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Summary

Algorithms are the step- by- step instructions used in computing for achieving 

desired results, much like recipes in cooking. In both cases the recipe designer 

has a certain controlled environment in mind for realizing the recipe, and 

foresees how the desired outcome will be achieved. Th e algorithms I discuss 

in this book are special. Unlike most algorithms, they can be run in environ-

ments unknown to the designer, and they learn by interacting with the envi-

ronment how to act eff ectively in it. Aft er suffi  cient interaction they will have 

expertise not provided by the designer, but extracted from the environment. 

I call these algorithms ecorithms. Th e model of learning they follow, known 

as the probably approximately correct model, provides a quantitative frame-

work in which designers can evaluate the expertise achieved and the cost of 

achieving it.

Th ese ecorithms are not merely a feature of computers. I argue in this 

book that such learning mechanisms impose and determine the charac-

ter of life on Earth. Th e course of evolution is shaped entirely by organ-

isms interacting with and adapting to their environments. Th is biological 

inheritance, as well as further learning from the environment aft er con-

ception and birth, have a determining infl uence on the course of an indi-

vidual’s life. Th e focus  here will be the unifi ed study of the mechanisms 

of evolution, learning, and intelligence using the methods of computer 

science.

Th e book has the following simple structure. Chapters 1, 2, and 4 set the 

scene for the natural phenomena to which the quantitative computational ap-

proach is to be applied. Chapter 3 is an introduction to computer science, 

particularly the quantitative study of algorithms and their complexity, and 

describes the background for the methodology used. Chapters 5, 6, and 7 con-

tain the resulting theory for learning, evolution, and intelligence, respectively. 
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Th e fi nal chapters make some informal and more speculative suggestions with 

regard to some consequences for humans and machines.

Mathematics

Th e language of mathematics will be used, but only a little, and will be ex-

plained where used.





Chapter One

Ecorithms

In 1947 John von Neumann, the famously gift ed mathematician, was key-

note speaker at the fi rst annual meeting of the Association for Computing 

Machinery. In his address he said that future computers would get along 

with just a dozen instruction types, a number known to be adequate for 

expressing all of mathematics. He went on to say that one need not be sur-

prised at this small number, since 1,000 words  were known to be adequate 

for most situations in real life, and mathematics was only a small part of 

life, and a very simple part at that. Th e audience reacted with hilarity. Th is 

provoked von Neumann to respond: “If people do not believe that mathe-

matics is simple, it is only because they do not realize how complicated 

life is.”

Th ough counterintuitive, von Neumann’s quip contains an obvious truth. 

Einstein’s theory of general relativity is simple in the sense that one can write 

the essential content on one line as a single equation. Understanding its 

meaning, derivation, and consequences requires more extensive study and 

eff ort. However, this formal simplicity is striking and powerful. Th e power 

comes from the implied generality, that knowledge of one equation alone 

will allow one to make accurate predictions about a host of situations not 

even conceived when the equation was fi rst written down.

Most aspects of life are not so simple. If you want to succeed in a job 

 interview, or in making an investment, or in choosing a life partner, you 

can be quite sure that there is no equation that will guarantee you success. 

In these endeavors it will not be possible to limit the pieces of knowledge 

that might be relevant to any one defi nable source. And even if you had all 

the relevant knowledge, there may be no surefi re way of combining it to 

yield the best decision.
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Th is book is predicated on taking this distinction seriously. Th ose aspects 

of knowledge for which there is a good predictive theory, typically a mathe-

matical or scientifi c one, will be called theoryful. Th e rest will be called theo-

ryless. I use the term theory  here in the same sense as it is used in science, 

to  denote a “good, eff ective, and useful theory” rather than the negative 

sense of “only a theory.” Predicting the orbit of a planet based on Newton’s 

laws is theoryful, since the predictor uses an explicit model that can accu-

rately predict everything about orbits. A card player is equally theoryful in 

predicting an opponent’s hand, if this is done using a principled calculation 

of probabilities, as is a chemist who uses the principles of chemistry to pre-

dict the outcome of mixing two chemicals.

In contrast, the vast majority of human behaviors look theoryless. Never-

theless, these behaviors are oft en highly eff ective. Th ese abundant theoryless 

but eff ective behaviors still lack a scientifi c account, and it is these that this 

book addresses.

Th e notions of the theoryful and the theoryless as used  here are relative, 

relative to the knowledge of the decision maker in question. While gravity 

and mechanics may be theoryful to a physicist, they will not be to a fi sh or a 

bird, which still have to cope with the physical world, but do so, we presume, 

without following a theory. Worms can burrow through the ground without 

apparently any understanding of the physical laws to which they are subject. 

Most humans manage their fi nances adequately in an economic world they 

don’t fully understand. Th ey can oft en muddle through even at times when 

experts stumble. Humans can also competently navigate social situations 

that are quite complex, without being able to articulate how.

In each of these examples the entity manages to cope somehow, without 

having the tenets of a theory or a scientifi c law to follow. Almost any biologi-

cal or human behavior may be viewed as some such coping. Many instances 

of eff ective coping have aspects both of the mundane and also of the grand 

and mysterious. In each case the behavior is highly eff ective, yet if we try to 

spell out exactly how the behavior operates, or why it is successful, we are 

oft en stumped. How can such behavior be eff ective in a world that is too 

complex to off er a clear scientifi c theory to be followed as a guide? Even 

more puzzling, how can a capability for such eff ective coping be acquired in 

the fi rst place?

Science books generally restrict their subject matter to the theoryful. 

However, I am impressed with how eff ectively life forms “cope” with the theo-
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ryless in this complex world. Surely these many forms of coping have some 

commonality. Perhaps behind them all is a single basic phenomenon that is 

itself subject to scientifi c laws.

Th is book is based on two central tenets. Th e fi rst is that the coping 

mechanisms with which life abounds are all the result of learning from the 

environment. Th e second is that this learning is done by concrete mecha-

nisms that can be understood by the methods of computer science.

On the surface, any connection between coping and computation may 

seem jarring. Computers have traditionally been most eff ective when they 

follow a predictive science, such as the physics of fl uid fl ow. However, com-

puters also have their soft er side. Contrary to common perception, com-

puter science has always been more about humans than about machines. 

Th e many things that computers can do, such as search the Web, correct our 

spelling, solve mathematical equations, play chess, or translate from one 

language to another, all emulate capabilities that humans possess and have 

some interest in exercising. Depending on the task, the per for mance of 

present- day computers will be better or worse than humans. But in regard-

ing computers merely as our slaves for getting things done, we may be miss-

ing the point. Th e overlap between what computers and humans do every 

day is already vast and diverse. Even without any extrapolation into the fu-

ture, we have to ask what computers already teach us about ourselves.

Th e variety of applications of computation to domains of human interest 

is a totally unexpected discovery of the last century. Th ere is no trace of 

anyone a hundred years ago having anticipated it. It is a truly awesome 

phenomenon. Each of us can identify our own diff erent way of being im-

pacted by the range of applications that computers now off er. A few years 

ago I was interested in the capabilities of a certain model of the brain. In a 

short, hermit- like span of a few weeks I ran a simulation of this model on 

my laptop and wrote up a paper based on the calculations performed by my 

laptop. I used a word pro cessor on the same laptop to write and edit the 

article. I then emailed it off  to a journal again from that laptop. Th is may 

sound unremarkable to the present- day reader, but a few generations ago, 

who would have thought that one device could perform such a variety of 

tasks? Indeed, while for most ideas some long and complex history can be 

traced, the modern notion of computation emerged remarkably suddenly, 

and in a most complete form, in a single paper published by Alan Turing 

in 1936.
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Science prior to that time made no mention of abstract machines. Tur-

ing’s theory did. He defi ned the mathematical notion of computation that 

our all- pervasive information technology now follows. But in off ering his 

work, he made it clear that his goal went beyond understanding only ma-

chines: “We may compare a man in the pro cess of computing a real number 

to a machine which is only capable of a fi nite number of conditions.” With 

these words he was declaring that he was aiming to formalize the pro cess of 

computation where a human mechanically follows some rules. He was seek-

ing to capture the limits of what could be regarded as mechanical intellec-

tual work, where no appeal to other capabilities such as intuition or creativity 

was being made.

Turing succeeded so well that the word computation is now used in 

 exactly the sense in which he defi ned it. We forget that a “computer” in the 

1930s referred to a human being who made a living doing routine calcula-

tions. Speculations that phi los o phers or psychologists entertained in earlier 

times as to the nature of mechanical mental capabilities equally dim in the 

memory. Turing had discovered a precise and fundamental law that both 

living and inert things must obey, but which only humans had been ob-

served to exhibit up to that time. His notion is now being realized in billions 

of pieces of technology that have transformed our lives. But if we are blinded 

by this technological success, we may miss the more important point that 

Turing’s concept may enable us to understand human activity itself.

Th is may seem paradoxical. Humans clearly existed before Turing, but 

Turing’s notion of computation was not noticed before his time. So how can 

his theory be so fundamental to humans if little trace of it had even been 

suspected before?

My answer to this is that even in the pre- Turing era, in fact since the 

 beginning of life, the dominating force on Earth within all its life forms 

was computation. But the computations  were of a very special kind. Th ese 

computations  were weak in almost every respect when compared with the 

capabilities of our laptops. Th ey  were exceedingly good, however, at one en-

terprise: adaptation. Th ese are the computations that I call ecorithms— 

algorithms that derive their power by learning from what ever environment 

they inhabit, so as to be able to behave eff ectively in it. To understand these 

we need to understand computations in the Turing sense. But we also need 

to refi ne his defi nitions to capture the more par tic u lar phenomena of learn-

ing, adaptation, and evolution.



Ecorithms   |   

Understanding learning has been one of my personal research goals for 

several de cades. Th e natural phenomenon of young children learning is ex-

traordinary. A spectacular facet of this learning is that, beyond remembering 

individual experiences, children will also generalize from those experiences, 

and very quickly. Aft er seeing a few examples of apples or chairs, they know 

how to categorize new examples. Diff erent children see diff erent examples, 

yet their notions become similar. When asked to categorize examples they 

have not seen before, their rate of agreement will be remarkably high, at 

least within any one culture. Young children can sort apples from balls even 

when both are round and red.

Th is ability to generalize looks miraculous. Of course, it cannot really be 

a miracle. It is a highly reproducible natural phenomenon. Ripe apples fall 

from the tree to the ground predictably enough that one can base a uni-

versal law of gravitation on this phenomenon. Children generalizing suc-

cessfully from their specifi c experiences manifest a similarly predictable 

phenomenon, which therefore also begs for a scientifi c explanation. I seek to 

explain this in terms of concrete computational pro cesses.

Th e phenomenon of generalization has been widely discussed by phi los o-

phers for millennia. It has been called the problem of induction. I have 

found that as a scientist I have some advantages over phi los o phers: It is 

 suffi  cient to aim to capture the fundamental part of a specifi c reproducible 

phenomenon. I need not explain all of the many senses in which the words 

induction or generalization have been used. Scientifi c discovery— for ex-

ample, Johannes Kepler discovering his laws of planetary orbits— may have 

some commonality with the phenomenon of generalization exhibited by 

children learning words, but it may be a secondary and harder to reproduce 

by- product of a more basic and fundamental capability. Turing did not 

 attempt to capture all the connotations that the word computing may have 

had in his day. He sought only to uncover a phenomenon associated with 

that word that had fundamental reality in de pen dent of any word usage.

What kind of explanation of induction do we need? Does it need to be 

mathematical? Th ere is no better answer to this than what is implicit in the 

work of Turing himself. I have already referred to his successful mathemati-

cal formulation of computation. But he is also famous for the notion that 

is now known as the Turing Test, which he off ered as a test for recognizing 

whether a machine can be considered to think. A simplifi ed defi nition is as 

follows. A machine passes the Turing Test if a person, conversing with it via 
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remote electronic interactions, cannot distinguish it from a person. Th e 

Turing Test is an important notion, and researchers in artifi cial intelligence 

have not succeeded in either building machines that can pass the test or in 

showing it to be irrelevant. However, it is an informal notion. Unlike Tur-

ing’s mathematical defi nition of computation, it does not tell us how exactly 

to proceed in order to emulate thinking. As a result, it has not led to prog-

ress in artifi cial intelligence remotely comparable to the success of general 

computation.

Hence the right goal must be to fi nd a mathematical defi nition of learn-

ing of a nature similar to Turing’s notion of computation, rather than an 

informal notion like the Turing Test. Aft er all, where would we be if Turing 

had given for computation only an informal defi nition? Let us think about 

that. What would have been an informal notion of the “mechanically com-

putable” that would have sounded plausible in Turing’s time? How about 

this: “A task is mechanically computable if and only if it can be computed by 

a person of average intelligence while at the same time doing a mundane but 

exacting task, such as eating spaghetti.” Few could have disputed the reason-

ableness of such a defi nition. But I doubt such a defi nition in 1936 could 

have spawned the twenty- fi rst century we see around us.

At the heart of my thesis  here is a mathematical defi nition of learning. It 

is called the PAC or the probably approximately correct model of learning, 

and its main features are the following: Th e learning pro cess is carried out 

by a concrete computation that takes a limited number of steps. Organisms 

cannot spend so long computing that they have no time for anything  else or 

die before they fi nish. Also, the computation requires only a similarly lim-

ited number of interactions with the world during learning. Learning should 

enable organisms to categorize new information with at most a small error 

rate. Also, the defi nition has to acknowledge that induction is not logically 

fail- safe: If the world suddenly changes, then one should not expect or re-

quire good generalization into the future.

Th e biology of living organisms can be described in terms of complex 

circuits or networks that act within and between cells. Our biology is based 

on proteins and the interactions among them. Our DNA contains more 

than 20,000 genes that describe various proteins. Additionally, the DNA 

encodes descriptions of the regulation mechanism, a specifi cation of how 

much new protein of each kind is to be produced, or expressed. Th is overall 

regulation mechanism is absolutely fundamental to our biology, and is called 



Ecorithms   |   

the protein expression network. It is of enormous complexity. Even though 

many of its details remain to be discovered, we can ask: How have these well- 

functioning, highly intricate networks with so many interlocking parts come 

into being? I believe that all these circuits are the result of some learning 

pro cess instigated by the interactions between a biological entity and its 

environment.

Life’s interactions can be viewed in terms of either a single organism’s 

lifetime or the longer spans during which genes and species evolve. In either 

case the information gained by the entity from the interaction is pro cessed 

in some mechanical way by what I call an ecorithm. Th e primary purpose of 

the ecorithm is to change the circuits so that they will behave better in the 

environment in the future and produce a better outcome for the own er.

Human biochemistry is an important enough topic. However, our neural 

circuits, comprising some tens of billions of neurons, may be viewed as be-

ing involved in our personal experiences even more intimately. Our psycho-

logical behavior is controlled by these circuits. How do these circuits arise 

in evolution, and how are they updated during life? By the same arguments 

they too must be the result of information obtained from interactions, by 

ourselves or our ancestors, and incorporated in our genes or brain by some 

adaptive mechanism.

If biological circuits are fundamentally shaped by learning pro cesses, 

there seems little chance of understanding them, or their manifestations 

in our psychology, unless we recognize their origins in learning. We may 

not yet know in detail the actual ecorithms used in biology on Earth. How-

ever, the fact that our behaviors have their origins in such learning algo-

rithms already has implications.

Earlier I listed as two central tenets that the behaviors that need explana-

tion all arose from learning, and that this learning can be understood as a 

computational pro cess. Th ese tenets are not off ered  here as mere unproved 

assumptions, but as the consequences of the assumption that life has a mech-

anistic explanation.

Th e argument that these tenets actually follow from the formulation of 

ecorithms goes as follows: I start with the mechanistic assumption that 

biological forms came into existence as a result of concrete mechanisms 

operating in some environments. Th ese mechanisms have been of two 

kinds, those that operate in individuals interacting with their environ-

ment, and those that operate via ge ne tic changes over many generations. 
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I then make two  observations. First, ecorithms are defi ned broadly enough 

that they encompass any mechanistic pro cess. Th is follows from the work of 

Turing and his contemporaries that established the principle, known as the 

Church- Turing Hypothesis, that all pro cesses that can be regarded as mecha-

nistic can be captured by a single notion of computation or algorithm. Sec-

ond, ecorithms are also construed broadly enough to encompass any pro cess 

of interaction with an environment. From these two observations one can 

conclude that the coping mechanisms of nature have no sources of infl uence 

on them that are not fully accounted for by ecorithms, simply because we 

have defi ned ecorithms broadly enough to account for all such infl uences.

To put this in a diff erent way, the news reported  here is that there is a bur-

geoning science of learning algorithms. Once the existence of such a science 

is accepted, its centrality to the study of life is more or less self- evident.

Of course, the reader should be cautious when confronted with pur-

ported logical arguments such as the one I just gave. Indeed, later chapters 

will address the general pitfalls of reasoning about theoryless subject mat-

ter. It is appropriate, therefore, to attempt to corroborate my proposition. 

Is there somewhere we can turn for a sanity check? Th e answer is machine 

learning, a method for fi nding patterns in data that are usefully predictive 

of future events but which do not necessarily provide an explanatory 

theory.

Machine learning is already a widely used technology with diverse ap-

plications. For example, companies such as Amazon and Netfl ix make rec-

ommendations to shoppers based on the predictions of learning algorithms 

trained on past data. Of course, there is no theory of which books or movies 

you will like. You may even completely change your tastes at any time. Nev-

ertheless, using machine learning algorithms, it is possible to do a useful job 

in making such recommendations. Financial institutions likewise use ma-

chine learning algorithms, in their case, for example, for detecting whether 

individual credit card purchase attempts are likely to be fraudulent. Th ese 

algorithms pick up various kinds of relevant information, such as the geo-

graph i cal pattern of your previous purchases, to make some decisions based 

on data collected from many past transactions. Th e development of the 

learning algorithms used may well be theoryful. But this again does not 

mean that fraud itself is theoryful. New kinds of fraud are being invented all 

the time. Th e algorithms merely fi nd patterns in past credit card purchases 
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that are useful enough to give fi nancial institutions a statistical edge in 

 coping with this area of the theoryless.

Much of everyday human decision making appears to be of a similar 

 nature— it is based on a competent ability to predict from past observations 

without any good articulation of how the prediction is made or any claim of 

fundamental understanding of the phenomenon in question. Th e predic-

tions need not be perfect or the best possible. Th ey need merely to be useful 

enough. Th e fact that these algorithms are already in widespread use, and 

produce useful results in areas most would regard as theoryless, is good evi-

dence that we are on the right track.

However, the idea of an ecorithm goes well beyond the idea of machine 

learning in its current, general usage. Within the study of ecorithms several 

additional notions beyond the learning algorithms themselves are included. 

First, there is the notion that it is important to specify what we expect a 

learning algorithm to be able to do before we can declare it to be successful. 

Second, using such a specifi cation, we can then discuss problems that are 

not learnable— some environments will be so complex that it is impossible 

for any entity to cope. Th ird, there is the question of how broad a function-

ality one wants to have beyond generalization in the machine learning 

sense. To have intelligent behavior, for example, one needs at least a reason-

ing capability on top of learning. Finally, biological evolution must fi t some-

how into the study of coping mechanisms, but it is not clear exactly how, 

since traditional views of evolution do not exactly fi t the machine learning 

paradigm. In studying ecorithms, we want to embrace all of these issues, 

and more.

Th e problem of dealing with the theoryless is ever present in our lives. 

Every day we are forced to put our trust in the judgment of experts who op-

erate outside the bounds of any strict science. Your doctor and car mechanic 

are paid to make judgments, based on their own experience and that of their 

teachers. We presume that their expertise is the result of learning from a 

substantial amount of real- world experience and, for that reason, is eff ective 

in coping with this complex world. Th eir expertise can be evaluated by how 

well their diagnoses and predictions work out. In some areas we can evalu-

ate per for mance, at least aft er the fact.

We are also exposed every day to commentators and pundits whose dia g-

noses and predictions are infrequently checked for ultimate accuracy. We 
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hear about what will happen in politics, the stock market, or the economy, 

but these predictions oft en seem hardly better than random guessing.

In late 2008 Queen Elizabeth II asked a group of academics why the 

world fi nancial crisis had not been predicted. She was not the only one ask-

ing this question. Was the crisis inherently unpredictable in some sense, or 

was the failure due to some gross negligence? Aft er the crisis a substantial 

amount of public discussion pertained to this question. Is there a rational 

way of predicting rare events? Why do humans have so many intellectual 

frailties and behave as irrationally as they do? Why are humans subject so 

easily to deception and self- deception? Why do humans systematically de-

lude themselves into thinking that they are good predictors of future events 

even if they are not?

Many reasons have been given for the diffi  culty of making predictions, 

and the mistakes that people are prone to make have been widely analyzed. 

Th e following, for example, is an instructive argument. Aft er any signifi cant 

historical event numerous explanations of the causes are off ered. Th ese ex-

planations can be so beguilingly plausible that we easily mistake them for 

actual causes that might have been detected before the events in question. We 

are then communally led into the belief that world events have identifi able 

causes and are generally predictable. Hence pop u lar disappointment that 

the world fi nancial crisis had not been better anticipated can be ascribed to 

widespread overexpectation and naïveté with regard to the possibility of 

making predictions.

Th is book departs from this approach and takes an opposing, more 

positive view. While making predictions may be inherently diffi  cult, and we 

humans have our special failings, human predictive abilities are substantial 

and reason enough for some celebration. Humans, and biological systems 

generally, do have an impressive capability to make predictions. Th e ability 

of living organisms to survive each day in this dangerous world is surely evi-

dence of an ability to predict the consequences of their actions and those of 

others, and to be prepared for what ever happens, and be rarely taken totally 

by surprise. In human terms, the fact that we can go through a typical day, 

one that may include many events and interactions with others, and be sel-

dom surprised is testament surely of our good predictive talents. Of course, 

the domains in which we make these reliable predictions oft en relate only to 

everyday life— what other people will say or other drivers do. Th ey are mun-
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dane, almost by defi nition. But even mundane predictions become mystify-

ing once one tries to understand the pro cess by which the predictions are 

being made, or tries to reproduce them in a computer.

From this viewpoint, the general disappointment that the world fi nancial 

crisis had not been better predicted was not based entirely on naïve illusion. 

It was based on the well- justifi ed high regard we have for our predictive 

abilities, and so it would be clearly to our advantage to identify why they 

failed. It may be that the world was changing in such a random fashion that 

the past did not even implicitly contain reliable information about the fu-

ture. Or perhaps the past did indeed contain this information, but that it 

was somehow so complex that it was not practically feasible to dig it out. A 

third case is that prediction was indeed feasible, but the wrong algorithm or 

the wrong data had been used.

Th e study of ecorithms is concerned with delineating among these pos-

sibilities. Having the ability to make these distinctions among topics of 

everyday concern, such as predictions about the course of the economy, 

seems important. One may be able to do more than merely lament human 

frailties in this regard. Are there inherent reasons why reliable predictions are 

not possible regarding the course of a country’s economy? Perhaps one can 

show that there are. It would then follow that there is no reason to listen to 

pundits other than for entertainment.

Computation allows one to construct concrete situations in which the 

world does reveal suffi  cient information for prediction in principle, but not 

in practice. Consider the area of encryption. If messages in the wireless con-

nection of your home computer are encrypted, the intention is that if your 

neighbor listens in, he should not be able to get any information about what 

you are doing. Even if he listens in over a long period and does clever com-

putations on the data he collects using a powerful computer, he should not 

be able to invade your privacy. Th is is another way of saying that the envi-

ronment defi ned by your enciphered messages should be too complex for 

your neighbor, or anyone  else, to make any sense of.

How can entities cope with what they do not fully understand? Th e sim-

plest living organisms have had to face this problem from the beginnings of 

life. With limited mechanisms they had to survive in a complex world and 

to reproduce. Every evolving species has faced a similar problem, as do indi-

vidual humans going through their daily lives. I shall argue that solutions to 
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these problems have to be sought within the framework of learning algo-

rithms, since this is the mechanism by which life extracts information from 

its environment. By the end of the book I hope to have persuaded the reader 

that when seeking to understand the fundamental character of life, learning 

algorithms are a good place to start.





Chapter Two

Prediction and Adaptation

Only adapt.
Adapted from E. M. Forster

“You never walk into a situation and believe that you know better than the 

natives. You have to listen and look around. Otherwise you can make some 

very serious mistakes.” Th is was a lesson that Kofi  Annan, the former Sec-

retary General of the United Nations learned, not on some far- fl ung diplo-

matic posting for the UN, but as a young man in St. Paul, Minnesota. He 

had arrived from Africa to study economics as an undergraduate. Inexperi-

enced as he was with cold weather, when he fi rst saw local students wearing 

ear muff s he thought they looked ridiculous. But aft er walking round the 

campus on a cold day, he went out to buy some for himself.

Th e logic of ecorithms has much in common with Annan’s analysis. Th at 

logic emphasizes listening and looking around. It encourages caution in 

 applying specialized expertise gained in one environment to another, and 

gives respectful deference to observed experience. It says that it is we who 

must seek to adapt.

Such an adaptive imperative is absent from most aphorisms. “Neither 

a borrower nor a lender be” urges one to act in a specifi c way rather than to 

adapt to one’s environment. Th e pitfalls of following such nonadaptive ad-

vice are clear. While the advice may be good in some circumstances, per-

haps those from which it was derived, in others it may not be.

Annan’s strategy has the strength that it accepts that there are many pos-

sible worlds and warns against assuming that they are all the same. On the 

other hand, it is not too specifi c in prescribing a course of action. I shall argue 

that some of the most important phenomena of biology and cognition arise 
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from general adaptive strategies akin to Annan’s, empty as they may appear 

to be of any specifi c expert knowledge. Although such strategies as listening 

and looking are not fi ne- tuned to any par tic u lar environment, they may 

nonetheless be eff ective in any environment that has certain weak regulari-

ties hidden among all the complexities. I shall suggest that not only are they 

eff ective, but, further, they are integral to any explanation of life and culture 

as we witness these on Earth.

Th e new word ecorithm that I use to encapsulate these ideas derives from 

the word algorithm and the prefi x eco-. An algorithm is simply any well- 

defi ned procedure. It is derived from the Latinized transliteration Algoritmi 

of the name of the mathematician Al- Khwārizmī, who worked in the  House 

of Wisdom in Baghdad in the ninth century and authored an infl uential 

book on algebra. I invoke the word algorithm intentionally. In the domain 

in which it is most widely used, namely computer science, the standards of 

explicitness— of what is considered well defi ned— are high. In the words of 

computer scientist Donald Knuth, “Science is what we understand well 

enough to explain to a computer. Art is everything  else we do.” I want to 

discuss evolution, learning, and intelligence in terms of algorithms that are 

unambiguous and explicit enough that they can be “explained to,” and 

hence simulated by, a computer. Th e prefi x eco-, from the ancient Greek 

word oikos meaning  house hold or home (and which evokes the word ecol-

ogy), signals that we are interested in algorithms that operate in complicated 

environments, especially environments that are much more complex than 

the algorithm itself. Th ere is no contradiction in this. While the algorithm 

has to perform well in a complex environment, about which it has little knowl-

edge initially, it has a chance of doing so if it is allowed to interact extensively 

with the environment and learn from it.

Within the realm of computation I make the following distinction. Al-

gorithms as traditionally studied in mathematics and computer science are 

designed to solve instances of par tic u lar problems, such as solving alge-

braic equations or searching for a word in a text. All the expertise they 

need for their success is encoded in their own description by their designer. 

For example, Euclid in his textbook Th e Elements describes an elegant algo-

rithm for fi nding the greatest common divisor of two numbers. (Th e great-

est common divisor of 30 and 42 is 6.) His algorithm is correct and effi  cient 

in a specifi able sense even for arbitrarily large numbers. Its exact behavior 
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on all pairs of numbers is entirely predictable, and no doubt foreseen by 

Euclid.

Ecorithms are special algorithms. In contrast with those designed to 

solve specifi c mathematical problems, these operate in environments that 

are not fully known to the designer, and may have much arbitrariness. Nev-

ertheless, ecorithms can perform well even in these environments. While 

their success is foreseeable, the actual course they take will vary according 

to the environment.

Th e requirements that such an algorithm must meet to off er a plausible 

explanation of a natural phenomenon, such as biological evolution, are quite 

onerous. In par tic u lar, the algorithm must achieve its goals aft er a limited 

number of interactions and with the expenditure of limited resources. Th e 

concept of ecorithms and the general model of learning in which they are 

embedded, which I call probably approximately correct (or PAC) learning, 

insist on such quantitative practicality. Th e phenomena that they seek to 

explain are some of the most familiar to human experience: learning, resil-

ience, and adaptation. I argue that broader phenomena still, in par tic u lar 

evolution and intelligence, are also best understood in these terms.

Evolution in biology is the idea that life forms have changed over time, 

and that these changes have resulted in the organisms seen on Earth today. 

Although closely associated with Charles Darwin, the roots of the idea 

reach back to antiquity and the recognition of evident family resemblances 

among the various animal and plant species. In more recent history, Charles 

Darwin’s grandfather, Erasmus Darwin, wrote a treatise, Zoonomia; or, Th e 

Laws of Organic Life, arguing for this idea in the 1790s. Th is view was widely 

debated and controversial. William Paley, in a highly infl uential book, Nat-

ural Th eology (1802), argued that life, as complex as it is, could not have 

come into being without the help of a Designer. Numerous lines of evidence 

have become available in the two centuries since, through ge ne tics and the 

fossil record, that persuade professional biologists that existing life forms on 

Earth are indeed related and have indeed evolved. Th is evidence contradicts 

Paley’s conclusion, but it does not directly address his argument. A convinc-

ing direct counterargument to Paley’s would need a specifi c evolution mech-

anism to be demonstrated capable of giving rise to the quantity and quality 

of the complexity now found in biology, within the time and resources be-

lieved to have been available.
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Th e main contribution of Charles Darwin was, of course, exactly so mo-

tivated. He posited the outlines of an evolution mechanism with two primary 

parts, namely variation and natural selection, that he argued was suffi  cient 

to explain biological evolution on Earth without a Designer. In its simplest 

form, the theory of natural selection asserts that each organism has some 

level of fi tness in a given environment and that it is capable of producing a 

range of variants of itself as its progeny. It then attributes evolution to the 

phenomenon that among the variants, individuals that have characteristics 

that constitute greater fi tness will have a higher probability of having de-

scendents in later generations than those with less fi tness.

Among biologists there is broad consensus that Darwin’s theory is essen-

tially correct. Biochemical descriptions of the basis of life provide a concrete 

language in terms of which the actual evolutionary path taken by life on 

Earth may one day be spelled out in detail and explained. At present there 

are many gaps in our knowledge. Th e relationship between the DNA (the 

genotype) and the behavior and physiology of the organism (phenotype) to 

which it belongs is little understood. In spite of this, over the last 150 years 

Darwin’s theory has become the central tenet of biology by virtue of sub-

stantial other evidence. Most recently, DNA sequencing has given incontro-

vertible experimental confi rmation for the proposition that the varied life 

forms found on Earth are ge ne tically related. Nothing that I will say  here 

is  intended or should be interpreted as casting doubt on this proposition. 

However, it remains the case that Darwin presented only an outline of a 

mechanism. It is not specifi c enough to be subject to a quantitative analysis 

or to a computer simulation. No one has yet shown that any version of varia-

tion and selection can account quantitatively for what we see on Earth. Th ere 

is much that needs to be explained. Evolution has found solutions to many 

diffi  cult problems that are of value to life on Earth. Th ese include, among 

many others, locomotion, vision, fl ight, magnetic navigation, and echo loca-

tion. Humans have managed to fi nd artifi cial solutions to these physical chal-

lenges only aft er enormous eff ort.

Th e achievements of evolution are palpable and objectively impressive. 

Th e possibility remains that every version of variation and selection, as we 

currently understand these terms, would have needed a million times as 

long to yield existing life forms than is believed to have been available. Say-

ing that evolution is a contest or even a struggle for life does not go far in 

explaining these facts. No theory is known that would explain how compe-
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tition by itself leads to such spectacular achievements. Lotteries, singing com-

petitions, and gladiatorial contests have not produced similar improvements 

or novelty. Evolution is a special kind of contest. How are we to go about 

understanding how this special contest, of what ever kind it is, has been able 

to produce the spectacular inventions that it has?

Th e term evolution evokes many images— indeed almost all facets of 

the history of life on Earth. I will restrict attention  here to the one primary 

question of how complex mechanisms can arise at all within the limited 

time scale and resources in which they apparently have. Th e numerous 

other questions that are widely discussed by evolutionary theorists I regard 

as secondary to this one. Th e advantages off ered by sex to evolution have 

been much debated, but evolution was far along when sex arrived on the 

scene. Th e intellectual challenge of understanding how peacocks could have 

acquired their elaborate plumage was much troubling to Darwin. But again, 

peacocks came along late in the game. In short, what I seek to address is a 

gap between the general formulation of natural selection as currently under-

stood and any demonstration that any specifi c mechanism can account for 

the biological evidence we see around us. Every scientifi c theory has a gap 

that leaves some question unexplained. Evolution is by no means unique in 

that respect. Having a gap is no fatal fl aw. However, the natural selection 

hypothesis as currently formulated has the gaping gap that it can make no 

quantitative predictions as far as the number of generations needed for the 

evolution of a behavior of a certain complexity. I believe that the time is ripe 

for working toward fi lling this gap. And I believe computer science is the 

tool for doing it.

Th is may be an unconventional claim, but I will argue that Darwin’s 

theory lies at the very heart of computer science. Darwin’s theory may even 

be viewed as the paradigmatic ecorithmic idea. One of computation’s most 

fundamental characteristics is the separation between the physical real-

ization of a mechanism and its manifest behavior. Th is is equally true of 

Darwin’s theory. Although the fi tness of a biological organism depends both 

on the biochemistry of the organism and on all the physical, chemical, and 

ecological factors present in its environment, the principle of natural selec-

tion makes no mention of biochemistry, physics, or ecol ogy, and it incorpo-

rates no specifi c knowledge about the fi tness of a par tic u lar species in a 

par tic u lar environment. We are driven to the almost paradoxical conclu-

sion that organisms that perform at such a sophisticated level of expertise in 
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physics, biochemistry, and ecol ogy are the products of generic mechanisms 

that incorporate no such expertise. Th is striking contrast summarizes the 

basic challenge that ecorithms in general, and evolutionary algorithms in 

par tic u lar, need to overcome.

Given the central role that Darwin’s theory now plays in biology, the fol-

lowing fact is more than a little disconcerting. From the fi rst availability of 

digital computers many intelligent, curiosity- driven individuals have sought 

to simulate selection- based evolutionary algorithms in order to demon-

strate their effi  cacy. Th ese simulation experiments, carried out over more 

than half a century, have been disappointing, at least in my view, in creat-

ing mechanisms remotely reminiscent of those found in the living cell. 

In fact, these experiments are seldom quoted as corroborating evidence for 

evolution.

Th is failure cannot be ignored. It suggests that the natural selection 

hypothesis has to be refi ned somehow if it is to off er a more explanatory 

scientifi c theory. Further, the refi nement will need to have a quantitative 

component that refl ects the realities of the actual bounded numbers of gen-

erations, and bounded numbers of individuals per generation, that appar-

ently have been suffi  cient to support evolution in this universe. Th at evolution 

could work in principle in some infi nite limit is obvious and needs little 

discussion. But modern humans are believed to have existed for no more 

than about 10,000 generations and with modest population sizes for much 

of that history. Our pre de ces sor species may have had not dissimilar statis-

tics. Th eories of evolution that assume unbounded resources for evolution, 

in generations or population sizes, or those that do not address this issue 

at all, cannot resolve the central scientifi c question of whether some in-

stance of natural selection does fi t the constraints that have ruled in this 

universe.

I am not the fi rst to point out that there is a tension between the long 

time apparently needed for evolution and the limited resources that evi-

dence from the physical sciences suggests have been available. No one was 

more aware of this tension than Darwin himself. In an attempt to fi nd cor-

roborating evidence for the long time scale he believed was needed for evo-

lution, he looked to geology. In the fi rst edition of On the Origin of Species he 

included an estimate of 300 million years for the time needed for erosion to 

have created the Weald formation in southern En gland. Th is estimate im-

mediately came under fi re from the scientifi c community. Darwin omitted 
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it, and any other such estimate, from subsequent editions. William Th om-

son (later Lord Kelvin) and other authoritative physicists of his day derided 

Darwin’s estimate as impossibly too high even for the age of the Earth itself. 

Th eir arguments  were based on applying the principles of physics as then 

understood to the question of the rate at which the Earth had been losing 

heat. Th is indirect line of attack on his theory of evolution gave Darwin 

much reason for concern. He wrote, “Th omson’s views on the recent age of 

the world have been for some time one of my sorest troubles.” Kelvin’s fi nal 

published estimate was as low as 24 million years. Physicists now estimate 

the age of the Earth, thankfully, to be much higher, about 4.5 billion years 

(and 13.8 billion years for that of this universe). Nevertheless, we still do 

not have a quantitative explanation of how life could have reached its cur-

rent state even within this more extended period that is now allotted by the 

physicists, whether on the Earth or in the broader universe.

Th e theory off ered  here, of treating Darwinian evolution as a compu-

tational learning mechanism and quantitatively analyzing its behavior, is 

the only approach I know that addresses these questions explicitly. Previous 

mathematical approaches to evolution, such as those of population ge ne tics, 

analyze the eff ects of competition on relative population sizes. For example, 

the famous Hardy- Weinberg principle from the early twentieth century 

shows that if reproduction is sexual and members of a population have 

two copies of each gene, as in humans, then diversity in the gene pool will be 

conserved in the following sense. If two variants of a gene exist in the popu-

lation in a certain ratio and they are equally benefi cial, then their ratio of 

occurrence in the population will converge to a stable value, with both vari-

ants continuing to occur. Analyses of relative population sizes such as this, 

however, do not address how more complex forms can come into being from 

simpler ones— this is the most fundamental question and the one that 

 opponents of evolution usually target. One is not performing a ser vice to 

science if one pretends to have a solution when one does not.

Advances in biology over the last half century have made concrete what 

needs to be explained in ways that  were not known to the earlier pioneers 

of population ge ne tics such as the eminent statistician Ronald Fisher. We 

now know that biological organisms are governed by protein expression 

networks. To understand evolution we need to have an explanation of how 

such complex circuits can evolve from simpler ones and maintain them-

selves in changing environments. Th e protein expression networks on 
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which our biology depends are known to have more than 20,000 genes, and 

the outputs they produce depend in a highly complicated way on the innu-

merably many possible input combinations. Th ese circuits defi ne how the 

concentration levels of the many proteins in our cells are controlled in terms 

of each other. We can seek to describe them mathematically. For example, the 

amount produced of our seventh protein may depend on the concentrations 

of three others— say, the third, twenty- fi rst, and seventy- third. Th e depen-

dence is something specifi c, perhaps f = 1.7x + 3.4x + 0.5x, or more likely 

something  else. But in any case it is some par tic u lar de pen den cy f(x, . . .  , 

x,) on all the available proteins and possibly on some additional pa ram-

e ters, such as temperature. What ever this de pen den cy f is, it will change 

during evolution if some other such de pen den cy becomes more benefi cial to 

the organism because of changing circumstances.

What an evolutionary theory must do is explain how these dependencies 

are updated during evolution. How long will it take to evolve to a new func-

tion f ' if the environment changes so that the new function f ' is better than 

the old f? Of course, this only accounts for evolution with a fi xed set of 

proteins. A successful theory must also explain the evolution of new pro-

teins. I believe that this will need a similar kind of analysis but for a diff erent 

kind of circuit.

Over the last several de cades it has emerged that there are computational 

laws that apply to the existence and effi  ciency of algorithms that are as strik-

ing as physical laws. Th ese computational laws off er a powerful new view-

point on our world that meets the challenge that the facts of biology lay 

down in regard to both evolution and learning. Th e laws that are most rele-

vant to these phenomena are diff erent from those that are the most useful 

for programmers of digital computers, and they need to be investigated sepa-

rately. Th is will be our point of departure.

Nothing  here is intended as the last word on any of the topics covered. 

Th e approach I propose needs extensive development both internally and in 

interaction with the experimental sciences it relates to. Th e idea that math-

ematical equations are useful for expressing the laws of physics, that labora-

tory experiments can uncover the facts of chemistry, and that statistical 

analyses in the social sciences yield clues about causation are all widely 

appreciated. But the notion that natural phenomena can be understood 

as computational pro cesses or algorithms is much more recent. I have no 

doubt, however, that this algorithmic viewpoint is poised to take its place 
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among the more familiar arsenal of weapons used for uncovering the secrets 

of nature. I hope to off er  here a glimpse of how this algorithmic perspective 

will come to occupy a central position in science. First, however, we must 

turn to the questions of the nature and scope of computational pro cesses in 

general.


