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Glossary

An accessible target is a function that can be learned or evolved because it is 

within a learnable or evolvable class with respect to the available features.

A Boolean function is a function whose inputs and outputs take just true or false 

values. Th ese values may be represented by 1 and 0, or by 1 and −1. An example of 

a Boolean function of two arguments is the or function, written as or(x, y) and 

 defi ned to have value true if and only if at least one of the two arguments x, y has 

value true.

BPP (bounded probabilistic polynomial) computations are those that can be per-

formed in polynomial time by a randomized Turing machine.

BQP (bounded quantum polynomial) computations are those that can be per-

formed in polynomial time by a quantum Turing machine.

A circuit is a computation where the dependencies among various input, output, or 

intermediate values can be made explicit.

A complexity class is a set of problems characterized by the computations that can 

solve them. For example, P and NP are complexity classes.

A function is computable if it can be computed by some Turing machine, in the 

sense that for every input the Turing machine produces the answer within some 

fi nite number of steps.

Concept is a term used  here to denote a function in the context of learning.

A conjunction is a Boolean function that has value true if all of its arguments have 

value true.

A disjunction is a Boolean function that has value true if at least one of its argu-

ments has value true.

Ecorithm is a term introduced  here to denote an algorithm that takes information 

from its environment so as to perform better in that environment. Algorithms for 

machine learning, evolution, and for learning for the purpose of reasoning are all 

instances of ecorithms.
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A class of functions is evolvable if there is an evolution algorithm that can evolve 

every member of it using only polynomial resources and achieving polynomial 

 error control.

Th e expression level of a protein in a cell is a mea sure of how much of the protein 

is being produced.

Feasible computation is identifi ed  here with computations in which the number of 

steps is bounded by a polynomial in terms of the number of bits required to write 

down the input.

A function is a mathematical assertion of a specifi c dependence of a value on 

some variables, pa ram e ters, conditions, or arguments. For example, the function 

f (x, y) = 2x + 3y is the dependence that f is the sum of twice the fi rst argument and 

thrice the second.

Th e ideal function specifi es for a par tic u lar evolving entity in a par tic u lar environ-

ment the best possible action for every possible combination of conditions.

Th e input function of a protein is the function that determines the expression level 

of the protein in terms of all the relevant conditions in the cell.

Intelligence is generally used in the text in the colloquial sense of human intelli-

gence, but the aspect of it that is addressed more technically is that of reasoning on 

uncertain, learned knowledge.

A linear in e qual ity is an assertion that the value of some linear combination of 

variables is greater or less than some value (e.g., 3x + 6y − 8z < 7).

A linear separator for a set of labeled examples is a linear in e qual ity that satisfi es 

all the positive examples and none of the negative examples.

Nondeterministic computations are those that perform an exponential search for 

a solution in parallel.

NP (nondeterministic polynomial) is the class of problems for which there are 

nondeterministic computations where each of the parallel branches of the search 

uses at most a polynomial number of steps in terms of the number of bits of the 

input.

A problem is NP- complete if its polynomial time solution would imply polynomial 

time solutions for every problem in NP.

P is the class of problems to which solutions can be found by deterministic compu-

tations taking a polynomial number of steps in terms of the number of bits of the 

input.

#P (“sharp” P) is the class of problems that count the number of solutions found in 

an NP computation.
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PAC (probably approximately correct) learning is the pro cess of learning from 

examples, where the number of computational steps is polynomially bounded and  

the errors are polynomially controlled.

A class of problems is PAC learnable if there is a learning algorithm that can learn 

every member of the class, using only polynomial resources and achieving polyno-

mial error control.

PAC semantics is the sense in which the defi nition of PAC learning guarantees 

accuracy.

A parity function is a Boolean function that has value true if and only if an odd 

number of its arguments have value true.

Th e Perceptron algorithm is a specifi c method for learning linear inequalities.

Polynomially bounded for a function f(n) is used  here to mean that for some fi xed 

numbers c and k, for every positive integer value of n , f(n) < cnk.

A computational problem is a function that is to be evaluated. For example, deter-

mining how many factors a number has is a computational problem. A solution to 

such a problem is an algorithm that evaluates that function.

Th e protein expression network represents how the expression levels of all the 

proteins in a cell are regulated in terms of each other and other relevant factors. 

It is sometimes referred to as the gene expression network.

A randomized Turing machine is a Turing machine that at any step may choose 

one among a set of possible transitions by making a random decision according to 

the toss of a coin.

Resilience to diff erent distributions is the desirable property of a learning algo-

rithm to give reliable answers for wide ranges of distributions of the examples.

Resilience to noise is the desirable property of a learning algorithm to give answers 

that are degraded only a little by any noise in the data from which it is learning.

A robust computational model for a phenomenon is one that is provably equiva-

lent to a wide range of alternative defi nitions of computational models for that 

phenomenon. Turing machines for the phenomenon of computation off er the ex-

emplary paradigm.

Robust logic is a system in which learning and reasoning have a common seman-

tics and both can be accomplished feasibly in the PAC sense.

Robustness to computation and data is a way of phrasing what PAC learning 

 accomplishes, namely the requirement that it should be practicable to drive down 

errors arbitrarily by increasing the amounts of training data and computation 

appropriately.
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A statistical query algorithm is a learning algorithm that can receive information 

about examples only by asking statistical questions about them, rather than by pro-

cessing individual examples.

Target pursuit is the capability in both learning and evolution to pursue a large 

number of accessible targets simultaneously.

Th eoryful is a term defi ned  here to denote decisions for which there is a good 

 explanatory and predictive theory, such as a scientifi c theory.

Th eoryless is a term defi ned  here to denote decisions that are not known to be 

theoryful.

A Turing machine is a model of computation that is widely believed to encompass 

all information pro cessing that one would think of as mechanistic.
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