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1 Paper contributions

The aim of this paper is propose a learning algorithm capable of dealing with noisy examples.
• learning data: positive examples, some of which aremislabeled by noise before they are exposed
to the learning algorithm

• model of noise: the Classification Noise Process
• proposal of a general upper bound on the size of a sample sufficient for learning in finite domains
in the presence of noisy data

• evidence that there computationally feasible algorithms for learning in the presence of classifi-
cation noise in non-trivial domains

2 PAC definition

• purpose: learn a rule that is capable of performing almost correct classification, e.g. recognizing
smugglers at the customs

• we need to account for a possibility of being unlucky with the presented data (unlikely)
• number of necessary examples and the computational complexity of the learning procedure are
crucial aspects

PAC definition:
Let L1, L2, ... be a countable set of subsets of a countable universe U , andD an unknown distribution
on the elements of. The task is to identify one such set L∗ that correctly classifies the instances
into positive and negative examples. LetEX() be a sampling oracle. Each call to the oracle selects an
element x (x ∈ U ) followingD and returns ⟨x, {0, 1}⟩. The success of identifying such set is measured
by two parameters, ϵ and δ, which are given as inputs to the identification procedure.
The parameter ϵ is a bound on the difference between the conjectured Lh and the unknown set
L∗:

d(S, T ) =
∑

x∈S△T
PrD(x),

where S and T are any subsets of U , (S △ T ) is the symmetric difference of those subsets (S △ T =
(S−T )∪(T−S)), and PrD is the probability following distributionD. d(S, T ) is then the probability
that with one call from the oracle we will draw an element that is in either one of S or T sets but not
both.
We need δ, a confidence parameter, as a bound on the likelihood of an unlucky event, e.g. exposure
to examples not representative of the concept in general. We want to have high confidence that the
error is small. The identification procedure is said to do probably approximately correct identification
if L∗ iff:
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Pr[d(L∗, Lh) ≥ ϵ] ≤ δ,

E.g., if we want to have precise classification 85% of the time, with 99% confidence that we are right,
we need to set the parameters: ϵ = 0.15 and δ = 0.01.

2.1 Finite classes example
Let L = {L1, ..., LN} be any finite set of N rules. L requests m = (1/ϵ)ln(N/δ) examples to return
a desired rule. Let L1 be a rule with error d(L1, L∗) ≥ ϵ. Then (1− ϵ) is the likelihood that a random
example agrees with L1, and (1− ϵ)m that m examples agree with L1. It follows that:

(1− x)m ≤ e−mx

Our x is ϵ. So since we have N rules:

(1− ϵ)m ≤ N(e−mϵ)

We want this to be smaller than δ:

N(e−mϵ) < δ

If we solve for the requested m above, then the algorithm is PAC-identified.

N(e−mϵ) < δ

e−mϵ < δ/N

−mϵ < ln(δ/N)

−mϵ < ln(δ)− ln(N)

mϵ > ln(N)− ln(δ)

mϵ > ln(N/δ)

m > (1/ϵ)ln(N/δ)

Now what happens if the algorithm comes across some erroneous examples? Even one such case
could prevent finding LN that belongs to L.

3 How to learn with noisy examples?

First let us look at a model that produces noisy examples.

3.1 THe Classification Noise PRocess
• EX()0 is able to draw examples following D without error
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• the function determiningwhether an example is representative of a set is subject to independent
random mistakes with some unknown probability η < 1/2

• procedure: an element x is drawn from U according to D and a coin that comes up with heads
with the probability 1− η

• if we get heads, we mark x correct, if not heads, x will receive the opposite of correct sign
• EXη is the erroneous oracle
• such probability η occurs independently for each example

If η was equal to 1/2, the algorithm would not be able to pick up any rules. Another possible prob-
lematic case would be if η is very close to 1/2. In order to make that work, an upper bound ηb is
assumed such that η ≤ ηb ≤ 1/2. While in the case noiseless input, the algorithm runs in polynomial
time in 1/ϵ and 1/δ, in the case of noisy examples, the polynomial is permitted 1/(1− 2ηb) as one of
its arguments. Since this quantity is inversely proportional to how close ηb is to 1/2, the closer ηb is
to 1/2, the longer the algorithm is allowed to run.
Can we do without this upper bound ηb? The answer is yes! Before we show why, let us explore a
theorem checking PAC-identification with noisy data.

3.2 How many noisy examples aRe enougH?
In Section 2.1 we showed that:
Theorem 1
If Li is any hypothesis that agrees with at least

m = (1/ϵ)ln(N/δ)

samples drawn from the EX0(), then

Pr[d(L∗, Li) ≥ ϵ] ≤ δ

.
Because the sample size depends on log N , two things follow:

• a large increase of N causes the much smaller growth in the size of sample required
• a small increase in sample size will decrease the confidence limit δ.

How to calculate the sufficient number of noisy examples? Because there is a possibility that there
is no Li that is consistent with all the examples. The way to go around it is to substitute the goal of
consistency with the goal of minimizing the number of disagreements with the examples, and permit
the number of samples to depend on ηb on the error rate.
Theorem 2: PAC-identification theorem in finite domains with noisy examples
Let σ = ⟨x1, s1⟩, ..., ⟨xn, sn⟩ be a sequence of samples drawn from EXη() oracle, where x ∈ U , and
s = {+,−}. Given if Li is a possible hypothesis, let F (Li, σ) denote the number of indices j for
which Li disagrees with ⟨xj, sj⟩, that is, sj = + and xj is not in Li or sj = − and xj is in Li.
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If we draw a sequence σ of

m ≥ 2

ϵ2(1− 2ηb)
ln

(
2N

δ

)
samples from an EXη oracle and find any hypothesis Li that minimizes F (Li, σ), then

Pr[d(L∗, Li) ≥ ϵ] ≤ δ

The number of examples is polynomial in log N, which means that the noise has increased the number
of examples we need. Nevertheless this number is still feasible.

3.3 Getting Rid of tHe uppeR bound foR η

• procedure: an iterative search that successively reduces the gap assumed to exist between η
and 1/2

• initial guess: ηb = 1/4

• then we test by drawing some examples and estimating the failure probability of each of the
rules in L

• the smallest empirical failure rate p̂= F (Li, σ)/m is then compared to the current ηb
• if p̂ < ηb we stop and take < ηb as our bound; if p̂ > ηb, we increase the guess for ηb to
3/8, 7/16, 17/32, etc.

• the size of sample drawn is increased at each iteration

Theorem 3
Let

mr(N, δ) = 22r+3ln

(
N2r+2

δ

)
.

Thenwith probability greater than 1−δ, algorithmE halts on or before round r′
= 1+[log2(1−

2η)−1] and outputs an estimate η̂b such that η < η̂b < 1/2
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3.4 Minimizing disagReements is computationally expensive
Let n be a positive integer and PP (n) denote the set of all products of a subset of the literals x1, ..., xn.
There are 2n such products.

• each product π in PP (n) denotes the set of truth-value assignments that satisfy it
• σ will consist of a finite sequence of ordered pairs of the form ⟨aj, sj⟩, where aj is a truth-value
assignment to the literals, and sj ∈ {+,−}

• If π ∈ PP (n) and σ is a sample sequence, then F (π, σ) is the number of pairs ⟨aj, sj⟩ in σ
such that sj = + and aj(π) = 0 or sj = and aj(π) = 1. That is, F (π, σ) is the number of
disagreements between π and the sample sequence σ.

Theorem 4
Given positive integers n and c and a sample sequence σ, the problem of determining whether there
is an element π ∈ PP (n) such that F (π, σ) < c is NP-complete.
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