
Extracting Automata from Recurrent Neural Networks
Using Queries and Counterexamples

ICML, 2018
Gail Weiss; Yoav Goldberg; Eran Yahav

LIN 629, Nov 1, 2022
Zhengxiang (Jack) Wang

Quick Facts

- Versions:
- arXiv Version (with Supplementary Material): https://arxiv.org/abs/1711.09576
- Published Version: http://proceedings.mlr.press/v80/weiss18a/weiss18a.pdf

- Source Code: https://github.com/tech-srl/lstar_extraction
- L* Extraction Implementation:

- Authors Version: download and run locally or use a non-SBU Google account
- Modified Version: run directly online

2

https://arxiv.org/abs/1711.09576
http://proceedings.mlr.press/v80/weiss18a/weiss18a.pdf
https://github.com/tech-srl/lstar_extraction
https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing
https://colab.research.google.com/drive/1fJ5sflNtOniXITs7eh6odBIpbnIo8bFf?usp=share_link

Overview the paper with code

- Abstract
- Key concepts
- Extracting DFA from RNNs using L*
- Experimental results
- Advantages and limitations
- Contributions of the paper revisited

3

Abstract

We present a novel algorithm that uses exact learning and abstraction to extract a
deterministic finite automaton describing the state dynamics of a given trained
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN as
an oracle. Our technique efficiently extracts accurate automata from trained
RNNs, even when the state vectors are large and require fine differentiation.

4

Abstract

We present a novel algorithm that uses exact learning and abstraction to extract
a deterministic finite automaton describing the state dynamics of a given trained
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN
as an oracle. Our technique efficiently extracts accurate automata from trained
RNNs, even when the state vectors are large and require fine differentiation.

Key concepts: Deterministic finite automaton (DFA); Recurrent Neural Network
(RNN); exact learning; abstraction; Angluin’s L* algorithm

5

Abstract

We present a novel algorithm that uses exact learning and abstraction to extract
a deterministic finite automaton describing the state dynamics of a given trained
RNN. We do this using Angluin’s L* algorithm as a learner and the trained RNN as
an oracle. Our technique efficiently extracts accurate automata from trained
RNNs, even when the state vectors are large and require fine differentiation.

Key Contribution: The paper presents an algorithm/technique that is novel,
efficient, and robust in extracting accurate deterministic finite automata from
trained RNNs.

6

Key Concepts

- Deterministic finite automaton (DFA)
- Recurrent Neural Networks (RNNs)
- Exact learning
- Angluin’s L* algorithm
- Abstraction

7

DFA: Notations

- Components:
- Σ: alphabet
- Q: the set of automaton states
- q0 : the initial state, q0 ∈ Q
- F: accepting states, F ⊆ Q
- δ: transition function δ : Q × Σ → Q
- Classification function fA : Q → {Acc, Rej}

- Recursive state transitions to a sequence:
- Stay at the current state: , for every q ∈ Q
- Transition to the next state: for every w ∈ Σ* and σ ∈ Σ

8

DFA: Examples

- Language 1: a*, Σ := {a}

9

DFA: Examples

- Language 1: a*, Σ := {a}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.

10

https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing

DFA: Examples

- Language 2: ab+, Σ := {a, b}

11

DFA: Examples

- Language 2: ab+, Σ := {a, b}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.

12

https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing

DFA: Examples

- Language 3: initial char must match with final char, Σ := {a, b, c}

13

DFA: Examples

- Language 3: initial char must match with final char, Σ := {a, b, c}

Flowchart drawn using the authors’ L* Extraction Implementation Code. “start” denotes initial state.

14

https://drive.google.com/file/d/1tkJK1rJVEg9e-QcWOxErDb3cQq9UR-yR/view?usp=sharing

RNNs: Basic Architecture

15

https://www.researchgate.net/publication/341639694/figure/fig5/AS:895285932851200@1590464208505/The-folded-and-unfolded-structure-of-recurrent-neural-networks-1-RNN-Similar-to-a.png

Binary RNN-acceptor: Notations

- Components:
- Σ: alphabet
- SR: the set of state spaces (for hidden spaces)
- h0, R: the initial state, h0, R ∈ SR
- F: accepting states, F ⊆ SR (given by Jack)
- gR: transition function gR : SR × Σ → SR
- Classification function fR : SR → {Acc, Rej}

- Recursive state transitions to a sequence:
- Stay at the current state: , for every h ∈ SR
- Transition to the next state: for every w ∈ Σ* and σ ∈ Σ

16

DFA and RNN

- Additional shorthand (recursive application of state transitions omitted for convenience):
- Classification function by DFA: fA(w) → {Acc, Rej}
- Classification function by RNN: fR(w) → {Acc, Rej}

17

Exact learning

- In the field of exact learning, concepts (sets of instances) can be learned
precisely from a minimally adequate teacher — an oracle capable of
answering two query types (Goldman & Kearns, 1995):

- membership queries: label a given instance
- equivalence queries: state whether a given hypothesis (set of instances) is equal to the

concept held by the teacher. If not, return an instance on which the hypothesis and the
concept disagree (a counterexample).

- My takeaways:
- This is learning from both positive and negative examples.
- Equivalence query is easy, but being a minimally adequate teacher is hard!

18

Angluin’s L* algorithm

- The L* algorithm (Angluin, 1987) is an exact learning algorithm for learning a
DFA from a minimally adequate teacher that can answer membership queries
and equivalence queries for some regular language L.

- L* algorithm always proposes a minimal DFA in equivalence queries (Jack’s
takeaway: because the teacher is good!).

- L* algorithm is treated as a black box in the study, but an informal description
about the algorithm is provided in Appendix A in the arXiv version.

19

Abstraction

- Given a neural network R with state space S and alphabet Σ, and a partitioning
function p: S → ℕ, Omlin and Giles (1996) presented a method for extracting a DFA
for which every state is a partition from p, and the state transitions and classifications
are defined by a single sample from each partition.

- The method is effectively a BFS exploration of the partitions defined by p, beginning
with p(h0), where h0 is the network’s initial state, and continuing according to the
network’s transition function gR.

- We denote by AR,p the DFA extracted by this method from a network R and
partitioning p, and denote all its related sets and functions by subscript R, p.

- Why doing this: abstraction is finite, making search for counterexample much faster
or even possible!

20

Extraction: Learning DFA from RNNs using L*

- For membership queries, fR(w) → {Acc, Rej}.
- For equivalence queries:

- Alphabet and two labeled examples provided to initialize the L* DFA A and the AR,p

- While disagreement between L* DFA A and the AR,p, and not timeout
- Check RNNs for ground truth
- If AR,p is wrong on the classification, refine AR,p

- Otherwise, return the disagreement as counterexample to L* DFA A
- Return the last L* DFA A

- L* Extraction Implementation (toy example): Google Colab Notebook

21

https://colab.research.google.com/drive/1fJ5sflNtOniXITs7eh6odBIpbnIo8bFf?usp=share_link

Important notes

- L* DFA A only learns from queries/counterexamples classified by RNNs:
- If RNNs misclassify some queries/counterexamples, L* DFA A learns them anyway
- If RNNs classify all queries/counterexamples correctly, L* DFA A may end up learning the true

grammar, whereas RNNs do not (e.g., for those simple grammars)
- If L* DFA A sees the queries/counterexamples needed to learn the true grammar, but is also

slightly misguided by some misclassification by RNNs, L* DFA A may still outperform RNNs in
recognizing the target language

- The extraction is just an approximation, not equivalence:
- No guarantee that the extracted L* DFA A accept exactly the same language as the RNNs do

22

Experiments on Tomita Languages

- RNNs trained to nearly 100% accuracy on both train and development sets
- Extracted DFA accuracy scores (see paper): reported on the basis of RNNs

training sets and additional randomly generated samples
- Tomita languages: implementation in Python

23

https://github.com/tech-srl/lstar_extraction/blob/master/Tomita_Grammars.py

Adversarial inputs

- The paper reports adversarial inputs for the nearly “perfect” RNNs found from
the equivalence queries (counterexamples) during extraction

- Adversarial inputs can also be found pre/post-extraction (check the last
section) using a less efficient method, i.e., random sampling

24

https://colab.research.google.com/drive/1fJ5sflNtOniXITs7eh6odBIpbnIo8bFf?usp=share_link

Advantages and limitations

- Compared to other approaches (i.e., a-priori Quantization, random sampling,
k-means clustering), it is faster, more efficient, or more accurate

- Extraction can be slow and cumbersome affected by the complexity of RNNs

25

Contributions of the paper

- The paper is the first attempt to apply exact learning to a given RNN
- The paper presents an algorithm/technique that is novel, efficient, and robust

in extracting accurate deterministic finite automata from trained RNNs.
- The method is guaranteed to never extract a DFA more complicated than the

language of the RNN being considered.
- The method is able to find adversarial inputs for RNNs during the extraction

process efficiently (how efficient?) even if the RNNS were trained to 100%
train and development set accuracy.

26

