


PAPER OUTLINE

Section 1 gives general overview and background of authors (introduction).
Section 2 discusses how Chomsky’s and Rosenblatt’s proposals each diverged from ‘mainstream Al'.

Section 3 of the article discusses some of that debate and argues that it produced important lessons for

future research in both traditions, rather than ending in victory for one or the other side.

The final section of the article surveys some of the subsequent research over the last thirty years that

has integrated aspects of neural network modeling research and generative linguistics.

Main Argumen’r: “ argue that progress on a core goal of generative linguistics, the development

of a theory of learning, may well be aided by its integration with neural modeling.”



®* Both were born in 1957 by Noam Chomsky and Frank Rosenblatt respectively
®* Chomsky took a ‘high-level’ cognitive phenomenon— language, and in particular, syntax—and aimed to show
that some reasonably powerful computational machinery was not up to the task of representing it,
before going on to propose a more powerful theory that could.
® Rosenblatt took some very simple computational machinery—mathematical analogues of neural activation and synaptic
connections—and aimed to show that it could represent ‘low-level’ cognitive processes involved in
object perception and recognition, and that these representations could be learned algorithmically.
® These two ideas developed separately until later when Rumelhart and McClelland (1986) developed a perceptron-based,

or connectionist, model of past- tense formation in English,
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points in time
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It is important to emphasize, that a network needs a specified structure for it to represent the effects of learning, just as
innate parameters need a specification of how learning works if they are to respond to experience.
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* Because of its focus on learned representations, neural network research is a largely emergentist tradition,
and the connectionist linguistic literature often contrasts itself with Chomskyan innatism .
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those of the n the prediction of the past-tense
form. This may be see current values of the weights represent the
network’s cur- rent hypothesis, which | pdate, but it is different from most generative learning
algorithms in that the hypotheses are over a continuous rather than a discrete space, and the changes in output are typically
gradual, rather than abrupt.
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FUSION

®* OT and HG( with numerical weight rather than ranks, its constraints.

® Prince and Smolensky (2004:Ch. 4) provide an extended argument for constraint interaction in
the domain of word stress, comparing the Extrametricality parameter (Hayes 1980) to a

violable Nonfinality constraint.
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® While it might not be ¢ uctures when studying typology or in modeling

some cases of variation, there are many cases of linguistic analysis in which one might not be committed to a

particular full structure for each piece of data and would like a learner to find an appropriate grammar.
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CAN RNN LEARN
SYNTAX?

® Can capture some aspect of natural
language syntax, including long-distance
dependencies, and have recently undergone
a resurgence of popularity in Al applications
of neural networks to language.
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* Another challenge of RNN is shown | aphora resoiuﬁon, Frank et al. (201 3) conclude

that the representations are not sufficiently
* abstract, being too tied to particular words rather than to categories.
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