Extracting Automata from Recurrent Neural Networks
Using Queries and Counterexamples

ICML, 2018
Gail Weiss; Yoav Goldberg; Eran Yahav

LIN 629, Nov 1, 2022
Zhengxiang (Jack) Wang

Quick Facts

- Versions:

- arXiv Version (with Supplementary Material): https://arxiv.org/abs/1711.09576
- Published Version: http://proceedings.mir.press/v80/weiss18a/weiss18a.pdf

- Source Code: https://qithub.com/tech-srl/Istar extraction

- L* Extraction Implementation:
- Authors Version: download and run locally or use a non-SBU Google account
- Mcodified Version: run directly online

https://arxiv.org/abs/1711.09576
http://proceedings.mlr.press/v80/weiss18a/weiss18a.pdf
https://github.com/tech-srl/lstar_extraction
https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing
https://colab.research.google.com/drive/1fJ5sflNtOniXITs7eh6odBIpbnIo8bFf?usp=share_link

Overview the paper with code

- Abstract

- Key concepts

- Extracting DFA from RNNs using L*
- Experimental results

- Advantages and limitations

- Contributions of the paper revisited

Abstract

We present a novel algorithm that uses exact learning and abstraction to extract a
deterministic finite automaton describing the state dynamics of a given trained
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN as
an oracle. Our technique efficiently extracts accurate automata from trained
RNNs, even when the state vectors are large and require fine differentiation.

Abstract

We present a novel algorithm that uses exact learning and abstraction to extract
a deterministic finite automaton describing the state dynamics of a given trained
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN
as an oracle. Our technique efficiently extracts accurate automata from trained
RNNs, even when the state vectors are large and require fine differentiation.

Key concepts: Deterministic finite automaton (DFA); Recurrent Neural Network
(RNN); exact learning; abstraction; Angluin’s L* algorithm

Abstract

We present a novel algorithm that uses exact learning and abstraction to extract
a deterministic finite automaton describing the state dynamics of a given trained
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN as
an oracle. Our technique efficiently extracts accurate automata from trained
RNNs, even when the state vectors are large and require fine differentiation.

Key Contribution: The paper presents an algorithm/technique that is novel,

efficient, and robust in extracting accurate deterministic finite automata from
trained RNNSs.

Key Concepts

- Deterministic finite automaton (DFA)
- Recurrent Neural Networks (RNNSs)
- Exact learning

- Angluin’s L* algorithm

- Abstraction

DFA: Notations

- Components:
- 2. alphabet
Q: the set of automaton states
g, the initial state, g, € Q
F: accepting states, F S Q
d: transition function d: Q x X — Q
Classification function f, - Q — {Acc, Rej}

- Recursive state transitions to a sequence: § . Q x * — Q
Stay at the current state: 5(q £) = ¢ forevery g € Q
Transition to the next state: §(q -) = §(3(q, w), o) for every w € 2*and o € 2

DFA: Examples

- Language 1: a* 2 .= {a}

DFA: Examples

- Language 1: a* 2 .= {a}

start Da

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.

10

https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing

DFA: Examples

- Language 2: ab™, :={a, b}

11

DFA: Examples

- Language 2: ab™, :={a, b}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.

12

https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing

DFA: Examples

- Language 3: initial char must match with final char, 2 :={a, b, ¢}

13

DFA: Examples

- Language 3: initial char must match with final char, 2 :={a, b, ¢}

4
,b

e
:a,b %

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.

14

https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing

RNNs: Basic Architecture

Y: Y,
L J Unfold T
H, H, — H,

X; X,

Input Layer Output Layer

Hidden Layer

15

https://www.researchgate.net/publication/341639694/figure/fig5/AS:895285932851200@1590464208505/The-folded-and-unfolded-structure-of-recurrent-neural-networks-1-RNN-Similar-to-a.png

Binary RNN-acceptor: Notations

- Components:

- 2. alphabet
S.: the set of state spaces (for hidden spaces)
ho’ - the initial state, hO’R € S,

gr: transition function g, : Sp x 2 — S,
Classification function f, . S, — {Acc, Rej}

- Recursive state transitions to a sequence: 9r: Sr X X" = Sg
Stay at the current state: gAR(h,, 5) = h ,forevery h € SR
Transition to the next state: gy (h, w - o) = gr(gr(h, w), o) foreveyw € 2*and 0 €

16

DFA and RNN

- Additional shorthand (recursive application of state transitions omitted for convenience).
- Classification function by DFA: f,(w) — {Acc, Rej}
- Classification function by RNN: f(w) — {Acc, Reyj}

DFA: Notations Binary RNN-acceptor: Notations
- Components: - Components:
- X:alphabet - 2: alphabet

- S_: the set of state spaces (for hidden spaces)

Q: the set of automaton states e
- ho . the initial state, ho e SR

q,: the initial state, g € Q

F: accepting states, F ¢ Q

0: transition function 6: Q x < — Q
Classification function f, : Q — {Acc, Rej}

R

g_: transition functiong_:S_x % — S
Classification function f::: S, — {Acc, Rej}

- Recursive state transitions to a sequence: 9& : Sr X E* = Sk
Stay at the current state: gp(h,e) = h , forevery h € SR
Transition to the next state: gy (h, w - 0) = gr(gr(h, w),o) foreverywe Z*and o0 € X

17

- Recursive state transitions to a sequence: § . Q x =* — Q
Stay at the current state: 5((1’ €) =g¢q forevery g€ Q
Transition to the next state: §(q,w - o) = §(8(q,w), o) foreverywe Z*and o € =

Exact learning

- In the field of exact learning, concepts (sets of instances) can be learned
precisely from a minimally adequate teacher — an oracle capable of

answering two query types (Goldman & Kearns, 1995):

- membership queries: label a given instance
- equivalence queries: state whether a given hypothesis (set of instances) is equal to the
concept held by the teacher. If not, return an instance on which the hypothesis and the

concept disagree (a counterexample).

- My takeaways:
- This is learning from both positive and negative examples.
- Equivalence query is easy, but being a minimally adequate teacher is hard!

18

Angluin’s L* algorithm

The L* algorithm (Angluin, 1987) is an exact learning algorithm for learning a
DFA from a minimally adequate teacher that can answer membership queries
and equivalence queries for some regular language L.

L* algorithm always proposes a minimal DFA in equivalence queries (Jack’s
takeaway: because the teacher is good!).

L* algorithm is treated as a black box in the study, but an informal description
about the algorithm is provided in Appendix A in the arXiv version.

19

Abstraction

- Given a neural network R with state space S and alphabet 2, and a partitioning
function p: S — N, Omlin and Giles (1996) presented a method for extracting a DFA
for which every state is a partition from p, and the state transitions and classifications
are defined by a single sample from each partition.

- The method is effectively a BFS exploration of the partitions defined by p, beginning
with p(h,), where h, is the network’s initial state, and continuing according to the
network S transmon function g..

- We denote by ARP the DFA extraoted by this method from a network R and
partitioning p, and denote all its related sets and functions by subscript R, p.

- Why doing this: abstraction is finite, making search for counterexample much faster
or even possible!

20

Extraction: Learning DFA from RNNs using L*

- For membership queries, f,(w) — {Acc, Rej}.

- For equivalence queries:
- Alphabet and two labeled examples provided to initialize the L* DFA A and the ARP
- While disagreement between L* DFA A and the ARP, and not timeout
- Check RNNs for ground truth
- If ARPis wrong on the classification, refine ARP
- Otherwise, return the disagreement as counterexample to L* DFA A
- Returnthe last L* DFA A

- L* Extraction Implementation (toy example): Google Colab Notebook

21

https://colab.research.google.com/drive/1fJ5sflNtOniXITs7eh6odBIpbnIo8bFf?usp=share_link

Important notes

- L* DFA A only learns from queries/counterexamples classified by RNNs:
- If RNNs misclassify some queries/counterexamples, L* DFA A learns them anyway
- If RNNs classify all queries/counterexamples correctly, L* DFA A may end up learning the true
grammar, whereas RNNs do not (e.g., for those simple grammars)
- If L* DFA A sees the queries/counterexamples needed to learn the true grammar, but is also
slightly misguided by some misclassification by RNNs, L* DFA A may still outperform RNNs in
recognizing the target language

- The extraction is just an approximation, not equivalence:
- No guarantee that the extracted L* DFA A accept exactly the same language as the RNNs do

22

Experiments on Tomita Languages

- RNNSs trained to nearly 100% accuracy on both train and development sets

- Extracted DFA accuracy scores (see paper): reported on the basis of RNNs
training sets and additional randomly generated samples

- Tomita languages: implementation in Python

"The Tomita grammars are the following 7 languages over
the alphabet {0,1}: [1] 1%, [2] (10)%, [3] the complement
f ((0|1)*0)*1(11)*(0(0|1) 157 0(00) (1 (Q[I) ™)
[4] all words w not containing 000, [5] all w for which #¢(w)
and #1(w) are even (Where #, (w) is the number of a’s in w), [6]
all w for which (#o(w) — #1(w)) =3 0,and [7] 0*1*0*1*.

23

https://github.com/tech-srl/lstar_extraction/blob/master/Tomita_Grammars.py

Adversarial inputs

- The paper reports adversarial inputs for the nearly “perfect” RNNs found from
the equivalence queries (counterexamples) during extraction

- Adversarial inputs can also be found pre/post-extraction (check the last
section) using a less efficient method, i.e., random sampling

Table 4. Counterexamples generated during extraction from an
LSTM email network with 100% train and test accuracy. Examples
of the network deviating from its target language are shown in bold.

Counter- Network Target
example Time (s) | Classification | Classification
0@m.com | provided Vv Vv
@ @y.net 2.93 X X
25.net 1.60 Vv X
S5x.nem 2.34 Vv %
Och.nom 8.01 X X
9s.not 3.29 X X
2hs.net 3.56 Vv X
@cp.net 4.43 X X 24

https://colab.research.google.com/drive/1fJ5sflNtOniXITs7eh6odBIpbnIo8bFf?usp=share_link

Advantages and limitations

- Compared to other approaches (i.e., a-priori Quantization, random sampling,
k-means clustering), it is faster, more efficient, or more accurate

- Extraction can be slow and cumbersome affected by the complexity of RNNs

Limitations Due to L*’s polynomial complexity and in-
tolerance to noise, for networks with complicated behavior,
extraction becomes extremely slow and returns large DFAs.
Whenever applied to an RNN that has failed to generalize
properly to its target language, our method soon finds sev-
eral adversarial inputs, builds a large DFA, and times out

while refining it.!? N

Contributions of the paper

- The paper is the first attempt to apply exact learning to a given RNN

- The paper presents an algorithm/technique that is novel, efficient, and robust
in extracting accurate deterministic finite automata from trained RNNs.

- The method is guaranteed to never extract a DFA more complicated than the
language of the RNN being considered.

- The method is able to find adversarial inputs for RNNs during the extraction
process efficiently (how efficient?) even if the RNNS were trained to 100%
train and development set accuracy.

26

