcus, 182n23

Feldman, Vitaly, 107, 110

Feynman, Richard P., 177n16

fi nancial crisis 2008, 10, 11, 146, 148

fi nite state automata, 79

Fisher, Ronald A., 19, 89, 91

fi tness, 93–94, 102–103

Forster, Edward M., 13

Frege, F. L. Gottlob, 116

Freund, Yoav, 153

function, 186g

Fürer, Martin, 176n9

Galton, Francis, 126, 135

Gardner, Howard, 163

gene networks, 6, 19, 108

generalization, 5, 6, 9, 57, 59–60

Gödel, Kurt, 28, 108, 116

Gold, E. Mark, 179n8

Goldreich, Oded, 176n5

Goldwasser, Shafrira, 177n11

Gould, Stephen J., 181n10

grounding, 123–125

Haldane, John B. S., 93, 181n5

Halting Problem, 25, 27, 30, 40, 44, 108

Hartmanis, Juris, 176n5

Haussler, David, 179nn10, 11

Hilbert, David, 23, 25, 116

Hinton, Geoff rey E., 181n9

horizontal gene transfer, 113–114

Hume, David, 61

Huxley, Julian S., 181n5

ideal function, 93–94, 101–104,

106–107, 110–111

Impagliazzo, Russell, 177–178n17

independently quantifi ed expressions

(IQE), 132–135

induction, 5–6, 59–68, 72, 84–85,

115, 157

Indyk, Piotr, 162

input function, 91, 95, 100, 111, 181n7,

186g

intelligence, 14, 15, 25, 135, 147, 149–150,

186g

Invariance Assumption, 61–63, 65, 70,

73, 74, 86, 142

Kahneman, Daniel, 175n4

Kanade, Varun N., 182nn22, 24

Index | 

Karatsuba, Anatoly A., 37

Karp, Richard M., 177n13

Kayal, Neeraj, 176–177n10

Kearns, Michael J., 103, 107, 179n9,

182n5

Kelvin, Lord (William Th omson), 19

Kepler, Johannes, 5, 62

Klivans, Adam R., 180n16

Knuth, Donald E., 14

Laird, Philip D., 175n3, 182n5

Lamarck, Jean-Baptiste, 92, 99

Learnable Regularity Assumption,

61–62, 63, 65, 70

learnable target pursuit, 83–84, 95, 97,

139, 155, 169

learning algorithm, 7–9, 12, 44, 67, 69,

75–76, 80

learning from few examples, 83, 85, 134

learning versus evolving, 98–101

learning versus programming, 84,

151–152, 164–165

learning versus teaching, 81–83

Lenat, Douglas B., 182n3

Levin, Leonid A., 177n13

light bulb problem, 160–162

linear inequality, 186g

linear separator, 45, 47, 72, 132, 133,

186g

linearization, 47

Littlestone, Nick, 180n17, 183n12

Livnat, Adi, 182n23

loss function, 109–112

machine learning, 8–9, 73, 99, 109,

114, 131, 150–155

Manders, Kenneth L., 177n14

margin, 47, 85, 153

Maynard Smith, John, 182n23

McCarthy, John, 117

Micali, Silvio, 177n11

Michael, Loizos, 110

Mill, John Stuart, 71

Miller, Gary L., 176n10

Miller, George A., 126, 127

Minsky, Marvin L., 178n18

misfortune errors, 65–66, 71

Mitchell, Tom L., 184n6

model of computation, 25, 27–29, 36

Morgan, John P., 61

morphogenesis, 52

Motwani, Rajeev, 162

multiplication, 31–32, 37–38

nature versus nurture, 138–139

neural computation, 7, 52–53, 141, 148,

162, 178n2

Newman, Maxwell H. A., 55

Newton, Isaac, 28–29, 88, 148, 167, 171

noise in data, 122

noncomputability, 25, 30, 44, 58, 120

nondeterministic, 38

nonlinear, 47

Novikoff , Albert B. J., 47

Nowlan, Steven J., 181n9

NP, 38–43, 186g

NP-complete, 40–42, 77, 177n13,

186g

Nurse, Paul M., 178n3

O() notation, 31, 176n6

Occam algorithm, 72–75, 179n10

Ockham, William of, 73

one-trial learning, 85

P, 33, 186g

#P, 41–43, 177n17, 186g

#P-complete, 41–42

PAC consistent, 123

PAC learning, 6, 15, 42, 58, 63, 66,

71–72, 75; cognition and, 84–86;

evolution as a form of, 92–94,

98–101, 103–104; limits to, 77,

80–81

PAC semantics, 123, 124, 130, 142, 187g

Paley, William, 15, 112

 | Index

Papadimitriou, Christos H., 176n5,

182n23

Papert, Seymour, 178n18

parity function, 106–108, 187g

Paturi, Ramamohan, 162

Pearl, Judea, 182n4, 183n1

perceptron algorithm, 44–49, 72, 85,

132–133, 141, 153

performance, 93, 101–104, 110

PhysP, 36, 43

Picasso, Pablo, 167

polynomial time, 31–36, 38–42, 76–78

Post, Emil L., 176n1

primality, 38–40, 176n10

probably approximately correct

learning. See PAC learning

programming versus learning, 84,

151–152, 164–165

programming versus teaching, 82, 164

protein expression network, 6, 7, 19, 52,

91, 93, 94, 95, 110, 111

public-key cryptography, 77–78

quantum computing, 27, 35–36, 39,

41, 42

Rabin, Michael O., 176n5, 176–177n10

Rajasekaran, Sanguthevar, 184n9

randomized algorithm, 34–36, 52, 105,

181n7, 187g

randomized Turing machine, 35, 52,

187g

rarity errors, 65, 66, 69, 71

real-valued feedback in evolution,

108–111

reasoning, 115–120

reasoning versus learning, 115–120

refl ex response, 118–119

regular languages, 79–80

Reif, John H., 162

resilience to diff erent distributions,

109, 187g

resilience to noise, 122

Rivest, Ronald L., 177n11, 179–180n12

robust computational model, 27–28,

29–31, 36, 187g; for evolution, 108,

181n7; for intelligence 163; for

learning, 71, 152

robust logic, 125, 129–135, 163, 164,

187g

robustness to computation and data,

121, 187g

Rosenblatt, Frank, 44

RSA cryptosystem, 39, 78, 80

Russell, Bertrand A. W., 25, 116

sample complexity, 68

Saxena, Nitin, 176–177n10

Schapire, Robert E., 152

Schönhage, Arnold, 37

semantics, 166, 122–125, 129–131, 142

separable, 47, 85

Servedio, Rocco, 180n16

sex, 17, 112, 113, 182n23

Sextus Empiricus, 60, 66

Shamir, Adi, 177n11, 179–180n12

Solovay, Robert, 176n10

Spencer, Herbert, 93

statistical query (SQ) learning, 103–104,

107, 110, 122, 182n19, 188g

Stearns, Richard E., 176n5

Strassen, Volker, 37, 176nn9, 10

Taleb, Nassim N., 175n4

teaching versus programming, 82,

164

testing in machine learning, 45, 70, 75

theoryful, 2, 8, 28, 58, 116–117, 145–147,

170, 188g

theoryless, 2, 8–9, 57–58, 94, 138,

170–171; reasoning about the,

116–119, 121, 143–147

token in mind’s eye, 130–135

training in machine learning, 45–47,

76, 80

Traveling Salesman Problem, 40, 42, 58

Index | 

Turing, Alan M., 3–6, 8, 23–25, 27–31,

116, 137, 148, 149; work on biology,

52–55; work on cognition, 57–58,

155, 157, 164

Turing machine, 24–27, 29, 35, 36, 52,

176n5

Turing Test, 5–6, 163–164, 184n12

Turing triad, 25, 27, 41

Twain, Mark, 57

uniform distribution, 35, 80, 106–109

universal computation, 25, 43, 57, 136

universal quantifi cation, 133

Valiant, Gregory J., 162

Valiant, Paul A., 110, 111

Vapnik, Vladimir N., 179nn8, 10,

183–184n5

Vaughan, Jennifer W., 182n24

Vazirani, Umesh V., 177n16, 179n9

Vempala, Santosh S., 180n18

Von Neumann, John, 1, 57, 58

Wallace, Alfred Russel, 96, 114, 175n3,

181n5

Warmuth, Manfred K., 179n10

Watson, James D., 51, 53

Wigderson, Avi, 177–178n17

Wigner, Eugene P., 29, 43, 171

winnow algorithm, 134, 180n17

Wittgenstein, Ludwig J. J., 71

Wright, Sewall, 180n3, 181n5

