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Quick Facts

- Versions:
- arXiv Version (with Supplementary Material): https://arxiv.org/abs/1711.09576 
- Published Version: http://proceedings.mlr.press/v80/weiss18a/weiss18a.pdf 

- Source Code: https://github.com/tech-srl/lstar_extraction
- L* Extraction Implementation:

- Authors Version: download and run locally or use a non-SBU Google account
- Modified Version: run directly online 
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Overview the paper with code

- Abstract
- Key concepts
- Extracting DFA from RNNs using L*
- Experimental results 
- Advantages and limitations
- Contributions of the paper revisited
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Abstract

We present a novel algorithm that uses exact learning and abstraction to extract a 
deterministic finite automaton describing the state dynamics of a given trained 
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN as 
an oracle. Our technique efficiently extracts accurate automata from trained 
RNNs, even when the state vectors are large and require fine differentiation.
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Abstract

We present a novel algorithm that uses exact learning and abstraction to extract 
a deterministic finite automaton describing the state dynamics of a given trained 
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN 
as an oracle. Our technique efficiently extracts accurate automata from trained 
RNNs, even when the state vectors are large and require fine differentiation.

Key concepts: Deterministic finite automaton (DFA); Recurrent Neural Network 
(RNN); exact learning; abstraction; Angluin’s L* algorithm 

5



Abstract

We present a novel algorithm that uses exact learning and abstraction to extract 
a deterministic finite automaton describing the state dynamics of a given trained 
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN as 
an oracle. Our technique efficiently extracts accurate automata from trained 
RNNs, even when the state vectors are large and require fine differentiation.

Key Contribution: The paper presents an algorithm/technique that is novel, 
efficient, and robust in extracting accurate deterministic finite automata from 
trained RNNs.
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Key Concepts

- Deterministic finite automaton (DFA)
- Recurrent Neural Networks (RNNs)
- Exact learning
- Angluin’s L* algorithm
- Abstraction
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DFA: Notations

- Components: 
- Σ: alphabet
- Q: the set of automaton states
- q0 : the initial state, q0 ∈ Q
- F: accepting states, F ⊆ Q
- δ: transition function δ : Q × Σ → Q
- Classification function fA : Q → {Acc, Rej}

- Recursive state transitions to a sequence: 
- Stay at the current state:                    , for every q ∈ Q
- Transition to the next state:                                              for every w ∈ Σ* and σ ∈ Σ                         
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DFA: Examples

- Language 1: a*, Σ := {a}
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DFA: Examples

- Language 1: a*, Σ := {a}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.
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DFA: Examples

- Language 2: ab+, Σ := {a, b}
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DFA: Examples

- Language 2: ab+, Σ := {a, b}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.
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DFA: Examples

- Language 3: initial char must match with final char, Σ := {a, b, c}
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DFA: Examples

- Language 3: initial char must match with final char, Σ := {a, b, c}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.
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RNNs: Basic Architecture
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Binary RNN-acceptor: Notations

- Components: 
- Σ: alphabet
- SR: the set of state spaces (for hidden spaces)
- h0, R: the initial state, h0, R  ∈ SR
- F: accepting states, F ⊆ SR (given by Jack)
- gR: transition function gR : SR × Σ → SR
- Classification function fR : SR  → {Acc, Rej}

- Recursive state transitions to a sequence: 
- Stay at the current state:                         , for every h ∈ SR
- Transition to the next state:                                                      for every w ∈ Σ* and σ ∈ Σ                         
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DFA and RNN

- Additional shorthand (recursive application of state transitions omitted for convenience): 
- Classification function by DFA: fA(w) → {Acc, Rej}
- Classification function by RNN: fR(w) → {Acc, Rej}
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Exact learning

- In the field of exact learning, concepts (sets of instances) can be learned 
precisely from a minimally adequate teacher — an oracle capable of 
answering two query types (Goldman & Kearns, 1995): 

- membership queries: label a given instance 
- equivalence queries: state whether a given hypothesis (set of instances) is equal to the 

concept held by the teacher. If not, return an instance on which the hypothesis and the 
concept disagree (a counterexample). 

- My takeaways:
- This is learning from both positive and negative examples. 
- Equivalence query is easy, but being a minimally adequate teacher is hard!
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Angluin’s L* algorithm

- The L* algorithm (Angluin, 1987) is an exact learning algorithm for learning a 
DFA from a minimally adequate teacher that can answer membership queries 
and equivalence queries for some regular language L. 

- L* algorithm always proposes a minimal DFA in equivalence queries (Jack’s 
takeaway: because the teacher is good!).

- L* algorithm is treated as a black box in the study, but an informal description 
about the algorithm is provided in Appendix A in the arXiv version. 
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Abstraction

- Given a neural network R with state space S and alphabet Σ, and a partitioning 
function p: S → ℕ, Omlin and Giles (1996) presented a method for extracting a DFA 
for which every state is a partition from p, and the state transitions and classifications 
are defined by a single sample from each partition. 

- The method is effectively a BFS exploration of the partitions defined by p, beginning 
with p(h0), where h0 is the network’s initial state, and continuing according to the 
network’s transition function gR.

- We denote by AR,p the DFA extracted by this method from a network R and 
partitioning p, and denote all its related sets and functions by subscript R, p.

- Why doing this: abstraction is finite, making search for counterexample much faster 
or even possible!
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Extraction: Learning DFA from RNNs using L*

- For membership queries, fR(w) → {Acc, Rej}. 
- For equivalence queries: 

- Alphabet and two labeled examples provided to initialize the L* DFA A and the AR,p

- While disagreement between L* DFA A and the AR,p, and not timeout 
- Check RNNs for ground truth 
- If AR,p is wrong on the classification, refine AR,p

- Otherwise, return the disagreement as counterexample to L* DFA A
- Return the last L* DFA A 

- L* Extraction Implementation (toy example): Google Colab Notebook
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Important notes

- L* DFA A only learns from queries/counterexamples classified by RNNs:
- If RNNs misclassify some queries/counterexamples, L* DFA A learns them anyway 
- If RNNs classify all queries/counterexamples correctly,  L* DFA A may end up learning the true 

grammar, whereas RNNs do not (e.g., for those simple grammars)
- If L* DFA A sees the queries/counterexamples needed to learn the true grammar, but is also 

slightly misguided by some misclassification by RNNs, L* DFA A may still outperform RNNs in 
recognizing the target language

- The extraction is just an approximation, not equivalence:
- No guarantee that the extracted L* DFA A accept exactly the same language as the RNNs do
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Experiments on Tomita Languages

- RNNs trained to nearly 100% accuracy on both train and development sets
- Extracted DFA accuracy scores (see paper): reported on the basis of RNNs 

training sets and additional randomly generated samples
- Tomita languages: implementation in Python
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Adversarial inputs

- The paper reports adversarial inputs for the nearly “perfect” RNNs found from 
the equivalence queries (counterexamples) during extraction 

- Adversarial inputs can also be found pre/post-extraction (check the last 
section) using a less efficient method, i.e., random sampling 
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Advantages and limitations

- Compared to other approaches (i.e., a-priori Quantization, random sampling, 
k-means clustering), it is faster, more efficient, or more accurate

- Extraction can be slow and cumbersome affected by the complexity of RNNs
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Contributions of the paper

- The paper is the first attempt to apply exact learning to a given RNN
- The paper presents an algorithm/technique that is novel, efficient, and robust 

in extracting accurate deterministic finite automata from trained RNNs. 
- The method is guaranteed to never extract a DFA more complicated than the 

language of the RNN being considered.
- The method is able to find adversarial inputs for RNNs during the extraction 

process efficiently (how efficient?) even if the RNNS were trained to 100% 
train and development set accuracy.  
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