
Polynomial Identification in the Limit of
Substitutable Context-free Languages

Alexander Clark and Rémi Eyraud

Review: Substitutability

Definition: Context

The context of a substring u of a string s is the pair of strings l , r
such that lur = s.
Example: the context of a in abc is (λ, bc)
CL(u) is the set of contexts for string u in all strings in L.
Example: If L = {abc, cab}, CL(a) = {(λ, bc), (c , b)}

Definition: Substitutable language

A substitutable language L is a set of strings such that any two
strings that share one context share all contexts.

Review: Substitutability

Definition: Weak substitutability

Two strings u and v are weakly substitutable with respect to
language L (written u

.
=L v) if there exist l , r ∈ Σ∗ such that

lur ∈ L and lvr ∈ L.

Definition: Syntactic congruence

Two strings u and v are syntactically congruent with respect to
language L (written u ≡L v) iff ∀l , r ∈ Σ∗ lur ∈ L iff lvr ∈ L

Review: Substitutability

Definition: Substitutable language (redux)

A language L is substitutable iff ∀u, v ∈ L, u
.
=L v =⇒ u ≡L v

Review: Identifying Substitutable Languages

Is L = {a, aa} substitutable?

a and aa both share the context (λ, λ), so they must share all
contexts for L to be substitutable.

a also has the contexts (λ, a) and (a, λ), which aa does not have.

L is not substitutable.

Review: Identifying Substitutable Languages

Is L = {a, aa} substitutable?

a and aa both share the context (λ, λ), so they must share all
contexts for L to be substitutable.

a also has the contexts (λ, a) and (a, λ), which aa does not have.

L is not substitutable.

Review: Identifying Substitutable Languages

Is L = {a, aa} substitutable?

a and aa both share the context (λ, λ), so they must share all
contexts for L to be substitutable.

a also has the contexts (λ, a) and (a, λ), which aa does not have.

L is not substitutable.

Review: Identifying Substitutable Languages

Is L = {a, aa} substitutable?

a and aa both share the context (λ, λ), so they must share all
contexts for L to be substitutable.

a also has the contexts (λ, a) and (a, λ), which aa does not have.

L is not substitutable.

Review: Identifying Substitutable Languages

Is L = a+ substitutable?

Every pair of strings u = ai≥1 and v = aj≥1 appears in the context
(λ, λ), so u and v must share all contexts for L to be substitutable.

For all n ≥ 0, an will appear to the left and to the right of any u
and v in L.

L is substitutable.

Review: Identifying Substitutable Languages

Is L = a+ substitutable?

Every pair of strings u = ai≥1 and v = aj≥1 appears in the context
(λ, λ), so u and v must share all contexts for L to be substitutable.

For all n ≥ 0, an will appear to the left and to the right of any u
and v in L.

L is substitutable.

Review: Identifying Substitutable Languages

Is L = a+ substitutable?

Every pair of strings u = ai≥1 and v = aj≥1 appears in the context
(λ, λ), so u and v must share all contexts for L to be substitutable.

For all n ≥ 0, an will appear to the left and to the right of any u
and v in L.

L is substitutable.

Review: Identifying Substitutable Languages

Is L = a+ substitutable?

Every pair of strings u = ai≥1 and v = aj≥1 appears in the context
(λ, λ), so u and v must share all contexts for L to be substitutable.

For all n ≥ 0, an will appear to the left and to the right of any u
and v in L.

L is substitutable.

Review: Components

Definition: Component

A set of vertices that are connected without any edges to vertices
outside the set.

a b

c d

e

f

g

⌈a⌉ = ⌈b⌉ = ⌈e⌉ ≠ ⌈f ⌉ = ⌈g⌉

Contribution

This paper provides an algorithm for learning a subclass of
context-free grammars.
The algorithm learns from the distributions of strings without
needing to learn constituency.
It learns in Gold’s IIL paradigm from only positive data in
polynomial time.
This paper shows that a few assumptions allow CFGs to be learned
if they have syntactic congruence.

Substitution graphs

Definition: Substitution graph

Given sample set of strings S , substitution graph SG (S) = (V ,E),
where:
V = {u ∈ Σ+ : ∃l , r ∈ Σ∗, lur ∈ S}
E = {(u, v) ∈ Σ+ × Σ+ : u

.
=S v}

A substitution graph is a data structure representing the
substitutability of each string in the language.

The vertices are all of the substrings in the sample and the edges
connect each pair of strings that are weakly substitutable w.r.t. S .

Each string can be replaced with another string in the same
component without affecting language membership.

Substitution graphs

What does the substitution graph of S = {a, aa} look like?

Sub(S) = {a, aa}
a

.
=S aa

V = {a, aa}
E = {(a, aa)}

a aa

Substitution graphs

What does the substitution graph of S = {a, aa} look like?

Sub(S) = {a, aa}
a

.
=S aa

V = {a, aa}
E = {(a, aa)}

a aa

Substitution graphs

What does the substitution graph of S = {a, aa} look like?

Sub(S) = {a, aa}
a

.
=S aa

V = {a, aa}
E = {(a, aa)}

a aa

Substitution graphs

What does the substitution graph of S = {a, ab, abb} look like?

Sub(S) = {a, b, ab, bb, abb}
CS(a) = {(λ, λ), (λ, b), (λ, bb)}
CS(b) = {(a, λ), (a, b), (ab, λ)}
CS(ab) = {(λ, λ), (λ, b)}
CS(bb) = {(a, λ)}
CS(abb) = {(λ, λ)}

a ab

abb

b bb

Substitution graphs

What does the substitution graph of S = {a, ab, abb} look like?

Sub(S) = {a, b, ab, bb, abb}
CS(a) = {(λ, λ), (λ, b), (λ, bb)}
CS(b) = {(a, λ), (a, b), (ab, λ)}
CS(ab) = {(λ, λ), (λ, b)}
CS(bb) = {(a, λ)}
CS(abb) = {(λ, λ)}

a ab

abb

b bb

Substitution graphs

What does the substitution graph of S = {a, ab, abb} look like?

Sub(S) = {a, b, ab, bb, abb}
CS(a) = {(λ, λ), (λ, b), (λ, bb)}
CS(b) = {(a, λ), (a, b), (ab, λ)}
CS(ab) = {(λ, λ), (λ, b)}
CS(bb) = {(a, λ)}
CS(abb) = {(λ, λ)}

a ab

abb

b bb

Constructing the grammar

Definition: Context-free grammar

A context-free grammar G is a tuple ⟨Σ,V ,P,S⟩ where
Σ is an alphabet
V is a finite set of non-terminal variables in our production rules
P ⊆ V × (Σ ∪ V)+ is a set of production rules
S ∈ V is the starting symbol

Constructing the grammar

Algorithm 1 Learn a grammar G from a substitution graph SG

Let Σ be the alphabet used in SG
Compute the set of components V̂
Store map V → V̂ where u 7→ ⌈u⌉
Let Ŝ be the component corresponding to the context (λ, λ)
P̂ = {}
for u ∈ V do

if |u| > 1 then
for v ,w s.t. u = vw do

P̂ ← P̂ ∪ (⌈u⌉ → ⌈v⌉⌈w⌉)
end for

else
P̂ ← P̂ ∪ (⌈u⌉ → u)

end if
end for
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}

Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}

Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉

Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉

u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}

u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}

output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
Let Σ be the alphabet SG Σ = {a}
Compute the set of components V̂ V̂ = {⌈a⌉, ⌈aa⌉}
Store map V → V̂ where u 7→ ⌈u⌉ a 7→ ⌈a⌉, aa 7→ ⌈aa⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈aa⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a) P̂ = {⌈a⌉ → a}
u = aa |aa| > 1

P̂ ← P̂ ∪ (⌈aa⌉ → ⌈a⌉⌈a⌉) P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
output Ĝ = ⟨Σ, V̂ , P̂, Ŝ⟩

Constructing the grammar

Learning a grammar from S = {a, aa}
G = ⟨
Σ = {a},
V̂ = {Ŝ},
P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
Ŝ = ⌈a⌉ = ⌈aa⌉
⟩

What language does this grammar produce?
Ŝ → a
Ŝ → Ŝ Ŝ
L = a+

Constructing the grammar

Learning a grammar from S = {a, aa}
G = ⟨
Σ = {a},
V̂ = {Ŝ},
P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
Ŝ = ⌈a⌉ = ⌈aa⌉
⟩
What language does this grammar produce?

Ŝ → a
Ŝ → Ŝ Ŝ
L = a+

Constructing the grammar

Learning a grammar from S = {a, aa}
G = ⟨
Σ = {a},
V̂ = {Ŝ},
P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
Ŝ = ⌈a⌉ = ⌈aa⌉
⟩
What language does this grammar produce?
Ŝ → a
Ŝ → Ŝ Ŝ

L = a+

Constructing the grammar

Learning a grammar from S = {a, aa}
G = ⟨
Σ = {a},
V̂ = {Ŝ},
P̂ = {⌈a⌉ → a, ⌈aa⌉ → ⌈a⌉⌈a⌉}
Ŝ = ⌈a⌉ = ⌈aa⌉
⟩
What language does this grammar produce?
Ŝ → a
Ŝ → Ŝ Ŝ
L = a+

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}

Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}

Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉

Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉

u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)

u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)

u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)

u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)

u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
Let Σ be the alphabet Σ = {a, b}
Compute components V̂ V̂ = {⌈a⌉, ⌈b⌉, ⌈ab⌉, ⌈bb⌉, ⌈abb⌉}
Store map V → V̂ a 7→ ⌈a⌉, ..., abb 7→ ⌈abb⌉
Set Ŝ to the component for (λ, λ) Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
u = a |a| ≯ 1

P̂ ← P̂ ∪ (⌈a⌉ → a)
u = b |b| ≯ 1

P̂ ← P̂ ∪ (⌈b⌉ → b)
u = ab |ab| > 1

P̂ ← P̂ ∪ (⌈ab⌉ → ⌈a⌉⌈b⌉)
u = bb |bb| > 1

P̂ ← P̂ ∪ (⌈bb⌉ → ⌈b⌉⌈b⌉)
u = abb |abb| > 1

P̂ ← P̂ ∪ (⌈abb⌉ → ⌈a⌉⌈bb⌉)
P̂ ← P̂ ∪ (⌈abb⌉ → ⌈ab⌉⌈b⌉)

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
G = ⟨
Σ = {a, b},
V̂ = {Ŝ , B̂},
P̂ = {⌈a⌉ → a,

⌈b⌉ → b,
⌈ab⌉ → ⌈a⌉⌈b⌉,
⌈bb⌉ → ⌈b⌉⌈b⌉,
⌈abb⌉ → ⌈a⌉⌈bb⌉,
⌈abb⌉ → ⌈ab⌉⌈b⌉},

Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
⟩

What language does this grammar produce?
Ŝ → a, B̂ → b, Ŝ → Ŝ B̂, B̂ → B̂B̂
L = ab∗

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
G = ⟨
Σ = {a, b},
V̂ = {Ŝ , B̂},
P̂ = {⌈a⌉ → a,

⌈b⌉ → b,
⌈ab⌉ → ⌈a⌉⌈b⌉,
⌈bb⌉ → ⌈b⌉⌈b⌉,
⌈abb⌉ → ⌈a⌉⌈bb⌉,
⌈abb⌉ → ⌈ab⌉⌈b⌉},

Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
⟩
What language does this grammar produce?

Ŝ → a, B̂ → b, Ŝ → Ŝ B̂, B̂ → B̂B̂
L = ab∗

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
G = ⟨
Σ = {a, b},
V̂ = {Ŝ , B̂},
P̂ = {⌈a⌉ → a,

⌈b⌉ → b,
⌈ab⌉ → ⌈a⌉⌈b⌉,
⌈bb⌉ → ⌈b⌉⌈b⌉,
⌈abb⌉ → ⌈a⌉⌈bb⌉,
⌈abb⌉ → ⌈ab⌉⌈b⌉},

Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
⟩
What language does this grammar produce?
Ŝ → a, B̂ → b, Ŝ → Ŝ B̂, B̂ → B̂B̂

L = ab∗

Constructing the grammar

Learning a grammar from S = {a, ab, abb}
G = ⟨
Σ = {a, b},
V̂ = {Ŝ , B̂},
P̂ = {⌈a⌉ → a,

⌈b⌉ → b,
⌈ab⌉ → ⌈a⌉⌈b⌉,
⌈bb⌉ → ⌈b⌉⌈b⌉,
⌈abb⌉ → ⌈a⌉⌈bb⌉,
⌈abb⌉ → ⌈ab⌉⌈b⌉},

Ŝ = ⌈a⌉ = ⌈ab⌉ = ⌈abb⌉
⟩
What language does this grammar produce?
Ŝ → a, B̂ → b, Ŝ → Ŝ B̂, B̂ → B̂B̂
L = ab∗

Constructing the grammar

The language L = {ancbn} can be represented by the rules
{S → aSb, S → c}.
How can we learn it with this algorithm and a large representative
sample?

The words share the empty context and contexts with equal
amounts of a and b on each side.
The other substrings don’t share any contexts, so each will be in a
separate component.
The rules learned from all the components are:
Cj+k → CjBk for all k > 0, j ∈ Z
Cj−k → AkCj for all k > 0, j ∈ Z
C0 → c
Ai+j → AiAj for all i , j > 0
A1 → a
Bi+j → BiBj for all i , j > 0
B1 → b

Constructing the grammar

The language L = {ancbn} can be represented by the rules
{S → aSb, S → c}.
How can we learn it with this algorithm and a large representative
sample?
The words share the empty context and contexts with equal
amounts of a and b on each side.
The other substrings don’t share any contexts, so each will be in a
separate component.
The rules learned from all the components are:
Cj+k → CjBk for all k > 0, j ∈ Z
Cj−k → AkCj for all k > 0, j ∈ Z
C0 → c
Ai+j → AiAj for all i , j > 0
A1 → a
Bi+j → BiBj for all i , j > 0
B1 → b

Global algorithm

Algorithm 2 Learn sequence of CFGs G1,G2, ... from sample S

G = grammar generating the empty language
while true do

read next string sn in S
if sn /∈ L(G) then

create substitution graph SG from {s1, ..., sn}
create grammar G from SG ▷ Algorithm 1

end if
output G

end while

Efficiency

We have sample S = {w1, ...,wn}.
Each sample wi has

|wi |2+|wi |
2 non-empty substrings.

Let N =
∑
|wi | and L = max |wi |.

N2 is an upper bound on |V |.
Finding weakly substitutable pairs of substrings can be done in
time less than L2.
Computing edges can be done in time less than L2n2.
Finding the components can be done in |V |+ |E | time.
The total number of rules is bound by LN2 and each is constructed
in constant time.
The global algorithm runs the SG learning algorithm at most n
times.

Conclusion

This paper introduces an algorithm that runs in time efficient with
respect to the size of the input.

CFGs for substitutable languages are learned through the
distributions of terminals instead of through constituency.

This algorithm is inadequate for learning natural language, but it
demonstrates that the assumption that children need examples of a
specific construction to produce it is false.

