
Chapter 6
Distributional Learning of Context-Free
and Multiple Context-Free Grammars

Alexander Clark and Ryo Yoshinaka

Abstract This chapter reviews recent progress in distributional learning in
grammatical inference as applied to learning context-free and multiple context-free
grammars. We discuss the basic principles of distributional learning, and present two
classes of representations, primal and dual, where primal approaches use nontermi-
nals based on strings or sets of strings and dual approaches use nonterminals based on
contexts or sets of contexts. We then present learning algorithms based on these two
models using a variety of learning paradigms, and then discuss the natural extension
to mildly context-sensitive formalisms, using multiple context-free grammars as a
representative formalism.

6.1 Introduction

In this chapter we look at the problem of learning certain classes of phrase structure
grammars from information about the language, a classic problem in grammatical
inference. In particular we look at techniques using what is broadly called distribu-
tional learning, and which have been developed in recent years starting with Clark
and Eyraud [16]. The term distributional as we use it has nothing to do with prob-
ability distributions or statistical learning, but rather concerns the linguistic notion
of distribution: the set of contexts or environments in which strings or words can
appear.

This is indeed a classic problem: Gold [23] suggests the following question as
worthy of research:

However, it would be useful to determine if there are interesting subclasses of context-free
languages which can be identified in the limit by either of these approaches (i.e. by statistical
approaches like distributional analysis or by approaches sensitive to order).

A. Clark (B)
Department of Philosophy, King’s College London, London, UK
e-mail: alexander.clark@kcl.ac.uk

R. Yoshinaka
Kyoto University, Kyoto, Japan
e-mail: ry@i.kyoto-u.ac.jp

© Springer-Verlag Berlin Heidelberg 2016
J. Heinz and J.M. Sempere (eds.), Topics in Grammatical Inference,
DOI 10.1007/978-3-662-48395-4_6

143

heinz@udel.edu

144 A. Clark and R. Yoshinaka

Distributional learning itself has a long history, which we review briefly in Sect. 6.2
to provide some intellectual context. In this chapter we present a tutorial overview of
modern approaches to distributional learning as applied to the inference of context-
free grammars (CFGs) and multiple context-free grammars (MCFGs), which we
take to be a representative mildly context-sensitive formalisms. We will focus on the
general properties of these algorithms, and the representational ideas and the types
of algorithms that exploit these representational assumptions. We will try to provide
a full bibliography representing at least the current resurgence of interest in distrib-
utional learning, and including the key earlier papers, together with pointers into the
rest of the literature. We are not trying to provide a complete survey of the inference
of CFGs and MCFGs; we restrict ourselves to algorithms that are computationally
efficient in some sense (and so exclude purely enumerative algorithms [53]), have
some theoretical guarantees (as opposed to heuristic algorithms [33, 38]), and take
as input only strings, or information about strings (as opposed to algorithms that take
trees or partially bracketed strings as input [46]). Within these parameters, the only
algorithms that we are aware of are distributional algorithms in the sense that we
define below.

6.2 Distributional Learning: A Historical Note

Distributional learning has a long history. Beyond the well-known work of the Amer-
ican structuralists, most famously Harris [24] and Wells [61], structuralist linguistics
had an autonomous history in Russia and Eastern Europe under the name of the
Kulagina school, which has its origins in a seminar in mathematical linguistics initi-
ated by Kolmogorov and which takes its name from Olga Kulagina’s seminal 1957
paper [36]. While in the US, structuralist linguistics largely died out after Chom-
skyan linguistics became the dominant research paradigm, it continued for quite
some time elsewhere. The most accessible introduction to this literature is either
Marcus’s book [41] or the two volume survey [57]. Important early papers are by
Sestier [50] and Kunze [37]. None of this work has any real learning results—it
merely uses distributional learning as an analytical tool. A lot of computational work
also uses distributional learning explicitly or implicitly [1, 5, 34, 58], but we do not
discuss this work here.

Distributional learning is also closely related to the context-free grammar for-
malism. The word ‘context’ after all appears in the term context-free and is also
a foundational concept in distributional learning—this is not a coincidence. The
context-free grammar formalism was originally devised to represent the outputs
from distributional learning procedures. Chomsky [7, p. 172, fn.15] says:

The concept of “phrase structure grammar” was explicitly designed to express the rich-
est system that could reasonably be expected to result from the application of Harris-type
procedures to a corpus.

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 145

Over the years since then many different learning procedures for context-free gram-
mars have been devised based on the intuitions of distributional learning. Typically
these algorithms are based on the justification that two strings derived from the same
nonterminal will be distributionally similar; therefore one can try to reverse this
process by finding clusters of distributionally similar strings and creating a grammar
with nonterminals that generate these strings. The naive application of these heuristic
approaches has been known for a long time to suffer from some serious problems;
Chomsky was perhaps the first to articulate these problems explicitly in his doctoral
thesis [6], and indeed much of the technical work that we describe can be seen as an
attempt to either answer or avoid those problems, which at the time were taken to be
compelling arguments against the very possibility of distributional learning.

6.3 Languages and Grammars

We start by defining some standard notation. We assume that we have a finite non-
empty set called the alphabet which we denote by Σ . This set might consist of the
words in a language, or the set of phonemes, a set of letters, or even DNA bases
or amino acids, depending on the application. We write Σ∗ for the set of all finite
strings of elements of Σ . We write Σ+ for the nonempty strings. We write λ for
the empty string. A (formal) language is just a subset of Σ∗; if L is a language
then L ⊆ Σ∗. In this chapter we consider this very restricted notion of a language:
this might be for example the set of grammatical sentences in a language, or the set
of phonotactically well formed words in a language or something else. We abstract
away from the particular details and consider it just as a set of strings that is defined
in some way.

The languages we are interested in are typically infinite, or even if finite are very
large, so we need finite representations. In this chapter we look only at the class
of multiple context-free grammars (MCFGs). Context-free grammars (CFGs) are a
special case of MCFGs; we start by defining the standard class of CFGs, and in
Sect. 6.8 we define the larger class of MCFGs.

A CFG over an alphabet Σ is a tuple which consists of a nonempty finite set
of nonterminal symbols V , together with a set of productions of the form N → α

where N ∈ V and α ∈ (V ∪ Σ)∗. We also have a finite set of initial symbols I ⊆
V , which in the standard definition consists of just one symbol S. The extension
to multiple symbols does not change anything. We denote the standard derivation
relation by

∗⇒G , and define the set of strings derivable from a nonterminal N to be
L (G, N) = {w ∈ Σ∗ | N ∗⇒G w }. The language defined by the grammar is defined
to be L (G) = ⋃

S∈I L (G, S).

heinz@udel.edu

146 A. Clark and R. Yoshinaka

6.3.1 Learning Models

We are interested in learning: we therefore assume that there is some language that
we are trying to learn. We write L∗ for the target language: i.e. the language that we
are trying to learn. We consider a variety of learning models here, from ones where
the information sources available to the learner are very limited to ones where they
are quite rich; we always consider only information about the language (the set of
strings generated by the grammar), and none about the grammar itself. Additionally
we always require polynomial update time—the learner at each step can only use
a polynomial amount of computation. This is not enough on its own to be truly
restrictive; there is some technical detail which we omit here [44].

• The first model is the oldest: positive-only identification in the limit in the Gold
style [23]. The learner receives a sequence of examples drawn from L∗, and must
converge after a finite but unbounded time to an exactly correct hypothesis. Cru-
cially there are no constraints on the sequence of examples other than the trivial
ones that the examples are all in L∗ and that every element of L∗ must occur at least
once somewhere in the sequence. In this model we cannot learn any superfinite
classes of language; we obtain learnable classes by considering only languages
which satisfy some language-theoretic closure properties. This model therefore
places some significant restrictions on the classes of languages that can be learned.
We require the existence of a polynomially bounded characteristic set and poly-
nomial update time. There are some technical issues about the appropriate way
of defining this for CFGs, since we can have grammars that define languages that
have very long strings, and this needs to be taken into account when defining the
appropriate bound on the characteristic set.

• The second model we consider is that of positive data and membership queries
(mqs), the same as the previous model, but the learner can also ask mqs and find
out whether a particular string is in the target language. This is the easiest model:
the easiest model to learn under, but also the model that is easiest to understand and
easiest to prove results in, and accordingly we will focus on this model. However,
on its own it is not restrictive as it is possible to define vacuous enumerative
algorithms that nonetheless can learn using various computational tricks. We do
not use these tricks in the algorithms we present.

• Minimally adequate teacher (mat) model1 [2, 10, 54, 69]. Here the learner has
two sources of information: it can ask mqs and equivalence queries (eqs). Here
we allow extended eqs. The learner can construct any cfg and ask whether it
is correct or not. The teacher either says yes or provides a counterexample in
the symmetric difference of the hypothesis and the target. Note that this is not
computable for all cfgs. This is a restrictive learning model, in that it is known
that classes such as regular grammars and CFGs are not learnable in this model
[3], whereas deterministic regular grammars and congruential CFGs are, as we
shall see.

1See Learning Grammars and Automata with Queries, de la Higuera (Chap. 3).

heinz@udel.edu

http://dx.doi.org/10.1007/978-3-662-48395-4_3

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 147

• Finally, there are results that use stochastic data—we assume the learner has access
to positive samples drawn independently and identically from a fixed distribution,
where the distribution is generated by a probabilistic version of the target grammar
[8, 40].

6.3.2 Contexts and Distributions

One of the most basic notions is that of a context which is just a pair of strings. In
the original papers this is written as an ordered pair (l, r) where l, r ∈ Σ∗. Here we
will use a slightly different notation l�r . This avoids confusion when we move to
MCFGs, and makes it clearer that it represents a sentence with a hole. We therefore
write the special empty context (λ, λ) as just �. In linguistics, a context is sometimes
called an environment.

We can combine a context and a string using the ‘wrap’ operation, for which we
use the symbol �. This combines a context with a string, by inserting the string
into the gap in the context: we define this therefore as (l�r) � u = lur . The empty
context thus does not change the string it is wrapped around: � � u = u.

We extend this to sets of strings and contexts in the natural way, so

C � S = {lur | l�r ∈ C, u ∈ S}.

If we fix a language L ⊆ Σ∗ then we can talk about the relation between contexts
and substrings given by l�r ∼L u iff lur ∈ L . If lur ∈ L then we say that u occurs
in the context l�r in the language L .

We now define the notion of the distribution of a string in the language. Note that
this has nothing to do with the notion of a probability distribution.

CL(u) = {l�r | lur ∈ L}

If we can successfully model this distribution then we will have learned the language
since � ∈ CL(u) iff u ∈ L . We also write this set CL(u) as u
 when L is understood.
Conversely for a context l�r we define (l�r)� to be {u | lur ∈ L}. Note that the
residual languages u−1L = {v | uv ∈ L} are in this notation (u�)
. We extend these
to sets of contexts: C� = {u | ∀l�r ∈ C, lur ∈ L}. Alternatively and perhaps more
intuitively:

C� = {u | C � u ⊆ L}.

Given a set of strings S we can also define

S
 = {l�r | (l�r) � S ⊆ L}.

heinz@udel.edu

148 A. Clark and R. Yoshinaka

For a set of strings D we define

Sub(D) = {u ∈ Σ∗ | lur ∈ D for some l, r ∈ Σ∗ },

Con(D) = {l�r | lur ∈ D for some u ∈ Σ∗ }.

Distributional learning techniques are based on modeling the context-substring rela-
tion of a language. There are two technical details which we need to pay attention to:
one is the case of the empty string, which as always in CFGs needs to be dealt with
as a special case; the second is whether the CFG has more than two nonterminals on
the right hand side of a rule. While every CFG can be put into Chomsky normal form,
these learning algorithms depend on a correspondence between the nonterminals and
sets of strings in the grammar that may not be preserved under binarisation.

6.3.3 Observation Tables

A natural way of visualising the relation between strings and contexts is through
observation tables (OTs) [1, 2]. We show a simple example in Table 6.1. We assume
a finite set of substrings that we call K ; these form the rows of the table; we have
a finite set of contexts, F , that we use as rows. In the entry corresponding to the
row indexed by u and the column indexed by l�r we put a 1 if lur ∈ L∗ and a
0 if lur /∈ L∗. The table in the example contains a limited amount of information
about the language: the language includes λ, ab, aabb, but does not include the
strings a, b, aa, bb, aaa, aab, abb, bbb, aaab, abbb or aabbb. The table does not
contain any information about other strings, for example abab, which may or may
not be in L∗. Thus there are a number of different cfls that are compatible with
this information, from the finite language consisting just of those three examples,
λ, ab, aabb, that are certainly in the language, to the nonregular language {anbn |
n ≥ 0}.

These approaches can be seen to be closely related to the classical techniques for
regular inference which are based on modeling the relationship between prefixes and

Table 6.1 Example of an OT

� a� �b �bb

λ 1 0 0 0

a 0 0 1 0

b 0 1 0 0

aa 0 0 0 1

ab 1 0 0 0

aab 0 0 1 0

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 149

suffixes. In that model (e.g. [2]), an OT has rows indexed by prefixes, and columns
indexed by suffixes, where a cell in the table has a 1 if and only if the concatenation
of the corresponding prefix and suffix is in the language.

6.4 Context-Free Algorithms

All of these algorithms correspond to making a representational decision about what
sets of strings the nonterminals should generate. We use the notation [[x]] for a
nonterminal corresponding to some object x , typically a string or context, or set of
strings or contexts. We need to decide what L (G, [[x]]) should be.

6.4.1 Primal-Dual Distinction

There is an important conceptual division that we want to discuss in general terms
now—which is the division between primal methods and dual methods. In distribu-
tional learning, we have contexts and substrings and the relation between them. We
have a choice—we can either take the substrings as being the primary objects and
consider the contexts as being features, or we can swap the role of the contexts and
substrings, and consider the contexts as being the primary objects and the substrings
as being features.

Primal algorithms thus define sets of strings using one of the following schemes,
where u is a single string and X is a set of strings:

[u] = {v | v
 = u
 }
u
� = {v | v
 ⊇ u
 }
X
� = {v | v
 ⊇ X
 }

Dual approaches on the other hand take a context (l�r) or a finite set of contexts C
and use the sets of strings defined as follows:

(l�r)� = {w | lwr ∈ L}
C� = {w | C � w ⊆ L}

In the case of left regular grammars, these two are essentially similar: we consider
only contexts of the form �u, and switching between primal and dual approaches is
just equivalent to reversing the strings of the language. There is therefore no theoret-
ically interesting difference between the primal and dual techniques. In the case of
CFGs and MCFGs the two approaches differ radically in the types of languages that
can be learned. One immediately obvious difference is that using a dual approach
one can always define the language itself, as a set of strings, using the single context
� since �� = L .

heinz@udel.edu

150 A. Clark and R. Yoshinaka

6.5 Primal Algorithms

We now survey the major primal algorithms for CFG inference, not in chronological
order. We will start by considering the most basic and mathematically tractable model,
the congruential model. This model is also the closest to the models informally
described by the American structuralists. If we consider a clustering model based
on the distributions of strings, then the most fundamental model is one where the
clusters are sets of distributionally identical sets of strings.

6.5.1 Congruential Languages

The most basic result is the mat-learner result for what are called congruential
CFGs [10]. The class of languages that can be learned using this algorithm is the
class of congruential cfls. Congruential cfgs are such that for all nonterminals N if
u, v ∈ L (G, N) then they are congruent in the sense thatCL(u) = CL(v), which we
will write u ≡L v. These are closely related to the non-terminally separated (nts)
languages [4, 49]. These form a proper subclass of cfls that nonetheless include all
regular languages.

We can construct a grammar directly from an OT: we will explain this case in
full detail, as this is the simplest model and the basic ideas are reused several times
later. Taking the example from Table 6.1, we construct the grammar on the lower
part of the same table using the following procedure. Recall that the rows in the table
are indexed by substrings of strings that are in the language: for each row in the
table, corresponding to a substring u, we create a new nonterminal [[u]]. We want
this nonterminal to generate the string u and all other strings that are congruent to
it. This gives us six nonterminals. First of all we note that the two strings λ and ab
occur in the empty context � and are therefore in the language: we accordingly pick
the two symbols, [[λ]] and [[ab]], as being the start symbols. We now add productions
of three types: lexical, branching, and chain (unary) productions. First of all if w is
of length 1 or 0, that is to say w = a for some letter a ∈ Σ or is equal to λ, we add
a rule of the form [[a]] → a or [[λ]] → λ. Note that in this rule [[a]] is a nonterminal
symbol, and a is a terminal symbol, which are different in a CFG. Next, for every
string w which is of length at least two, we add all possible branching rules of the
following form: We split w into two strings u, v each of length at least 1 that occur in
the table, such that w = uv, and add a production for each of these splits of the form
[[w]] → [[u]][[v]]. This is a binary production with two nonterminal symbols on the
right hand side of the rule. In the example, we have two strings of length 2, which
each have a unique split. We have one string of length 3, aab, which can be split in
two different ways. We therefore have two branching productions with the symbol
[[aab]] on the left hand side. In general, if we have a string of length n, where n > 1,
then we will have n − 1 corresponding branching productions.

These productions on their own are rather trivial—if the grammar consisted only
of these productions then a nonterminal [[u]] could generate only the string u and

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 151

no other string. We also want each nonterminal to generate other strings that are
distributionally identical to u; accordingly we add nonbranching rules between two
nonterminals [[u]] and [[v]] whenever it appears that the substrings u and v are distri-
butionally identical. Of course it is impossible in general to tell from a finite amount
of information whether u ≡L v since this is an infinitary property—the distributions
CL(u) and CL(v) are often infinite sets, and thus we cannot expect to get an exact
answer in a finite amount of time. We can however get an approximate answer: we
can use the OT to get a finite approximation of the distribution of the two strings u, v.
For example, in Table 6.1, the two strings a and aab appear to be distributionally
identical, or at least in the table there is no evidence suggesting that they are not
identical, as the two rows that they label are identical. If we use F to refer to the
finite set of contexts that label the columns of the OT, then we are testing whether
CL(u) ∩ F = CL(v) ∩ F , rather than whether CL(u) = CL(v). We therefore add
productions of the form [[u]] → [[v]] whenever u and v have the same rows in the
table. Now the grammar is more interesting: the nonterminals like [[a]] generate an
infinite set of strings. The generated grammar is shown in Table 6.2.

The final grammar then has six nonterminals, two of which are initial, three
lexical rules, three branching rules and four unary rules. In this form it is hard to
see what is happening, and so it is convenient to convert it into a more readable
grammar by merging nonterminals that are linked via unary rules. This gives us a
grammar which has four nonterminals, one of which is initial. We can relabel the
nonterminals for legibility, with S being the nonterminal corresponding to the two
original nonterminals [[λ]] and [[ab]]; A being the nonterminal corresponding to the
nonterminals [[a]] and [[aab]]; B corresponding to [[b]]; and X corresponding to
[[aa]]. We then have the following grammar:

• Nonterminals are {S, A, B, X} with one start symbol S
• Lexical productions A → a, B → b, S → λ

• Branching productions S → AB, A → AS, A → XB, X → AA

Table 6.2 The generated grammar based on Table 6.1

N N ∈ I? Lexical rules Branching rules Chain rules

[[λ]] Y [[λ]] → λ [[λ]] → [[ab]]
[[a]] [[a]] → a [[a]] →

[[aab]]
[[b]] [[b]] → b

[[aa]] [[aa]] → [[a]][[a]]
[[ab]] Y [[ab]] → [[a]][[b]] [[ab]] → [[λ]]
[[aab]] [[aab]] → [[a]][[ab]],

[[aab]] → [[aa]][[b]]
[[aab]] →
[[a]]

heinz@udel.edu

152 A. Clark and R. Yoshinaka

This grammar generates an infinite nonregular language which is {λ,

ab,
aabb,
aababb,
. . . }.
So given an OT, we can write down a set of nonterminals and productions; but

this leaves unanswered a very important question: how do we pick the rows and
columns of the OT? The construction procedure that we have just defined has two
interesting properties that make it possible to answer this question. These are called
the monotonicity properties.

First, if we increase the columns in the table, the language defined by the gram-
mar generated from the table will always be smaller than or equal to the grammar
generated from the original table. Table 6.3 shows a table with two more columns,
which we have filled in using mqs on some hypothetical language. Now the resulting
grammar, shown in Table 6.4, contains no unary rules, and each nonterminal only
generates the single string that it is labeled with. This grammar therefore defines a
small finite language which consists of just the two strings {λ, ab}; this is a proper
subset of the language defined by the original grammar. It is easy to see why this will
in general always be the case: if we add columns, the generated grammar will have
the same set of nonterminals, lexical and binary productions, but may have fewer
unary productions. Adding additional columns means that the approximate test for

Table 6.3 Example where we have added two more columns to Table 6.1

� a� �b �bb aa�bb �abb

λ 1 0 0 0 1 0

a 0 0 1 0 0 1

b 0 1 0 0 0 0

aa 0 0 0 1 0 0

ab 1 0 0 0 0 0

aab 0 0 1 0 0 0

aa�bb and �abb. As a result the generated grammar no longer contains any unary or chain rules
and just generates the finite language {λ, ab, aabb}
Table 6.4 The generated grammar no longer contains any unary or chain rules and just generates
the finite language {λ, ab, aabb}
N N ∈ I? Lexical rules Branching rules

[[λ]] Y [[λ]] → λ

[[a]] [[a]] → a

[[b]] [[b]] → b

[[aa]] [[aa]] → [[a]][[a]]
[[ab]] Y [[ab]] → [[a]][[b]]
[[aab]] [[aab]] → [[a]][[ab]],

[[aab]] → [[aa]][[b]]

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 153

Table 6.5 Example where we have added one more row (bab) to Table 6.1

� a� �b �bb

λ 1 0 0 0

a 0 0 1 0

b 0 1 0 0

aa 0 0 0 1

ab 1 0 0 0

aab 0 0 1 0

bab 0 1 0 0

Table 6.6 The resulting grammar now has more nonterminals and productions than the original
and as a result generates a larger language

N N ∈ I? Lexical rules Branching rules Chain rules

[[λ]] Y [[λ]] → λ [[λ]] → [[ab]]
[[a]] [[a]] → a [[a]] →

[[aab]]
[[b]] [[b]] → b [[b]] →

[[bab]]
[[aa]] [[aa]] → [[a]][[a]]
[[ab]] Y [[ab]] → [[a]][[b]] [[ab]] → [[λ]]
[[aab]] [[aab]] → [[a]][[ab]],

[[aab]] → [[aa]][[b]]
[[aab]] →
[[a]]

[[bab]] [[bab]] → [[b]][[ab]] [[bab]] →
[[b]]

congruence becomes more accurate and stringent, and as a result some unary rules
will be removed. Thus the resulting grammar will in general generate a language
which is a subset of the original, though it may remain the same.

We have a complementary result when we add one or more additional rows to
Table 6.1. Table 6.5 gives a simple example: we add one more row, labeled with
the string bab. The resulting grammar shown in Table 6.6 is now larger: the set of
productions and nonterminals include the original productions and nonterminals and
as a result the language defined is going to be larger. The grammar after merging
nonterminals and relabeling is this:

• Nonterminals are {S, A, B, X} with one start symbol S
• Lexical productions A → a, B → b, S → λ

• Branching productions S → AB, A → AS, A → XB, X → AA, B → BS

This grammar generates a nonregular language that is larger and includes the string
abab.

The end result of these two monotonicity properties is that it is easy to construct
a learning algorithm. We maintain an OT; if the grammar generates too small a lan-
guage, then we can add some rows to reinforce the grammar, and if, on the other hand,

heinz@udel.edu

154 A. Clark and R. Yoshinaka

the grammar overgenerates, then we can add columns in order to make the grammar
more accurate. There are a number of different ways of doing this: if we observe some
string w which is not generated by the current grammar, the most naive approach
is simply to add every element of Sub(w) as a row. This is guaranteed to make the
grammar generate w and simplifies the convergence analysis. In this learning model
we have an oracle that can be used to make mqs, and so we can fill in all of the spaces
in the OT easily. In other learning models, we need to use other approaches.

The fundamental representational assumption though is that nonterminals are
indexed by substrings u, and we want each nonterminal [[u]] to generate all strings
that are distributionally identical to u. That is to say we wantL (G, [[u]]) = [u]. This
assumption is what distinguishes these congruential approaches from others that we
examine later: this is the simplest primal approach.

The same representational assumption can be used to define an algorithm to learn
related classes of languages in a stochastic setting [8, 40, 51]. In these models, we
cannot ask queries but only have a randomly generated sequence of examples. In this
case we can have an OT that stores counts rather than just a 0/1 value. In each cell of
the table we store the number of times we have seen the string that corresponds to
that cell. Congruence then can be replaced by its stochastic variant. The classes of
languages that we can prove we can learn here are quite limited, and the assumptions
quite strong and unrealistic; nevertheless, this shows that stochastic variants of these
algorithms are possible.

6.5.2 Substitutable Languages

If we want to learn under the more stringent Gold paradigm, where we have neither
queries nor any constraints on how the positive samples are being selected, then we
need to use a slightly different algorithm that relies on a language-theoretic closure
property in order to guarantee convergence. We maintain the same representational
assumption as in the previous section—the nonterminals will generate congruence
classes.

Given two nonempty strings u and v, we say that u
.=L v if there is a context

l�r such that lur ∈ L and lvr ∈ L . A language L is substitutable if u
.=L v implies

u ≡L v. This is a very strong condition, analogous to reversibility in the inference of
regular languages [16]. Indeed substitutability implies reversibility; there are however
languages which are substitutable but not context-free (see for example the language
MIX which we define below). Languages that are substitutable include examples like
{ancbn | n > 0 } but are too strong to be of much practical interest: for example even
the language {anbn | n > 0 } is not substitutable. There are even finite languages that
are not substitutable: {a, aa} is a trivial example.

Clark and Eyraud [16] show that this class of languages can be learned from
positive data alone using a Gold model; the algorithm has polynomial update time,
and has a characteristic set with polynomial number of elements. When the algorithm
observes two substrings of the data that occur in a single context then it assumes that

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 155

they are congruent; the restriction of the class substitutes for the lack of mqs. This has
been extended to k, l-substitutable cfgs [63], in a manner analogous to k-reversibility
in the inference of regular languages.

Interestingly the criteria of substitutability is quite natural and was already noted
in the early days of structuralist linguistics: Myhill in 1950 [42] gave an equivalent
definition and suggested calling languages that satisfy that definition ‘regular’!

6.5.3 Finite Kernel Property

In the case of congruential languages, we considered nonterminals that generate
congruence classes. L (G, [[u]]) = [u]L∗ = {v | CL(v) = CL(u) }. A slightly differ-
ent condition would be to consider the set: u
� = {v | CL(v) ⊇ CL(u) }. Now we
allow sets of strings that include strings whose distribution properly includes the
distribution of u. These strings will have an asymmetric substitution property: when-
ever we have a string like lur we can substitute any string v ∈ u
� to get a string lvr
but perhaps not in reverse. There are a number of cases where this could be useful;
in natural languages we often have that an ambiguous word has a wider distribution
than an unambiguous one. In this case we might want to have a nonterminal that
generates not just the unambiguous words but also words that can have other lexical
categories as well.

A further generalization of this is to consider the case where rather than consider-
ing the nonterminals to be generated by individual strings, we can consider them to
be generated by small finite sets of strings. Given a bound k, we can consider sets of
strings S such that |S| ≤ k, and consider nonterminals that are indexed by these sets.
In this case we want the nonterminal [[S]] to generate the set of strings that can occur
in all of the contexts that are shared by the elements of S. This allows us to have
nonterminals that correspond to clusters of strings that are distributionally similar
but not identical.

More formally we say a CFG has the k-Finite kernel property (k-fkp) if every
nonterminal N has a set of strings SN , |SN | ≤ k, such that L (G, N)
 = S

N . The
class of all CFGs with k-fkp can be learned using examples and mqs [67].

6.6 Dual Algorithms

In dual algorithms we swap the roles of the substrings and the contexts: we index
nonterminals by contexts or sets of contexts, and use substrings to eliminate the
incorrect rules. The representational assumption is then quite different. We take a

heinz@udel.edu

156 A. Clark and R. Yoshinaka

context or more generally a finite set of contextsC , and consider the sets of strings that
can occur in all of the contexts:C�. We then define grammars where the nonterminals
correspond to these sets of strings.

6.6.1 Context Deterministic Grammars

The first dual learning result is by Shirakawa and Yokomori who, in an important early
paper [54], which in our opinion has not received enough attention, define the class
of c-deterministic grammars as those grammars G such that whenever S

∗⇒G lNr
it is the case that L (G, N) = (l�r)�. They then provide a mat learning algorithm
for this class. There is a small error in this paper: the paper claims that the class
includes all regular languages, but the grammar construction is slightly too weak
for this. A minor modification—allowing rules of the form N → Pa and N → aP ,
where N , P are nonterminals and a ∈ Σ—is sufficient to correct this.

Having defined the nonterminals as corresponding to sets of strings that occur in
a given context l�r we then can use the strings to eliminate rules. Suppose we have
three nonterminals that correspond to the three contexts l1�r1, l2�r2, l3�r3; reusing
the earlier notation we can say the nonterminal symbols are [[l1�r1]], [[l2�r2]] and
[[l3�r3]]. We can consider the possible production [[l1�r1]] → [[l2�r2]][[l3�r3]]. If
this rule is correct, then the result of concatenating any string that can occur in l2�r2

with any string that can occur in l3�r3 will be a string that can occur in l1�r1, or,
using the notation we defined earlier, (l1�r1)

� ⊇ (l2�r2)
�(l3�r3)

�.
Crucially, if this is false, then we can observe some strings u, v that show that

it is false: if l2ur2 and l3vr3 are in L∗ but l1uvr1 is not, then we will know that
the production is incorrect in a certain sense. Thus, just as contexts were used to
eliminate undesirable unary chain rules in the congruential case earlier, strings are
used to eliminate undesirable binary rules in this c-deterministic case.

6.6.2 Finite Context Property

One can weaken this condition in two ways. One is by requiring only that there be
some context l�r such that L (G, N) = (l�r)�; this is a weaker condition because
the c-deterministic condition requires this to be true forany context of the nonterminal
N . The second is that we allow more than one context. This leads us to the k-finite
context property (k-fcp) [39, 67].2 A cfg has the k-fcp if for every nonterminal
we can find a set of contexts C , where |C | ≤ k, such that L (G, N) = C�. One
can also modify this to a slightly weaker form as in [67]. A closely related idea,
context-separability, is defined in [1]—this is equivalent to the 1-fcp.

2The original paper defining this [12] unfortunately contains some errors.

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 157

6.7 Combined Primal-Dual Methods

The primal and dual techniques can be combined to produce an algorithm which can
learn classes where the nonterminals can be defined either primally or dually [68]; we
can use these techniques to combine for example the congruential learning result and
the c-deterministic learning result to get an algorithm which can mat-learn a larger
class. The class that is learnable using these combined methods will be strictly larger
than the union of the learnable classes with either primal or dual on its own, as it will
include languages where some of the nonterminals can only be defined primally and
some can only be defined dually. The classes learned are stratified by three natural
numbers: r , the maximum number of nonterminals used on the right hand side of a
production; p, the maximum number of strings used to define a nonterminal primally;
and q, the maximum number of contexts used to define a nonterminal dually. We
denote by G(p, q, r) the class of CFGs that satisfy these bounds. Yoshinaka [68]
shows that the class G(p, q, r) can be learned using positive data and mqs.

It is important to realise that there are cfls that cannot be generated by any
G(p, q, r) for any values of p, q, r . A simple example is the language {anbm | n �=
m }. This is clearly a cfl but cannot be represented by any grammar in this class. This
is because in order to represent this language we need nonterminals that will generate
sets of strings like { anbm | n > m } and {anbm | n < m }. Neither of these sets can be
defined by any finite number of strings or contexts. Thus this language, and others like
it, are not learnable using any of these distributional techniques. Figure 6.1 shows the
relationship of the various learnable classes to the classes of regular languages and
cfls. It is possible to get a more integrated view of the representational assumptions
of these algorithms by looking at the Syntactic Concept Lattice—the residuated
lattice consisting of all distributionally definable sets of strings [9, 14, 62].

6.8 Multiple Context-Free Grammars

CFGs are fairly expressive for describing natural languages, yet the literature has
found several natural language phenomena that cannot be described by CFGs. The
example which definitively established that CFGs were not weakly adequate was the
case of cross-serial dependencies in Swiss German [26, 52]. We present here the data
in a form very close to the original presentation. In the particular dialect of Swiss
German considered by Shieber, the data concerns a sequence of embedded clauses.

Let us abstract this a little bit and consider a formal language for this non-context-
free fragment of Swiss German. We consider that we have the following words or
word types: na, nd , which are respectively accusative and dative noun phrases, va, vd ,
which are verb phrases that require accusative and dative noun phrases respectively,
and finally c, which is a complementizer which appears at the beginning of the clause.
Thus the ‘language’ we are looking at consists of sequences like cnava and cndvd
and cnanandvavavd , but crucially does not contain examples where the sequence of

heinz@udel.edu

158 A. Clark and R. Yoshinaka

CFG

p -q -PRIMAL-DUAL

p -FKP q-FCP

1-1-PRIMAL-DUAL

1-FKP 1- FCP

CONG-C-DET

CONG C- DET

REGULAR

SUBST

MAT-learnable

learnable with examples and MQs

GOLD-learnable

Fig. 6.1 Diagram showing the various classes of CFGs learnable using these techniques. All inclu-
sions are strict. cong is the class of congruential CFGs in Sect. 6.5.1, subst is the class of substi-
tutable CFGs in Sect. 6.5.2, and c-det is the class of context-deterministic grammars in Sect. 6.6.
The dual techniques are on the right and the primal techniques are on the left; substitutable languages
are both primal and dual

accusative/dative markings on the noun sequence is different from the sequence of
requirements on the verbs. So it does not contain cndva , because the verb requires an
accusative and it only has a dative. The sublanguage we are concerned with is the lan-
guage Lsg = {cnian j

dv
i
av

j
d | i, j ≥ 1 }. This language is defined through intersection

of the original language with a suitable regular language and a homomorphism rela-
beling the strings. Since CFGs are closed under these operations, and Lsg is clearly
not context-free, this establishes the non-context-freeness of the original language.

Joshi [27] proposed the notion of mildly context-sensitive (mcs) grammars to
pursue a better formalism to describe natural languages. They suggested that an mcs
family of languages should

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 159

1. include cfls,
2. allow limited cross-serial dependencies,
3. have the constant-growth property,3

4. have polynomial-time parseability.

Here what “limited cross-serial dependencies” means is unclear, and various defin-
itions of mcs formalisms have been proposed. These different grammar definitions
have converged to three different language classes. The smallest class is the class
defined by Linear Indexed Grammars, Combinatory Categorial Grammars and Tree
Adjoining Grammars (tags) [59]. The largest class is defined by the formalism
we use here, Multiple Context-Free Grammars (MCFG) [48], which are essentially
equivalent to Linear Context-Free Rewriting Systems [60]; these are also equivalent4

to the more linguistically motivated Minimalist Grammars [56] which came out of
an attempt to formalise some ideas in contemporary syntactic theory. There is also
an intermediate class of well-nested MCFGs [30], non-duplicating Macro Gram-
mars [22] and Coupled CFGs [25], which form a proper subset of the class of all
MCFGs, and a proper superset of the class of tag-equivalent grammars, which are
equivalent to well-nested MCFGs of dimension 2.

MCFGs are a very natural generalisation of CFGs. While nonterminals of a CFG
generate strings, those in an MCFG generate tuples of strings; for example pairs of
strings. These strings in a tuple need not be adjacent in a complete sentence in the
language of the grammar. This allows MCFGs to generate languages which have
cross-serial dependencies.

We will start this section by defining the MCFG formalism which may be unfa-
miliar to the reader. We will then discuss the learnability of these, using distributional
methods. We structure this section somewhat differently from the CFG section; given
that the reader is now familiar with the primal/dual distinction, we will start with
the positive data-only learning model, and then move to the query-based learning
models.

6.8.1 Definition

An MCFG is a quadruple G = 〈Σ, V, R, I 〉 just like a CFG but each nonterminal
symbol N ∈ V is assigned a positive integer called the dimension, which we will
denote by dim(N). By Vd we denote the subset of V whose elements have dimension
d. Every start symbol has dimension 1: I ⊆ V1. A nonterminal of dimension d
generates d-tuples of strings. We write production rules of an MCFG in Horn clause

3An infinite language L is said to have the constant-growth property if ∃k ∈ N.∀u ∈ L .∃v ∈ L . 0 <

|v| − |u| ≤ k.
4It is worth noting that MCFGs may be much larger than the smallest equivalent Minimalist Gram-
mar.

heinz@udel.edu

160 A. Clark and R. Yoshinaka

notation,5 which consists of a single literal on the left and a possible empty sequence
of literals on the right, where a nonterminal of dimension d appears as a predicate
of d-ary. Terminal symbols can only appear on the left hand side of the rule. A rule
N → aPQ of a CFG, for example, is written in this notation as

N (axy) :− P(x), Q(y) ,

where x, y are variables and a a terminal symbol, or a constant. This rule is read
as follows: if P derives a string x and Q derives y, N derives axy. In an MCFG,
nonterminals may have dimension more than 1. For example, the rule

N (x1y1, ax2) :− P(x1, x2), Q(y1)

means that if P derives a pair (x1, x2) and Q derives y1, N derives the pair (x1y1, ax2),
where the dimensions of N , P and Q are 2, 2 and 1, respectively.

More formally, production rules have the following form in general:

N0(α1, . . . , αd0) :− N1(x1,1, . . . , x1,d1), . . . , Nk(xk,1, . . . , xk,dk)

where N0, N1, . . . , Nk ∈ V for some k ≥ 0, di = dim(Ni) for each i ∈ {0, . . . , k};
variables x1,1, . . . , xk,dk are pairwise distinct; and each α1, . . . , αd0 are strings of
terminals and variables such that all and only variables x1,1, . . . , xk,dk occur just once
through α1, . . . , αd0 .6 If k = 0 then the right-hand side is empty, and the production
is of the form N0(v) :− where v ∈ (Σ∗)d0 . If xi, j always occurs left of xi, j+1 in
α1 . . . αm for 1 ≤ i ≤ k and 1 ≤ j < di , the rule is said to be non-permuting. An
example of a rule that is not non-permuting is

P(x1y2, x2y1) :− Q(x1, x2), R(y1, y2) ,

as y2 occurs left to y1 in P(x1y2, x2y1).

Example 6.1 We define an MCFG Gsg = 〈{c, na, nd , va, vd}, V1 ∪ V2, R, {S}〉
where V1 = {S} and V2 = {P, Q}. R consists of the rules

S(cx1y1x2y2) :− P(x1, x2), Q(y1, y2) ;
P(nax1, vax2) :− P(x1, x2) ;
Q(ndx1, vd x2) :− Q(x1, x2) ;

P(na, va) :− ;
Q(nd , vd) :− .

All of the above rules are non-permuting.

5The notation adopted in this chapter follows Smullyan’s elementary formal systems [55] rather
than [48].
6We only consider non-deleting productions in this chapter.

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 161

The derivation process of an MCFG is formally defined with a substitution. A
substitution θ is a map from variables to strings, which is extended to the homomor-
phism θ̂ such that θ̂ (y) = θ(y) if y is in the domain of θ , and θ̂ (y) = y otherwise.
We identify θ̂ and θ if no confusion arises. A substitution θ is often denoted as a
suffix operator [x1 �→ θ(x1), . . . , xk �→ θ(xk)], or even as [θ(x1), . . . , θ(xk)] if the
domain of θ is understood and ordered as x1, . . . , xk .

We write �G N (v) if N (v) :− is a rule in R. If we have �G Ni (vi) for all i =
1, . . . , k and R has a rule N0(α1, . . . , αd0) :− N1(x1), . . . , Nk(xk), then we deduce

�G N0(θ(α1), . . . , θ(αd0))

where θ(xi) = vi for all i = 1, . . . , k. We will abbreviate this substitution θ as
[v1, . . . , vk]. The language of N is defined by

L (G, N) = {v ∈ (Σ∗)dim(N) | �G N (v) } .

The language of G is L (G) = ⋃
S∈I L (G, S).

Recall Example 6.1. It is easy to see that we have

�Gsg P(na, va), �Gsg P(nana, vava), �Gsg P(nanana, vavava),

�Gsg Q(nd , vd), �Gsg Q(ndnd , vdvd),

and
�Gsg S(cnananandndvavavavdvd) ,

for example. Figure 6.2 describes this derivation process in a tree form, where boxes
emphasise the fact that the pair 〈nana, vava〉 generated by P appears as discontinuous
strings in the final product cnananandndvavavavdvd . It is easy to see that L (Gsg) =
Lsg = {cnian j

dv
i
av

j
d | i, j ≥ 1 }.

By MCFG(p, q) we denote the class of MCFGs such that

• every nonterminal has a dimension at most p,
• every rule has at most q occurrences of nonterminals on the right hand side.

Fig. 6.2 Derivation tree of
an MCFG

S(cna nana ndndva vava vdvd)

Q(ndnd ,vdvd)

Q(nd ,vd)

P(na nana ,va vava)

P(nana , vava)

P(na,va)

heinz@udel.edu

162 A. Clark and R. Yoshinaka

Thus Gsg belongs to MCFG(2, 2). Then we define MCFL(p, q)= {L (G) | G∈
MCFG(p, q) }. We also write MCFG(p, ∗)=⋃

q∈N MCFG(p, q) and MCFL(p, ∗)=⋃
q∈N MCFL(p, q). The class of CFGs is identified with MCFG(1, ∗) and the CFGs

in Chomsky normal form are all in MCFG(1, 2). Hence MCFL(1, 2) = MCFL(1, q).
Seki et al. [48] and Rambow and Satta [45] have investigated the hierarchy of

mcfls.

Proposition 6.1 (Seki et al. [48], Rambow and Satta [45])For p ≥ 1,MCFL(p, ∗) �

MCFL(p + 1, ∗).
For p ≥ 2, q ≥ 1, MCFL(p, q) � MCFL(p, q + 1) except for MCFL(2, 2) =

MCFL(2, 3).
For p ≥ 1, q ≥ 3 and 1 ≤ k ≤ q − 2, MCFL(p, q) ⊆ MCFL((k + 1)p, q − k).

Hereafter we fix p and q to be small natural numbers. An important property of the
class MCFG(p, q) is the polynomial-time uniform parsability.

Theorem 6.1 (Seki et al. [48], Kaji et al. [29]) Let p and q be fixed. It is decidable in
O(‖G‖2|w|p(q+1)) time whether w ∈ L (G) for any MCFG G ∈ MCFG(p, q) and
w ∈ Σ∗.

It is known that every MCFG in MCFG(p, q) has an equivalent one in MCFG(p, q)

whose rules are all non-permuting [35], so we assume without loss of generality that
all MCFGs are non-permuting in this chapter.

6.8.2 Generalisation of Contexts and Substrings and
Observation Tables

Recall that classical algorithms for learning regular languages observe the relation
between two strings p and s as prefixes and suffixes, respectively. That is, we have an
OT whose rows are indexed by prefixes p and columns are by suffixes s and the entries
show whether the concatenations ps belong to the target language L∗. The choice
of those two types of objects corresponds to the fact that a nonterminal of a (right)
regular grammar generates suffixes of members of the language: S

∗⇒ pN
∗⇒ ps. In

the distributional learning of CFGs the two sorts of objects we choose are contexts
l�r and substrings v, which correspond to the fact that a nonterminal of a CFG
generates substrings: S

∗⇒ lNr
∗⇒ lvr . In accordance with the fact that an MCFG

generates discontinuous substrings, we now generalise the notion of a context to a
multi-context and a substring to a multi-word and define the corresponding wrap
operation in the natural way. We call a pair of strings 〈u, v〉 2-word. A 2-context
contains exactly two occurrences of the hole: thus a 2-context has the form l�m�r .
The wrapping operation is accordingly generalised as

l�m�r �2 〈u, v〉 = lumvr .

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 163

Similarly we can have 3-contexts, 3-words, and so on, if we target MCFGs with
nonterminals of dimension 3 or more. We denote p-word and p-context by bold
letters u, v, . . . and sans-serif u,v, . . . , respectively, and the sets of p-words and
p-contexts by Sp and Cp, respectively. The wrapping operations �p for p-words
and p-contexts are also defined accordingly. For a string set D, we define

Subp(D) = {v ∈ Sp | u �p v ∈ D for some u ∈ Cp } ,

Conp(D) = {u ∈ Cp | u �p v ∈ D for some v ∈ Sp } .

Understanding the concerned language L , the polar maps
 and � are also generalised
for S ⊆ Sp and C ⊆ Cp:

S
 = {u ∈ Cp | u �p S ⊆ L } ,

C� = {v ∈ Sp | C �p v ⊆ L } .

For two p-words u and v, we define

u ≡L v if and only if {u}
 = {v}
 .

Distributional learning algorithms for CFGs use an OT to observe which combination
of a context and a substring together forms a sentence in the concerned language.
Since an MCFG may have nonterminals of different dimensions, we now have an
OT for each dimension.7

Once we have obtained those generalisations, almost every technique in the dis-
tributional learning of CFGs can be translated for the learning of MCFGs straight-
forwardly as we will see in the following subsections.

6.8.3 Substitutability

The learnability result of substitutable CFGs presented in Sect. 6.5.2 can be trans-
lated to the MCFG learning [66]. For two 2-words 〈u1, u2〉, 〈v1, v2〉 ∈ S2, let us
write 〈u1, u2〉 .=L 〈v1, v2〉 if there is a 2-context l�m�r such that lu1mu2r ∈ L and
lv1mv2r ∈ L . We say that a language L is 2d-substitutable8 if 〈u1, u2〉 .=L 〈v1, v2〉
implies 〈u1, u2〉 ≡L 〈v1, v2〉.

7Technically speaking, the OT for the highest dimension subsumes the other ones for lower dimen-
sions, since m-contexts and m-words can be seen as special cases of n-contexts and n-words,
respectively, for m < n: e.g., l�r��2 〈u, λ〉 = l�r � u. However, there are cases where it is
more reasonable to exclude the empty string from consideration.
8 The original definition [66] has a slightly weaker form, where stringsm, u1, u2, v1, v2 are restricted
to be non-empty strings. ab∗cd∗e is 2d-substitutable according to the original definition, but it is
not the case in our simplified definition.

heinz@udel.edu

164 A. Clark and R. Yoshinaka

The learning algorithm for pd-substitutable MCFGs in MCFG(p, q) is essentially
the same as the one for substitutable CFGs and it runs in polynomial time under the
assumption that p and q are known to the learner. We note that the degree of the
polynomial linearly depends on pq. The only difference is in the construction of
the learner’s conjecture grammar from a positive data set D. The nonterminal set is
V = ⋃

1≤i≤p Vi , where
Vi = {[[v]] | v ∈ Subi (D) }

is the set of nonterminals of dimension i . What we would like [[v]] to generate is
{u | u ≡L∗ v } where L∗ is the learning target. The initial symbols are

I = {[[v]] ∈ V1 | v ∈ D } .

MCFGs do not have a simple and well-established normal form like the Chomsky
normal form in CFGs. One may introduce a normal form for MCFG(p, q) but it
should involve many different types of rules differently from the case of CFGs,
where branching rules and lexical rules suffice. Instead we introduce rules of the
conjecture grammar in a general form. We have a decomposition rule of the form

[[v]](α) :− [[v1]](x1), . . . , [[vk]](xk)

if

• it is eligible for a rule of an MCFG in MCFG(p, q),
• α[v1, . . . , vk] = v.

Decomposition rules can be seen as a generalisation of branching and terminating
rules in distributional learning of CFGs. We also have chain rules between two
‘substitutable’ k-words:

[[v1]](x) :− [[v2]](x)

if there is u such that u �k v1,u �k v2 ∈ D.
For example, when p = q = 2, from D = {abcde, aabccdee}, we construct rules

[[aabccdee]](x1,1x2,1, x1,2x2,2) :− [[〈a, cde〉]](x1,1, x1,2), [[〈abc, e〉]](x2,1, x2,2) ;
[[〈aa, ccdee〉]](x1,1a, cx1,2e) :− [[〈a, cde〉]](x1,1, x1,2) ;

[[〈a, cde〉]](a, cde) :− ;
[[〈a, cde〉]](x1,1, x1,2) :− [[〈aa, ccdee〉]](x1,1, x1,2)

among others. The first three rules are decomposition rules, whereas the last
one is a chain rule, which is induced from the fact �b� �2 〈a, cde〉,�b� �2

〈aa, ccdee〉 ∈ D.
However, the property of pd-substitutability for p ≥ 2 is far too strong a require-

ment to be useful. The flexibility of the decomposition of a sentence into 2-contexts
and 2-words often makes many 2-words weakly substitutable, and thus the 2d-

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 165

substitutability assumption causes too much generalisation. For example, some
singleton language, say {aaabaaa}, is not 2d-substitutable. We have a�a�a �2

〈aab, a〉 = a�a�a �2 〈a, baa〉 = aaabaaa, which means 〈aab, a〉 .={aaabaaa}
〈a, baa〉, but actually 〈aab, a〉 �≡{aaabaaa} 〈a, baa〉 since a�aa� �2 〈aab, a〉 =
aaabaaa and a�aa� �2 〈a, baa〉 = aaaabaa. This argument also implies that
{ anban | n ≥ 1 } which is still (1d-)substitutable, is not 2d-substitutable.

An interesting mcfl which is 2d-substitutable is MIX, the Bach language:

MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c },

where |w|a denotes the number of occurrences of a in w. Salvati [47] showed that
MIX is in MCFL(2, 2), while Kanazawa and Salvati [31] showed that it is not a
tree-adjoining language. It is easy to see that MIX is indeed 2d-substitutable, since
u .=MIX v iff u ≡MIX v iff |u|a − |u|b = |v|a − |v|b and |u|b − |u|c = |v|b − |v|c.
Joshi et al. [28] suggested that MIX should be excluded from a family of mcs lan-
guages for its complete free word order of letters cannot be considered as ‘limited’
cross-serial dependencies. Yet MIX seems to be quite a simple language from the
learnability point of view.

6.8.4 MAT Result

The other learning algorithms presented in Sects. 6.5 and 6.6 can also be translated in
the same way as in the case of substitutable languages and we obtain diverse classes
of learnable MCFGs. While the pd-substitutability with p ≥ 2 is stronger than the
original 1d-substitutability and accordingly the obtained learnable MCFGs are very
much restricted, the subclasses of MCFGs defined by those properties are indeed
larger than the corresponding classes of CFGs.

6.8.4.1 Congruential MCFGs

The mat learnability result of congruential CFGs presented in Sect. 6.5.1 can be
translated as follows [69]. We say that an MCFG G is congruential if for every non-
terminal N and any elements u, v ∈ L (G, N), we have u ≡L (G) v. By definition,
every congruential CFG is a congruential MCFG.

The grammar Gsg of Example 6.1 is congruential. The languages of respective
nonterminals are

L (Gsg, S) = {cnian j
dv

i
av

j
d | i, j ≥ 1 } ,

L (Gsg, P) = {(nia, via) | i ≥ 1 } ,

L (Gsg, Q) = {(n j
d , v

j
d) | j ≥ 1 } ,

heinz@udel.edu

166 A. Clark and R. Yoshinaka

and for all cnian
j
dv

i
av

j
d ∈ L (Gsg, S), (nia, v

i
a) ∈ L (Gsg, P) and (n j

d , v
j
d) ∈ L (Gsg, Q),

their context sets are

(cnian
j
dv

i
av

j
d)

 = {�} ,

(nia, v
i
a)

 = {c�n j
d�v j

d | j ≥ 1 } ,

(n j
d , v

j
d)

 = {cnia�via� | i ≥ 1 } .

The mat learner for congruential MCFGs constructs a grammar in a way similar to
the one for pd-substitutable MCFGs, except for the condition for chain rules. Now
we have membership oracle and all the entries of the OTs are fulfilled. Let Kd and
Fd be the finite sets of d-words and d-contexts, which label the rows and columns
of the OT for dimension d, respectively. The set of nonterminals of dimension d
is Vd = {[[v]] | v ∈ Kd }, where what we would like [[v]] to generate are again u
such that u ≡L∗ v. Decomposition rules are constructed in exactly the same manner
as before: we have [[v]](α) :− [[v1]](x1), . . . , [[vk]](xk) if it is eligible for a rule of
an MCFG in MCFG(p, q), and α[v1, . . . , vk] = v. The criterion for a chain rule is
different. For u, v ∈ Kd , we have the chain rule of the form [[u]](x) :− [[v]](x) if and
only if u
 ∩ Fd = v
 ∩ Fd .

We again have the monotonicity properties. If we increase the rows in the table,
no existing rules will be removed but new nonterminals and decomposition rules will
be added. On the other hand, if we increase the columns in the table, no new rules
will be added but possibly some chain rules will be removed.

For example, according to the OT in Table 6.7, we have a chain rule

[[〈nd , vd〉]](x1, x2) :− [[〈nand , vavd〉]](x1, x2)

Table 6.7 Examples of OTs for Lsg = {cnian j
dv

i
av

j
d | i, j ≥ 1 }

1d � c� c�vavd

λ 0 0 0

cnava 1 0 0

nava 0 1 0

nand 0 0 1

nana 0 0 0

2d cna�ndva�vd c�nand�vavd cna�nd�
〈na, va〉 1 1 0

〈nd , vd 〉 1 0 0

〈nand , vavd 〉 1 0 0

〈na, ndvavd 〉 0 0 0

〈na, vavavd 〉 0 0 1

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 167

Table 6.8 Expansion of the OT for dimension 2 in Table 6.7

2d cna�ndva�vd c�nand�vavd cna�nd� cnand�vavd�
〈na, va〉 1 1 0 0

〈nd , vd 〉 1 0 0 1

〈nand , vavd 〉 1 0 0 0

〈na, ndvavd 〉 0 0 0 0

〈na, vavavd 〉 0 0 1 0

〈ndnd , vdvd 〉 1 0 0 1

since 〈nd , vd〉
 ∩ F2 = 〈nand , vavd〉
 ∩ F2 = {cna�ndva�vd}. If, however, cnand�vavd�
is added to F2, this chain rule should be discarded since cnand�vavd� �2 〈nd , vd〉 ∈
Lsg but cnand�vavd� �2 〈nand , vavd〉 /∈ Lsg.

On the other hand if we add 〈ndnd , vdvd〉 to K2, we obtain a new chain rule

[[〈nd , vd〉]](x1, x2) :− [[〈ndnd , vdvd〉]](x1, x2),

which will never been removed. See Table 6.8.

6.8.4.2 C-Deterministic MCFGs

One can easily define c-deterministic MCFGs as well according to the translation
framework discussed in Sect. 6.8.2, though no preceding work has done it explicitly.
A context of a nonterminal N of a CFG is defined through the top-down rewriting
derivation process: l�r is a context of N if S

∗⇒ lNr . In the case of an MCFG, we
say that u ∈ Cd is a context of a nonterminal N ∈ Vd if it is generated from an initial
symbol using a special rule N (�, . . . ,�

︸ ︷︷ ︸
d times

) :− just once [64]. We then say that an

MCFG G is c-deterministic if for every nonterminal N of G, every context u of N
characterises L (G, N), i.e., {u}� = L (G, N) (or weakly {u}� ≡L (G) L (G, N)).
By generalising Shirakawa and Yokomori’s algorithm for c-deterministic CFGs, one
can obtain an analogous mat algorithm for c-deterministic MCFGs in MCFG(p, q).
The grammar Gsg itself is not c-deterministic, but a slight modification satisfies the
definition:

S(cx1nand y1x2vavd y2) :− P(x1, x2), Q(y1, y2) ;
P(nax1, vax2) :− P(x1, x2) ;
Q(ndx1, vd x2) :− Q(x1, x2) ;

P(λ, λ) :− ;
Q(λ, λ) :− .

heinz@udel.edu

168 A. Clark and R. Yoshinaka

6.8.5 Finite Kernel Property and Finite Context Property

Yoshinaka [65] has given the MCFG counterpart of the learning of CFGs with the 1-
fkp [17] and Clark and Yoshinaka’s [18] result has established the learning of MCFGs
with the k-fcp. The definitions of the fkp and fcp for MCFGs are now obvious. We
say that an MCFG G has the k-fkp if every nonterminal N of dimension d admits a
finite d-word set SN ⊆ Sd such that

• |SN | ≤ k,
• S

N = L (G, N)
.

We say that an MCFG G has the k-fcp if every nonterminal N of dimension d admits
a finite d-context set CN ⊆ Cd such that

• |CN | ≤ k,
• C�

N = L (G, N).

Learners for MCFGs with the k-fkp in MCFG(p, q) and for those with the k-fcp are
designed in a way similar to the ones for CFGs with the k-fkp and with the k-fcp,
respectively, with the same straightforward translation technique presented in the
previous subsections.

One can combine those primal and dual approaches, of course.

6.9 Discussion

6.9.1 Distributional Learning Beyond MCFGs and CFGs

Distributional learning has been applied recently to learning problems beyond the
CFGs and MCFGs that we consider in this chapter; we briefly review some of these
approaches here.

We also have the extension to Parallel Multiple Context Free Grammars (pmcfgs)
[18, 19]; these grammars include a copying operation which allows them to represent
some phenomena like reduplication. Two other extensions using nonstandard for-
malisms have also been proposed, Distributional Lattice Grammars [11] and Binary
Feature Grammars [17]. These two formalisms use a limited form of conjunction;
it thus seems possible to combine these results with the pmcfg formalism to have a
formalism that includes copying and conjunction.

Synchronous CFGs that are used for modeling transduction can easily be modeled
by MCFGs, but if we assume the transduction is a function this can simplify the learn-
ing problem. There is an extension to learning string transductions along the lines
of the well-known ostia [43] algorithm using a very limited class of synchronous
CFGs called Inversion Transduction Grammars [13]; these learn from input/output
pairs.

heinz@udel.edu

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 169

All of these approaches have considered string languages: the objects being mod-
eled are strings. These approaches have also been extended beyond string languages
to learning languages over other types of objects such as trees [32], and they also
have been applied to graphs with an intended application in computer vision [21],
and to sentence/meaning pairs using Abstract Categorial Grammars [70].

Finally, all of these learning algorithms use only a weak notion of convergence:
the learner must converge to a hypothesis that generates the right language considered
as a set of strings. A stronger notion of convergence requires that the hypothesis be
isomorphic to the target grammar: in other words, that the learner learn a grammar
that generates not just the right set of strings but the right set of structures. Such an
algorithm is presented in [15].

6.9.2 Conclusion

We have reviewed a wide spectrum of algorithms using distributional learning tech-
niques: it is clear that the methods we have studied here do not exhaust the range
of application of this approach. One important point is that from a learnability point
of view, CFGs are just a special case of MCFGs. While there is a significant differ-
ence between regular inference and CFG inference, there seem to be no theoretically
interesting differences between CFGs and MCFGs. Every learning result for CFGs
can be converted into a corresponding result for MCFGs.

References

1. Adriaans, P.: Learning shallow context-free languages under simple distributions. Tech. Rep.
ILLC Report PP-1999-13, Institute for Logic, Language and Computation, Amsterdam (1999)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information and Com-
putation 75(2), 87–106 (1987)

3. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput. Syst. Sci. 50,
336–355 (1995)

4. Boasson, L., Sénizergues, S.: NTS languages are deterministic and congruential. J. Comput.
Syst. Sci. 31(3), 332–342 (1985)

5. Brill, E., Magermann, D., Marcus, M., Santorini, B.: Deducing linguistic structure from the
statistics of large corpora. In: Proceedings of the Third DARPA Workshop on Speech and
Natural Language, pp. 275–282 (1990)

6. Chomsky, N.: The logical structure of linguistic theory. Ph.D. thesis, MIT (1955)
7. Chomsky, N.: Language and mind, 3rd edn. Cambridge University Press (2006)
8. Clark, A.: PAC-learning unambiguous NTS languages. In: Y. Sakakibara, S. Kobayashi, K. Sato,

T. Nishino, E. Tomita (eds.) Grammatical Inference: Algorithms and Applications, Lecture
Notes in Computer Science, vol. 4201, pp. 59–71. Springer Berlin Heidelberg (2006)

9. Clark, A.: A learnable representation for syntax using residuated lattices. In: Proceedings
of the 14th Conference on Formal Grammar. Bordeaux, France (2009). http://www.papers/
alexcFG2009.pdf

heinz@udel.edu

http://www.papers/alexcFG2009.pdf
http://www.papers/alexcFG2009.pdf

170 A. Clark and R. Yoshinaka

10. Clark, A.: Distributional learning of some context-free languages with a minimally adequate
teacher. In: J. Sempere, P. García (eds.) Proceedings of ICGI, no. 6339 in LNCS, pp. 24–37.
Springer (2010)

11. Clark, A.: Efficient, correct, unsupervised learning of context-sensitive languages. In: Proceed-
ings of the Fourteenth Conference on Computational Natural Language Learning, pp. 28–37.
Association for Computational Linguistics, Uppsala, Sweden (2010)

12. Clark, A.: Learning context free grammars with the syntactic concept lattice. In: J. Sempere,
P. García (eds.) Grammatical Inference: Theoretical Results and Applications. Proceedings of
the International Colloquium on Grammatical Inference, pp. 38–51. Springer (2010)

13. Clark, A.: Inference of inversion transduction grammars. In: Proceedings of ICML. Bellevue,
Washington (2011)

14. Clark, A.: The syntactic concept lattice: Another algebraic theory of the context-free languages?
Journal of Logic and Computation (2013). doi:10.1093/logcom/ext037

15. Clark, A.: Learning trees from strings: A strong learning algorithm for some context-free
grammars. Journal of Machine Learning Research 14, 3537–3559 (2014)

16. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-free lan-
guages. Journal of Machine Learning Research 8, 1725–1745 (2007)

17. Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently learn context-
free languages. Journal of Machine Learning Research 11, 2707–2744 (2010)

18. Clark, A., Yoshinaka, R.: Beyond semilinearity: Distributional learning of parallel multiple
context-free grammars. In: J. Heinz, C. de la Higuera, T. Oates (eds.) Proceedings of the
Eleventh International Conference on Grammatical Inference, JMLRWorkshop andConference
Proceedings, vol. 21, pp. 84–96 (2012)

19. Clark, A., Yoshinaka, R.: Distributional learning of parallel multiple context-free grammars.
Machine Learning pp. 1–27 (2013). doi:10.1007/s10994-013-5403-2.

20. Dediu, A.H., Martín-Vide, C. (eds.): Language and Automata Theory and Applications - 6th
International Conference, LATA 2012, A Coruña, Spain, March 5-9, 2012. Proceedings,Lecture
Notes in Computer Science, vol. 7183. Springer (2012)

21. Eyraud, R., Janodet, J., Oates, T.: Learning substitutable binary plane graph grammars. In:
Proceedings of ICGI, vol. 21, pp. 114–128 (2012)

22. Fisher, M.J.: Grammars with macro-like productions. Ph.D. thesis, Harvard University (1968)
23. Gold, E.M.: Language identification in the limit. Information and Computation 10(5), 447–474

(1967)
24. Harris, Z.: Distributional structure. Word 10(2-3), 146–62 (1954)
25. Hotz, G., Pitsch, G.: On parsing coupled-context-free languages. Theoretical Computer Science

161(1&2), 205–233 (1996)
26. Huybrechts, R.A.C.: The weak inadequacy of context-free phrase structure grammars. In:

G. de Haan, M. Trommelen, W. Zonneveld (eds.) Van Periferie naar Kern. Foris, Dordrecht,
Holland (1984)

27. Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required to provide
reasonable structural descriptions? In: D.R. Dowty, L. Karttunen, A. Zwicky (eds.) Natural
Language Parsing, pp. 206–250. Cambridge University Press, Cambridge, MA (1985)

28. Joshi, A.K., Vijay-Shanker, K., Weir, D.J.: The convergence of mildly context-sensitive gram-
mar formalisms. In: P. Sells, S.M. Shieber, T. Wasow (eds.) Foundational Issues in Natural
Language Processing, pp. 31–81. MIT Press, Cambridge, MA (1991)

29. Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The universal recognition problems for parallel
multiple context-free grammars and for their subclasses. IEICE Transaction on Information
and Systems E75-D(7), 499–508 (1992)

30. Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-free grammars.
In: Language and Automata Theory and Applications, pp. 344–355. Springer (2010)

31. Kanazawa, M., Salvati, S.: Mix is not a tree-adjoining language. In: ACL (1), pp. 666–674.
The Association for Computer Linguistics (2012)

32. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree grammars. In:
J. Kivinen, C. Szepesvári, E. Ukkonen, T. Zeugmann (eds.) Algorithmic Learning Theory,
Lecture Notes in Computer Science, vol. 6925, pp. 398–412. Springer (2011)

heinz@udel.edu

http://dx.doi.org/10.1093/logcom/ext037
http://dx.doi.org/10.1007/s10994-013-5403-2

6 Distributional Learning of Context-Free and Multiple Context-Free Grammars 171

33. Keller, B., Lutz, R.: Evolutionary induction of stochastic context free grammars. Pattern Recog-
nition 38(9), 1393–1406 (2005)

34. Klein, D., Manning, C.D.: A generative constituent-context model for improved grammar
induction. In: Proceedings of the 40th Annual Meeting of the ACL (2002)

35. Kracht, M.: The Mathematics of Language, Studies in Generative Grammar, vol. 63, pp. 408–
409. Mouton de Gruyter (2003)

36. Kulagina, O.S.: One method of defining grammatical concepts on the basis of set theory.
Problemy Kiberneticy 1, 203–214 (1958). (in Russian)

37. Kunze, J.: Versuch eines objektivierten Grammatikmodells I, II. Z. Zeitschriff Phonetik Sprach-
wiss. Kommunikat 20-21 (1967–1968)

38. Langley, P., Stromsten, S.: Learning context-free grammars with a simplicity bias. In:
R. López de Mántaras, E. Plaza (eds.) Machine Learning: ECML 2000, Lecture Notes in
Computer Science, vol. 1810, pp. 220–228. Springer Berlin Heidelberg (2000)

39. Leiss, H.: Learning CFGs with the finite context property: A note on A. Clark’s algorithm
(2012). Manuscript

40. Luque, F.M., Infante-Lopez, G.: PAC-learning unambiguous k, l-NTS≤ languages. In: J.M.
Sempere, P. García (eds.) Grammatical Inference: Theoretical Results and Applications, Lec-
ture Notes in Computer Science, vol. 6339, pp. 122–134. Springer Berlin Heidelberg (2010)

41. Marcus, S.: Algebraic Linguistics; Analytical Models. Academic Press, New York (1967)
42. Myhill, J.: Review of On Syntactical Categories by Yehoshua Bar-Hillel. The Journal of Sym-

bolic Logic 15(3), 220 (1950)
43. Oncina, J., García, P., Vidal, E.: Learning subsequential transducers for pattern recognition

interpretation tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 448–
458 (1993)

44. Pitt, L.: Inductive inference, DFAs, and computational complexity. In: Proceedings of 2nd
Workshop on Analogical and Inductive Inference, Lecture Notes in Computer Science, vol.
397, pp. 18–44 (1989)

45. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems.
Theor. Comput. Sci. 223(1-2), 87–120 (1999)

46. Sakakibara, Y.: Learning context-free grammars from structural data in polynomial time. The-
oretical Computer Science 76(2-3), 223–242 (1990)

47. Salvati, S.: MIX is a 2-MCFL and the word problem in Z
2 is solved by a third-order collapsible

pushdown automaton. Tech. Rep. Inria-00564552, version 1, INRIA (2011). URL http://hal.
inria.fr/inria-00564552

48. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical
Computer Science 88(2), 191–229 (1991)

49. Sénizergues, G.: The equivalence and inclusion problems for NTS languages. Journal of Com-
puter and System Sciences 31(3), 303–331 (1985)

50. Sestier, A.: Contribution à une théorie ensembliste des classifications linguistiques. In: Premier
Congrès de l’Association Française de Calcul, pp. 293–305. Grenoble (1960)

51. Shibata, C., Yoshinaka, R.: PAC learning of some subclasses of context-free grammars with
basic distributional properties from positive data. In: S. Jain, R. Munos, F. Stephan, T. Zeugmann
(eds.) ALT, Lecture Notes in Computer Science, vol. 8139, pp. 143–157. Springer (2013)

52. Shieber, S.M.: Evidence against the context-freeness of natural language. Linguistics and Phi-
losophy 8, 333–343 (1985)

53. Shinohara, T.: Rich classes inferrable from positive data – length-bounded elementary formal
systems. Information and computation 108(2), 175–186 (1994)

54. Shirakawa, H., Yokomori, T.: Polynomial-time MAT learning of c-deterministic context-free
grammars. Transactions of the Information Processing Society of Japan 34, 380–390 (1993)

55. Smullyan, R.: Theory of Formal Systems. Princeton University Press (1961)
56. Stabler, E.: Derivational minimalism. In: C. Retoré (ed.) Logical aspects of computational

linguistics (LACL 1996), pp. 68–95. Springer (1997)
57. van Helden, W.: Case and gender: Concept formation between morphology and syntax (II

volumes). Studies in Slavic and General Linguistics. Rodopi, Amsterdam-Atlanta (1993)

heinz@udel.edu

http://hal.inria.fr/inria-00564552
http://hal.inria.fr/inria-00564552

172 A. Clark and R. Yoshinaka

58. van Zaanen, M.: ABL: Alignment-based learning. In: COLING 2000 - Proceedings of the 18th
International Conference on Computational Linguistics, pp. 961–967 (2000)

59. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars.
Mathematical Systems Theory 27(6), 511–546 (1994)

60. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by
various grammatical formalisms. In: Proceedings of the 25th annual meeting of Association
for Computational Linguistics, pp. 104–111. Stanford (1987)

61. Wells, R.S.: Immediate constituents. Language 23(2), 81–117 (1947)
62. Wurm, C.: Completeness of full Lambek calculus for syntactic concept lattices. In: Proceedings

of the 17th conference on Formal Grammar 2012 (FG) (2012)
63. Yoshinaka, R.: Identification in the limit of k, l-substitutable context-free languages. In:

A. Clark, F. Coste, L. Miclet (eds.) ICGI, Lecture Notes in Computer Science, vol. 5278,
pp. 266–279. Springer (2008)

64. Yoshinaka, R.: Learning mildly context-sensitive languages with multidimensional substi-
tutability from positive data. In: R. Gavaldà, G. Lugosi, T. Zeugmann, S. Zilles (eds.) ALT,
Lecture Notes in Computer Science, vol. 5809, pp. 278–292. Springer (2009)

65. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages from positive
data and membership queries. In: J.M. Sempere, P. García (eds.) ICGI, pp. 230–244. Springer
(2010)

66. Yoshinaka, R.: Efficient learning of multiple context-free languages with multidimensional
substitutability from positive data. Theoretical Computer Science 412(19), 1821–1831 (2011)

67. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based on syntactic
concept lattices. In: G. Mauri, A. Leporati (eds.) Developments in Language Theory, Lecture
Notes in Computer Science, vol. 6795, pp. 429–440. Springer (2011)

68. Yoshinaka, R.: Integration of the dual approaches in the distributional learning of context-free
grammars. In: Dediu and Martín-Vide [20], pp. 538–550

69. Yoshinaka, R., Clark, A.: Polynomial time learning of some multiple context-free languages
with a minimally adequate teacher. In: P. de Groote, M.J. Nederhof (eds.) Formal Grammar:
15th and 16th International Conference on Formal Grammar, pp. 192–206. Springer (2012)

70. Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial grammars. In:
S. Pogodalla, J.P. Prost (eds.) LACL, Lecture Notes in Computer Science, vol. 6736, pp. 251–
266. Springer (2011)

heinz@udel.edu

