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Chapter Four

Mechanistic Explanations of Nature

What might we look for?

I hope it will not shock experimental physicists too much if I 

say that we do not accept their observations unless they are 

confi rmed by theory.
Arthur Eddington

On February 28, 1953, Francis Crick announced to the patrons of the Ea gle 

pub in Cambridge, En gland, that he and James Watson had discovered the 

“secret of life.” What they had discovered was the double- stranded helical 

structure of DNA, the molecule that by then was suspected to be the carrier 

of heredity. Th is structure, with the two strands containing identical infor-

mation, was suggestive of the pro cess by which cells might copy their DNA 

during replication. Th e two strands simply separate, each strand carry ing 

all the information it needs to give rise to a new double- stranded version of 

itself in its own new cell.

Something that became alarmingly clear aft er the content of the human 

genome had become largely known is that knowledge of the DNA sequence 

does not by itself unlock all the secrets of life. Th e sequence specifi es the 

circuits of human biochemistry, but in a code we understand only partially. 

More than half a century aft er Crick and Watson’s discovery, we still know 

little about how knowledge of the sequence can be exploited to understand the 

physical pro cesses inside the living cell or to help cure disease. Despite every-

thing that we know we do not know, we do have some insight into the compu-

tational nature of DNA. A strand of DNA consists of a sequence of nucleobases, 

each of which is one of four diff erent chemicals, adenine, guanine, thymine, 
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and cytosine. Th e sequence of bases contains the information that is carried 

by the living cell and inherited by its off spring. It may seem elementary, but 

it is still noteworthy that the way the information is represented in DNA is 

the same as it is represented in a Turing machine, as a sequence of symbols 

from a fi xed alphabet. In the case of DNA the alphabet has the four symbols 

A, G, T, C, standing for the four nucleobases. And as Turing showed, a one- 

dimensional sequence of symbols from a fi xed fi nite alphabet can describe 

and support all computations.

Th at the information in DNA is stored in a sequence is simply the fi rst 

and most immediate of the many ways in which biology may be viewed as 

computational. When the cell divides, the base sequences are scanned for 

copying much like Turing machine tapes are during computations. Random 

mutations are realized by bases changing one to another just like random-

ized Turing machines would change a symbol. Since errors may be made in 

copying, methods are also needed for correcting errors.

Th e operations carried out in living cells and larger structures, such as 

our neural networks, can be usefully viewed as computations at many 

deeper levels as well. One is at the level of the protein expression circuits 

that the DNA sequences defi ne. At any one time some of the proteins are 

expressed (produced) in the cell, and these in turn cause other proteins to be 

expressed according to the interdependencies specifi ed in the protein ex-

pression circuit. On a diff erent scale, the ner vous system can be viewed 

equally as a very large circuit that performs elaborate computations that we 

as yet also understand only a little.

We can also ask the higher level question of how these protein or neural 

circuits are themselves created and maintained. Evolution is realized by 

modifi cations in the DNA sequences and hence in the protein circuits. Th ese 

modifi cations can be regarded as computations also. With regard to neural 

networks, organisms learn during life by adapting their neurons in response 

to events. Th ese adaptations are again computations.

An early example of a computational view of biology was given by Turing 

himself, in his theory of morphogenesis, or the development of shape. Th is 

has had considerable infl uence on thinking about how the many cells of the 

embryo can diff erentiate themselves and take up their various roles in a com-

plex organism, despite having arisen from one unspecialized cell. Among 

other things, Turing suggested that the wide variation of the dappled pat-

terns on animal fur, whether Dalmatians or leopards, might be accounted 
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for by random variation during development, even if the animals are ge ne-

tically all identical. Turing demonstrated his suggestions by simulations (as 

shown in Figure 4.2). He was giving one of the earliest examples of computa-

tional science, the idea that facts about the world can be discovered not just 

by physical experimentation or by positing theories, but also by computational 

simulations. Such simulations can sometimes pursue the consequences of 

hypothesized theories beyond where mathematical analysis is able to go.

Biology therefore is based on complex mechanisms at many diff erent 

 levels that are as yet little understood. What Crick and Watson had done 

was to discover the physical substrate on which heritable information is rep-

resented, much like silicon is the physical substrate of present- day comput-

ers. For both substrates it is impressive how the exacting requirements 

imposed on them can be achieved with as much miniaturization and econ-

omy as they are. However, no one would say that the secret of computers is 

in the silicon, since computers can be equally well realized in many other 

physical substrates, though perhaps not quite so eco nom ical ly at present. 

Indeed, one reason that computer development has been as rapid as it has is 
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Figure 4.1 An illustration of a circuit. A situation is described by values x, y, z, 

and t that are input to the circuit. Th e value of the response of the circuit is w. 

Each circuit component performs some operation on the input values or on the 

results of previous operations. A circuit can be regarded as a general computa-

tion where the dependence among the various inputs, outputs, and intermediate 

computed values can be made explicit, as in this diagram. A neural or protein 

circuit will be eff ective if its response is benefi cial to the own er of the circuit in 

typically encountered situations. For theoryless decisions it is suffi  cient that the 

circuit be eff ective in situations that are most frequently encountered by the 

owner— no theory or understanding of why it is eff ective is needed. Ecorithms 

are the mechanisms by which such circuits are acquired and kept in tune.
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that computer scientists made a conceptual separation at the very beginning 

between the physical technology in which the computer was implemented 

and the algorithmic content of what was being executed on the machines. 

Th is enabled hardware, soft ware, and algorithms to evolve in de pen dently, 

and at their own spectacular rates.

Making similar headway in our study of biology, whether evolutionary or 

cognitive, demands the same separation of algorithm and substrate. Th e 

distinction made  here between a physical object and the information pro-

cessing it performs is self- evident for anyone dealing with computers. Th e 

distinction is in no way subtle. Even for a traffi  c light one can easily distin-

guish between its symbolic function and its physical construction. But 

 perhaps these distinctions  were not quite so obvious in former times. Th e 

mind- body problem of Descartes and his followers may have been an earlier 

reference to such a distinction. But now when computers are ubiquitous, 

there is no reason for confusing “what it does” and “what does it.”

Figure 4.2 A dappled pattern reminiscent of animal fur derived by Turing by 

means of a computational pro cess. Th e par tic u lar pattern obtained is deter-

mined by minor random variations made in early stages of the pro cess, rather 

than by any preprogrammed or ge ne tic element. Th e short horizontal line is a 

scale indicator of the generating pro cess. One gets very diff erent but equally 

natural- looking patterns every time one runs the randomized pro cess. Turing 

comments that he obtained this diagram in a “few hours by a manual 

computation”— evidently he did not have a machine available. (Copyright © 

1952, Th e Royal Society)
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Before moving on to the question of which algorithms might be realized 

by biology, I note that learning theory may inform the investigation of biol-

ogy in a diff erent sense also. A biologist performing experiments can be re-

garded as a learner who wishes to uncover the complex mechanisms of a 

par tic u lar system. As we shall see, there are inherent limits to the complex-

ity of mechanisms that can be learned. Th e limits on what is learnable, 

which we will see in the next chapter, may be viewed as warning signals that 

the accumulation of experimental behavioral data by itself may not neces-

sarily lead to progress in understanding how a system works. Individual 

human behaviors have been closely observed and widely recorded for thou-

sands of years, yet we understand little about the mechanisms of the brain 

that gave rise to these behaviors.

Aft er Alan Turing died, Max Newman, his mentor and friend, described 

in an obituary the central theme that had inspired Turing’s many contribu-

tions to science: “Th e varied titles of Turing’s published work disguise its 

unity of purpose. Th e central problem with which he started, and to which 

he constantly returned, is the extent and the limitations of mechanistic ex-

planations of nature.”  Th is is an insightful characterization, which we owe 

to someone who had known Turing well. It emphasizes the need for study-

ing “extent and limitations,” both of which  were to become fundamental 

characteristics of computer science. Th e characterization further asserts the 

novelty of Turing’s quest in suggesting that, while the established sciences— 

physics, chemistry, and biology— also aim for mechanistic explanations, 

nature also requires explanations of a kind that these older sciences do not 

address. In Turing’s mid- twentieth- century writings one can already detect 

the pulse of the twenty- fi rst century. Turing’s place in history is assured by 

his discovery and successful pursuit of this previously unsuspected dimen-

sion to science.
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Chapter Five

The Learnable

How can one draw general lessons from 

par tic u lar experiences?

All generalizations are false, including this one.
Mark Twain

5.1 Cognition

Th e idea that biological and cognitive pro cesses should be viewed as compu-

tations appeared almost immediately upon the discovery of universal com-

putation, and it was discussed by the early pioneers, including Turing and 

von Neumann. Because of subsequent slow progress in making this connec-

tion concrete or useful, some have despaired that it can never be made into 

more than meta phor, and that for fundamental reasons it cannot be made 

into a science. I disagree. I believe that developing any new science is fraught 

with challenges, and that we are making progress in this area at about the 

pace that might be reasonable to expect.

Th e universality of computation is what justifi es this approach to cog-

nition. Some have complained that the favored meta phor for the brain in 

every age has been the most complicated mechanism known at the time. 

Since the computer is currently that most complex mechanism, is it not a 

fallacy to adopt that meta phor? I would argue that the computer analogy 

goes beyond the fact that the computer is another complicated mechanism. 

What makes it diff erent this time is the widely agreed universality of com-

putation over all pro cesses that we regard as mechanistic.
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Turing and von Neumann both shared a second crucial insight: that 

mathematical logic, from which computation theory had emerged, was not 

the right grounding for a computational description of either thinking or 

life. In par tic u lar, Turing has the following memorable conclusion to his 

paper describing noncomputability results in logic: “Th e results which have 

been described in this article are mainly of a negative character, setting cer-

tain bounds to what we can hope to achieve purely by reasoning. Th ese, and 

some other results of mathematical logic, may be regarded as going some 

way toward a demonstration, within mathematics itself, of the inadequacy 

of ‘reason’ unsupported by common sense.” Th is passage may be the fi rst 

occurrence in science of the idea that common sense is somehow superior to 

reason. It foreshadows ample computational experience in the years that fol-

lowed. While computers are extremely good at reasoning using mathemati-

cal logic, they fi nd common sense much more challenging.

We are faced with two issues as a result: identifying what it is about com-

mon sense that logic fails to capture, and whether there is a scientifi c road 

to the problem of common sense. Th e fi rst issue, I argue, is a result of math-

ematical logic requiring a theoryful world in which to function well. Com-

mon sense corresponds to a capability of making good predictive decisions 

in the realm of the theoryless. To address the second issue we need therefore 

a theory of the general nature of the theoryless. As I shall argue, the road 

we must take in that direction is paved with ecorithms.

Th e algorithms studied most widely in computer science aim to solve 

 instances of some specifi c problem, such as integer multiplication or the 

Traveling Salesman Problem. Th ese algorithms, by design, already incorpo-

rate the expertise needed for solving them. Ecorithms are also algorithms, 

but they have an important additional nature. Th ey use generic learning 

techniques to acquire knowledge from their environment so that they can 

perform eff ectively in the environment from which they have learned. Th ey 

achieve this eff ectiveness not by intensive design, but by making use of 

knowledge they have learned. Th e designed- in expertise is limited to generic 

learning capabilities, and their use. Understanding ecorithms requires de-

velopments beyond basic algorithmic theory. One now needs to analyze 

not only the algorithm itself but also the algorithm’s relationship with its 

environment.

Th e theory of probably approximately correct, or PAC, learning deals with 

this relationship between the algorithm and its environment. It addresses the 
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fundamental question of how a limited entity can cope in a world that in 

comparison is limitless, and does so while keeping to an absolute minimum 

any assumptions about that limitless world.

5.2 The Problem of Induction

Living organisms from the lowliest have some capability to adapt. Th ey 

learn to avoid doing actions that are detrimental to themselves in favor of 

those that are benefi cial.

In real- world environments an almost limitless number of distinct 

 possible situations may occur. A useful learning capability therefore always 

needs to provide a signifi cant component of generalization; a learned behav-

ior has to be eff ective not only in situations that are identical to ones pre-

viously experienced but also in any number of novel ones. For this reason I 

identify generalization as the core of the learning phenomenon. Remember-

ing a list of a hundred words shown once may be a challenge for us humans, 

but this is best regarded as a bug of our neurobiology, the legacy hardware 

architecture our species inherited. Because our brains lack the means of 

manipulating memory addresses in the way computers are able to do, and 

because each neuron is connected to only a small fraction of the others, 

memorization is unnecessarily diffi  cult. However, we humans are excellent 

at generalizing, a skill that is both philosophically fraught and diffi  cult to 

endow in our computers.

Th ere is a diffi  culty in placing generalization at the core of learning, at 

least for phi los o phers, who have argued for millennia that it is diffi  cult to 

make a logical argument for rationally inferring anything from one situa-

tion to another that one has never before experienced. Th is is known as the 

problem of induction. Aristotle said that there are two forms of argument, 

syllogistic and inductive.  Here I interpret these words to mean that if one 

has a certain belief, then the belief was arrived at either by logical deduction 

(syllogism) from things already believed, or by induction (generalization) 

from par tic u lar experiences. In this formulation it is induction that is 

the more basic since it enables primary beliefs, whereas logical deduction 

requires some previous beliefs.

Th e main paradox of induction is the apparent contradiction between 

the following two of its facets. On the one hand, if no assumptions are made 

about the world, then clearly induction cannot be justifi ed, because the 

world could conceivably be adversarial enough to ensure that the future is 
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exactly the opposite of what ever prediction has just been made. Th is skepti-

cal position is ancient. For example, the phi los o pher Sextus Empiricus wrote 

some 1,800 years ago:

[Th e dogmatists] claim that the universal is established from the particu-

lars by means of induction. If this is so, they will eff ect it by reviewing 

 either all the particulars or only some of them. But if they review only 

some, their induction will be unreliable, since it is possible that some of 

the particulars omitted in the induction may contradict the universal. If, 

on the other hand, their review is to include all the particulars, theirs will 

be an impossible task, because particulars are infi nite and indefi nite. 

Th us it turns out, I think, that induction, viewed from both ways, rests on 

a shaky foundation.

On the other hand, and in apparent contradiction to this argument, suc-

cessful induction abounds all around us. Generation aft er generation, mil-

lions of children learn everyday concepts, such as dogs and cats, chairs and 

tables, aft er seeing examples of them, rather than precise defi nitions. Each 

child will typically see few examples of each concept, and the examples dif-

ferent children see will in general be diff erent. Nevertheless, when asked 

to categorize a new example as to whether it is a cat or a dog, children will 

agree with each other on a high percentage of occasions, perhaps surpris-

ingly high given the paucity and variability of the information they have 

been provided. From this we have to conclude that generalization or induc-

tion is a pervasive phenomenon exhibited by children. It is as routine and 

reproducible a phenomenon as objects falling under gravity. It is reasonable 

to expect a quantitative scientifi c explanation of this highly reproducible 

phenomenon.

While these two facets, the diffi  culty of justifying induction without 

 assumptions, on the one hand, and the pervasiveness of induction, on the 

other, are on the surface contradictory, they are not implacably inconsis-

tent. Th ere may exist some acceptable assumptions that hold for the repro-

ducible, naturally occurring form of induction, and under which induction 

is rigorously justifi able. I argue that this is exactly the case, and that just 

two assumptions are suffi  cient to give a quantitatively compelling account 

of induction. Further, these two par tic u lar assumptions are also necessary 

and unavoidable.
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Th e fi rst assumption is the Invariance Assumption: Th e context in which 

the generalization is to be applied cannot be fundamentally diff erent from 

that in which it was made. If I move from one city to another, then I can 

benefi t from my previous experience only on the assumption that things are 

not too diff erent in the two cities. To put it a bit more mathematically, this 

assumption requires that the functional relationships and the probability 

distribution D that characterizes how frequently diff erent situations arise 

remain somehow constant over time. It is important to note that the In-

variance Assumption does not require that the world not change at all. It 

requires only that there are some regularities that remain true. Th ese regu-

larities may even specify how the world tends to change with time: If we 

observe the Sun going down toward the horizon in an interval of an hour, 

we expect that in the next hour the sun will go down even closer to the 

 horizon, rather than that it will repeat the previous positions in a zig- zag 

fashion. Or, as the Wall Street fi nancier J. P. Morgan, on being asked by a 

questioner for a prediction about the future course of the stock market, said: 

“It will fl uctuate.”

Th e second assumption is the Learnable Regularity Assumption. We are 

quite good, but possibly not perfect, at categorizing. If we look into an 

aquarium, we can fairly reliably distinguish between plants and animals, 

even species we have not seen before. We must be doing this by applying 

some criterion that distinguishes animals from plants. Th ese criteria can be 

viewed as regularities in the world. Such regularities have been discussed as 

such by phi los o phers, notably by David Hume in the eigh teenth century. 

Computer science adds at least two further levels to this discussion. First, it 

is essential to require that any useful criterion or regularity be detectable: 

Whether the criterion applies to an instance should be resolvable by a fea-

sible computation. For example, the number of mea sure ments we need to 

make on the object in question, and the number of operations we need 

to perform on the mea sure ments to test whether the criterion of being an 

animal holds or not, should be polynomially bounded. A criterion that can-

not be applied in practice is not useful.

However, the induction phenomenon has a second, even more severe, 

further constraint on it. It is not suffi  cient that the regularity or criterion 

just exist or even that it is detectable. To explain induction it is also neces-

sary to explain how an individual can acquire the detection algorithm for 

the regularity in the fi rst place. In par tic u lar, this acquisition must be feasible, 
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requiring only realistic resources and only a modest number of interactions 

with the world. Of course, diff erent kinds of regularity may require diff erent 

levels of learning eff ort. Th ink about the night sky. Data about the positions of 

the visible objects has been available to our ancestors from the beginning, 

there for anyone to see. A little systematic observation revealed the easy- to- 

learn regularity that all the objects are in fi xed positions relative to each other, 

except the few we call planets. It took thousands of years before someone, 

namely Kepler, discovered the much- more- diffi  cult- to- discover regularity 

that the planets move in ellipses.

Th e Invariance and Learnable Regularity assumptions may seem restrict-

ing, but in fact they are liberating: Th ey free the learner from certain re-

sponsibilities that are impossible to realize. Th e Invariance Assumption 

requires only that predictions hold for examples drawn from the same 

source as the examples  were drawn during learning. If we learn from natu-

rally occurring examples, then we only need to make good predictions about 

other natural examples. In the case of learning to distinguish animals from 

plants, this would imply, for example, that accurate predictions on artifi cial 

or mythical cases are not required. Computer- generated images of fi ctitious 

hybrids, designed to split human opinion exactly fi ft y- fi  fty as to whether 

they are plant or animal, will not be relevant to our interpretation of the 

induction phenomenon.

Th e Learnable Regularity Assumption also imposes some liberating 

 limitations. It requires that some regularity exists, and that this regularity 

be eff ectively detectable for any example. It goes further in insisting that this 

regularity be learnable with moderate eff ort. A case that therefore need not 

be encompassed is where the examples are natural but then encrypted by 

some method that cannot be effi  ciently reversed. Th us the pictures of the 

animals or plants can be encoded so that they cannot be deciphered by any 

effi  cient computational pro cess. Th is does not remove the regularity from 

the data if the original data is still recoverable in principle, even if only by an 

infeasibly laborious computational pro cess. But if it is not practical at all to 

discover the regularity, then the regularity is no longer a learnable regularity, 

and it need not be addressed.

5.3 Induction in an Urn

I will show that these two minimal assumptions— the Invariance and 

 Learnable Regularity assumptions— enable us to explain the possibility of 
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induction rigorously. PAC learning is based on these two assumptions of 

invariance and learnable regularity. Th e next several sections will develop 

this idea in more depth.

Suppose you are presented with an urn containing millions of marbles, 

each one with a number written on it. You can reach in and draw a marble 

at random from the urn. You are allowed to draw 100 marbles. Your task is 

to determine which numbers occur at least once among all the millions of 

marbles in the urn. Is this possible?

Th e answer is clearly “no” if no assumptions are made at all, since it is 

 possible that all the marbles have diff erent numbers written on them. Any 100 

draws will then fail to identify the numbers on the remaining millions of 

marbles. On the other hand, the answer is clearly “yes” under certain extreme 

assumptions. For example, if it is known that all the marbles are identical, 

then a single draw would give complete knowledge about all the marbles.
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Figure 5.1 Given a large urn containing millions of marbles, can one induce 

which marble types are in the urn from a small sample drawn at random?
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What is a little more striking is that there is a qualifi ed positive answer 

under some more interesting intermediate conditions. In par tic u lar, if the 

number of diff erent kinds of marble in the urn is not one but a small num-

ber, such as fi ve, then one can still achieve a useful level of generalization.

Th e reason why having a fi xed number of marble types makes some level 

of induction possible is simply the following. Any marble that occurs 

 frequently enough will be among the 100 drawn with high probability, and 

hence the 100 marbles drawn will be representative of the most frequently 

occurring marbles, unless, of course, you had particularly bad luck with 

the draw.

To argue this more precisely, fi rst consider the specifi c case that as many 

as 50 percent of the marbles are of one type. Suppose this 50 percent all have 

a 3 written on them. Th en the probability that all 100 random draws miss 

a 3 is (1 ⁄2) = 0.00000000000000000000000000000078886. . . .  Th is is the 

same as the probability that 100 tosses of a fair coin all come up tails. Th e 

likelihood of this occurring is, of course, extremely small— so small, in fact, 

that if an experiment of tossing 100 coins had been repeated every nanosec-

ond since the currently estimated date of the Big Bang, then the probability 

that this eventuality would have ever happened is still less than 1 in 2,000. 

Th erefore, for the urn in which 50 percent of the marbles are 3s, we are safe 

to conclude that aft er 100 draws, with overwhelming probability, we will 

have seen at least one 3, and hence a representative of at least 50 percent of 

the contents of the urn.

Such a very specifi c assumption, that 50 percent of the marbles are the 

same, is not essential either. Th e knowledge that the number of diff erent 

marble types is small also gives a suffi  cient principled basis for induction. 

Suppose that we know that there are at most fi ve diff erent marble types, but 

have no idea of their relative frequency. It turns out that aft er 100 picks we 

should have high confi dence that we have seen representatives of over 80 per-

cent of the contents of the urn. Th e argument goes like this. If any of the fi ve 

marble types occurs with frequency more than 5 percent, then the probability 

that that type was missed all 100 times is less than (1 − 0.05) = (0.95) < 0.6 

percent. Since there are at most fi ve such types, the probability that any one 

of these frequent ones has been missed is less than fi ve times this quantity, 

namely 3 percent. Th ere can be at most four types that occur with frequency 

less than 5 percent each, and hence the rare types account for less than 

20 percent of all the marbles between them. Combining the two sources of 



The Learnable   |   

error, we conclude that with probability at least 97 percent no marble type 

that occurs with probability greater than 5 percent has been missed, in 

which case the missing marble types can account for at most 20 percent of 

the contents of the urn. Hence you will have drawn representatives of at 

least 80 percent of the marbles, unless you are unlucky and miss some com-

mon types. But you are unlucky in this way less than 3 percent of the time.

In other words, you can predict with 97 percent confi dence that aft er 100 

picks you will have seen representatives of at least 80 percent of the contents 

of the urn. Th is is in spite of the fact that the distribution of the various 

types of marbles is arbitrary and unknown to you. It may be that each of the 

fi ve occurs with equal 20 percent probability. Or it may be that 92 percent 

are of one kind and the other four kinds occur with frequency 2 percent 

each. Or it may be that three of the marble types are extremely rare, each 

occurring 0.1 percent of the time, and the remaining two each occurs 49.85 

percent of the time. Th e claim is equally valid for these three cases, as for 

any other.

All we need to make this claim are our two assumptions: that the con-

tents of the urn do not change (invariance), and that there are a fi xed num-

ber of marble types represented in the urn (which provides a suffi  cient 

learnable regularity). From this it was possible to deduce totally rigorously 

that from a small sample one can make meaningful predictions about fu-

ture draws from the urn.

5.4 Error Control

Clearly, then, induction with our minimal assumptions is powerful. Equally 

clear is that we cannot avoid errors, which can come from two sources. Th e 

fi rst source is that of rarity errors. Th ere may exist in the urn some rare 

types of marbles that are unlikely to be drawn in any small sample. Th eir 

existence therefore will be predicted with correspondingly small probabil-

ity. Th e second source is that of misfortune errors. With some small proba-

bility the sample drawn will be unrepresentative of the contents of the urn 

because it missed some common marble types. In extreme enough cases 

of such misfortune, as when all the common marble types are missed, the 

sample will not support any useful claims about what is in the urn.

Th e interesting thing is that while neither of these two sources of error 

can be totally eliminated, both can be controlled. By this I mean that the 

probability of both sources of error can be driven down to arbitrarily small 
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(but nonzero) quantities by increasing the number of marbles drawn. Most 

signifi cantly, controlling error is aff ordable: Th e cost in increased sample 

size that needs to be paid will depend only modestly, in fact polynomially, 

on the predictive error that is to be tolerated. Th at aff ordability is crucial— if 

good predictions could be achieved only in an idealistic limit requiring ex-

ponentially much eff ort, then explanations of real- world phenomena would 

not follow.

In this urn model the only action is to pick marbles and there is no other 

computation. Hence the computational cost may be regarded as the number 

of marbles picked from the urn. I shall call this number S. By feasible I have 

a concrete quantitative notion in mind. I want S to increase only polyno-

mially both with n, the number of diff erent marble types in the urn, and with 

1/error, the inverse of the maximum error one is choosing to tolerate.  Here 

error will be either the rarity error or the misfortune error, whichever is 

smaller. An instance of a polynomial bound for the error is the quadratic 

bound (1/error). Th en if one is willing to tolerate 10 percent errors (i.e., er-

ror = 0. 1), then the number of examples and total number of steps needed to 

achieve that level of accuracy should be proportional to (1/error) = 10 = 100.

We can fi nd out just how aff ordable our predictions can be. If we assume, 

for example, that all n types occur in the urn with the same probability, to 

draw a set representing half the available types, we will need to choose at 

least n/2. In this case the cost of a good induction will be proportional to the 

number of available types. It can also be shown that for some distributions 

the dependence on the inverse error can be similarly linear. Th is shows that 

some minimum price may have to be paid for good generalization. Fortu-

nately, it can be shown that for no distribution is the actual price ever much 

higher than these bounds, which are linear in n and in 1/error. Th e argu-

ment needed to prove this is a generalization of the one just given for the 

par tic u lar case of fi ve marble types, where it was shown that a sample of 100 

marbles was suffi  cient to get a confi dence of 97 percent of having a predic-

tion error less than 20 percent.

5.5 Toward PAC Learnability

Th e urn example establishes the feasibility of induction in that setting, but 

it is only a restricted setting; the number of distinguishable objects is small, 

in fact small enough that it is practicable for the learner to witness a big 

fraction of them. We have already seen Sextus Empiricus’s objections to 
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such an assumption. In the real world the number of distinguishable objects 

is so large that no learner can expect to see more than a minute fraction, 

even in a lifetime. A child will have seen only a small fraction of the millions 

of distinguishable individual animals and yet be able to classify examples 

according to species. Th e onerous requirement on human induction, which 

the urn example does not satisfy, is therefore that aft er seeing S examples, it 

has to be able to generalize over sets that have far more than S distinguish-

able individuals.

Hence the question we have to ask is this: What kind of induction is 

feasible that matches the urn example in rigor and practical feasibility, but 

can induce over sets of as many as, say, 2S distinguishable types, rather than 

merely S, but with a cost that is polynomial in S, and not exponential?

Fortunately we can adapt the urn example for learning in such a more 

expressive and exacting setting. Suppose, for simplicity, that the features we 

detect when trying to distinguish an animal from a plant on a certain planet 

all have just yes/no values. Suppose also that there are just twenty such fea-

tures, including the following: is grey, is red, is green, is brown, is small, is 

big, has eyes, has legs, has leaves, has long ears, can move, can breathe, and 

so on. Assuming a criterion in terms of these par tic u lar features exists, then 

for each possible combination of yes/no values of the twenty features that 

applies to some creature it is completely determined whether that creature is 

an animal or a plant.

Th e problem is that twenty features, each being present or absent, can be 

combined in 2 = 1,048,576 ways. Now if we have the opportunity to ob-

serve many millions of creatures, each identifi ed as animal or plant, we are 

essentially back to the urn model. We will see all commonly occurring com-

binations of features, view each diff erent combination as a type of marble, 

and will then be able to classify future confi gurations with the same confi -

dence that the calculation for the urn model justifi es. However, a scenario 

where it is necessary to see exponentially many examples in terms of the 

natural pa ram e ter,  here the number of features, is simply unrealistic. Even if 

not all the 2 diff erent combinations of features occur in nature, a large 

number may, perhaps in the thousands. Humans can learn from far fewer 

examples even in cases such as this where the number of distinguishable 

individuals is really enormous. Our algorithm should be able to, as well.

Th is brings me to the defi nition of learnability, or the requirement that we 

can reasonably impose on a learning algorithm before we declare it to be 
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successful. In this defi nition we shall demand that an algorithm should learn 

from a number of examples that is polynomial in the number of the features 

n. Th e need for n or n or even n examples may be acceptable, but exponen-

tially many, such as 2n, would not. (Th e number of distinguishable types, 

however, may be as many as 2n.) We also want to control the error, and insist 

that this control be again polynomial. In order to achieve all this, we there-

fore insist that the computational cost of the pro cess of deriving the induced 

generalization from the examples is polynomial not only in n and but also 

in 1/error. Note that this computational complexity criterion already implies 

the polynomial limitation on the number of examples drawn, or the sample 

complexity, since it takes at least one operation to pro cess each example.

Th e next question to ask is whether this notion of induction is not so 

onerous that it is unachievable. We can show that this is not the case— 

induction in the sense of this defi nition can be attained for certain useful 

classes of concepts. One such class is that of conjunctions. A conjunction is 

an expression that specifi es for each feature whether it must hold, it must 

not hold, or it does not matter whether it holds. An example of a conjunc-

tion in the present case is

(can move = true) and (has eyes = true) and (is green = false).

Th is expresses the criterion that “can move” and “has eyes” must hold, “is 

green” must not hold, and the remaining seventeen feature values do not 

matter. Such a conjunction, in turn, defi nes the concept of an animal on a 

certain planet if and only if every animal there satisfi es the conjunction (i.e., 

satisfi es all three components) and every nonanimal fails to satisfy it (i.e., 

fails to satisfy at least one of the three components.)

Now let us assume, for the sake of argument, that the concept we are try-

ing to learn can be expressed by exactly this conjunction. In other words, 

we are assuming that everything on that planet that can move and has eyes 

and is not green is an animal, while anything that fails to have at least one of 

these three properties is not. How would we learn the conjunction effi  ciently 

from a modest number of examples? It turns out that the marbles and urn 

analysis of the previous section can be adapted to apply  here also, but with 

the polynomial bound now in terms of the number of features n, rather than 

only in terms of the number of distinguishable types, which may be 2n or 

exponential in that quantity.
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To see this, we can treat each example of an animal or nonanimal as 

a marble that has written on it for each of the twenty features whether the 

feature holds for the example or not. We only put marbles corresponding to 

positive examples of animals in the urn. Th e marbles representing animals 

will all be labeled by the statement: can move = true, has eyes = true, is 

green = false, while the other seventeen features between them can take on 

any of the 2 diff erent combinations of the remaining feature values in any 

arbitrary ratios of relative frequency.

Our learning algorithm works like this. It forms a list of the 2n possible 

properties, for each feature one property asserts that the feature is true and 

the other that it is false. We call this list L. Th e list L initially contains all 2n 

properties, or forty in our running example. Marbles are then drawn one by 

one. If a marble is drawn that misses some properties that are in L, those 

properties will be deleted from L, because they are properties that not all 

animals share. For example, if one animal is not grey, then greyness cannot 

be a necessary property for all animals, and this property should not be in 

the conjunction. Aft er 100 marbles have been drawn, the conjunction of the 

properties remaining in L is declared to be the hypothesis or criterion for 

animals.

Th is procedure, known as the elimination algorithm, induces an accurate 

criterion for recognizing whether something is an animal. Th e reason is the 

following. First, all the properties in the correct conjunction for animals 

must be present in the fi nal L since every marble in the urn had all the prop-

erties that all animals share, and the only properties deleted from L  were 

those that  were missing in at least one animal. So the only possible source of 

error is that some property, such as “has long ears,” remained in this fi nal L, 

while it should not have. Th is would mean that in 100 trials every animal 

drawn had long ears. If this property is not essential to animals, then the 

ones that lack this property must be truly rare (rarity error) or we  were un-

lucky in our pick of 100 animals (misfortune error). Exactly as in the urn 

argument, we can argue  here also that, with high probability, the properties 

that falsely remain in L (e.g., having long ears) must be those that between 

them exclude no more than a small percentage of animals. In fact, essen-

tially the same polynomial bound can be proved in terms of n (the number 

of features, not animals) and 1/error as for the urn problem.

Th at correctly classifying animals via conjunctions is no more diffi  cult 

than the urn problem is perhaps surprising, since there  were just n diff erent 



   |   probably approximately correct

marble types in the fi rst scenario, while now there are 2n diff erent types of 

animals. Let us therefore reexamine our assumptions.

First, we made the Invariance Assumption that the examples encoun-

tered in the testing phase come from the same source as in the learning 

phase. Examples rarely seen during learning will be equally rare during 

testing, and therefore less important for the learner to know about.

Second, we made the Learnable Regularity Assumption. In this case we 

assumed that for the given features a criterion for distinguishing animals 

from plants could be expressed as a conjunction. Th is was suffi  cient because 

conjunctions can be shown to be learnable, as we have just seen.

As we shall see later, many function classes, because they seem not to 

have learnable regularity, appear not to be learnable even when the Invari-

ance Assumption holds. In other words, the Learnable Regularity Assump-

tion substantively constrains what learning algorithms can do. Th at may 

seem a problem, but in fact such constraints are needed to make learning 

possible. Th e fact that the elimination algorithm for conjunctions used only 

positive examples can help us see why! It may seem impossible to learn to 

classify animals and plants by looking at only animals. Nevertheless, as we 

have seen, it is both possible and even rigorously justifi able. Th e reason is 

that the constraint that there exists a conjunction that distinguishes one 

type from another is in itself highly informative. In this case it permits 

learning from positive examples alone. (As a very loose analogy for how in-

formation can be conveyed by constraints, suppose I challenged you to solve 

a puzzle that I claim to have solved myself. In your search for a solution you 

would fi nd it helpful to know whether it had taken me ten seconds, ten 

hours, or ten days, even though this information sheds little light specifi c to 

the problem.)

Equally learnable are disjunctions, which are expressions of exactly the 

same form as conjunctions, except that each and is replaced by an or, re-

quiring only that at least one of the listed set of the properties holds, rather 

than that every one of them holds. We would then assume that the concept 

of an animal is expressible as a disjunction such as x or x or x', where x' 

denotes not x. Like conjunctions, disjunctions are learnable, albeit by re-

lying entirely on negative examples, and again using the elimination algo-

rithm. So, if the algorithm encounters a brown plant, “is brown” gets 

removed from the list of traits that each guarantee something being an 

animal.
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Eliminating what has to be eliminated, as we do  here, is, of course, a long- 

recognized principle of reasoning. Francis Bacon, in the early seventeenth 

century, and John Stuart Mill, in the nineteenth, both emphasized its 

 importance. Sherlock Holmes was even more categorical: “When you have 

eliminated the impossible, what ever remains, however improbable, must be 

the truth. ” Unfortunately for Mr. Holmes, exploiting the elimination method 

in a foolproof way is rarely practicable. Some cases will remain on the list 

that are not true. Th e PAC framework off ers the needed analysis of the error 

that will result.

It is natural to ask whether conjunctions and disjunctions are expressive 

enough to account for human concepts. One way of phrasing this is to let 

the features be words in a certain dictionary, and ask whether each word 

in the dictionary can be expressed in terms of, say, a conjunction of the others. 

Th e phi los o pher Ludwig Wittgenstein argued that the notion of a game has 

no feature that is common to all instances of it. For example, not every game 

is won or lost, or played by two people, and so on. Th is implies that conjunc-

tions are not enough for expressing everyday words in terms of each other, 

since such conjunctions would have to contain exactly the features that are 

essential to all instances. A similar argument can be made for disjunctions.

Circuits that consist of and and or statements, composed in an arbitrary 

way, rather than in a single layer as in conjunctions or disjunctions, are 

much more expressive. If one has to learn such a circuit, and intermediate 

nodes in it do not correspond to natural concepts for which labeled exam-

ples are available, then the ability to learn conjunctions and disjunctions is 

not enough. Indeed, as we shall see later, it is widely believed that some func-

tion classes that are more expressive than conjunctions or disjunctions are 

not learnable. Th e questions of determining the most expressive classes of 

functions for which learning is still possible are the most fundamental ques-

tions of learning theory.

5.6 PAC Learnability

What we have been describing is a notion of probably approximately correct 

(PAC) learning. When fi rst introduced, the corresponding class was simply 

called learnable, in analogy with Turing’s notion of computable, to indicate 

that what was being sought was a robust characterization of what was prac-

tically learnable by explicit computational means. Th e “probably” acknowl-

edges misfortune errors, and the “approximately” rarity errors.
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Many of the concept classes we have seen so far are PAC learnable: con-

junctions and disjunctions are, as well as the class of linear separators dis-

cussed in Chapter 3. Th e perceptron algorithm described there is not quite 

suffi  cient to establish this. One impediment is that the number of iterations of 

the perceptron algorithm will be exponential if some examples are exponen-

tially close to the separator. Fortunately, this impediment can be overcome by 

using a diff erent algorithm, one based on linear programming.

Th e critical idea in PAC learning is that both statistical as well as compu-

tational phenomena are acknowledged, and both are quantifi ed. Th ere have 

been earlier attempts to model induction using purely computational or 

purely statistical notions. However, I believe that combining the computa-

tional and the statistical provides the key to understanding the rich variety 

of learning phenomena that exist. Th e notion of PAC learning is concerned 

with describing what needs to be achieved in order to constitute induction. 

It is neutral on both which concept class should be learned and which al-

gorithm is to be used to learn it. What it does do is to off er a quantitative 

analysis of learning. Which algorithms the human ner vous system uses and 

which classes are being learned are not currently known. But at least we 

have a way of making these questions concrete.

By now it may have occurred to the reader that the model described is 

undoubtedly a simplifi cation of the broad range of phenomena that humans 

manifest in relation to learning. In itself the model addresses the core phe-

nomenon of computationally feasible induction from examples. Th e model 

can be and has been extended in numerous directions so as to capture many 

additional aspects of learning. Th ese directions include allowing for some 

kind of noise in the data, the concepts changing slowly rather than staying 

invariant, the learner asking certain questions, or the algorithm working 

only for specifi c distributions. Having a defi nite mathematical model of the 

inductive pro cess gives a vantage point for investigating these important 

facets of learning.

5.7 Occam: When to Trust a Hypothesis

Th e great advantage of a hypothesis generated by a PAC learning algorithm 

is that it comes with a reliability guarantee. However, it is oft en the case that 

we are confronted with a hypothesis about the provenance of which we 

know nothing. A hedge fund manager, for example, might be told that some 

specifi c pattern of price fl uctuation has been present in market activity for 
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some time. He must decide if he should start using this pattern to make 

 investment decisions, even if no information is available about how the pat-

tern was identifi ed or who had identifi ed it. Th is kind of question also arises 

routinely in the practice of machine learning, where many algorithms are 

employed that have not been proved to be PAC learning algorithms but are 

useful nevertheless. Happily there are some entirely rigorous criteria to 

 apply to such situations also.

Th e answer lies with Occam algorithms: Th ey provide a rigorous ap-

proach, even in such cases of total ignorance about the origins of a hypoth-

esis, and exemplify the role of purely statistical arguments in machine 

learning. What this approach provides are some conditions under which 

an unfamiliar hypothesis can be trusted. Th ese conditions make concrete 

and rigorous the intuition sometimes attributed to the fourteenth- century 

logician William of Ockham that all things being equal, simpler hypotheses 

are more likely to be valid than complex ones.

Suppose that you are trying to predict  horse races, and that someone 

gives you data from a hundred past races in which every time the heaviest 

 horse won. Discerning whether the heaviest  horse is the sure thing it might 

appear to be requires several steps. First, you will need to be convinced that 

the 100 races you are shown  were not maliciously selected from among 

many that overall showed no such clear pattern. Second, you would need 

further reassurance that the data was not from a diff erent planet. Th ese two 

requirements are roughly equivalent to the Invariance Assumption of the 

defi nition of learnability, that future events will be drawn in de pen dently 

from the same probability distribution as the 100 events in the dataset. 

Th ird, you would need to assess the complexity of the hypothesis. It is tempt-

ing to bet on the heaviest  horse because of the simplicity of the rule “the heavi-

est will win.” It seems unlikely that 100 races would all satisfy such a simple 

rule just by accident. If the rule  were much more complex, for example that 

the  horse’s height, the own er’s weight, and the trainer’s age (all in appropriate 

units) added up to a prime number, then you would be a little more skeptical, 

and justifi ably so. Even if the winners  were totally unpredictable and arbi-

trary, some prediction rule could always be engineered to match them aft er 

the fact, if the rule is allowed to be complicated enough.

Th is intuition can be made rigorous as follows. Suppose that you have a 

well- defi ned language for expressing hypotheses, and suppose that at most 

N distinct hypotheses can be expressed in this language. Suppose also that 
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someone gives you a dataset of S examples that all agree with h, one of the 

N permitted hypotheses. To decide whether to accept this hypothesis h, we 

need only the Invariance Assumption. Suppose that a fi xed rule h* is bad, in 

the sense that it predicts correctly only a fraction p of the examples from the 

distribution. Th en the probability that it will be accurate on every one of the 

S in de pen dently drawn examples will be pS. Th is will be an extremely small 

fraction if S is large and p is substantially less than 1. For example, if S = 100, 

and p is less than 0.8, then the probability that this bad rule will predict cor-

rectly every one of 100 random examples is about 0.0000000002, or 2 × 10−. 

Th is is smaller than the probability that thirty- two successive tosses of a fair 

coin will all come up heads, an extremely unlikely event.

Th is argument applies to any one fi xed rule. But what if an adversary 

tried to trick us by choosing the rule to fi t the data aft er having looked at 

the data set? We know there are certain limits to what the trickster can do. 

Th ere are a limited number N of hypotheses from which he can choose; for 

example, if the hypotheses are conjunctions over n variables then N = 3n, 

since each of the variables has three options, present in the conjunction, 

present in negated form, or absent. In par tic u lar, if the probability that any 

one bad hypothesis looks good is no more than 2 × 10−, then the probabil-

ity that at least one of the up to N bad hypotheses looks good is no more 

than N times this, or N × 2 × 10−. Even if the trickster had a million diff er-

ent rules to choose from, the odds of him fi nding one that would be both 

bad and an eff ective trick is only 1 in 5,000. In fact, as long as N is much 

smaller than 5 billion, we can be confi dent that there will be no rule among 

the N that classifi es all the 100 examples correctly but is in fact less than 

80 percent accurate on the distribution D in general.

So, as an example, imagine race  horses are coded according to a list of 

1,000 traits, and that each hypothesis is a conjunction of three traits, such as 

“largest and darkest and oldest.” Th ere will be about 166 million distinct 

hypotheses. (Th is is because if one makes a sequence of three choices, each 

with a thousand outcomes, there will be 1 billion outcomes overall. Because 

the order of the traits, if distinct,  doesn’t matter, only about one in six such 

hypotheses is unique.) Hence the probability that even one bad hypothesis 

among them agrees with all the 100 examples will be slightly more than .03. 

So if “largest and darkest and oldest” correctly predicted the winner of 100 

randomly chosen races, you would have to be irrational not to bet that way 
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on the next one. We can make similar calculations, and determine what level 

of confi dence in a given rule is justifi ed, even with fewer than 100 examples, 

and even when the rule predicts not all but only most examples correctly.

What we have shown is that we can depend on the predictive power of a 

rule someone has given us if we are sure of three conditions. First, we need 

to be given a data set of past examples that have high agreement with the 

rule. Second, we need to know that the rule is from some small class of rules 

that was fi xed before the examples  were selected. And third, we must have 

convinced ourselves that the examples presented to us  were chosen ran-

domly and in de pen dently from the same distribution from which we will 

wish to make future predictions— that is, only rules trained on thorough-

breds should be used to bet on thoroughbreds.

Now, what is the relationship between PAC learning and these Occam 

algorithms? In the case of PAC learning we have a guarantee, ahead of see-

ing any examples, that the learning algorithm we have in hand, such as the 

elimination algorithm for conjunctions, will yield a good predictor when-

ever the hidden function to be learned lies in a certain class of concepts. In 

the case of Occam algorithms, the PAC- like guarantee of predictive accu-

racy does not depend on the pro cess by which the hypothesis was generated; 

it is provided only for one specifi c hypothesis at a time. But that can be lib-

erating, as the Occam argument then gives us a rational justifi cation for 

trying learning algorithms that do not always work. If we are lucky, and fi nd 

a hypothesis that explains the data and is short enough to have predictive 

power, then we can go ahead and use that hypothesis for making predic-

tions. If we are unlucky, and the hypothesis obtained is too long or does not 

fi t the data suffi  ciently, then we will recognize this failure immediately and 

not use it to predict, so that no harm will have been done.

One might say that the most reliable way of testing a hypothesis is to do a 

test on new data— that is, data that has not been used in deriving the hy-

pothesis. While this is true, it is not free of cost, since it requires that we re-

tain some data that does not inform the hypothesis. Using that extra data, 

we might be able to produce a better hypothesis. When one does go live with 

a hypothesis— whether betting on a  horse or recommending an investment 

or a medical treatment— one inevitably has to make an Occam- like deci-

sion: Given all the available data what exactly is the best hypothesis that can 

be deployed?
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5.8 Are There Limits to Learnability?

We have seen a variety of learning algorithms. Th e perceptron algorithm is 

one; the elimination algorithm is another. Obtaining a succinct hypothesis 

and appealing to an Occam argument is a third approach. As we shall see in 

Chapter 9, many learning algorithms are now known and some are already 

widely deployed. Also, there are no doubt many more algorithms that no one 

has yet conceived. But where do we look to for ultimate limits? As pointed 

out earlier, learning is based on a deep interplay of computational and statis-

tical phenomena. If there are limits to learning, then these are the directions 

in which they will be found.

First consider statistical limits, which, though weak, are signifi cant. Th ese 

impose a condition on the minimum number of training examples needed 

in order to learn reliably. Th is number does depend on the distribution. For 

easy distributions high accuracy can be reached with few examples. An ex-

treme case of an easy distribution is one that has only one positive example 

that ever occurs, in which case seeing that once will give all the information 

that is available or needed. Th e bounds obtained for worst- case distributions 

oft en provide useful guidance on how many examples to use in practice. One 

can show that, for certain distributions of examples, the minimum number 

of examples required is proportional to the ratio of the number of variables n 

and the error to be tolerated.

Computational limits are more severe. Th e defi nition of PAC learning 

requires that the learning pro cess be a polynomial time computation— 

learning must be achievable with realistic computational resources. It turns 

out that only certain simple polynomial time computable classes, such as 

conjunctions and linear separators, are known to be learnable, and it is 

 currently widely conjectured that most of the rest is not.

Th is intuition can be expressed more precisely with an Occam- style ar-

gument. Suppose that a function of n variables that describes some regular-

ity is detectable or computable in, say, n steps. (Note that conjunctions can 

be detected in about n steps, but some useful regularities may be more com-

plex.) Th en the behavior of the function on a little more than n randomly 

chosen inputs will determine the behavior on most of the exponentially 

many possible inputs in a PAC sense. In other words, the hidden function 

will be largely determined, for any distribution D in question, by its values 

at a polynomial number of inputs. Th e reason that most such functions do 

not appear to be learnable with polynomial eff ort is not that in a polynomial 
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amount of data the function is not already implicit, but that this implicit 

information cannot be extracted from that data with polynomial eff ort.

I believe that the primary stumbling block that prevents humans from 

being able to learn more complex concepts at a time than they can, is the 

computational diffi  culty of extracting regularities from moderate amounts 

of data, rather than the need for inordinate amounts of data. For example, 

the diffi  culty of discovering the elliptical nature of the orbits of the planets 

was not that the amount of data needed took hundreds of generations to 

compile, but that elliptical orbits as seen from Earth did not constitute a 

regularity that humans found easy to extract.

Yet another way of stating the relative roles in learning of computation 

and statistics is to observe that if the assertion that P = NP (or equivalently, 

that the NP- complete problems are computable in polynomial time) is true, 

then all of P would be PAC learnable. Recall that NP is the class correspond-

ing to mental searches. If P is equal to NP, then one can take a polynomial 

number of random, labeled examples and then simulate in P a machine that 

realizes the necessary mental search for a hypothesis that agrees with these 

labeled examples. Th is would give a hypothesis with an Occam guarantee of 

good predictive accuracy on future examples. In other words, the truth of 

the computational assertion that P = NP would imply that all polynomial 

computable functions would be learnable.

We conclude from this that if we are to understand the limitations of 

learning, we need to look at computational limitations. Unless it turns out 

that P = NP, or some other unexpectedly strong enough positive result is 

true, the notion of knowledge being implicit in data is not suffi  cient to mark 

the boundaries of what is learnable.

So what are the computational limitations on learning?

We get a fi rst clue from the study of cryptography. Th is fi eld is concerned 

with designing algorithms for encoding a message so that an intended re-

cipient can decode it, but any unwelcome eavesdropper who intercepts the 

message cannot. To make this decoding possible for the intended recipient, 

but not for the eavesdropper, the intended recipient must have as a key 

 information that is not available to the eavesdropper.

In traditional cryptography the key is conveyed to the recipient by some 

secure pro cess, such as inside an actual physically locked box or by a whis-

per in the ear from a trusted emissary. In public- key cryptography no such 

secure physical pro cess is needed for transferring the key. Instead, the 
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recipient generates a “public key” and transfers it to the sender through pub-

lic means, but the recipient privately retains some information, the “private 

key.” In the RSA system the public key is the product of two large prime 

numbers p and q, and the private key consists of the prime numbers p and q 

themselves. Anyone can encrypt a message intended for the recipient with 

the public key, but only the recipient with the aid of the retained secret 

 private key will be able to decode it in polynomial time. To ensure that the 

number of potential private keys is so large that it is not practicable for 

the eavesdropper to simply try them all in turn, the key should be, say, a 

thousand- digit number, of which there are too many to enumerate.

Th e conjectured infeasibility of computing p and q is believed to make 

RSA cryptography immune to attack. Th is conjectured immunity sheds 

light on why not all hypotheses in class P are learnable. One type of attack 

on any cryptographic scheme is known as chosen- plaintext attack. In this a 

would- be eavesdropper— perhaps an insider— is assumed to have access to 

the encryption device, and can feed the encryption device with many, pos-

sibly carefully chosen, pieces of text and then observe their encodings. From 

this information the eavesdropper extracts a decryption algorithm (equiva-

lent to the key) that will decrypt any encoded message. In essence, then, a 

chosen- plaintext attack is similar to our learning scenario: the encoded mes-

sages are the examples, the bits of the original raw messages are their labels, 

and the decryption algorithm encapsulated by the private key is the concept 

to be learned. Assuming that RSA, or some other encryption scheme, is 

in fact resistant to chosen- plaintext attack, it follows that the class P is not 

Message X 
Encoded 

Message f(X)   
Decoded 

Message XEncryption 

Algorithm

Decryption 
Algorithm

Figure 5.2 Th e existence of strong encryption methods implies the existence of 

functions that are computationally intractable to learn. Th e reason is that if all 

decryption algorithms  were learnable from examples, then one could break 

any scheme by collecting enough pairs (X, f (X)) by feeding the encryption 

device with enough known messages X and intercepting their encodings f(X). 

Th e pairs (f (X), X) are then labeled examples for the decryption algorithm. 

Learning this algorithm amounts to breaking the code.
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learnable, since if it  were then we could learn all decryption functions and 

hence break all such cryptographic schemes.

We do not need to look to just cryptography to fi nd apparent impedi-

ments to learnability. Language gives us another domain.

In the 1950s the linguist Noam Chomsky considered various alternative 

classes of formal languages as the possible grammatical bases of natural 

languages, such as En glish. Th e simplest in this so- called Chomsky hier-

archy of formal languages are the regular languages. Th e mechanisms that 

generate them are fi nite- state automata, which are also among the simplest 

interesting computing mechanisms. An instance is illustrated in Figure 5.3.

Each such automaton can be represented as a diagram with a start node 

and a number of fi nish nodes. Each link in the diagram is labeled from a 

fi xed set of symbols, such as a and b. Th e language accepted by the automa-

ton is the set of all sequences that label paths in the diagram from the start 

node to some fi nish node.

Consider the fi nite automaton depicted in Figure 5.3. Th e language this 

 accepts consists of all the sequences of a’s and b’s of length 5 that begin at the 

start node on the left  and follow paths from left  to right and terminate at 

the fi nish node. Th is automaton was generated by fi rst drawing the lattice dia-

gram shown, and then randomly labeling one of the two outgoing edges from 

each node with an a and the other with a b. Now, as you might observe, there 

are thirty- two possible sequences of fi ve letters made from the set of a and b, 

but only sixteen distinct paths one can take from start to fi nish. Hence the 

language generated by this automaton only accepts one- half of the possible 

sequences as valid. Th is construction can be generalized so that if there are 

l letters (or other symbols, such as punctuation or numerals) in an alphabet, 

a

b

a

a

a

a

b

b

b

bb

a

a b

b

a
start finish

Figure 5.3 An example of a fi nite automaton of width 2 and depth 5. It accepts 

half of the sequences of a’s and b’s of length 5. For example, bbbab is accepted, 

but aaaab is not.
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and if sentences are of length s, then there are ls possible sequences and ls− of 

these, or a fraction 1/l, would be accepted by the corresponding automaton.

If we could see all the ls possible sequences and be told which ones are in 

the language and which are not, then we could predict new examples, sim-

ply because we have all the facts. Th is is just the urn model again. But this, 

of course, would be of exponential complexity in terms of the length of 

sentences.

Th e task of learning a regular language is that of taking a polynomial 

number (in terms of sentence length and alphabet size) of training se-

quences, each labeled according to whether it belongs to the language or 

not, and on that basis predicting for unseen sequences whether or not they 

are in the language. Inducing the hidden automaton or an approximation 

to it would be one possible approach. In principle, it is also possible that a 

learning algorithm would yield a hypothesis that can label new examples 

probably approximately correctly, but does not reveal an explicit description 

of the automaton. Several de cades of research following Chomsky, however, 

failed to uncover such a learning algorithm. Th is failure was explained in 

the 1980s by a proof that any algorithm for PAC learning regular languages 

would imply a method for breaking the RSA cryptosystem. Unless such 

systems are breakable, no computational learning algorithm for regular 

languages can exist.

Th e problem can be understood through the frame of the Occam argu-

ment. A random set of polynomially many examples is suffi  cient to essen-

tially determine the hidden automaton. Th e diffi  culty, however, is that this 

determination is only in the implicit sense that automata that are very 

diff erent will be most likely inconsistent with the sample. It is in extracting 

the automaton from this sample by a feasible computation where the diffi  -

culty lies— no way is known of doing this extraction in polynomial time. 

Language learning is of some consequence. We cannot hope to understand 

what human languages are without understanding how they are learned. A 

formal language that cannot be learned, cannot be the basis of human 

language.

All known algorithms for learning regular languages appear to work in 

exponential time as a function of the length of the sequences of symbols. 

Whether this can be improved, even for the special class of automata gener-

ated uniformly at random using the lattice diagrams as illustrated, is 

 currently an open problem. Any reader not convinced that there are real 
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computational impediments to generalization should take as a challenge 

this simpler goal of fi nding a PAC learning algorithm to categorize the out-

put of a lattice automaton as words or not- words in polynomial time.

Finally, we note that there remain many natural classes of functions 

whose learnability is currently totally unresolved. For these it is not proven 

that they are PAC learnable, but equally there is no evidence that they are 

not. Th e prime example is the class of functions known as disjunctive nor-

mal form, oft en abbreviated as DNF. Th ese are functions that can be ex-

pressed as polynomial- size expressions in terms of the number of variables, 

where the general form of the expression is an or statement joining sub-

expressions consisting of and statements of the variables, for example, (X 

and Y) or (Z and T). Th is can be viewed as a two- level repre sen ta tion, com-

posed of conjunctions and disjunctions (which are themselves one- level 

repre sen ta tions). DNF is clearly more expressive than disjunctions and con-

junctions separately. Th e best algorithm currently known for learning DNF 

has complexity exponential in the cube root of the expression size, which is 

still exponential but not of the worst kind and curiously similar to the best 

bound known for factoring integers. DNF is an archetypal two- level repre-

sen ta tion, perhaps close to the boundaries of learnability. Resolving whether 

or not it can be PAC learned is a major open problem in learning theory.

5.9 Teaching and Learning

Learning a single concept from examples is already a striking natural phe-

nomenon. But even more impressive is how humans can acquire expertise 

involving many complex interrelated concepts. Of course, humans oft en 

take many years to accomplish such feats. Our species invests up to two 

de cades to educate its young, and there is no evidence that this is unne-

cessarily ineffi  cient. But what view should we take of these more complex 

accomplishments?

In a college course one expects to learn more than just a set of concepts 

that could be learned equally well in any order. Rather, one expects to see 

a  sequence of concepts, such that the later ones become accessible to the 

learner only aft er the earlier ones have been mastered. Th is is the paradigm 

of learning that we adopt  here. To put it more mathematically, at any instant 

we are in a position to learn a new concept that is a member of a learnable 

concept class C with the set X of concepts that are already recognized as 

features. Once we have learned a new concept in this way, it becomes an 
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added recognizable feature for the purposes of learning additional concepts 

in subsequent phases of learning. Each such new concept becomes in one’s 

brain an equal citizen with all the features X that  were available as features 

in previous phases, and gets added to X for the next phase. For example, the 

term “data” has a certain meaning in any time and place. Once we have some 

familiarity with that meaning, we can learn to recognize derivative concepts, 

such as that of “big data,” that may have been out of reach before “data” had 

been learned and became a feature. A basic PAC learning algorithm oper-

ates up to the level of complexity that is expressible by members of C. At 

higher levels we can think of the teacher as fulfi lling a part of the role of a 

programmer in defi ning a sequence of concepts that can be PAC learned in 

that sequence, but perhaps in no other.

Th is analogy between a teacher and a programmer also highlights some 

essential diff erences between the two. When programming a computer, the 

programmer needs to understand what exactly the existing programs al-

ready implemented on the machine do. Th is is not the case for a teacher, 

who does not know exactly the meaning to the learner of each word the 

teacher is uttering. It is possible for a teacher to get across the notion of 

“dog” by showing examples without knowing precisely which features of 

dogs are recognized by the learner, and how exactly these are interpreted. 

Much more specifi c knowledge is required of a computer programmer.

Th is disconnection between the teacher and learner is not entirely delete-

rious. It off ers unique advantages to learning systems that programmed 

systems lack. A teacher can convey information by suggestions and exam-

ples, without knowing the exact state of the learner. In contrast, the pro-

grammer has to know the exact state of the system, including the exact 

functionality of the previously programmed features, if the new program is 

to work as intended. One can go further and say that the inherent strength 

of the teacher- learner relationship is that it works even when the exact state of 

the learner is not known explicitly by anyone, including the learner. Th is 

incompleteness in both mutual knowledge and self- knowledge is inevitable 

among humans and may become increasingly relevant for machines also. It 

also, I believe, accounts for the diffi  culty of identifying any general panacea 

for improving human education. A second clear advantage of learning over 

being programmed is that it off ers a limitless potential to recover from 

 errors. A student who seriously misinterprets some concept is likely, at some 
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later time, to discover the inconsistency and recover from it. No omniscient 

external agent is needed to help.

In this formulation the most important role of a teacher is to point out 

the next good thing to learn. A second role is that of providing labeled ex-

amples. Th e actual labeling is less fundamental since many natural situa-

tions can be considered to be self- labeled. If a cat comes along we may 

recognize it as a cat from previous knowledge, and hence learn more about 

cats, without a teacher needing to label it as a cat.

A computational theory of learning also provides the following further 

wrinkle on the role of a teacher. PAC learning guarantees that a concept 

class is learnable from random examples for any distribution that the envi-

ronment may provide. Th e learner will, however, have a specifi c learning 

algorithm. A teacher with knowledge of the learner’s algorithm will be in 

a position to accelerate learning. In par tic u lar, the teacher may be able to 

present a short sequence of well- designed examples that drive the learner’s 

algorithm to the correct concept, aft er many fewer examples than would be 

needed if they had been random. For example, if we know that conjunctions 

are being learned, and the elimination algorithm described in Section 5.5 is 

being used, then a single stylized example that has only the essential fea-

tures of the concept, and is devoid of any distracting features, would be 

 eff ective. Th is is somewhat like bare bones illustrations in books for very 

young children. An elephant would be shown with prominent tusks and a 

trunk, but lacking any other detail. Such illustrations would then have the 

eff ect of driving the child’s learning algorithm to the correct hypothesis 

 aft er just the one example.

5.10 Learnable Target Pursuit

Th e ability of humans to acquire knowledge on a large scale is remarkable. 

At the basic level this must be based, I believe, on the execution of learning 

algorithms of the same nature as I have described. Supporting this there 

needs to be an additional capability that I call learnable target pursuit. At 

any instant any student, or any entity with a learning ability, has available 

all those features for which recognition algorithms have been previously 

acquired. Th e concepts that can be learned by the learning algorithm in 

terms of the available features are the accessible targets. Th ey are the tar-

gets that will be learned by the learning algorithm, provided that labeled 
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examples of them present themselves. (For this discussion the question of 

how the recognition algorithms for the currently available features had 

been previously acquired is not relevant. In biology it would be a combina-

tion of evolution and learning. For computers it would be programming and 

learning.)

I suggest that humans are wired so as to be always ready to pursue any 

and all accessible targets. Th is provides a mechanism for continuous learn-

ing in any rich environment even in the absence of any teacher. It enables 

not only previously learned concepts to be fi ne tuned to higher accuracy, but 

also entirely new concepts to be learned.

How are examples labeled in the absence of a teacher? As already 

 mentioned, many situations are self- labeled. If I can already recognize both 

swans and the color black, then I can start learning about black swans if I 

see one without needing a teacher to identify it. Similarly, if I meet a person 

I have not seen before, I can start learning about them without a teacher 

 being necessary to identify them or their characteristics.

Th is capability for learnable target pursuit can operate in the absence 

of any teacher, but it also provides extra opportunities to be exploited by a 

teacher. Th ese opportunities include the pre sen ta tion of examples of concepts 

for which the student is ready. As already pointed out, progress can also be 

made without a teacher, but that is dependent more on the serendipity that 

examples of accessible concepts will somehow appear. Individuals can be 

smart and seek out experiences that enable them to pursue some useful tar-

gets that are accessible given their current knowledge. Th ey can also make 

the mistake of devoting time to material for which they have insuffi  cient 

preparation, in which case they may learn little.

5.11 PAC Learning as a Basis of Cognition

I have presented PAC learning as a mathematically rigorous and philosophi-

cally satisfactory notion of induction. But I think it is more than that: Its 

basic features are essential and unavoidable in any attempt to build a theory 

of cognition.

Humans presumably have some shared learning algorithm. I shall call 

this algorithm A, and the concept class it learns C. Th is observation already 

provides an account of how we can have shared concepts: What ever I can 

learn from examples, I can pass on to you by pointing out examples to you, 

provided we have the same set of previously acquired features. Th is may also 
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work if our feature sets are diff erent, as long as the target concept is accessi-

ble from both. To date, the algorithm A and concept class C used by humans 

have not been identifi ed. But what ever they are, their very existence pro-

vides an assumption- free rigorous theory of induction for cognition. It 

makes no assumptions at all about the world or the distribution of objects in 

it. Th e frequencies with which objects have their exponentially many vari-

ants with diff erent combinations of properties may be arbitrarily complex 

and need not be known to the learner. A human having algorithm A will 

manage to learn certain regularities in this complex world, and will miss 

some others. Other humans will have essentially the same capabilities. Any-

thing you can learn I can learn too, at least in principle.

One much discussed issue in human learning is how some of it seems to 

occur from positive examples alone. In human behavior it is diffi  cult to es-

tablish exactly when this phenomenon can be considered to have occurred. 

Th e fact that humans appear to be able to learn to identify members of an 

animal species from just examples of that species is not conclusive. We may 

have somehow fi gured out that each animal belongs to just one species and 

hence implicitly use positive examples of dogs as negative examples of cats 

when we are learning the latter. It is therefore not clear to what extent hu-

mans do really learn from positive examples alone. But even if we do, there 

is no inherent mystery in that. As we have seen there do exist learning algo-

rithms, such as the elimination algorithm for conjunctions, that provably do 

exactly that.

Another issue is that of one- trial learning, or learning from very few ex-

amples. As I have previously mentioned, for a fi xed algorithm there may be 

single examples that drive it to the correct hypothesis, and these may be the 

ones that good teachers provide. Th ere also exist explanations of why a small 

number of examples may sometimes suffi  ce even without a teacher. In cases 

where the true concept depends on only a few features among a much larger 

number of distracting features, so- called attribute- effi  cient learning is some-

times possible even without a teacher. Th is means that the number of ex-

amples needed for PAC learning is proportional only to the small number of 

critical features, such as tusks, a trunk, and big ears, and depends only much 

more weakly on the possibly numerous irrelevant distracting ones. Another 

possibility is that some concepts may be easy to learn because instances of 

the category are separable by wide margins from noninstances, in the sense 

already discussed in the context of perceptrons.
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Everything in this chapter requires the Invariance Assumption. In 

practice, we can never be certain that the world will not change on us in 

an unexpected way, so that future examples will be from a very diff erent 

distribution from those in the past. Past per for mance is not necessarily in-

dicative of future results. Living organisms, however, need to make deci-

sions all the time and take a view on what will happen next. Th e only course 

available is to learn as many of the world’s regularities as we can, and allow 

them to guide our decision making. Th ere is simply no alternative.


