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Chapter Three

The Computable

Not everything that can be defined can be computed.

Computer science is no more about computers

than astronomy is about telescopes.
Edsger Dijkstra

3.1 The Turing Paradigm

In retrospect, humans have been remarkably uncurious for too long about 

information pro cessing. Animals take complex inputs when seeing, smell-

ing, touching, or hearing, and then produce behaviors that depend in com-

plicated ways on these inputs. Human behavior can be even more perplexing 

and hard to understand. Phenomena like these we can observe every day. It 

would seem natural to wonder: Just how do living organisms pro cess infor-

mation and decide what to do? Curiously, until recent de cades little intel-

lectual eff ort has been put into understanding this question. To be fair to 

our pre de ces sors, however, it is clear that, until recently, anyone attempting 

to study information pro cessing would have been stymied by a fundamental 

impediment— no way was known of even formulating the question.

Th is only changed in the 1930s, when Alan Turing published a mathe-

matical paper, “On Computable Numbers, with an Application to the 

Entscheidungsproblem,” that inaugurated one of the most signifi cant scien-

tifi c revolutions in history. Th e Entscheidungsproblem (or decision problem, 

in En glish) refers to a question raised by mathematician David Hilbert in 

1928 concerned with deciding the validity of statements in mathematical 

logic. However, in his paper Turing went far beyond answering this one 
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question. He formulated a notion that has changed how we view the world. 

Th rough its technological impact, this notion has changed how we live. His 

discovery was that computation, or the execution of step- by- step procedures 

for pro cessing information, could be defi ned and studied systematically. 

Since that time we have been on a recognizable track toward understanding 

what such procedures can and cannot do. Th at is to say, we have come to 

understand computation. We have also been exploiting that understanding 

to produce technology, but technology is not my concern  here.

Th e technical concept of computability makes an important distinc-

tion: It is one thing to specify, even unambiguously, what result you expect 

from a computation for every input of data. It is quite another to specify a 

step- by- step computation that gets you there. Th e diff erence is not imme-

diately apparent. Nevertheless, Alan Turing proved that there exist prob-

lems for which there is no ambiguity as to what result is desired, but for 

which there is no set of step- by- step instructions that will get you the right 

result for  every input. Th is was a stunning fi nding. Research over the past 

several de cades has developed a rich science for making even fi ner distinc-

tions, particularly with regard to effi  ciency. It turns out that there are also 

problems that are not computable effi  ciently enough to be practical, even 

if in principle they can be computed. Th at fact poses its own problems: We 

want computations not only to exist in principle, but also to deliver an-

swers within a reasonable period of time. To obtain the result we should 

not have to wait for months, or years, or until aft er our galaxy has ceased 

to exist.

Th ese laws of computation apply to all algorithms. Because ecorithms are 

algorithms, though of a special kind, they too must follow the same basic 

laws as computation in general. Th is new science of the ultimate limitations 

on the possibility and the effi  ciency with which computations for learning 

and evolution can proceed off ers a fundamental new approach to under-

standing these phenomena of learning and evolution, because, regardless of 

how they are implemented— in silicon, DNA, neurons, or something  else 

entirely— there are some ultimate logical laws that limit what these mecha-

nisms can do.

Turing’s paper contained several ingredients that are now seen as fun-

damental to the study of computation. First, he described a model, now 

called the Turing machine, that captures the phenomenon he was attempt-

ing to describe, namely that of mechanistic step- by- step procedures. Sec-
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ond, he proved a strong possibility result for what can be achieved on his 

model. In par tic u lar, he showed how to design a universal Turing machine 

that is capable of executing every possible mechanical procedure. Th is 

universality property is what enables computer technology to be so perva-

sively useful, and would be utterly astonishing  were it not so common-

place now by virtue of its eff ectiveness. Th ird, Turing also proved a strong 

impossibility result, that not all well- defi ned mathematical problems can 

be solved mechanically.

Turing’s impossibility result is as striking as universality is on the posi-

tive side. It is concerned with the problem of predicting, for an arbitrary 

computer program and an input for it, whether that program started on that 

input will ever halt its computation aft er a fi nite number of steps, as op-

posed to getting stuck in a loop in perpetuity. Th is so- called Halting Prob-

lem is well defi ned. Once we specify a language for expressing the programs 

there is no ambiguity at all about what would and what would not constitute 

a solution to it. It would be good to be able to tell ahead of time whether a 

computer program will get stuck in a perpetual loop. Yet, as Turing showed, 

it cannot be solved in all cases by any Turing machine. We will never be 

able to solve this problem routinely.

Many of the foremost thinkers of the early part of the twentieth century 

had wondered, somewhat informally, whether mechanical procedures ex-

isted for resolving all mathematically well- posed questions. Some, such as 

the phi los o pher Bertrand Russell and the mathematician David Hilbert, 

 were optimistic. Turing’s discovery that one could defi ne precisely what 

such an assertion meant, and then prove that such a statement was false, had 

revolutionary implications. Th e shock of this is still taking its time to per-

meate the community of the educated.

Important as the three particulars of Turing’s paper are— namely Turing 

machines, universality, and noncomputability— they become even more 

signifi cant when viewed as an instance of a general class of what I call a 

Turing triad: an unambiguous model of computation that captures some 

real- world phenomenon (mechanical calculation in Turing’s specifi c case), 

and both possibility and impossibility results about that model. Learning, 

evolution, and intelligence are all manifestations of computational pro-

cesses. As realized in nature, they may be subtle and operate near the limits 

of computational feasibility. We may need a correspondingly sophisticated 

understanding of computation before we can unravel their secrets. My 



Figure 3.1 An example of a simple Turing machine. Th e diagram at the top 

describes the program that controls the machine. Th e input is the sequence of 

0s and 1s on successive squares of the tape. Th e machine has three states q, q, 

and qf . It starts in state q and with the read/write head on the square pointed 

to by the thick arrow. If the machine is in state q and the symbol under the 

head is 1 (as it is initially in this example), then the path indicated by the arrow 

out of the q node with label starting with a 1 will be taken, in this case the ar-

row labeled (1, mR) with endpoint q. Executing this (1, mR) will result in the 

contents of the square being unchanged and the head moving one square to the 

right. Th e endpoint of the arrow indicates that the next state will be q again. 

An arrow labeled (1, mL) would mean the same except that the head moves to 

the left . An arrow labeled (1, c0) would mean that the square is changed from 

1 to 0 and the head does not move. Th e labels (0, mR), (0, mL), and (0, c1) have 

analogous meanings and apply when instead the symbol under the head is 0. 

Th e computation halts if and when a fi nal state qf is reached. Th e reader may 

verify by working through this example that, eventually, when the read/write 

head reaches the 0 at the * sign, the machine will change the 0 there to a 1 and 

change the state to q, then move the head back fi nally to the starting position, 

and then halt in state qf . (Note that we can obtain an example of a machine 

that never halts on this input by changing the (0, mR) arrow from q to go to q 

rather than to qf .)
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strategy for shedding light on them will be to seek Turing triads for these 

phenomena also.

3.2 Robust Computational Models

Th e reader may have noticed that in the previous section there was an un-

explained leap. Th e assertion that the Halting Problem was not computable 

by any Turing machine was identifi ed with the claim that it was not com-

putable by any conceivable mechanical procedure. To justify this leap, we 

will need a notion known as the robustness of models under variation, one 

of computer science’s deepest and most fortunate mysteries.

We have seen that an essential ingredient of the Turing methodology is 

that of defi ning a model of computation that captures a real- world phenom-

enon, in this case that of mechanical pro cesses, including those that no one 

had (or has yet) envisaged. Th at last part is crucial: With his machine, Tur-

ing aimed to capture all pro cesses a human could exploit while performing 

a mental task that can be regarded as mechanical as opposed to requiring 

creativity or inspiration. Th e audaciousness of the attempt has attracted 

many who would prove Turing’s machine insuffi  cient to the power Turing 

claimed for it. However, when diff erent individuals have tried to defi ne their 

own notions of mechanical pro cesses in hopes of creating models of greater 

power, all the models they have devised— no matter how diff erent they may 

seem— could be proved to have no greater capabilities than those of Turing 

machines. For example, having two tapes, or fi ve tapes, or a two- dimensional 

tape adds no new power. Similarly, allowing the program to make random 

decisions, or transitions that have the parallelism suggested by quantum 

mechanics, also adds no new capabilities. Extensive eff orts at fi nding mod-

els that have greater power than Turing machines, but still correspond to 

what one would instinctively regard as mechanical pro cesses, have all failed. 

Th erefore there is now overwhelming historical evidence that Turing’s 

 notion of computability is highly robust to variation in defi nition. Th is has 

placed Turing computability among the most securely established theories 

known to science.

Th is robustness under variation of the model off ers the fundamental 

key and launching pad for our study  here. For learning and evolution, ro-

bust models are as indispensable as they are for general computation. Without 

this robustness the value of any model or theory is questionable. We are not 

interested in properties of arbitrary formalisms. We want some assurance 
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that we have captured the characteristics of some real- world phenomenon. 

Robustness of models is the only known source of such assurance.

Th e discovery of the notion of computability constituted a new approach 

to discovering truths about the world. Th e logician Kurt Gödel generously 

acknowledged that computability theory “has for the fi rst time succeeded 

in giving an absolute defi nition of an interesting epistemological notion, i.e., 

one not depending on the formalism chosen.” What can be computed does 

not change as one varies the details of the model. In later chapters, I shall try 

to persuade the reader that, for the same reason, analogous absolute defi ni-

tions should be sought also for other notions, and in par tic u lar learning and 

evolution.

Th ere is, of course, no reason to believe that for every notion for which 

there is a word in a dictionary there exists an absolute defi nition, or a robust 

computational model that captures its essence. Indeed, computability, learn-

ability, and evolvability may be among the few. For most other notions no 

such robust computational models are known, and although robust models 

may be discovered one day for some, for the rest no such models may exist at 

all. Th e question of whether notions such as free will or consciousness can 

be made theoryful by the algorithmic method pursued  here hangs, I believe, 

on whether robust computational models can be found for them.

3.3 The Character of Computational Laws

Turing’s contributions amounted to more than a series of specifi c discover-

ies; they provided a new way of pursuing science. In this, his importance 

demands comparison with that of Isaac Newton. Newton’s infl uence on phys-

ics is without parallel, not because he described gravity or made any other 

par tic u lar discovery, but because it was through his work that it became 

accepted that the physical world obeys laws that can be described by mathe-

matical equations, and that solving these equations could yield accurate pre-

dictions of what will happen in the future. Newton’s theories not only had 

the immediate generality that they applied very broadly to mechanical sys-

tems. Th ey had a higher level supergenerality in that they off ered a blueprint 

for developing theories for fi elds that had yet to be conceived. Physicists have 

followed this lodestone of expressing physical laws by mathematical equa-

tions ever since. Electromagnetic theory, general relativity, and quantum 

mechanics are not implied by Newton’s mechanics, but they follow the same 

intellectual pattern: physical laws expressed as mathematical equations. In 
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this sense, equations off ered the wizardry that enabled successive genera-

tions of physicists to achieve an understanding of the physical world beyond 

that of which previous generations could have dreamed. Since the seven-

teenth century physics has been transformed several times as far as the 

range of phenomena that it could explain. Even as the par tic u lar discoveries 

of Newton have been superseded, physics is still being pursued with a meth-

odology recognizably similar to that used by Newton.

No one knows why such supergenerality should exist in physics. It is 

 suffi  cient for most purposes to recognize that it does. Th e physicist Eugene 

Wigner suggested that we simply enjoy its benefi ts: “Th e miracle of the ap-

propriateness of the language of mathematics for the formulation of the laws 

of physics is a wonderful gift  which we neither understand nor deserve. We 

should be grateful for it and hope that it will remain valid in future research 

and that it will extend, for better or for worse, to our plea sure, even though 

perhaps also to our baffl  ement, to wide branches of learning.” 

Robust computational models, I expect, will turn out to provide super-

generality in computer science as mathematical equations have in physics. 

Th ey will enable the extent and limits of computational phenomena, in all 

their variety, to be uncovered. Just as, in retrospect, the texture of all the 

discoveries in physics over the last three centuries can be recognized already 

in the work of Newton, the texture of much of the new science of the coming 

centuries will be traceable to Turing.

One can make some further observations regarding the two fi elds. Phys-

ics concentrates on understanding a minimal set of basic pro cesses that are 

suffi  cient to explain the dynamics of the physical world, such as how parti-

cles move under natural forces. In contrast, computer science entertains 

much more diverse sets of processes— in fact, any pro cess that can be formu-

lated as step- by- step rules. As long as the trajectory of objects under the laws 

of physics can be simulated by step- by- step rules, as appears to be the case, 

computation will embrace all the pro cesses studied in physics. However, 

computational pro cesses, though more general than those of physics, are not 

totally arbitrary. Th ey are governed by their own logical laws and limitations. 

Th e laws that govern them are our concern in the present chapter.

Prior to Turing, mathematics was dominated by the continuous mathe-

matics used to describe physics, in which (classically, anyway) changes are 

thought of as taking place in arbitrarily small, infi nitesimal increments. 

Th e Turing machine, however, is a discrete model. Before his time, discrete 
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mathematics had been little explored or developed; in fact, a seldom dis-

cussed infl uence of Turing’s work is the rise of discrete mathematics sub-

sequent to it. It is striking that for the phenomena that we shall study  here, 

including learning and evolution, discrete models again provide the most 

immediate robust models and have been most useful in isolating the basic 

phenomena. Continuous models are ultimately of at least as great interest, 

but for the initial explorations necessary to identify the most fundamental 

concepts they are not the most fruitful.

Besides the discrete versus continuous dichotomy, there is a more funda-

mental diff erence between physics and computer science. In physics we think 

of the equation as the immutable fundamental law, expressing such facts as 

that the gravitational force between two objects is proportional to the square 

of the inverse distance, and to no other function of the distance. In compu-

tation we have much broader latitude in constructing programs than this. 

We allow arbitrary programs composed of steps from some repertoire of 

basic steps. Th e immutable laws of computation are not constraints on how 

programs can be composed. Rather, like the noncomputability of the Halt-

ing Problem, they state what can or cannot be achieved by any program of a 

specifi ed kind.

In computation the laws are statements, subject to mathematical proof or 

refutation, but their relevance relies on the robustness of the model in ques-

tion. One may consider the laws of physics to be analogous to the laws of com-

putation. However, as far as not being subject to mathematical verifi cation, 

x

y y

x

Figure 3.2 In a continuous model there are infi nitely many possible states that 

are related to each other smoothly. Th e left - hand diagram shows an example 

where each state is represented by a point on the curve. In a discrete model the 

states need have no such relation. Th e right- hand diagram shows a model with 

four states, as indicated by the dots.
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the laws of physics correspond in computation rather to assertions about the 

robustness of the models. Th e commonality between the laws of physics and 

robustness questions in computational models can be also stated positively—

in both cases one needs to go to realities beyond mathematical formalisms 

for supporting evidence or falsifi cation.

3.4 Polynomial Time Computation

Once computers had become more widely available and broader eff orts  were 

made to program them, the importance of understanding computational 

limitations in fi ner detail than computability theory provides came to the 

fore. Th e study of these limitations came to be known as computational 

complexity. In that fi eld one does not distinguish merely whether an algo-

rithm for a specifi ed task does or does not exist. One also quantifi es how 

many steps any algorithm, if one exists, must take.

Using this idea, one can try to classify both familiar and unfamiliar tasks 

according to the number of basic operations that are required to perform 

them. Th e pro cess of long multiplication for obtaining the product of two 

numbers is a familiar enough algorithm, taught in elementary schools world-

wide. To fi nd the product of two numbers, each of n digits in standard deci-

mal notation, it takes about n basic operations on pairs of single digits, as 

illustrated in Figure 3.3.

For long multiplication the actual number of operations on individual 

pairs of digits may be 4n or 5n or cn for some fi xed number c, depending 

on what exactly you consider an operation. It will not, however, grow faster 

than n, such as n or n; nor will it grow more slowly, such as n.. We can 

describe the order of growth using what is known as O notation, while omit-

ting the less important detail of the value of c. We simply say that the long 

multiplication algorithm is an O(n) algorithm.

In general, we distinguish between an algorithm taking polynomial time 

versus one that takes exponential time. It is polynomial time if it takes O(nk) 

basic steps for some constant k, where n is the number of digits or bits 

needed to write down the input. Of course, it is best if k is a small number 

such as 1 or 2. An exponential time algorithm takes the form kn (such as 

2n or 10n). Exponential time algorithms become impractical even for moder-

ate input sizes. For example, for a task taking 10n steps, if n is just 30, then 

1,000,000,000,000,000,000,000,000,000,000 steps are needed. A computer 

doing a trillion steps per second would take more than 30 billion years, 
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more than twice the currently estimated age of this universe, to accomplish 

this. Running many computers in parallel does not change the picture too 

much. If you had one computer for every particle in this universe, of which 

there are currently believed to be fewer than 10, then within this 30 billion 

years one could do 10 × 10, or 10, operations. For a task taking 10n 

steps, one could then solve instances of size n = 120. If we increased the 

speed of each computer by a factor of 1,000 we would increase the allowed 

input size only by 3, to get a limit on n of 123.

314159265358979 
× 271828182845904

                       1256637061435916 
                                     0000000000000000 
                                 2827433388230811 
                             1570796326794895 
                                      1256637061435916 
                                    2513274122871832 
                                    628318530717958 
                                2513274122871832 
                                314159265358979 
                            2513274122871832 
                            628318530717958 
                        2513274122871832 
                        314159265358979 
                    2199114857512853 
                    628318530717958    
                    85397342226735418150399772016

Figure 3.3 When performing long multiplication on two numbers each of 

n decimal digits,  here n = 15, we multiply the fi rst n- digit number by each of 

the n digits of the second number in turn, and then add the results. Th is can all 

be done by performing proportional to n basic operations, additions and mul-

tiplications on pairs of single digits. However, these n operations look repeti-

tious. Th is raises the question of whether the same result can be achieved with 

far fewer operations. It is hard to explain why this very natural question had to 

wait till the 1960s to be asked and answered.
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Th e point is that numbers such as 123 are very modest as input sizes. An 

input of 123 digits requires less than two lines on this page to write down. 

Most applications of computers need much larger inputs. For example, if 

one is scheduling a fl eet of aircraft , then the input size will be in the thou-

sands. If one is performing computations on data read in from the World 

Wide Web, perhaps analyzing articles written about some topic, then input 

sizes may be in the millions. In all such cases algorithms taking 10n steps 

would be totally impractical. Even having all the resources of our universe 

at our disposal would be far from enough.

Th e class of tasks or problems that can be computed in polynomial time 

is represented by the capital letter P. Th e task of multiplying two integers is 

therefore a member of this class P, because the standard algorithm for it, as 

we have noted, takes O(n) steps, which is polynomial. In general, P charac-

terizes what can be computed in practice.

Fundamental to computational complexity is the distinction between the 

outcome one wants to achieve, say, fi nding the product of two numbers, and 

the many possible ways of achieving it. Also fundamental is the notion that 

there exist easily specifi ed problems that are computable in principle in the 

sense of Turing but for which all algorithms are impractically ineffi  cient. 

Th e idea that we should classify tasks according to their computational 

diffi  culty appears to be very natural, and so this idea plays a central role in 

computer science. Yet there is an implication that goes a little against the 

grain of traditional science education. In conventional mathematics and 

science courses the computational tasks presented are invariably limited 

to those that are easy to compute, such as arithmetic and linear algebra. 

Th is tradition has the obvious justifi cation that it presents only methods 

that are practical. However, a traditional education along these lines does 

leave the mistaken impression that every easily specifi ed problem can be 

solved effi  ciently. It ill- prepares the student to face entirely novel chal-

lenges and fi nd approaches to them that are computationally feasible. Tur-

ing’s war time work in breaking codes was centered on the problem of 

deducing from an encrypted message the original message, without per-

forming an exhaustive search of the exponentially many possible keys that 

might have been used for encryption. Similarly, many natural tasks people 

would like to solve by computer, such as scheduling, involve fi nding the 

best solution from potentially exponentially many solutions. For many of 

these tasks exponential time algorithms are known, but none faster. Our 
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scientifi c culture is still in the pro cess of absorbing the signifi cance of this 

phenomenon.

Th e impracticality of exponential time computations is self- evident. 

While the boundary between the practically computable and the infeasible 

is not sharp, the polynomial time criterion is the most con ve nient place that 

has been found to put that boundary. Clearly, polynomial time with high 

exponent, such as n, is as infeasible in practice as exponential time, even 

for modest values of n. However, the polynomial versus exponential distinc-

tion has proved very useful, simply because the majority of algorithms that 

are known for important problems con ve niently dichotomize between feasi-

bly low degree polynomials, such as quadratic, O(n), and proper exponen-

tials, such as 2n. Hence, for reasons that are not understood, this polynomial 

versus exponential criterion is more useful in practice than its bare defi ni-

tion justifi es. Experience shows that if someone claims to be able to compute 

a function routinely for arbitrary inputs of signifi cant size, but claims that 

the problem is not in P, then there is a good chance that more can be and 

needs to be said. Perhaps the inputs are not really arbitrary but restricted to 

a special subclass or a probability distribution for which the problem is in-

deed solvable in polynomial time. More oft en than not, on further examina-

tion, one can explain such unexpectedly good per for mance. Indeed, much 

current research in computer science centers on the question of identifying 

the circumstances, sometimes one application at a time, in which poly-

nomial time computation can be achieved in some useful sense, even if not 

in complete generality.

When defi ning computation, there is a further important distinction. A 

computation is deterministic if each step is uniquely determined from what 

has gone before. In the defi nition of P this is assumed. However, for all prac-

tical purposes we can relax this constraint of determinism to permit com-

putations that make random choices as if they  were tossing coins. Th ese 

algorithms may still arrive at the correct answer with high probability, even 

if not with certainty. So- called randomized algorithms, ones that do arrive 

at correct answers with high probability for every input, are as eff ective as 

deterministic ones in practice, the probabilities involved arising only from 

the coin tosses the algorithm makes. Such algorithms give a wrong answer 

only for combinations of coin tosses that occur very rarely, such as getting 

heads only three times in a thousand tosses. Further, for every input, the 

probability that an error occurs can be driven down to be exponentially 
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small by simply repeating the algorithm enough times, the probability of 

error being in de pen dent for each repetition. One can extend the defi nition of 

standard deterministic Turing machines to allow them to make decisions ac-

cording to the toss of a coin in this way. Th ese are called randomized Turing 

machines. Th e corresponding polynomial class is called BPP, for bounded 

probabilistic polynomial time. It is possible that P and BPP are mathemati-

cally identical, in which case every computation that uses randomization 

could be simulated in polynomial time by one without it. Th is question of 

whether P and BPP are equal is currently unresolved.

A class broader still than BPP is called BQP, for bounded quantum poly-

nomial time. Th is class is inspired by quantum physics, which posits that a 

physical system can be in multiple states at the same time, in a certain spe-

cifi c sense. It is natural to ask whether such quantum phenomena can be 

exploited to speed up computation. Oversimplifying a little, quantum phe-

nomena may permit a million computations to be pursued simultaneously 

in a single quantum computer, while conventional computers would need to 

Figure 3.4 An example of a randomized algorithm. One can estimate the area 

of any shape by drawing it in a square of known area, throwing darts randomly 

at the square, and counting what fraction fall within the shape. Th is will work 

for any shape. All that is required is that the darts have uniform probability of 

hitting any part of the square, and that the successive throws be in de pen dent 

of each other. Th e only risk of getting a bad approximation of the area is that of 

being unlucky and getting throws that are not representative of uniformity. 

Th e probability of such an outcome goes down as one throws more and more 

darts. Randomized algorithms and the class BPP have essentially this guaran-

tee of success.
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do these one aft er the other in a million phases on a single machine, or in 

parallel on a million machines. Much eff ort has been expended to under-

stand the power of polynomial time quantum computation. On the one 

hand, one would like to understand better, in mathematical terms, the 

power of the restricted parallelism that quantum theory seems to off er. On 

the other, one would like to know whether such machines can be con-

structed at all in this physical world, since quantum computers require cer-

tain capabilities that have not been shown to be realizable.

One can defi ne the class PhysP to be the maximal class of problems that 

the physical universe we live in permits to be computed in polynomial time. 

Identifying the limits of the class PhysP would appear to be one of the great 

scientifi c questions of our time. BQP is a natural candidate. If it turns out 

not to be realizable, then BPP is the most natural alternative known.

While identifying PhysP is fundamentally a question about physics, 

mathematics may have a role in resolving it. It is possible that one can 

prove by a mathematical demonstration that P = BPP or BPP = BQP or even 

P = BPP = BQP. Th is last eventuality, for example, would show once and for 

all that polynomial time quantum machines have no more power than poly-

nomial time versions of the standard deterministic machines defi ned by 

Turing that was illustrated in Figure 3.1.

One thing we do know is that each of these three classes— P, BPP, and 

BQP— itself has substantial robustness under variation. Attempts to charac-

terize deterministic, randomized, or quantum computations have yielded 

just one good candidate computational model for each class. Th is robust-

ness for the randomized and quantum classes is known only for problems 

with yes/no answers. Th is currently leaves two main candidates, BPP and 

BQP, for the practically computable yes/no problems in this physical world. 

Having two candidates is only a small embarrassment, further alleviated by 

the fact that the range of natural problems that have been identifi ed to be 

in BQP but are not known to be in BPP is somewhat limited.

If we leave aside the constraint of polynomial time, of course, any of 

the algorithm types— deterministic, randomized, or quantum— is provably 

as good as any other. Th e characteristic robustness of Turing machines re-

mains. In the opposite direction, if we instead impose more and more 

constraints, beyond the polynomial constraint, to reach the learning and 

evolvability classes that we shall meet later, the robustness criteria become 

increasingly challenging to satisfy.
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3.5 Possible Ultimate Limitations

Th e Turing methodology that we described earlier when applied to a specifi c 

task such as integer multiplication would consist of the following three 

components. Defi ne an appropriate model that captures the realistic cost of 

computing the task. Prove possibility results, in this case effi  cient algo-

rithms for the task that take few steps. Prove some impossibility result that 

shows, for example, that for the model defi ned no algorithm exists that 

takes fewer than so many steps.

Th ere are many problems that we would wish to solve effi  ciently but do 

not know how. Th e most effi  cient algorithms known for a large class of these 

problems take an exponential, rather than a polynomial, number of steps. 

Certainly, there is no necessary reason why the best currently known algo-

rithm should be the best possible algorithm. Let’s return to the problem of 

multiplication. Th e basic question is this: What is the most effi  cient method 

for multiplying two n- digit numbers? Th is question has inspired a research 

program that has been pursued for half a century now. In 1960 an initial 

algorithm that took only O(n.) steps was discovered by Anatoly Karatsuba, 

working in the Soviet  Union. For large values of n, this already improved 

substantially on the classical O(n) method. It is more than a little surpris-

ing that this discovery, that integers could be multiplied much faster than by 

the standard method taught to children worldwide, came so recently.

Aft er this initial discovery there rapidly followed a sequence of improve-

ments. Th ese culminated in the algorithm published by Arnold Schönhage 

and Volker Strassen in 1971. Th is had runtime close to but not quite 

linear— that is, O(n)— but better than O(n+x) for any x > 0. As a result of 

these developments we now know that integer multiplication is easier to 

compute than anyone would have had reason to suspect in earlier centuries, 

when only O(n) methods  were known and nothing better suspected.

To our embarrassment, we do not yet know whether multiplication is 

substantially more diffi  cult than addition, which can be done by the stan-

dard method in linear time. Ironically, there has been little (in fact close to 

no) progress on establishing such an impossibility result. It is clear that any 

algorithm would need to look at all the 2n digits of the two input numbers, 

and hence that this computation cannot be done in fewer than 2n steps. 

However, the possibility remains that there exist linear time algorithms for 

multiplication, say 10n operations on pairs of one- digit numbers, as there 

are for addition. Resolving whether such a linear time algorithm exists for 
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integer multiplication with inputs and outputs represented in the standard 

decimal or binary notation remains a major challenge for theoretical com-

puter science. Is multiplication an inherently harder task than addition, or 

does it just appear to be so?

Multiplication is a comparatively simple problem, and clearly already 

computable in practice by means of the ancient algorithm. Th e question of 

whether polynomial time algorithms will be found someday for any of the 

many problems for which we currently have only exponential time algo-

rithms is addressed in the fi eld of complexity theory. We shall now review 

some of these results in the remainder of this section. Th e reader may fi nd 

this interesting background in computer science, but it is not indispensable 

for what comes later.

A celebrated class of problems is the so- called NP, or nondeterministic 

polynomial time, class. Th ese are characterized as the problems for which 

solutions may or may not be hard to fi nd but for which a candidate solution 

is easily verifi ed. For example, suppose we want to know whether a target 

number x, say 923, can be factored as the product of two smaller numbers p 

and q. Th en for any given candidate pair p, q we can easily verify whether or 

not they are the factors of x simply by multiplying them together and check-

ing whether the answer equals x. (For example, given the candidate num-

bers 71 and 13, it is easy to determine whether or not 71 × 13 is equal to the 

target 923.) But given just the number 923, there is no similarly easy route 

known to discovering the 71 or the 13. One naïve method for discovering 

such factors would be to enumerate all numbers less than the target x and 

test each one for whether it divides x exactly. Th is would, however, take 

about 10n steps for n digit numbers. (Th e best method currently known for 

fi nding the factors of n- digit numbers is exponential in the cube root of n, 

which is a considerable improvement, but still not polynomial.)

Th e primality problem is the problem of determining for an arbitrary 

number x whether it has factors other than itself and 1. It is an NP problem 

since this verifi cation of a par tic u lar candidate solution can be done in poly-

nomial time (i.e., as we have observed, given an n- digit number x and two 

further numbers p and q, we can verify whether pq = x in O(n) steps). It 

turns out that, in fact, there do exist some very clever algorithms that can 

determine in polynomial time whether a number is prime. Th ey reveal 

whether factors exist, but, curiously, not what these factors are. Hence this 

par tic u lar NP problem of determining primality is in fact also in P.
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Currently, there is no way known for fi nding the factors in polynomial 

time, even with randomization (BPP). Th e apparent exponential gap for 

classical computation between the diffi  culty of testing whether factors exist 

and fi nding them if they do is the basis of widely used cryptographic schemes, 

notably the RSA cryptosystem. In the RSA system you choose two large 

prime numbers p and q, and multiply them together to get their product x. 

You then make public only the result x, and keep p and q secret. Anyone in 

the world who sees x can encipher messages intended for you, but only you, 

who know p and q, will be able to decrypt any such message. Th e point is 

that generating arbitrary primes p and q requires only the generation of 

some random numbers and testing whether they are prime. Th e eavesdrop-

per needs to do the apparently much harder task of actually fi nding the fac-

tors of a par tic u lar x. (Th is factoring problem is known to be in BQP, or 

computable in polynomial time on a quantum Turing machine. Th is fact 

lends some intrigue, at least, to the question of whether it is feasible to con-

struct quantum computers.)

Th e importance of NP is that it captures the very general pro cess of 

mental search. We call these problems mental search because they can be 

solved by searching objects one generates internally in one’s head or com-

puter. Th ey do not require searching in the outside world, as one would 

when searching for a phrase in the World Wide Web or for oil in the ground. 

Given a par tic u lar problem, one can characterize a set of potential solutions 

large enough that any true solution must be in that set of candidates. For the 

problem of determining whether some n- digit number x can be factored, 

one may specify the potential solutions as the integers {2, 3, . . .  , x − 1}. Find-

ing the solution is simply a matter of testing each number, one by one, to 

see whether it divides x. Such exhaustive searches are not feasible for large 

values of n, for this or any other problem. For any NP problem the crucial 

question therefore is whether a more effi  cient pro cess for detecting the exis-

tence of solutions than such an exhaustive search is possible.

Th e primality problem does have such a fast alternative algorithm, but it 

is by no means typical of NP problems. For a very large class, and one could 

say for the majority of natural NP problems, no algorithm is known that 

puts them in P or BPP or even, like the factoring problem, BQP. Remarkably, 

it has been shown that all the members of a very large class of NP problems 

are in fact provably equivalent to each other, in the sense that a polynomial 

time algorithm for one would give a polynomial time algorithm for any 
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other. Th is class has the further remarkable property that each member is 

provably the hardest member of NP. In other words, for these so- called 

NP- complete problems, no one currently knows a polynomial time algo-

rithm for any of them, but if someone did fi nd such an algorithm for any 

one, then polynomial time algorithms would follow for all problems in NP.

An example of such an NP- complete problem is the Traveling Salesman 

Problem.  Here one is given a map containing some cities, the distances 

between the pairs of cities that have direct roads between them, and a num-

ber x. Th e problem is to determine whether there is a tour that traverses 

 every city exactly once and has total distance no more than x. Th is problem 

is in NP because given a candidate tour it is easy enough to verify that each 

city is traversed exactly once and that the total length of roads used in the 

tour is less than x. Scheduling problems in all their variety off er a host of 

other mental search tasks for which we wish we had effi  cient algorithms, but 

we now know that most are NP- complete. NP- complete problems can be 

found in every area of mathematics. For example, for algebraic equations we 

have the primality question as to whether, given an n digit integer c, the 

equation xy = c has a solution in integers x and y. Of course some equations 

are easier to solve than this. Given integers a, b, and c, whether the equation 

ax + bx + c = 0 has an integer solution can be solved by the standard formula 

for solving quadratic equations. On the other hand, the superfi cially similar 

question of whether the equation ax + by + c = 0 has any integer solutions x, 

y, is NP- complete! Yes, we are told only about the easy things in high school.

Because intensive eff orts to fi nd polynomial time algorithms for NP- 

complete problems have to date failed, many currently conjecture that 

P ≠ NP, or equivalently, that no polynomial time algorithm exists for NP- 

complete problems. (NP- complete problems are similarly conjectured not to 

be in BPP or QBP either.) Whether this conjecture is in fact a computational 

law, like Turing’s proven assertion that the Halting Problem is not comput-

able, is potentially resolvable, and I expect that it will be proved or disproved 

one day. Th e postulate P ≠ NP, while it remains unresolved in either direc-

tion, might be compared to laws in physics, which likewise have not been 

mathematically proven. Of course, a physical law cannot be proven by math-

ematics. Such computation postulates can play analogous roles to physical 

laws in the sense that we can make good use of them as working hypotheses, 

at least until someone disproves them. In this instance the working hypoth-
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esis is that polynomial time algorithms do not exist for NP- complete prob-

lems. Th e eventuality that this is disproved could, of course, be a very happy 

one if it is accompanied by the discovery of an effi  cient algorithm for all 

NP- complete problems, which would have revolutionary consequences if it 

was effi  cient enough.

In later chapters as I move on to consider learning, reasoning, and evolu-

tion, I shall seek to follow the Turing triad: establishing a robust compu-

tational model, proving some strong possibility results, and proving some 

impossibility results that explain the ultimate limitations. As in complexity 

theory generally, proving impossibility results is particularly challenging. 

We may need to be ready to postulate certain algorithmic laws, in analogy 

with NP- completeness, without being able to prove them. Such postulates 

can then be treated as working hypotheses, at least until someone disproves 

them and fi nds, unexpectedly and pleasantly, that a  whole range of compu-

tational phenomena, currently believed to be infeasible, is indeed feasible.

A potentially wider class of computations still than NP is #P (pronounced 

“sharp P”). Th is is the class of problems that enumerate the number of solu-

tions of NP problems. Th ey give a number as the output. Th is class also has 

a class of its hardest members, called the #P-complete problems, analogous 

to the NP- complete problems. It is clear that for an NP- complete problem 

counting the number of solutions is at least as hard as detecting whether 

there are any, since the answer will be a number, and if it is greater than 

zero, then we will know that there exist solutions. More interestingly, there 

are many natural problems where testing whether there exists a solution is 

in P but counting their number is #P-complete. Th is means that while the 

existence of solutions can be detected fast, counting the number of solutions 

is as hard as for NP- complete problems. Examples of such problems abound 

in the context of reliability— for example, where one wants to determine the 

probability that a complex network or system will fail from the failure prob-

abilities of the components. Since the probability of something happening 

is closely related to the number of ways it can happen, these problems can 

be viewed as counting problems. It turns out that this class #P is at least as 

powerful as not only NP but also the quantum class BQP. It remains a pos-

sibility therefore that a yet undiscovered polynomial time algorithm exists 

that computes all problems in #P, and hence also all problems in BPP, BQP, 

and NP.
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BQP:
quantum

#P: counting

P: deterministic

NP: searching

#P-complete

NP-complete

BPP: randomizing

PAC: learnable

Figure 3.5 An illustration of the relative computational power of some com-

plexity classes, as understood in 2013. Each ellipse represents a class of prob-

lems or tasks. Each point in each ellipse represents a problem, such as testing 

numbers for being prime, or the Traveling Salesman Problem. Th e fi rst 

glimpse that natural problems  were related in this elegant way was given in a 

historic paper published by Stephen Cook in 1971 that defi ned the NP- complete 

class. Th e diagram illustrates the previously unsuspected rich structure that is 

now known to abound among diff erent problems. Th e PAC class represents 

the feasibly learnable and is the subject of Chapter 5.

Th e importance of these complexity classes derives from the additional 

fact that they are useful for classifying naturally occurring problems. Many 

problems that arise are mental search problems or their corresponding 

counting problems. It just so happens that when we come across a new task 

that we would like to have solved, if we cannot fi nd a polynomial time algo-

rithm for it, then more oft en than not, we can prove that it is complete in 

(i.e., is a hardest member of) its class NP or #P. Logically they could fall in 
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between, but for reasons we do not understand, they rarely do. For this rea-

son this theory gives useful guidance as to the practical solvability of new 

problems as they arise. Why natural problems should dichotomize in this 

way is not predicted or explained by any known theory. It is one of those 

Wignerian mysteries that we neither understand nor deserve, but should be 

grateful for and simply enjoy.

Th ese basic questions, about the relative extents of these complexity 

classes, are related intimately to the question of the real extent of PhysP, the 

class that this universe physically permits to be computed effi  ciently. If the 

quantum class BQP turns out to equal PhysP, we still would like to know 

whether NP or #P is within that class, and hence also permitted by physics. 

Questions about the relative power of these complexity classes can be viewed 

therefore as questions of physics also.

3.6 Simple Algorithms with Complicated Behavior

Ultimately, as we have seen, there are some limitations on what algorithms 

can do. Another way of saying this is that our powers to specify what we 

wish to compute are greater than the expressive power of computation itself. 

Nevertheless, the language of algorithms, despite these limitations, can be 

itself very expressive. Turing’s result that there exist universal Turing ma-

chines that can simulate any computation is a clear statement of the breath-

taking power of algorithms, the algorithm in question there being the one 

that controls the universal machine.

Th at, of course, we have already seen. A diff erent facet of the richness of 

algorithms is that even some very simple specifi c cases can have behaviors 

that are mystifying to mere mortals. A well- known example of a simple pro-

cedure that has so far defi ed analysis is the following:

1) Start with any positive integer n.

2) Repeat until n = 1:

(a) If n is even, replace n with n/2.

(b) If n is odd, replace n with 3n + 1.

For example, starting from n = 44, we get the following sequence: 44, 22, 11, 

34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. For a fi xed starting point, such as 

n = 44, computing the successive members of the resulting sequence is easy 

enough. What is not known is whether the sequence generated for every 
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starting point n eventually reaches the value n = 1 and terminates. Many 

starting points have been tried since the mathematician Lothar Collatz 

posed the problem in 1937. Th ey all resulted in computations that did termi-

nate at n = 1. But— somewhat shockingly, given how simple the problem is to 

describe— no one has been able to off er a proof that this pro cess would ter-

minate for every possible starting point, or that it would not.

Collatz’s problem is an example of apparent inherent complexity in 

simple procedures, even those isolated from any complex environment. In 

this case the notion of input can be removed altogether by considering a 

compound procedure that feeds the starting numbers n = 2, 3, 4 in succes-

sion to the basic procedure, going on to the next starting number when the 

sequence generated by the previous one has terminated at n = 1. Asking 

whether this compound procedure will ever get to every starting number n, 

rather than get stuck in perpetuity aft er a specifi c n, is equivalent to the 

original problem. In this light we should not be so shocked by the non-

computability of the Halting Problem, which would need to be able to make 

some kind of prediction about the ultimate fate not just of one, but of any 

computation.

3.7 The Perceptron Algorithm

Our journey through the major themes of computational complexity now 

brings us fi nally to the vicinity of our destination, the study of ecorithms. 

Our fi nal point of departure is a simple but important algorithm that, like 

Collatz’s problem, can also have complicated behavior, but these complica-

tions can be attributed to the outside environment in which it operates. Th is 

example is the perceptron algorithm, proposed by Frank Rosenblatt in the 

1950s.

Th e perceptron algorithm operates in the following context. Assume that 

there is a set of potential examples, each one specifi ed by some description, 

and further that there is a criterion for which some of the examples are true 

examples and the others false. For instance, an example may be an individ-

ual fl ower, and the criterion may be whether that fl ower belongs to species A 

or species B. Th e perceptron algorithm requires that the examples be de-

scribed somehow. For this case, let us say that the description consists of two 

numbers x and y that specify the length and width of one of its petals.

Th e perceptron algorithm is a member of the class of supervised learning 

algorithms, which means it can be trained to do the work of classifying ex-
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amples according to our criterion and descriptions. First, the algorithm is 

given descriptions of a set of training examples, as well as the correct label of 

each. For instance, one fl ower may have a petal 3 units long and 1 unit wide, 

and be labeled as a member of species A. In a subsequent phase the algo-

rithm is fed with a set of test examples, which consist of descriptions of ex-

amples but no labels. Th e goal of the algorithm is to predict reliably for each 

test example whether it is true or false, or as in the fl ower case, an instance 

of species A or species B.

Th e perceptron algorithm works when there is a certain mathematical 

criterion, known as a linear separator, dividing the two possible classes. Th is 

criterion, in the case of our fl owers, is a rule of the form

px + qy > r

where p, q, and r are numbers, such that every fl ower that satisfi es it is of 

species A, and every one that does not is of species B. For example, suppose 

that p = 2, q = −3 and r = 2, so that the rule is

2x − 3y > 2.

Th en a fl ower with petal length 5 and width 2 would be classifi ed as type A 

since (2 × 5) − (3 × 2) = 4, and 4 > 2. On the other hand a fl ower with petal 

length 3 and width 2 would be classifi ed as type B since (2 × 3) − (3 × 2) = 0 

and 0 < 2. In graphical terms this means that if all the examples are plotted 

in two dimensions, representing the length by x and the width by y, then 

there is a straight line corresponding to equation 2x − 3y = 2, so that all the 

species A fl owers lie on one side of this line, and the species B fl owers on the 

other (or on it). Th is is illustrated in Figure 3.6.

Of course, the perceptron algorithm does not know the true equation for 

the separator in advance. Instead, it must fi nd it. Th e algorithm works by 

scanning through the training data, possibly many times. At each instant it 

maintains a hypothesis, of the form of ax + by > c, about the linear separator. 

We shall for simplicity work with the case c = 0. Th e algorithm then starts 

with the hypothesis 0x + 0y > 0. It goes through each training example one 

by one, and if the example label is correctly predicted by the current hy-

pothesis, then the hypothesis is not changed. If the example label is not 

predicted correctly, then the hypothesis is updated so as to be “more likely,” 



   |   probably approximately correct

in a certain sense, to be correct on that same example if presented again 

later.

To be more precise, if the hypothesis misclassifi es a true positive example 

(u, v) as negative (i.e., because au + bv ≤ 0), then a is updated by having u 

added to it, and b by having v added to it. Th e left - hand side of the updated 

hypothesis will then be (a + u)x + (b + v)y, and it will have value (a + u)

u + (b + v)v if presented with the same example (u, v) on a subsequent run 

through the data. Th e value of the sum will be larger than before by a posi-

tive quantity u + v, and hence will be “more likely” to exceed 0 in value and 

correctly identify the positive example as true. For the opposite case, when a 

negative example is misclassifi ed to be positive, a is updated by having u sub-

tracted from it, and b by having v subtracted from it. Th is will have the eff ect 

of reducing the value of the left - hand side by u + v if the same input (u, v) is 

presented again later, and hence will make it “more likely” to be less than 0 

and hence result in a correct negative classifi cation in that eventuality.

Depending on the order in which training data is fed to the perceptron, 

it  could generate exceedingly many distinct histories of hypotheses. Th e 

 interesting fact about the perceptron algorithm is that, in spite of our lack of 

control over its exact fate as we let it loose on arbitrary data, it nonetheless 
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Figure 3.6 Th e sloping line contains the points satisfying 2x − 3y = 2. Th e points 

(x = 4, y = 1), (x = 5, y = 1), and (x = 5, y = 2) all satisfy 2x − 3y > 2 and are marked 

as “+,” while the points (x = 1, y = 2), (x = 3, y = 2), and (x = 4, y = 3) do not and 

are marked as “−.” In other words, the fl owers of species A will lie below the 

line, and those of species B above or on it.
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manages to achieve something quite remarkable. Th e most basic statement 

of the power of this algorithm, proved by Albert Novikoff  soon aft er the al-

gorithm was fi rst proposed, is that if there is a true linear separator, then 

the algorithm is sure to fi nd it, or another hypothesis that also correctly 

classifi es all the examples, aft er having made misclassifi cations only a fi nite 

number of times. Furthermore, an upper bound on the number of such mis-

classifi cations can be computed given the data. Th is upper bound is equal to 

M/m, where M is the square of the distance of the furthest data point in the 

training set from the point (0, 0) and m is the margin. Th e margin has a 

trickier defi nition: It is the minimum distance of any data point from the 

separating line for the line for which this distance is the largest. Th e conse-

quence of m being in the denominator is that the closer the data points are 

to the separator, the more mistakes this procedure can potentially make.

Th e importance of the algorithm derives from several additional facts. 

First, it works within bounds of the form M/m not just for problems with 

two variables but for problems with any number of variables. Second, in 

practice, it oft en works well even for data that is corrupted by noise. Th ird, 

there are general methods for dealing with data that is separable not by linear 

relations but by more complex curves. For example, suppose that the two 

categories are not separated by a straight line as they are in Figure 3.6, but we 

suspect that some more complex curve would separate them. In our two- 

dimensional case we could try to learn the separator ax + by + cxy + dx + ey > f 

where x, y are variables and a, b, c, d, and e are the constants to be learned. 

Th is in e qual ity is not linear in x, y, since it contains higher order terms such 

as x. However, it can be viewed as linear if we regard the set of variables not 

as {x, y} but as {x, y, xy, x, y}. We can translate any example given as a pair 

{x, y} of numbers to the corresponding fi ve numbers {x, y, xy, x, y} by multi-

plication. In this way the perceptron algorithm can be applied directly to 

nonlinearly separable data also.

Th is linearization is an important idea that greatly extends the range of 

applicability of the perceptron algorithm, but it is not the complete panacea 

that it may seem. If there are few nonlinear terms, and we know which they 

are, then there are no problems. But if there are numerous terms potentially 

to look for, then this will introduce higher, possibly exponential, costs.

Th e criterion that only a fi nite number of mistakes are made over any, 

even infi nite, number of examples does not appear to be a natural fi t for hu-

man learning. It raises the question of what outcome we should really require 



Figure 3.7 Example of a run of the perceptron algorithm in three dimensions 

on the set of six examples +(4, 1, 1), −(1, 2, 1), +(5, 1, 1), −(3, 2, 1), +(5, 2, 1), 

−(4, 3, 1) repeated in that order three times. Th e signs indicate the labels of the 

examples. Th e initial hypothesis is 0x + 0y + 0z > 0. Th e fi rst example (4, 1, 1) 

when substituted in the left - hand side of the initial hypothesis gives 0, and 

hence does not satisfy it, as indicated by the negative sign in the third column. 

Th e fi rst column indicates that the true label of this fi rst example (4, 1, 1) is 

positive. Th e algorithm therefore adds the coordinates (4, 1, 1) of the example 

to the coeffi  cients (0, 0, 0) of the hypothesis, to give 4x +1y +1z > 0 as the up-

dated hypothesis. Aft er the six examples are cycled through twice, the hypoth-

esis 3x − 6y − 1z > 0 is obtained. In the third cycle it is confi rmed that this 

hypothesis satisfi es all six examples.

True 

Value

Example Classifi cation 

by Previous 

Hypothesis

Updated 

Hypothesis

0x + 0y + 0z > 0

+ (4, 1, 1) − 4x + 1y + 1z > 0

− (1, 2, 1) + 3x − 1y + 0z > 0

+ (5, 1, 1) + 3x − 1y + 0z > 0

− (3, 2, 1) + 0x − 3y − 1z > 0

+ (5, 2, 1) − 5x − 1y + 0z > 0

− (4, 3, 1) + 1x − 4y − 1z > 0

+ (4, 1, 1) − 5x − 3y + 0z > 0

− (1, 2, 1) − 5x − 3y + 0z > 0

+ (5, 1, 1) + 5x − 3y + 0z > 0

− (3, 2, 1) + 2x − 5y − 1z > 0

+ (5, 2, 1) − 7x − 3y + 0z > 0

− (4, 3, 1) + 3x − 6y − 1z > 0

+ (4, 1, 1) + 3x − 6y − 1z > 0

− (1, 2, 1) − 3x − 6y − 1z > 0

+ (5, 1, 1) + 3x − 6y − 1z > 0

− (3, 2, 1) − 3x − 6y − 1z > 0

+ (5, 2, 1) + 3x − 6y − 1z > 0

− (4, 3, 1) − 3x − 6y − 1z > 0
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of a learning algorithm before we declare it successful. Th is is the main 

question that will be addressed in Chapter 5. Before we get there, however, 

we need to take a more general look at what a computationally sound, mech-

anistic explanation of a natural phenomenon— whether of evolution, or cog-

nition, or some other pro cess of interest— might look like.

But there is one intuition suggested by the perceptron algorithm that will 

be important for what comes later. Learning is achieved in many steps that 

are plausible but innocuous when viewed one by one in isolation. Th ese steps 

work because there is an overall algorithmic plan. In combination the steps 

achieve something, in par tic u lar, some kind of convergence. We shall claim 

that evolution is similar. Th e many small steps taken do not make too much 

sense one by one. But there is an algorithmic plan, so that taken in unison 

the many steps do achieve something remarkable.


