
Very efficient learning of structured
classes of subsequential

functions from positive data
Adil Soubki, and Salam Khalifa

Structured Onward Subsequential Function
Inference Algorithm (SOSFIA)

Jardine Chandlee Eyraud Heinz

This gives us exactly the output needed to maintain onwardness, which will in turn guaran-
tee that the SOSFIA converges to the correct function, provided that the sample contains
enough information. Note that the minimal change is calculable for S because it is finite.
The algorithm is presented below.

Data: A sample S ⇢ o⌃⇤ n⇥�⇤, an output-empty DSFST ⌧⇤ = hQ, q0, qf ,⌃, {⇤}, �i

Result: ⌧⇤ as a DSFST with filled transitions
F empty Queue
Push(F, (q0,�))
mark(q0)
while F is not empty do

(q, w) Shift F irst(F)
for � 2 ⌃ [{o,n} in lexicographic order do

for �i = (q,�,⇤, q
0) 2 � do

if there exists �
0
6= � such that (q,�0

, u, q
00) 2 � then

Change �i to (q,�, v, r), where v = min changeS(w,�)
else

Change �i to (q,�,�, r)
if q

0
is not marked then

Push(F, (q0, w�))
mark(q0)

return ⌧⇤;
Algorithm 1: Structured Onward Subsequential Function Inference Algorithm (SOSFIA)

The SOSFIA does a breadth-first parsing of the output-empty DSFST, storing in the
queue F (a First-In/First-Out data type) seen but untreated states together with the small-
est prefix that leads to each of these states: this is ensured by the lexicographic order in
which the letters are considered and by the fact that only unmarked states (i.e., states
that have not been discovered so far) are pushed into F . When a state is treated, all its
outgoing transitions are considered. The output of this transition is set to be the result of
the min change function on the shortest prefix arriving at this state and the input letter of
the transition, unless it is the only transition leaving this state in which case the output is
set to be �.2

8. The Theoretical Learning Result

Let ⌧ = hQ, q0, qf ,⌃, �i be a DSFST. We define min pref(q) = min{w 2 o⌃⇤n :
(q0, w, u, q) 2 �

⇤
}.

Lemma 16 (Characteristic Sample) Let ⌧⇤ = hQ, q0, qf ,⌃, �⇤i be the target DSFST.

Consider any finite sample S which meets the following requirements:

• For all (q,�, u, q0) 2 �⇤, q 6= q0, there exists (v�v0, w) in S, with v = min pref(q),

2. It may be possible to replace the entire if/then/else statement with only the part between then and else
(so changing �i to (q,�, v, r)). However, this appears to significantly complicate the identification proof,

and obfuscate the central ideas and insights. Hence we present the algorithm as shown.

102

Structured Onward Subsequential Function
Inference Algorithm (SOSFIA)

Target classes and Output-Empty DSFSTs

1. A DSFST is output-empty if all of its transition outputs are

blanks (!).

2. An output-empty transducer τ! defines a class of functions T

which is exactly the set of functions which can be created by

taking the states and transitions of τ! and replacing the blanks

with output strings, maintaining onwardness.

:

P:

P:

N:

N:

V:

V:

B:

B:

0
:

P:

N:

V:

B:

P:

N:

V:

B:

P:

N:

V:

B:
P:

N: V:

B:

18

Structured Onward Subsequential Function
Inference Algorithm (SOSFIA)

Jardine Chandlee Eyraud Heinz

This gives us exactly the output needed to maintain onwardness, which will in turn guaran-
tee that the SOSFIA converges to the correct function, provided that the sample contains
enough information. Note that the minimal change is calculable for S because it is finite.
The algorithm is presented below.

Data: A sample S ⇢ o⌃⇤ n⇥�⇤, an output-empty DSFST ⌧⇤ = hQ, q0, qf ,⌃, {⇤}, �i

Result: ⌧⇤ as a DSFST with filled transitions
F empty Queue
Push(F, (q0,�))
mark(q0)
while F is not empty do

(q, w) Shift F irst(F)
for � 2 ⌃ [{o,n} in lexicographic order do

for �i = (q,�,⇤, q
0) 2 � do

if there exists �
0
6= � such that (q,�0

, u, q
00) 2 � then

Change �i to (q,�, v, r), where v = min changeS(w,�)
else

Change �i to (q,�,�, r)
if q

0
is not marked then

Push(F, (q0, w�))
mark(q0)

return ⌧⇤;
Algorithm 1: Structured Onward Subsequential Function Inference Algorithm (SOSFIA)

The SOSFIA does a breadth-first parsing of the output-empty DSFST, storing in the
queue F (a First-In/First-Out data type) seen but untreated states together with the small-
est prefix that leads to each of these states: this is ensured by the lexicographic order in
which the letters are considered and by the fact that only unmarked states (i.e., states
that have not been discovered so far) are pushed into F . When a state is treated, all its
outgoing transitions are considered. The output of this transition is set to be the result of
the min change function on the shortest prefix arriving at this state and the input letter of
the transition, unless it is the only transition leaving this state in which case the output is
set to be �.2

8. The Theoretical Learning Result

Let ⌧ = hQ, q0, qf ,⌃, �i be a DSFST. We define min pref(q) = min{w 2 o⌃⇤n :
(q0, w, u, q) 2 �

⇤
}.

Lemma 16 (Characteristic Sample) Let ⌧⇤ = hQ, q0, qf ,⌃, �⇤i be the target DSFST.

Consider any finite sample S which meets the following requirements:

• For all (q,�, u, q0) 2 �⇤, q 6= q0, there exists (v�v0, w) in S, with v = min pref(q),

2. It may be possible to replace the entire if/then/else statement with only the part between then and else
(so changing �i to (q,�, v, r)). However, this appears to significantly complicate the identification proof,

and obfuscate the central ideas and insights. Hence we present the algorithm as shown.

102

(FIFO)

The Theoretical Learning Result

• For every output-empty transducer 𝜏□, the SOSFIA strongly identifies
𝜏"□in polynomial time and data.
• It is worth mentioning that the algorithm presented in this paper

returns a function even given incomplete data.

Demonstrations - Input Strictly Local
Functions
• Tested the learner on three example ISL functions.
• They can be thought of as phonological ‘repairs’ that prevent a surface

output sequence D⋉ (where D is a voiced obstruent).

Efficient Learning of structured classes of subsequential functions

morphological operations can be thought of as a transformation from a bare form to an
a�xed form, and a foundational principle of modern generative phonology is that there is a
phonological mapping from abstract, lexical ‘underlying’ representations of words and mor-
phemes to their concrete surface pronunciations [Hayes, 2011]. In this section we present
several demonstrations of the SOSFIA using linguistically-motivated examples.

9.1. Input Strictly Local Functions

As mentioned above, Chandlee [2014] shows that the input-output mapping of many phono-
logical processes can be modeled with Input Strictly Local (ISL) functions. The automata-
theoretic characterization of these functions provides su�cient structure for the SOSFIA
to identify them in the limit. We tested the learner on three example ISL functions, all of
which can be thought of as phonological ‘repairs’ that prevent a surface output sequence
Dn (where D is a voiced obstruent). One is to ‘devoice’ a final voiced sound (e.g., a ‘d’
sound), changing instead to a voiceless one (e.g., a ‘t’ sound). The others are to delete the
voiced sound or to epenthesize (insert) a vowel in between the voiced sound and the word
edge. The examples are summarized in (1).

(1) Process Rule
Final devoicing D ! T / n
Deletion D ! ; / n
Epenthesis ; ! V / D n

Using an alphabet that represents common sound categories ⌃ = {D, T, N, V}, where again
D is a voiced obstruent (e.g., ‘b’, ‘d’, ‘z’, ‘g’) T is a voiceless obstruent (e.g., ‘p’, ‘t’, ‘s’, ‘k’),
N is a sonorant consonant (nasal sounds and ‘l’ and ‘r’), and V is a vowel, we constructed
a data set of 1365 string pairs. The left projection of the data set is ⌃5; each string in
the left projection was paired with an output string according to the target function. The
same output-empty transducer was used in all three test cases, as the DSFST for each rule
only di↵ers in terms of the output strings. The output of the SOSFIA is correct in all
three cases; as an example, the resulting machine for the final devoicing test case is given
in Figure 5. The machines for the deletion and epenthesis cases were identical, except for
that in the deletion case the transition from state 2 to state 6 has an output of �, and in the
epenthesis case every transition into state 2 on D has an output of D and the transitions
out of state 2 are as follows: (2, D,D, 2), (2, T, T, 3), (2, V, V, 5), (2, N,N, 4), (2,n, V, 6).

9.2. Non-ISL Phonological Processes

There also exist phonological processes that cannot be modeled with ISL functions. These
are ‘long-distance’ processes such as the sibilant harmony process attested in Samala. In
this language, all sibiliant sounds (e.g., ‘s’, ‘S’) in a word must be the same as the rightmost
one [Applegate, 1972; Hansson, 2010]. An example is shown in (2).

(2) /hasxintilawaS/ 7! [haSxintilawaS] ‘his former gentile name’

Using the (simplified) alphabet ⌃ = {s, S, t, a}, we constructed a dataset of string pairs
in which the left projection is ⌃4. Each of these strings was paired with one in which all

105

Demonstrations - Input Strictly Local
Functions
• Σ = 𝐷, 𝑇, 𝑁, 𝑉
• D is a voiced obstruent (e.g., ‘b’, ‘d’, ‘z’, ‘g’)
• T is a voiceless obstruent (e.g., ‘p’, ‘t’, ‘s’, ‘k’),
• N is a sonorant consonant (nasal sounds and ‘l’ and ‘r’)
• V is a vowel.
• A data set of 1365 string pairs.
• The left projection of the data set is Σ#$

• Each string in the left projection was paired with an output string
according to the target function.

Demonstrations - Input Strictly Local
Functions
• The same output-

empty transducer
was used in all
three test cases, as
the DSFST for
each rule only
differs in terms of
the output strings.

Jardine Chandlee Eyraud Heinz

1 3T:T

2D:λ

5

V:V

4

N:N

6

⋉:λ

0
⋊:λ

T:T

D:λ

V:V

N:N

⋉:λ

T:DT

D:D

V:DV

N:DN

⋉:T

T:T

D:λ

V:V

N:N

⋉:λ

T:T

D:λ

V:V

N:N

⋉:λ

Figure 5: Final devoicing test case

1

t:t
a:a

3

S:S

2s:s 4

⋉:!

0
⋊:!

a:a

S:S
t:t

s:S

⋉:!

S:s

t:t

s:s
a:a

⋉:!

Figure 6: Sibilant harmony test case

sibiliants (if any) assimilate to the rightmost one. As shown in Figure 6, the output of the
SOSFIA correctly models this process.

Two things should be noted about this test case. One is that this process is right subse-
quential; however, all this entails is that the input and output strings must be reversed to
get the correct mapping. This has no e↵ect on how the learner functions (for details on right
subsequential functions in phonology, see [Heinz and Lai, 2013]). Two, the output-empty
DSFST given to the learner includes separate states for words in which ‘s’ is the rightmost
sibiliant and words in which ‘S’ is the rightmost sibilant (i.e., the a priori knowledge given
to the learner identifies the set of segments involved in the process). This is akin to phono-
logical theories in which certain classes of segments (here the sibilants) are represented on
distinct tiers (e.g., vowel harmony; [Clements, 1976]).

9.3. Morphological Parsing

The learner was also tested on a morphology-to-phonology function, as discussed in [Beesley
and Karttunen, 2003], in which the meanings of morphemes are mapped to their pronun-
ciations. The data were from Swahili verbs [Hayes, 2011], which show a series of prefixes
indicating person, number, and tense. The morphological breakdown of nimenipenda ‘I
have liked myself’ is given in (3).3 The learner was given an empty transducer represent-
ing the possible morpheme orders and 90 pairs of the shape <morpheme string, phoneme

string>, as exemplified in (4). The learner correctly learned the morphological function;
i.e., for any transition on ‘1-nom’ it learned that the output should be ‘ni’.

(3) ni + me + ni + penda
1-acc perf 1st-nom like

‘I have liked myself’

(4) 1-nom+perf+1-acc+like, nimenipenda
3-nom+pres+1-acc+like, ananipenda
2-nom+perf+1-pl-acc+beat, umetupiga

3. Abbreviations: 1st-acc = first person accusative (‘me’); 1-nom = first person nominative (‘I’); 1-pl-acc

= first person plural accusative (‘us’); 2-nom = second person nominative (‘we’); 3-nom = third person

nominative (‘he’); pres = present tense; perf = perfect tense.

106

Demonstrations - Non-ISL Phonological
Processes
• These are ‘long-distance’ processes such as the sibilant harmony

process attested in Samala.
• In this language, all sibilant sounds (e.g., ‘s’, ‘ʃ’) in a word must be the

same as the rightmost one.

/hasxintilawaʃ / ↦ [haʃxintilawaʃ] ‘his former gentile name’

Demonstrations - Non-ISL Phonological
Processes
• Σ = 𝑠, ʃ, 𝑡, 𝑎
• A dataset of string pairs in

which the left projection
is Σ#%.
• Each of these strings was

paired with one in which
all sibilants (if any)
assimilate to the
rightmost one.

Jardine Chandlee Eyraud Heinz

1 3T:T

2D:λ

5

V:V

4

N:N

6

⋉:λ

0
⋊:λ

T:T

D:λ

V:V

N:N

⋉:λ

T:DT

D:D

V:DV

N:DN

⋉:T

T:T

D:λ

V:V

N:N

⋉:λ

T:T

D:λ

V:V

N:N

⋉:λ

Figure 5: Final devoicing test case

1

t:t
a:a

3

S:S

2s:s 4

⋉:!

0
⋊:!

a:a

S:S
t:t

s:S

⋉:!

S:s

t:t

s:s
a:a

⋉:!

Figure 6: Sibilant harmony test case

sibiliants (if any) assimilate to the rightmost one. As shown in Figure 6, the output of the
SOSFIA correctly models this process.

Two things should be noted about this test case. One is that this process is right subse-
quential; however, all this entails is that the input and output strings must be reversed to
get the correct mapping. This has no e↵ect on how the learner functions (for details on right
subsequential functions in phonology, see [Heinz and Lai, 2013]). Two, the output-empty
DSFST given to the learner includes separate states for words in which ‘s’ is the rightmost
sibiliant and words in which ‘S’ is the rightmost sibilant (i.e., the a priori knowledge given
to the learner identifies the set of segments involved in the process). This is akin to phono-
logical theories in which certain classes of segments (here the sibilants) are represented on
distinct tiers (e.g., vowel harmony; [Clements, 1976]).

9.3. Morphological Parsing

The learner was also tested on a morphology-to-phonology function, as discussed in [Beesley
and Karttunen, 2003], in which the meanings of morphemes are mapped to their pronun-
ciations. The data were from Swahili verbs [Hayes, 2011], which show a series of prefixes
indicating person, number, and tense. The morphological breakdown of nimenipenda ‘I
have liked myself’ is given in (3).3 The learner was given an empty transducer represent-
ing the possible morpheme orders and 90 pairs of the shape <morpheme string, phoneme

string>, as exemplified in (4). The learner correctly learned the morphological function;
i.e., for any transition on ‘1-nom’ it learned that the output should be ‘ni’.

(3) ni + me + ni + penda
1-acc perf 1st-nom like

‘I have liked myself’

(4) 1-nom+perf+1-acc+like, nimenipenda
3-nom+pres+1-acc+like, ananipenda
2-nom+perf+1-pl-acc+beat, umetupiga

3. Abbreviations: 1st-acc = first person accusative (‘me’); 1-nom = first person nominative (‘I’); 1-pl-acc

= first person plural accusative (‘us’); 2-nom = second person nominative (‘we’); 3-nom = third person

nominative (‘he’); pres = present tense; perf = perfect tense.

106

Demonstrations - Non-ISL Phonological
Processes
• This process is right subsequential; however, all this entails is that the

input and output strings must be reversed to get the correct mapping.
This has no effect on how the learner functions.
• The output-empty DSFST given to the learner includes separate states

for words in which ‘s’ is the rightmost sibilant and words in which ‘ʃ’
is the rightmost sibilant (i.e., the a priori knowledge given to the
learner identifies the set of segments involved in the process). This is
akin to phonological theories in which certain classes of segments
(here the sibilants) are represented on distinct tiers.

Demonstrations - Morphological Parsing

• The learner was tested on a morphology-to-phonology function in
which the meanings of morphemes are mapped to their pronunciations.
• The data were from Swahili verbs, which show a series of prefixes

indicating person, number, and tense.
• The morphological breakdown of nimenipenda ‘I have liked myself’

Jardine Chandlee Eyraud Heinz

1 3T:T

2D:λ

5

V:V

4

N:N

6

⋉:λ

0
⋊:λ

T:T

D:λ

V:V

N:N

⋉:λ

T:DT

D:D

V:DV

N:DN

⋉:T

T:T

D:λ

V:V

N:N

⋉:λ

T:T

D:λ

V:V

N:N

⋉:λ

Figure 5: Final devoicing test case

1

t:t
a:a

3

S:S

2s:s 4

⋉:!

0
⋊:!

a:a

S:S
t:t

s:S

⋉:!

S:s

t:t

s:s
a:a

⋉:!

Figure 6: Sibilant harmony test case

sibiliants (if any) assimilate to the rightmost one. As shown in Figure 6, the output of the
SOSFIA correctly models this process.

Two things should be noted about this test case. One is that this process is right subse-
quential; however, all this entails is that the input and output strings must be reversed to
get the correct mapping. This has no e↵ect on how the learner functions (for details on right
subsequential functions in phonology, see [Heinz and Lai, 2013]). Two, the output-empty
DSFST given to the learner includes separate states for words in which ‘s’ is the rightmost
sibiliant and words in which ‘S’ is the rightmost sibilant (i.e., the a priori knowledge given
to the learner identifies the set of segments involved in the process). This is akin to phono-
logical theories in which certain classes of segments (here the sibilants) are represented on
distinct tiers (e.g., vowel harmony; [Clements, 1976]).

9.3. Morphological Parsing

The learner was also tested on a morphology-to-phonology function, as discussed in [Beesley
and Karttunen, 2003], in which the meanings of morphemes are mapped to their pronun-
ciations. The data were from Swahili verbs [Hayes, 2011], which show a series of prefixes
indicating person, number, and tense. The morphological breakdown of nimenipenda ‘I
have liked myself’ is given in (3).3 The learner was given an empty transducer represent-
ing the possible morpheme orders and 90 pairs of the shape <morpheme string, phoneme

string>, as exemplified in (4). The learner correctly learned the morphological function;
i.e., for any transition on ‘1-nom’ it learned that the output should be ‘ni’.

(3) ni + me + ni + penda
1-acc perf 1st-nom like

‘I have liked myself’

(4) 1-nom+perf+1-acc+like, nimenipenda
3-nom+pres+1-acc+like, ananipenda
2-nom+perf+1-pl-acc+beat, umetupiga

3. Abbreviations: 1st-acc = first person accusative (‘me’); 1-nom = first person nominative (‘I’); 1-pl-acc

= first person plural accusative (‘us’); 2-nom = second person nominative (‘we’); 3-nom = third person

nominative (‘he’); pres = present tense; perf = perfect tense.

106

Demonstrations - Morphological Parsing

• The learner was given an empty transducer representing the possible
morpheme orders and 90 pairs of the shape <morpheme string,
phoneme string>:

Jardine Chandlee Eyraud Heinz

1 3T:T

2D:λ

5

V:V

4

N:N

6

⋉:λ

0
⋊:λ

T:T

D:λ

V:V

N:N

⋉:λ

T:DT

D:D

V:DV

N:DN

⋉:T

T:T

D:λ

V:V

N:N

⋉:λ

T:T

D:λ

V:V

N:N

⋉:λ

Figure 5: Final devoicing test case

1

t:t
a:a

3

S:S

2s:s 4

⋉:!

0
⋊:!

a:a

S:S
t:t

s:S

⋉:!

S:s

t:t

s:s
a:a

⋉:!

Figure 6: Sibilant harmony test case

sibiliants (if any) assimilate to the rightmost one. As shown in Figure 6, the output of the
SOSFIA correctly models this process.

Two things should be noted about this test case. One is that this process is right subse-
quential; however, all this entails is that the input and output strings must be reversed to
get the correct mapping. This has no e↵ect on how the learner functions (for details on right
subsequential functions in phonology, see [Heinz and Lai, 2013]). Two, the output-empty
DSFST given to the learner includes separate states for words in which ‘s’ is the rightmost
sibiliant and words in which ‘S’ is the rightmost sibilant (i.e., the a priori knowledge given
to the learner identifies the set of segments involved in the process). This is akin to phono-
logical theories in which certain classes of segments (here the sibilants) are represented on
distinct tiers (e.g., vowel harmony; [Clements, 1976]).

9.3. Morphological Parsing

The learner was also tested on a morphology-to-phonology function, as discussed in [Beesley
and Karttunen, 2003], in which the meanings of morphemes are mapped to their pronun-
ciations. The data were from Swahili verbs [Hayes, 2011], which show a series of prefixes
indicating person, number, and tense. The morphological breakdown of nimenipenda ‘I
have liked myself’ is given in (3).3 The learner was given an empty transducer represent-
ing the possible morpheme orders and 90 pairs of the shape <morpheme string, phoneme

string>, as exemplified in (4). The learner correctly learned the morphological function;
i.e., for any transition on ‘1-nom’ it learned that the output should be ‘ni’.

(3) ni + me + ni + penda
1-acc perf 1st-nom like

‘I have liked myself’

(4) 1-nom+perf+1-acc+like, nimenipenda
3-nom+pres+1-acc+like, ananipenda
2-nom+perf+1-pl-acc+beat, umetupiga

3. Abbreviations: 1st-acc = first person accusative (‘me’); 1-nom = first person nominative (‘I’); 1-pl-acc

= first person plural accusative (‘us’); 2-nom = second person nominative (‘we’); 3-nom = third person

nominative (‘he’); pres = present tense; perf = perfect tense.

106

Demonstrations – Similar tasks
(Goldman 2022)

Input Output
Eng give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) I will give him to her
Deu geben IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) ich werde ihn ihr geben
Tur vermek IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG) onu ona vereceğim
Heb �0;1 IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �%- &;&! 0;!
Hebvoc �0�;a IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �@⌦- W;W! 0⌥V⌃!

(a) Inflection examples

Input Output

Eng IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) I will give him to her
IND;PRS;NOM(1,PL);ACC(2);DAT(3,PL);NEG we don’t give you to them

Deu IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) ich werde ihn ihr geben
IND;PRS;NOM(1,PL);ACC(2,SG);DAT(3,PL);NEG wir geben dich ihnen nicht

Tur IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG) onu ona vereceğim
IND;PRS;PROG;NOM(1,PL);ACC(2,SG);DAT(3,PL);NEG seni onlara vermiyoruz

Heb IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �%- &;&! 0;!
IND;PRS;NOM(1,PL,MASC);ACC(2,SG,MASC);DAT(3,PL,FEM);NEG �0%- +;&! .*1;&1 !- &1(1!

Hebvoc
IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �@⌦- W;W! 0⌥V⌃!

IND;PRS;NOM(1,PL,MASC);ACC(2,SG,MASC);DAT(3,PL,FEM);NEG �0⌃%⌦-]�;W! .*ë1�;W1 !°- A1�(ö1⇤!

(b) Reinflection examples

Input Output
Eng I will give him to her give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Deu ich werde ihn ihr geben geben IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Tur onu ona vereceğim vermek IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG)
Heb �%- &;&! 0;! �0;1 IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Hebvoc �@⌦- W;W! 0⌥V⌃! �0�;a IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

(c) Analysis examples

Table 2: Examples for the data format used for the inflection, reinflection ans analysis tasks.

Lexeme Sampling. To create MIGHTYMORPH,
we first sampled frequently used verbs from Uni-
Morph. We assessed the verb usage by the position
of the lemma in the frequency-ordered vocabulary
of the FastText word vectors (Grave et al., 2018).8

We excluded auxiliaries and any lemmas frequent
due to homonymy with non-verbal lexemes.

Periphrastic Constructions We expanded each
verb’s word-level inflection table to include all pe-
riphrastic constructions using a language-specific
rule-based grammar we wrote and the inflection ta-
bles of any relevant auxiliaries. I.e., we constructed
forms for all possible TAM combinations express-
ible in the language, regardless of the number of
words used to express this combination of features.
E.g., when constructing the future perfect form
with a 3rd person singular subject for the lexeme
receive, equivalent to IND;FUT;PRF;NOM(3,SG),
we used the past participle from the UniMorph in-
flection table received and the auxiliaries will and
have to construct will have received.

8https://fasttext.cc/docs/en/
crawl-vectors.html

Argument Marking At first, we added the pro-
nouns that the verb agrees with, unless a pro-drop
applies. For all languages in our selection, the verb
agrees only with its subject. A place-holder was
then added to mark the linear position of the rest of
the arguments. So the form of our example is now
he will have received ARGS.

In order to obtain a fully-saturated clause, but
also not to over-generate redundant arguments —
for example, a transitive clause for an intransitive
verb — an exhaustive list of frames for each verb
is needed. The frames are lists of cased arguments
that the verb takes. For example the English verb
receive has 2 frames {NOM, ACC} and {NOM,
ACC, ABL}, where an accusative argument indi-
cates theme and the an ablative argument marks
the source. When associating verbs with their argu-
ments we did not restrict ourselves to the distinc-
tion between intransitive, transitive and ditransitive
verbs, we allow arguments of any case. We treated
all argument types equally and annotated them with
a case feature, whether expressed with an affix, an
adposition or a coverb. Thus, English from you,
Turkish senden and Swahili kutoka kwako are all
tagged with an ablative case feature ABL(2,SG).

Demonstrations – Similar tasks
(Goldman 2022)

Average Eng Deu Heb Hebvocalized Tur
word clause word clause word clause word clause word clause word clause

inflec.

LSTM
84.7
±1.1

70.0
±1.2

86.0
±1.8

68.5
±3.8

64.5
±4.7

47.5
±4.0

90.7
±1.6

82.5
±0.6

91.7
±1.1

70.0
±1.2

90.8
±0.9

81.6
±2.1

DEEPSPIN
89.4
±0.8

71.8
±0.5

87.3
±2.8

78.4
±1.5

78.2
±0.5

40.0
±0.5

90.9
±0.2

86.1
±0.7

93.1
±2.0

71.7
±0.7

97.5
±2.1

82.7
±1.6

TRANSDUCE
86.7
±0.5

78.9
±0.4

86.8
±0.4

85.4
±1.1

76.6
±2.5

71.5
±1.3

89.4
±0.6

80.4
±0.8

81.1
±0.5

60.0
±1.1

99.4
±0.1

97.2
±0.5

MT5 NA 51.9
±1.1 NA 70.7

±1.7 NA 57.7
±3.3 NA 48.0

±3.3 NA 34.2
±1.4 NA 48.7

±1.7

reinflec.

LSTM
73.2
±1.6

45.4
±9.4

78.2
±6.3

62.7
±2.5

53.5
±3.5

31.0
±1.7

68.4
±1.6

30.6
±29.8

80.7
±1.9

31.4
±36.4

85.2
±2.2

71.1
±1.2

TRANSDUCE
75.1
±0.5

44.5
±0.8

82.7
±1.1

67.1
±0.4

81.5
±0.5

35.5
±0.3

77.2
±1.2

41.5
±2.2

49.2
±1.5

6.1
±1.8

84.7
±1.1

72.5
±2.7

MT5 NA 45.2
±1.8 NA 73.6

±3.1 NA 54.2
±2.0 NA 30.8

±4.2 NA 29.7
±1.9 NA 37.5

±7.0

analysis
LSTM

62.0
±0.9

64.4
±1.1

81.6
±0.4

79.5
±2.2

34.8
±2.2

25.7
±0.6

34.6
±1.3

57.7
±1.4

73.3
±3.6

74.8
±2.2

85.6
±0.7

84.4
±4.5

MT5 NA 42.8
±1.2 NA 69.0

±1.2 NA 45.1
±2.7 NA 48.0

±3.3 NA 34.2
±1.4 NA 46.0

±4.5

Table 5: Word and clause results for all tasks, models and languages, stated in terms of exact match
accuracy in percentage. Over clause tasks, for every language and task the best performing system is
in bold, in cases that are too close to call, in terms of standard deviations, all best systems are marked.
Results are averaged over 3 runs with different initializations and training data order.

5.1 Results and Analysis

Table 5 summarizes the results for all models and
all tasks, for all languages. When averaged across
languages, the results for the inflection task show a
drop in performance for the word-inflection models
(LSTM, DEEPSPIN and TRANSDUCE) on clause-
level tasks, indicating that the clause-level task vari-
ants are indeed more challenging. This pattern is
even more pronounced in the results for the reinflec-
tion task which seems to be the most challenging
clause-level task, presumably due to the need to
identify the lemma in the sequence, in addition to
inflecting it. In the analysis task, the only word-
level model, LSTM, actually performs better on the
clause level than on the word level, but this seems
to be the effect one outlier language, namely unvo-
calized Hebrew, where analysis models suffer from
the lack of diacritization and extreme ambiguity.

Moving from words to clauses introduces con-
text, and we hypothesized that this would enable
contextualized pretrained LMs to shine. However,
on all tasks MT5 did not prove itself to be a sil-
ver bullet. That said, the strong pretrained model
performed on par with the other models on the chal-

tened before training and evaluation. For example, the
bundle IND;PRS;NOM(1,SG);ACC(2,PL) is replaced with
IND;PRS;NOM1;NOMSG;ACC2;ACCPL.

lenging reinflection task — the only task involving
complete sentences on both input and output — in
accordance with the model’s pretraining.

In terms of languages, the performance of the
word-level models seems correlated across lan-
guages, with notable under-performance over all
tasks in German. In contrast, MT5 seems to be
somewhat biased towards the western languages,
English and German, especially in the generation
tasks, inflection and reinflection.

Data Sufficiency To illustrate how much labeled
data should suffice for training clause-morphology
models, let us first note that the nature of mor-
phology provides (at least) two ways to increase
the amount of information available for the model.
One is to increase the absolute number of sampled
examples to larger training sets, while using the
same number of inflection tables; alternatively, the
number of inflection tables can be increased for
a fixed size of the training set, increasing not the
size but the variation in the set. The former is es-
pecially easy in languages with larger inflection
tables, where each table can provide hundreds or
thousands of inflected forms per lexeme, but the
lack of variety in lexemes may lead to overfitting.
To examine which dimension is more important for
the overall success in the tasks, we tested both.

Demonstrations – Similar tasks
(Goldman 2022)

Morphology Without Borders: Clause-Level Morphology

Omer Goldman
Bar Ilan University

omer.goldman@gmail.com

Reut Tsarfaty
Bar Ilan University

reut.tsarfaty@biu.ac.il

Abstract

Morphological tasks use large multi-lingual
datasets that organize words into inflection
tables, which then serve as training and eval-
uation data for various tasks. However, a
closer inspection of these data reveals pro-
found cross-linguistic inconsistencies, that
arise from the lack of a clear linguistic and
operational definition of what is a word, and
that severely impair the universality of the
derived tasks. To overcome this deficiency,
we propose to view morphology as a clause-
level phenomenon, rather than word-level. It
is anchored in a fixed yet inclusive set of fea-
tures, that encapsulates all functions realized
in a saturated clause. We deliver MIGHTY-
MORPH, a novel dataset for clause-level mor-
phology covering 4 typologically-different
languages: English, German, Turkish and
Hebrew. We use this dataset to derive 3
clause-level morphological tasks: inflection,
reinflection and analysis. Our experiments
show that the clause-level tasks are substan-
tially harder than the respective word-level
tasks, while having comparable complexity
across languages. Furthermore, redefining
morphology to the clause-level provides a
neat interface with contextualized language
models (LMs) and allows assessing the mor-
phological knowledge encoded in these mod-
els and their usability for morphological
tasks. Taken together, this work opens up
new horizons in the study of computational
morphology, leaving ample space for study-
ing neural morphology cross-linguistically.

1 Introduction
Morphology has long been viewed as a fundamen-
tal part of NLP, especially in cross-lingual settings
— from translation (Minkov et al., 2007; Chahuneau
et al., 2013) to sentiment analysis (Abdul-Mageed
et al., 2011; Amram et al., 2018) — as languages
vary wildly in the extent to which they use morpho-
logical marking as a means to realize meanings.

Figure 1: In word-level morphology (top), inflection
scope is defined by ‘wordhood’, and lexemes are
inflected to different sets of features in the bundle
depending on language-specific word definitions.
In our proposed clause-level morphology (bottom)
inflection scope is fixed to the same feature bundle
in all languages, regardless of white-spaces.

Recent years have seen a tremendous develop-
ment in the data available for supervised morpho-
logical tasks, mostly via UniMorph (Batsuren et al.,
2022), a large multi-lingual dataset that provides
morphological analyses of standalone words, orga-
nized into inflection tables in over 170 languages.
Indeed, UniMorph was used in all of SIGMOR-
PHON’s shared tasks in the last decade (Cotterell
et al., 2016; Pimentel et al., 2021 inter alia).

Such labeled morphological data rely heavily on
the notion of a ‘word’, as words are the elements
occupying the cells of the inflection tables, and
subsequently words are used as the input or output
in the morphological tasks derived from these ta-
bles. However, a closer inspection of the data in
UniMorph reveals that it is inherently inconsistent
with respect to how words are defined. For instance,

ar
X

iv
:2

20
2.

12
83

2v
2

 [c
s.C

L]
 1

9
O

ct
 2

02
2

Demonstrations – Similar tasks
(Goldman 2022)

Input Output
Eng give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) I will give him to her
Deu geben IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) ich werde ihn ihr geben
Tur vermek IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG) onu ona vereceğim
Heb �0;1 IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �%- &;&! 0;!
Hebvoc �0�;a IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �@⌦- W;W! 0⌥V⌃!

(a) Inflection examples

Input Output

Eng IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) I will give him to her
IND;PRS;NOM(1,PL);ACC(2);DAT(3,PL);NEG we don’t give you to them

Deu IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) ich werde ihn ihr geben
IND;PRS;NOM(1,PL);ACC(2,SG);DAT(3,PL);NEG wir geben dich ihnen nicht

Tur IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG) onu ona vereceğim
IND;PRS;PROG;NOM(1,PL);ACC(2,SG);DAT(3,PL);NEG seni onlara vermiyoruz

Heb IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �%- &;&! 0;!
IND;PRS;NOM(1,PL,MASC);ACC(2,SG,MASC);DAT(3,PL,FEM);NEG �0%- +;&! .*1;&1 !- &1(1!

Hebvoc
IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �@⌦- W;W! 0⌥V⌃!

IND;PRS;NOM(1,PL,MASC);ACC(2,SG,MASC);DAT(3,PL,FEM);NEG �0⌃%⌦-]�;W! .*ë1�;W1 !°- A1�(ö1⇤!

(b) Reinflection examples

Input Output
Eng I will give him to her give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Deu ich werde ihn ihr geben geben IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Tur onu ona vereceğim vermek IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG)
Heb �%- &;&! 0;! �0;1 IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Hebvoc �@⌦- W;W! 0⌥V⌃! �0�;a IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

(c) Analysis examples

Table 2: Examples for the data format used for the inflection, reinflection ans analysis tasks.

Lexeme Sampling. To create MIGHTYMORPH,
we first sampled frequently used verbs from Uni-
Morph. We assessed the verb usage by the position
of the lemma in the frequency-ordered vocabulary
of the FastText word vectors (Grave et al., 2018).8

We excluded auxiliaries and any lemmas frequent
due to homonymy with non-verbal lexemes.

Periphrastic Constructions We expanded each
verb’s word-level inflection table to include all pe-
riphrastic constructions using a language-specific
rule-based grammar we wrote and the inflection ta-
bles of any relevant auxiliaries. I.e., we constructed
forms for all possible TAM combinations express-
ible in the language, regardless of the number of
words used to express this combination of features.
E.g., when constructing the future perfect form
with a 3rd person singular subject for the lexeme
receive, equivalent to IND;FUT;PRF;NOM(3,SG),
we used the past participle from the UniMorph in-
flection table received and the auxiliaries will and
have to construct will have received.

8https://fasttext.cc/docs/en/
crawl-vectors.html

Argument Marking At first, we added the pro-
nouns that the verb agrees with, unless a pro-drop
applies. For all languages in our selection, the verb
agrees only with its subject. A place-holder was
then added to mark the linear position of the rest of
the arguments. So the form of our example is now
he will have received ARGS.

In order to obtain a fully-saturated clause, but
also not to over-generate redundant arguments —
for example, a transitive clause for an intransitive
verb — an exhaustive list of frames for each verb
is needed. The frames are lists of cased arguments
that the verb takes. For example the English verb
receive has 2 frames {NOM, ACC} and {NOM,
ACC, ABL}, where an accusative argument indi-
cates theme and the an ablative argument marks
the source. When associating verbs with their argu-
ments we did not restrict ourselves to the distinc-
tion between intransitive, transitive and ditransitive
verbs, we allow arguments of any case. We treated
all argument types equally and annotated them with
a case feature, whether expressed with an affix, an
adposition or a coverb. Thus, English from you,
Turkish senden and Swahili kutoka kwako are all
tagged with an ablative case feature ABL(2,SG).

Demonstrations – Similar tasks
(Goldman 2022)

Input Output
Eng give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) I will give him to her
Deu geben IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) ich werde ihn ihr geben
Tur vermek IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG) onu ona vereceğim
Heb �0;1 IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �%- &;&! 0;!
Hebvoc �0�;a IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �@⌦- W;W! 0⌥V⌃!

(a) Inflection examples

Input Output

Eng IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) I will give him to her
IND;PRS;NOM(1,PL);ACC(2);DAT(3,PL);NEG we don’t give you to them

Deu IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) ich werde ihn ihr geben
IND;PRS;NOM(1,PL);ACC(2,SG);DAT(3,PL);NEG wir geben dich ihnen nicht

Tur IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG) onu ona vereceğim
IND;PRS;PROG;NOM(1,PL);ACC(2,SG);DAT(3,PL);NEG seni onlara vermiyoruz

Heb IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �%- &;&! 0;!
IND;PRS;NOM(1,PL,MASC);ACC(2,SG,MASC);DAT(3,PL,FEM);NEG �0%- +;&! .*1;&1 !- &1(1!

Hebvoc
IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM) �@⌦- W;W! 0⌥V⌃!

IND;PRS;NOM(1,PL,MASC);ACC(2,SG,MASC);DAT(3,PL,FEM);NEG �0⌃%⌦-]�;W! .*ë1�;W1 !°- A1�(ö1⇤!

(b) Reinflection examples

Input Output
Eng I will give him to her give IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Deu ich werde ihn ihr geben geben IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Tur onu ona vereceğim vermek IND;FUT;NOM(1,SG);ACC(3,SG);DAT(3,SG)
Heb �%- &;&! 0;! �0;1 IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)
Hebvoc �@⌦- W;W! 0⌥V⌃! �0�;a IND;FUT;NOM(1,SG);ACC(3,SG,MASC);DAT(3,SG,FEM)

(c) Analysis examples

Table 2: Examples for the data format used for the inflection, reinflection ans analysis tasks.

Lexeme Sampling. To create MIGHTYMORPH,
we first sampled frequently used verbs from Uni-
Morph. We assessed the verb usage by the position
of the lemma in the frequency-ordered vocabulary
of the FastText word vectors (Grave et al., 2018).8

We excluded auxiliaries and any lemmas frequent
due to homonymy with non-verbal lexemes.

Periphrastic Constructions We expanded each
verb’s word-level inflection table to include all pe-
riphrastic constructions using a language-specific
rule-based grammar we wrote and the inflection ta-
bles of any relevant auxiliaries. I.e., we constructed
forms for all possible TAM combinations express-
ible in the language, regardless of the number of
words used to express this combination of features.
E.g., when constructing the future perfect form
with a 3rd person singular subject for the lexeme
receive, equivalent to IND;FUT;PRF;NOM(3,SG),
we used the past participle from the UniMorph in-
flection table received and the auxiliaries will and
have to construct will have received.

8https://fasttext.cc/docs/en/
crawl-vectors.html

Argument Marking At first, we added the pro-
nouns that the verb agrees with, unless a pro-drop
applies. For all languages in our selection, the verb
agrees only with its subject. A place-holder was
then added to mark the linear position of the rest of
the arguments. So the form of our example is now
he will have received ARGS.

In order to obtain a fully-saturated clause, but
also not to over-generate redundant arguments —
for example, a transitive clause for an intransitive
verb — an exhaustive list of frames for each verb
is needed. The frames are lists of cased arguments
that the verb takes. For example the English verb
receive has 2 frames {NOM, ACC} and {NOM,
ACC, ABL}, where an accusative argument indi-
cates theme and the an ablative argument marks
the source. When associating verbs with their argu-
ments we did not restrict ourselves to the distinc-
tion between intransitive, transitive and ditransitive
verbs, we allow arguments of any case. We treated
all argument types equally and annotated them with
a case feature, whether expressed with an affix, an
adposition or a coverb. Thus, English from you,
Turkish senden and Swahili kutoka kwako are all
tagged with an ablative case feature ABL(2,SG).

