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Abstract. The basic question addressed in this paper is: how can a learning algorithm
cope with incorrect training examples? Specifically, how can algorithms that produce
an "approximately correct" identification with "high probability" for reliable data be
adapted to handle noisy data? We show that when the teacher may make independent
random errors in classifying the example data, the strategy of selecting the most con-
sistent rule for the sample is sufficient, and usually requires a feasibly small number of
examples, provided noise affects less than half the examples on average. In this setting
we are able to estimate the rate of noise using only the knowledge that the rate is less
than one half. The basic ideas extend to other types of random noise as well. We also
show that the search problem associated with this strategy is intractable in general.
However, for particular classes of rules the target rule may be efficiently identified if we
use techniques specific to that class. For an important class of formulas - the k-CNF
formulas studied by Valiant - we present a polynomial-time algorithm that identifies
concepts in this form when the rate of classification errors is less than one half.

1. Introduction

The ability to form general concepts on the basis of particular examples is
an essential ingredient of intelligent behavior. If the examples may contain
errors, the task of useful generalization becomes harder. In this paper
we address the question of how to compensate for randomly introduced
errors, or "noise", in the example data. The examples are assumed to be
generated by a sampling procedure that first produces a correctly classified
example; subsequently the example is subjected to a noise process before
being presented to the learning algorithm. The noise affects each example
independently. Our criterion for correct identification is that of "probably
approximately correct identification," introduced by Valiant (1984).
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The main contributions of this paper are the introduction of a simple
model of noise (the Classification Noise Process), a general upper bound
on the size of a sample sufficient for learning in finite domains in the pres-
ence of classification noise, and evidence that computationally feasible algo-
rithms exist for learning in the presence of classification noise in non-trivial
domains. In addition, we indicate how some of the ideas may be used in
more general settings. In the remainder of this section we define the notion
of "probably approximately correct identification," give an example of this
process, and introduce our model of random noise in the data.

1.1 Probably approximately correct identification
Valiant (1984) has proposed a general criterion of correct identification

of a concept from examples in a stochastic setting. The idea is that after
randomly sampling examples and non-examples of a concept, an identifi-
cation procedure should conjecture a concept that with "high probability"
is "not too different" from the correct concept.

For example, suppose a customs official requires the ability to recognize
smugglers on sight. Her/his goal is to formulate a yes-or-no decision rule
based on visual attributes (sex, hairstyle, nervousness, etc.), assuming that
the attributes are sufficient to discriminate smugglers from non-smugglers
exactly. Initially the new official goes through a learning phase in which
each traveler's luggage and person is checked thoroughly, and a determina-
tion is made as to whether the person is a smuggler or not. After a certain
number of examples, the official formulates a classification rule.

We do not expect the rule to be perfect (e.g., it might not apply to
customs traffic elsewhere in the country), but it should be nearly correct
for the typical distribution of travelers at this site. There is also some
chance that, because of an unusual event (e.g., a sudden temporary drop
in the local value of smuggled goods), the distribution of smugglers during
the training phase is abnormal, and as a result the decision rule performs
poorly under normal conditions. However, the likelihood of this is small.
Important issues about this procedure include the number of training ex-
amples (detailed inspections) the official must conduct in order to refine
the decision rule to within a specified accuracy and the computational
complexity of the learning procedure for a given class of possible rules.

The ideas illustrated by this example are made precise by the following
definitions. Let L1 , L2 , . . . be a countable family of subsets of a countable
universe U, and let D be an unknown probability distribution on the el-
ements of U. The task is to identify an unknown one of these sets, L*,
given access only to a sampling oracle EX( ). Each call to EX( ) randomly
selects an element x from the universe U according to the distribution D
and returns (x, +) if x £ L*, and returns (x, —) otherwise.
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Let us relate this to our smuggling example. U is the class of all pos-
sible travelers, as described by the attributes we have chosen to observe.
The class of smugglers constitutes a subset of these people. In this case,
the sampling oracle is realized by the arrival of travelers at the customs
inspection site, with positive examples being those who are smugglers, and
negative ones being those who are not. The identification procedure makes
a number of calls to EX( ) and then conjectures one of the sets, Lh . The
success of the identification is measured by two parameters, E and 6, which
are given as inputs to the identification procedure.

The parameter E (the tolerance) is a bound on the "difference" between
the conjectured set Lh and the unknown set L*. Define

where S and T are any subsets of U, S A T is the symmetric difference1

of S and T, and PrD denotes probability with respect to the distribution
D. Thus, d (S ,T) is precisely the probability that in one call to EX( ) we
will draw an element that is in one but not the other of the two sets.

The parameter 8 is a confidence parameter. Because the calls to EX( )
are random experiments, there is always the possibility of getting a wildly
unrepresentative sample and drawing a ridiculous conclusion. The param-
eter 6 is a bound on the likelihood of such an event.

In terms of our example, it may be acceptable for the customs official
to identify smugglers at least 80% of the time; in this case the tolerance
is € = 0.2. Since training time is expensive (and quite irksome to the
travelers), the officials want to be 98% sure that a single training period
will result in an adequate rule; given this goal, they should choose 6 to be
0.02.

The identification procedure is said to do probably approximately correct
identification of L* if and only if

where the probability is taken over all possible runs of the procedure. We
abbreviate "probably approximately correct identification" as pac-identifi-
cation. Less formally, the requirement is that the difference between the
correct rule L* and the conjectured rule Lh be small (less than E) with high
probability (greater than 1 — 6).

1S A T = (S - T) U (T - S), the set of elements in S or in T but not both.
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1.2 An example: Finite classes

Let L = { L 1 , . . . , LN} be any finite set of N rules. A simple algorithm2

that pac-identifies L requests m — (1/e)ln(N/$) examples and then out-
puts any rule that agrees with all these examples. Since some rule L* in £,
is correct, it is always possible to find such a rule. We can show that any
rule agreeing with m or more randomly chosen examples has error greater
than E only with probability less than 6.

Consider a rule L with error d(L,L*) > E. This means the likelihood
that a random example agrees with L is less than (1 — E); hence for m such
examples, the likelihood that L agrees with all of them is less than (1 — E)m.
We can bound (1 — E)m by e-Em. Substituting the value of m above, this
in turn is bounded by 6/N. Finally, there are at most N — 1 such rules
with unacceptably large error; summing the probabilities that any one of
them agrees with all m examples, we have a probability less than 6. The
requirements for pac-identification are therefore satisfied.

Consider now what happens to this procedure when some of the examples
may be incorrect: there may no longer be any rule in the class L that is
consistent with all the examples. In the worst case this could happen even
if a single example is erroneous. Thus this algorithm is unsuitable even for
very low rates of noise in the training data.

1.3 Related research

Many of the algorithms in the literature suffer similarly from a critical
dependency on complete correctness in the training data, but there are
noteworthy exceptions.

A variety of heuristic techniques have been devised to handle particu-
lar types of rules under special noise conditions. Recent examples include
Schlimmer and Granger (1986) and Wilkins and Buchanan (1986). Also,
Quinlan (1986) performed an experimental study of the effects of noise on
learning classification rules. By independently varying the rates of noise af-
fecting each attribute and also by allowing random misclassification (errors
in the sign), he was able to quantify the impact of the noise with respect
to the importance of the attribute in the target rule. Generally speaking,
classification errors were found to be more significant than attribute noise.

For probabilistic identification, fewer results are available. Vapnik (1982),
studying the statistical problem of choosing a rule that best accounts for
empirical data, defines a model incorporating random variations in the
classification of examples, and presents a statistical algorithm for finding

2Blumer, Ehrenfeucht, Haussler, and Warmuth (1986) present a more general version
of this algorithm.
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the most successful classification rule for an unknown population of data.
Vapnik was not concerned with identifying the rule being presented, but
despite the different nature of his objectives and his model of noise, his
approach is similar to the one we describe below.

Valiant (1984) gives an algorithm for pac-identifying an important sub-
class of Boolean formulas, and elsewhere (Valiant, 1985) he modifies the
algorithm to handle a certain amount of error in the examples. If n and
k are positive integers, CNF(n,k) denotes the class of all propositional
formulas in conjunctive normal form over the variables x 1 , x 2 , . . . , x n with
at most k literals per clause. For example, (x1 V x2) A (~ x3 V x4 V x5) is
in CNF(5,3) but not CNF(5,2).

For fixed n, the universe U is the set of all truth assignments a mapping
each variable x 1 , x 2 , . . . , x n to the set {0,1}. A formula o in CNF(n, k) is
interpreted as representing the set of all assignments a from U that satisfy
0, i.e., such that a ( o ) = 1. A sampling oracle EX( ) returns assignments
(represented as vectors of length n of 0's and 1's) marked either + or —
according to whether they satisfy the unknown formula 0*.

Valiant (1984) gives an identification procedure V that takes n, k, E, and
6 as input. V has access to a sampling oracle EX+( ) for positive examples
of an unknown formula 0*, runs in time polynomial in nk, 1/E, and log 1 / 6 ,
and does pac-identification of o*, for any 0* from CNF(n, k).

The procedure V calculates from n, k, E, and 6 a number, m, of samples
to draw, makes m calls to EX+( ), and then outputs the conjunction of
all clauses over x1 ,x2 ,...,xn with at most k literals per clause that are
satisfied by every positive example, i.e., by every assignment a such that
some call to EX+( ) returned the value (a, +).

Valiant (1985) considers how this algorithm (and its dual for DNF(n, k)
with EX- ( )) can be extended to handle a small rate of errors in the exam-
ples - errors possibly chosen in the most damaging way by an adversary.
For each example, a biased coin is flipped, and if it comes up heads (with
probability 1 — n), an example a is drawn and correctly classified as before.
However, if it comes up tails (with probability n), an adversary is allowed
to choose the example and classify it (perhaps incorrectly). This is called
the malicious error model, since the algorithm must be guaranteed to work
correctly for the worst possible set of choices by the adversary.

Valiant's result shows that for a very low rate of error n < E, his al-
gorithm can be modified to achieve pac-identification. He suggests that
only low error rates in general can be permitted if successful identification
is to be possible. Kearns and Li (1987) show that this is the case for the
malicious error model. In particular, for a very wide class of hypothesis
spaces, if the rate of errors, n, is greater than or equal to the desired accu-
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racy, E, then no learning algorithm can be successful at pac-identification.
Their results show even more stringent bounds on the error rate in the
case where only positive or only negative examples are used by the learn-
ing algorithm. Our results show that a much larger rate of errors can be
overcome for other, more predictable, models of errors in the data.

2. Learning despite classification noise

In this section we first define a simple model of random noise, and then
consider how to modify the algorithm of Section 1.2 to accommodate errors
of this type. We then consider in general the computational complexity of
the solution. In the next section we show that the class CNF(n, k) can be
pac-identified efficiently despite classification noise.

2.1 A simple noise model

We introduce a model of random errors, or "noise," in the sampling or-
acle EX( ), called the Classification Noise Process. We assume that the
sampling oracle is able to draw elements from the relevant distribution D
without error, but that the process of determining and reporting whether
the example is positive or negative is subject to independent random mis-
takes with some unknown probability n < 1/2. Thus the experiment per-
formed by EX( ) involves drawing a random element x from U according
to the distribution D, and then flipping a coin that comes up heads with
probability 1 — n. If the coin comes up heads, one reports x with the cor-
rect sign, otherwise, one reports x with the reverse of the correct sign. To
indicate that the oracle is subject to errors of this type, we will denote it
by EX n ( ). EX 0 ( ) is the sampling oracle with no errors of reporting.

We can interpret the Classification Noise Process using the example of
the customs official learning to recognize smugglers. Every so often, a
smuggler's stash is overlooked, or an ordinary traveler is mistakely nabbed
because someone has hidden contraband in his or her luggage. With some
probability n, such a false identification occurs independently for each trav-
eler.

Why do we restrict n to be less than 1/2? Clearly, when n = 1/2,
the errors in the reporting process destroy all possible information about
membership in the unknown set L*, and no identification procedure could
be expected to work. When n > 1/2, there is information about L*, but it
is equally information about the complement of L* with the smaller error
1 — n. While in principle we might be able to recognize this situation in
domains that are not closed under complement with respect to U, we have
chosen not to pursue this possibility.
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If n is very close to 1/2, how could an identification procedure be ex-
pected to work? For purposes of exposition, we assume that there is some
information about n available as input to the identification procedure,
namely an upper bound nb such that n < nb < 1/2. (Later, we show
that this assumption is unnecessary.) Just as an "efficient" identification
procedure is permitted in the absence of noise to run in time polynomial in
1/e and 1/6, in the presence of noise we will permit the polynomial to have
1/(1 — 2nb) as one of its arguments. This quantity is inversely proportional
to how close nb is to 1/2, so the closer the upper bound on the error rate
is to 1/2, the longer the identification procedure will be permitted to run.

How general is this model of noise? It seems appropriate to a setting in
which there is an observable, reliable mechanism selecting examples, and a
separate, noisy one classifying them. However, there are many situations
for which this is not a reasonable assumption. For example, if correct
examples are being transmitted over a noisy line (say, with independent
noise in each bit), then not only is the sign of the example subject to errors,
but a given example x may be changed into another one x'. In this case,
the examples x' reported by the sampling oracle may come from a different
distribution D'. Even if our results were applicable in this situation, the
"difference" of the hypothesis from the correct set would be measured with
respect to the observed distribution D' instead of the true distribution D,
which is not necessarily what is wanted.

Note the difference between the classification noise model and that treated
by Valiant (1985). In the earlier study, the errors could be maliciously
rather than randomly chosen. Valiant's results for CNF(n, k) hold only for
a small rate of noise, and indeed we shall see that this model can tolerate
only a small rate of noise for any domain. However, the basic ideas behind
the analysis of classification noise are applicable to other types of noise,
and they can be used to derive estimates of the amount of tolerable noise
and the number of examples required.

2.2 How many noisy examples are enough?

Forgetting for a moment the question of computational feasibility, how
can we be sure that there is enough information in a certain number of
samples drawn from a noisy oracle to determine the unknown set L* to
within E error with probability at least 1 — 61 We consider the simple case
of a finite set of hypotheses, say, L1 ,L2 ,... ,LN. For the noise-free case,
the result described in Section 1.2 can be summarized as follows.
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Theorem 1 (Blumer et al., 1986) If Li is any hypothesis that agrees with
at least

samples drawn from the EX0( ) oracle, then

This result is simple but significant. It says that there is enough infor-
mation in a feasibly small number of examples to pac-identify any finite
domain. In this approach, the examples serve as a probabilistic filter to
screen out unacceptably bad hypotheses.

Note that because of the dependence of the sample size on log N, large
increases in the number of rules in the class L cause only much smaller
growth in the size of the sample required. For the same reason we can
significantly decrease the confidence limit 6 with only a small increase in
the sample size. To use this approach in a practical setting, we need to
consider the computational complexity of searching for a hypothesis that
is consistent with the samples drawn. For some domains this is known to
be a hard problem (Blumer et al., 1986).

In the presence of noise this approach may fail because there is no guar-
antee that any of the hypotheses will be consistent with all the examples.
However, if we replace the goal of consistency with that of minimizing the
number of disagreements with the examples, and permit the number of
samples to depend on the upper bound nb on the error rate, we get an
analogous result, given by Theorem 2 below.3

This theorem is most usefully interpreted as a simple, general result giv-
ing an upper bound on the size of a sample sufficient for pac-identification in
finite domains in the presence of classification noise. Minimizing the num-
ber of disagreements with the examples can be a computationally difficult
problem (see Theorem 4 for evidence of this), so this approach generally
does not yield an efficient algorithm. More sophisticated approaches are
possible in specific domains, as we show in Section 3.

Let a — (x1, s1), (x2, s 2 ) , . . . , (xm, sm) denote a sequence of samples drawn
from an EXn( ) oracle, where each xi is in the universe U and each si is
either + or —. If Li is any possible hypothesis, let F(Li,a] denote the
number of indices j for which Li disagrees with (xj , S j ) , that is, Sj = +
and xj is not in Li or sj = — and xj is in Li.

3Shackelford and Volper (1987) discovered this theorem independently.
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Theorem 2 If we draw a sequence r of

samples from an EXn ( ) oracle and find any hypothesis Li that minimizes
F(Li,a), then

PROOF: We analyze the expected rate of disagreement between any hy-
pothesis Li and sample sequences produced by the oracle EX n ( ) with
unknown set L* . Let

The probability that an example produced by EXn( ) disagrees with Li
is the probability that an example is drawn from Li A L* and reported
correctly (which is just di(1 — n)) plus the probability that an example is
drawn from the complement of Li A L* and reported incorrectly (which is
just (1 - d i ) n . ) Let pi denote the probability that an example from EX n ( )
disagrees with Li; then we have

In the case that the hypothesis Li is equal to L*, we have pi = n, since dis-
agreements will only arise as the result of reporting errors. The expression
for pi may be rewritten as

Since n < 1/2, this shows that any hypothesis Li has an expected rate of
disagreement of at least n. In particular, if we define a hypothesis Li to be
E-bad if and only if di > E, then for any E-bad hypothesis Li we have

Thus we have a separation of at least E(l — 2n) between the disagreement
rates of correct and E-bad hypotheses. By our assumptions, n is not known,
but an upper bound nb < 1/2 is known, so we have a known lower bound
on the separation, E(l — 2nb).

The problem is reduced to guaranteeing that the number m of samples
drawn from EXn( ) is sufficient to guarantee that no E-bad hypothesis
has a lower observed rate of disagreement with the samples than L*, with
probability greater than 1 — 6.

At this point we must introduce some notation. Let p be a number be-
tween 0 and 1, and suppose that we have a coin Cp whose probability of
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coming up heads on each toss is p. Let r be a number between 0 and 1,
and let m be a non-negative integer. Then GE(p, m, r) will denote the
probability of getting at least rm heads in a sequence of m independent
flips of the coin Cp. (Formally, this is the probability of getting at least
rm successes in m independent Bernoulli trials with probability p.) Anal-
ogously LE(p, m, r) will denote the probability of at most rm successes
in m independent Bernoulli trials with probability p. We present lemmas
bounding these quantities in the Appendix.

Let s = E(l — 2nb), and let a denote a sequence of m examples drawn
from the noisy sampling oracle EXn ( ). In order for some E-bad hypothesis
Li to minimize F(Li,a), either

or

for some E-bad hypothesis Li ,or both. Applying Lemma 10 in the Ap-
pendix,

and if Li is E-bad then

Thus the probability that any E-bad hypothesis Li has F(Li, a)/m < n+s/2
is at most 6/2, since there are at most N — 1 E-bad hypotheses. Putting
these two inequalities together, the probability that some E-bad hypothesis
minimizes F(Li ,a) is at most 8. •

Note that the bound m on the number of examples is polynomial in log N,
1/e, log(l/6), and 1/(1 — 2nb). Thus the noise has increased the number of
examples we must obtain, but not to an infeasible number. Laird (1987)
has calculated a better upper bound than that in Equation (1), as well as
a lower bound; in particular, m depends only on e-1, and not on e - 2 .

Theorems 1 and 2 both depend on the fact that the set £ of rules is
finite, but suppose L is a countable or even continuous class? We will
not discuss this case in detail, but Blumer et al. (1986) have shown that
whether or not an infinite class can be identified by means of a finite set of
reliable examples depends on a property of the class known as the Vapnik-
Chervonenkis dimension. Only classes with finite dimension d can be so
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identified. Using their result, together with the ideas of Theorem 2, one
can also show (Laird, 1987) that classes with finite d are precisely those
which can be so identified when the examples are afflicted by classification
noise. The finite situation above is a special case, with d < log N.

Vapnik (1982), whose work we have already mentioned, suggests a sim-
ilar statistical approach when the examples are independently subjected
to random classifications that may depend on the specific example. That
is, instead of a uniform error rate 77 for all examples x drawn from .D,
the probability n ( x ) of a classification error may depend upon the partic-
ular example x. Let L0 be the hypothesis with the smallest expected rate
of disagreement with the oracle EXn( ); Vapnik shows that the sampling
technique of Theorem 2 can be used to find (with probability greater than
1 — 6) a hypothesis L such that d ( L , L 0 ) < E.

With this procedure, the intent is to discover the best classification rule
for describing the sample data from a noisy source EXn. By contrast, the
intent of the above identification procedure is to discover L*, the classi-
fication rule underlying the data. These need not be the same; indeed,
the rule L obtained with Vapnik's procedure may not satisfy the condition
d(L, L*) < E, even when the mean rate of classification errors over the ex-
amples is less than one half. For example, let U = {a,b} and L* = {a, b},
with examples distributed as follows: PrD [a] = 0.1,PrD[b] = 0.9, and
n(a) = 0.6,n(b) = 0.48. Here the probability that L* disagrees with a ran-
dom example is PrD[a]n(a) + Pro[b]n(b) = 0.492, whereas the hypothesis
L0 = {b} disagrees at a rate of P r D [ a ] ( 1 - n ( a ) ) + P r D [ b } n ( b ) = 0.472. Note
that L0 fails on average less often than the correct set £*, even though the
mean rate of noise is 0.492 (less than half). So for this noise model, the
procedure may propose an E-bad rule with unacceptably high probability.

2.3 Determining nb

So far we have assumed that the identification procedure is told an upper
bound nb < 1/2 on the noise rate 77. We now show that this assumption is
unnecessary.

Continuing with the example of the customs official learning to spot
smugglers, whereas before the person was (somehow) told that at most
5% (say) of the customs inspections will yield an incorrect classification,
no such information is now provided. The only assumption is that fewer
than half the examples are wrong on average. Surprisingly, the official can
estimate an upper bound (less than 1/2) on the rate of noise with a feasible
number of examples.

We have seen that the rate at which a rule L disagrees with the examples
is at least n, and that for the target rule L* this rate is precisely n. Hence we
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Table 1. The algorithm E.

Let

1.

2.

L = { L 1 , L 2 , . . . , L N } .

Initialize: nb — 1/4 and r — 1.
(Round r) Repeat until the halt condition is fulfilled:

2.1 Request m r ( N , S) examples. (The value of mr is given in the
text.)

2.2 For each rule Li E L, test Li against all the examples and
determine pi = Fi/mr, the proportion of examples in dis-
agreement with Li. Let p min be the minimum such value.

2.3 If pmin < nb - 2 - ( r + 2 ) , then halt and output nb.
2.4 Else,

2.41 r-r + l.
2.42 nb - 5-2- ( r + 1 ) .

can use the minimum rate of disagreement over all the rules as an estimator
for the noise n. Once again this does not yield a feasible algorithm in
general, since a direct implementation entails minimizing the number of
disagreements over the whole hypothesis space. However, in Section 3 we
see that the basic method can be adapted to be computationally feasible
in a specific situation.

We describe a procedure that outputs a value nb such that with proba-
bility at least 1 — 8, r nb is between n and 1/2. Given this value, we can use
Theorem 2 to find an acceptable hypothesis with probability at least 1 — 6.
The probability that either of these procedures fails is then less than 18.

Our algorithms require that nb be an upper bound for n and also be
less than 1/2. One idea is to take enough samples so that the empirical
rate of disagreement for each hypothesis is "very close" to its average.
However, we have no way in advance of knowing how close n is to 1/2,
and nb must squeeze in between them. Thus it seems that we must use
an iterative search procedure that successively reduces the gap assumed to
exist between n and 1/2.

We begin by guessing that n is less than 1/4, and take nb = 1/4. If that
value fails a certain test, we increase the guess to 3/8, then 7/16, etc., each
time halving the distance between the previous guess and 1/2. For the
test, we draw some examples and estimate the failure probability of each
of the rules in L. The smallest empirical failure rate pi = F(Li,a)/m is
compared to the current value of nb. If pi < nb, we halt and output nb as
our bound. Otherwise we increase nb and repeat. The size of the sample
drawn is increased at each iteration.
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Table 1 presents a specific algorithm E that implements this strategy.
This leads to the following theorem:

Theorem 3 Let

Then with probability greater than 1 — 6, algorithm E halts on or before
round r' = 1 + [log2(l — 2 n ) - 1 } and outputs an estimate nb such that
n < nb < 1/2.

PROOF: The value of mr has been chosen so that, in mr examples,

and

(Apply Lemma 9 with 2- (r+2) in place of s and 5/(N2r+2) in place of
6.) Thus if a rule Li is expected to disagree with a fraction pi of the
examples, the probability that |pi- pi| > 2-(r+2) is at most ( 6 / 2 ) / ( N 2 r ) .
After summing over 7V rules and over all possible rounds, we find that the
probability that in any round r the empirical value pi for some rule differs
from its expected value pi by as much as 2~(r+2) is at most 6/2. We claim
that, with probability greater than 1 — 6/2,

• the algorithm halts on or before round r' = 1 + [l^U - 2n)"1].

• when it halts, nb > r].

In round r', n < \ — l/2r', and mr> is sufficient to ensure that pmin <
n + 2~(r/+2), with a probability of more than 1 — 6/2. However,

with probability > 1 — 6/2. Thus the algorithm will halt at or before round
r1 with this probability.
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Suppose the algorithm halts in round r. By choice of mr, pmin > n —
2-(r+2) with probability more than 1 - 6/2. The fact that it stops implies
that pmin < rb - 2-(r+2). Thus

and hence n < nb with probability > 1 — 8/2.
Finally, the algorithm fails only if at least one of the above two conditions

fails. Since each occurs with probability at most 6/2, failure occurs with
probability at most 6. •

Note that with probability zero, the algorithm could fail to halt. Thus
strictly speaking, it is not a finite procedure. Assuming it halts in round
TQ = 1 + [Iog2(l — 2 j ) - 1 ] , the total number of examples required is 0((1 —
2n))- 2 • l n [ N / ( l — 2n) )6} ) . Thus asymptotically the process of determining
rb increases the sample size only slightly. Also, we can accelerate the
convergence by allowing nb in each round to be the larger of the value
obtained in step 2.42 and pmin.

2.4. How hard is minimizing disagreements?

The approach suggested by Theorem 2 is to draw a feasibly small sample
from EXn ( ) and then find a hypothesis that minimizes disagreements with
the sample. We now show that this direct approach may be computation-
ally infeasible even in very simple domains. Note that this result concerns
only this approach, and should not be confused with the stronger results
of Kearns et al. (1987), which establish that some learning problems in
the Valiant model may be computationally intractable, no matter what
approach is taken.

We will consider the domain of products of positive literals. Let n be a
positive integer. Let PP(n) denote the set of all products of a subset of the
literals x 1 , x 2 , . . . ,xn. There are 2n such products; the empty product is
interpreted as equivalent to "true." Each product T in PP(n) is interpreted
as denoting the set of truth-value assignments that satisfy it. PP(n) is a
subset of the formulas in CNF(n, 1).

A sample sequence a will consist of a finite sequence of ordered pairs
of the form (aj,Sj), where aj is a truth-value assignment to the variables
xi,X2,...,xn and Sj is either + or —. If T e PP(n) and a is a sample
sequence, then F ( r , r) is the number of pairs (aj, Sj) in a such that Sj = +
and a j (7 ) = 0 or Sj = — and aj(n) = 1. That is, F(r,a} is the number of
disagreements between T and the sample sequence a.
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Theorem 4 Given positive integers n and c and a sample sequence r, the
problem of determining whether there is an element I e PP(n) such that
F(K,T) <c is NP-complete.

PROOF: The proof is a polynomial-time reduction of the vertex cover prob-
lem to the specified problem. The vertex cover problem is specified by an
undirected graph G of n vertices and a positive integer c < n, and the
question is whether there exists a set C of at most c vertices of G such that
every edge of G is incident to at least one vertex in C. (Such a set C is
called a vertex cover.} The vertex cover problem is NP-complete.

Let a vertex cover problem, (G, c), be given. Suppose the vertices of G
are v1, v 2 , . . . , vn. There will be n variables: x1,x2,...,xn. For each vertex
Wj, define a truth assignment ai that maps xi to 0 and every other Xj to 1.
For each edge e = {vi,Vj}, define a truth assignment be that maps Xi and
Xj to 0 and every other Xk to 1. The sample sequence a consists of one
copy of (a;, +} for each vertex Vi and n + 1 copies of (be, —} for each edge
e in G. Then we claim that G has a vertex cover of at most c vertices if
and only if there is an element T of PP(n) such that F(n,a) < c.

Suppose G has a vertex cover C of at most c vertices. Let t denote
the product of those Xi such that Vi is in C. How many examples from a
disagree with r? For each vertex ui, the assignment ai assigns 0 to K if and
only if Vi € C. Thus, T disagrees with at most c positive examples from
a. For each edge e = {vi,Vj}, the set C contains at least one of vi or Vj,
so the product T contains at least one of xi or xj. Since the assignment
be is 0 on both xi and xj, it must be 0 on T. Thus, T agrees with all the
negative examples in a. Hence F(r, a) < c, as claimed.

Now suppose that there exists some T E PP(n) such that F(n,a) < c.
Since c < n, this means that T must agree with all the negative examples
in a, since each one is repeated n + 1 times. Hence T can only disagree
with positive examples in a, and at most c of them. Thus T must contain
at most c literals xi. Define the set C to be all those vertices vi such
that xi appears in the product T. Then C contains at most c vertices; it
remains to see that it is a vertex cover. If e = {vi, Vj} is any edge in G then
the assignment be must assign 0 to T, since T agrees with all the negative
examples. But be assigns 0 to T if and only if T contains at least one of X{
or xj. Thus C contains at least one of vi or vj, so C is a vertex cover of G.

The computation of n, c, and a from (G, c) can clearly be carried out in
polynomial time. •

This result indicates that even for a very simple domain the approach
of directly trying to minimize the number of disagreements with the sam-
ple may not be computationally feasible. In the next section, we show
that a somewhat more sophisticated approach does permit efficient pac-
identification of k-CNF formulas from noisy samples.
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3. Efficient pac-identification of k-CNF formulas in the
presence of noise

We now describe a procedure V that does pac-identification of k-CNF
formulas in polynomial time. The main idea is that instead of searching
for the formula in CNF(n, k} with the fewest disagreements, one tests the
clauses individually and includes those that disagree least often on positive
examples. Since there are exponentially fewer clauses than formulas, the
procedure is much more efficient. Note that this method does not solve
an NP-hard problem: the resulting k-CNF formula may not be the best in
terms of minimizing error on the examples. But it will (with high proba-
bility) have error less than (.

The inputs to the procedure are n, k, e, 6, %, and a noisy oracle EXn( )
for an unknown formula 0* from CNF(n, k), using an unknown distribution
D to sample truth-assignments. The accuracy and confidence parameters
e and 6 must be between 0 and 1. And again, for expository purposes
we assume that a bound nb on the rate of noise is provided such that
0 < n < nb < 1/2.

Once n and k are fixed, there is a set C of all possible clauses over the
variables x 1 , . . . ,xn with at most k literals per clause. Let M denote the
cardinality of C. It is easy to show that M is at most (2n + 1) k .

Let 0* be the target formula. Without loss of generality we may assume
that 0* is maximally consistent - i.e., it includes every clause C with at
most k literals such that C is logically implied by 0*.

3.1 Motivation for the procedure V

Once D is fixed we define two probabilities for each clause C from C:

If 0* is also fixed, we may subdivide these probabilities into four cases, pr s ,
for r — 0,1 and s = 0,1 as follows:

Note that
We use these probabilities to classify each clause as follows. A clause C

is defined to be important if and only if
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where

A clause C is defined to be harmful if and only if

where

Note that QH > QI, so every harmful clause is important. Note also that
no clause contained in 0* can be harmful.

The intuition is that a non-important clause is almost always assigned
the value 1 by assignments chosen according to D, so it may be included or
not in the final hypothesis without significantly affecting the outcome. On
the other hand, a harmful clause is one for which a significant fraction of the
assignments chosen from D make the clause 0 but the correct hypothesis
1. If a harmful clause is included in the final hypothesis, it will cause a
nontrivial probability of disagreement between the final hypothesis and the
correct hypothesis. Thus, the strategy of the procedure V' is to attempt
to include in the final hypothesis all the important clauses contained in 0*

and no harmful clauses. Our first lemma shows that if V succeeds in this
attempt, then the final hypothesis is indeed an e-approximation of >*.

Lemma 1 Let D and <* be fixed. Let > be any product of clauses from C
that contains every important clause in <* and contains no harmful clauses.
Then d ( c , > * ) < t.

PROOF: We analyze the probability of an assignment a such that a($*) =
1 and a ( < ) = 0 or vice versa. Let < — <* denote the set of clauses in > but
not in b*.

For the other side,

and

Thus,
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The procedure V' has no direct information about whether a clause is
important or harmful - it must rely on the noisy oracle EXn( ) for its
information about D and >*. Since the oracle EXn( ) reports assignments
according to the distribution D, po(C) can be directly estimated by sam-
pling the oracle and calculating the fraction of assignments that assign 0 to
C. The procedure V' uses this to construct a set / that, with high proba-
bility, contains all the important clauses C from C. If this is accomplished,
the remaining problem is to identify all the harmful clauses in /. (Note
that V depends in an essential way upon the fact that, in this model, the
distribution D is not perturbed by the presence of noise.)

However, the definition of a harmful clause refers to the values of assign-
ments on >*,, which are subject to reporting errors and cannot be estimated
directly. For each clause C we define one more probability:

po+(C) = Pr [a sample (a, s) drawn from EXn( ) has a(C) = 0 and s = +].

This may be directly estimated using calls to EXn( ). A sample <a, s> will
have a(C) = 0 and s = + if and only if either a(C) — 0 and a(0*) = 1 and
there was no reporting error, or a(C) = 0 and a(0*) = 0 and there was a
reporting error. Thus

then

Since n < 1/2, this quantity is always greater than or equal to n and is
equal to n if C is contained in 0*. Since po(C) < 1, for all clauses C such
that po(C) + 0,

Observe that if C £ >*,, then the ratio po+(C)/po(C) = n. If C is a harmful
clause, then po1(C) > QH,, SO



LEARNING FROM NOISY EXAMPLES 361

The quantity p 0 + ( C ) / p 0 ( C ) is the proportion of those assignments falsi-
fying C that are reported with a positive sign. The preceding calculation
shows that there is a separation of at least

in the expected value of this quantity between clauses that are to be re-
tained (important clauses in >*) and clauses that are to be discarded (harm-
ful clauses). Since nb is an upper bound on n, the minimum separation is
Sb — Q H (1 — 2nb). Moreover, p 0 + ( C ) / p 0 ( C ) can be estimated by sampling
the oracle EXn ( ). (Recall that / contains clauses falsified by a nontrivial
number of samples, so for elements of / this estimate will be sufficiently
accurate.)

The procedure V' calculates an estimate n' of n and identifies as harmful
all those clauses C € / whose estimated value of p 0 + ( C ) / p 0 ( C ) is greater
than n' + Sb/2. The final output is the product of all the other clauses in
/. In order for this to work, V' needs a sufficiently accurate estimate n'
for n. Where does this come from? If I contains any clause C in >*, then
the estimate of p 0 + ( C } / p 0 ( C ) will be close to n. In this case, the minimum
estimate of p 0 + ( C ) / p 0 ( C ) for all clauses C in / will be close to n.

However, it may happen that no clause in / is contained in >*,, and this
minimum value may not be a good estimate of n. In this case, provided
all the important clauses are in /, we know that <* does not contain any
important clauses. This means that most assignments drawn from D as-
sign the value 1 to 0*. In this case, the observed overall rate of negative
examples will be sufficiently close to n. Thus, the estimate of n is taken to
be the minimum of two estimates: the estimated fraction of negative ex-
amples and the minimum estimated value of p 0 + ( C ) / p 0 ( C ) over all clauses
C in I.

3.2 Concise description of V
Now let us summarize the description of V'. From n, k, 6, 5, and nb the

procedure V calculates the following:

C = {C : C is a clause over n variables with at most k literals},
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V draws m samples from the oracle EXn( ), say a = ( a 1 , s 1 ) , . . . , (am, sm),
where each ai is a truth-value assignment to the variables x 1 , . . . ,xn and
each Si is either + or —. The following quantities are defined using a:

and

Z- is the overall number of negative samples, Z 0 (C) is the number of
samples that assign 0 to the clause C, and Z0+ (C) is the number of samples
that assign 0 to C and are reported with the sign +. For each clause C in
C such that Z0(C) ^ 0, define

h(C) is the estimated value of the quantity p 0 + ( C ) / p 0 ( C ) .
The procedure V' calculates one estimate of n:

which is just the observed fraction of negative examples. The procedure
V then forms the set / by including all those clauses C in C such that

Note that / is non-empty, since if a clause consisting of a single variable is
not in /, then the clause consisting of the complement of the variable is in
I. V' then calculates a second estimate of n to be

after which it calculates

The final output > of V' is the product of all those clauses C € / such that

It is clear from this description that V' runs in time polynomial in nk, 1/e,
logl/£, and l/(l-2nb).

3.3 Proof of correctness of V'

In this section we show that V' achieves pac-identification of the formulas
in CNF(n,k}.
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Theorem 5 For every >* € CNF(n,k), V pac-identifies >,, that is,

PROOF: Consider how the algorithm could go astray:

• Some important clause might not be selected for inclusion in 7.

• The estimate n' could be too large or too small.

• Some harmful clause could have an abnormally small number of fail-
ures on positive examples and thereby be included in the output ex-
pression.

• Some correct clause could have an abnormally large number of fail-
ures on positive examples and thereby be excluded from the output
expression.

The series of lemmas4 below show that the second possibility has proba-
bility at most 8/2, while the others each have probability at most 6/6. In
all, therefore, these mishaps have probability at most 6, and by Lemma 1
the output expression will be e-good with high probability. •

Lemma 2 With high probability the set 7 includes all important clauses
- i.e., all clauses C such that p 0 (C) > QI.

PROOF: For an important clause C to be omitted, the value Z 0 (C) /m
must be less than QI/2 - an amount more than Q I /2 below its expected
value of at least QI. With the sample size m, Lemma 8 can be applied to
show that LE(p0(c))m)Q I /2) < 5/6M. Summing this probability over M
clauses completes the proof. •

Lemma 3 Let s = QH (1 — 2n). Then with high probability n1 is not "too
small" - i.e., n1 > n — s/4 with high probability.

PROOF: Consider the probability p_ that an example is classified negative
by the noisy oracle. Without noise this probability is p0 ( > * ) . With noise,
this probability becomes

By Lemma 8,
4In the following technical lemmas, "with high probability" means "with probability

> 1 - S/6."
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Lemma 4 Given that / contains all important clauses, with high proba-
bility 772 is not "too small" - i.e., n2 > n — s/4 with high probability.

PROOF: n2 will be too small iff, for some clause C,

But by Eq. (2) the expected value of h(C) is p0+(C)/p0(C) > n. The
sample size over which the ratio is being measured is at least mQI/2 since
C € /. Using Lemma 8, LE(n,mQI/2,n - s/4) ^ LE(n,mQI/2,n] -
sb/4) < 6/6M. Summing this probability over all M clauses ends the
proof. •

Lemma 5 Given that I contains all important clauses, then with high
probability either n1 or n2 is not "too large" - i.e., either n1 < n + s/4 or
n2 < n + s/4- Thus n' = min{n1, n2} < n + s/4.

PROOF: There are two cases.

CASE: There is a clause C in I that is also in 0*. Then

by Eq. (2). By Lemma 8, LE(n, mQI/2, n + sb/4) < 6/6. Thus n2 <
n + s/4 with high probability.

CASE: There is no clause C in I that is also in >*. n1 estimates p_, and
by Eq. (4) p_ depends on p0(^*)- We can bound the latter as follows:

Thus p- < n + Q H (1 - 2 n ) / 8 = n + s/8, and by Lemma 8, GE(n +
a/8, m, n + s/4) < GE(n + s/8, m, n + s/8 + sb/8) < 6/6. Hence
n1 ̂  n + s/4 with high probability. •

Lemma 6 Given that / contains all important clauses, with probability
> 1 - 6/2, n' is "close to" n - i.e., |n' - n| < s/4.
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PROOF: Immediate from Lemmas 3-5. •

Lemma 7 Given that / contains all important clauses and that |n' — n| <
s/4, with high probability no harmful clause will be included in the output
o of V'. And with high probability, no important clause will be omitted.

PROOF: A harmful clause C is included if

and given that n' < n + s/4., it certainly must be the case that

if the clause is to be included.
But for such a clause h(C) has an expected value of at least n + s. To be

included, it must therefore deviate from its expected value by at least s/4,
in a sample of at least mQI/2 positive examples. And LE(n+s, mQI/2,n+
3s/4) < LE(n + s,mQI/2,n + 3sb/4) < 5/6M. Summing this probability
over possibly M harmful clauses yields the first result.

For a correct clause C, p0+(c)/P0(c) = n, and it will be discarded only if
the empirical value h(C) of this ratio exceeds n by more than sb/4. Lemma
8 shows that this probability is < 6/6M. Summing over possibly M correct
clauses yields the result. •

Taken together, these lemmas conclude the proof of Theorem 5. Note
that one need not assume that V is given an upper bound nb. The al-
gorithm can estimate such an upper bound efficiently, using a version of
the method in Section 2.3; Laird (1987) provides details. Also note that
the algorithm V' uses both positive and negative examples; Kearns and
Li (1987) have shown that both kinds of examples are necessary in this
setting.

4. Random noise processes

So far we have considered errors resulting from a Classification Noise
Process (CNP):

Independently for each example, the sign s of the example (x, s)
drawn from EX0( ) is reversed with probability n.

We have seen that the CNP preserves pac-identifiability, provided 77 < 1/2.
The CNP is just one example of a random noise process, in which with some
fixed probability n each example is independently given to the noise process
for possible modification before presentation to the learning algorithm.
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How do the above algorithms and ideas change when some other noise
process is at work? Typically we find that the same basic idea - choosing
a rule that minimizes disagreements with the data - is effective. But the
amount of data required for pac-identification may be different, and the
maximum tolerable rate of noise will vary.

To illustrate, consider the "worst case" Adversarial Noise Process (ANP):

Independently for each example, the example is replaced, with prob-
ability 77, by an arbitrary example, perhaps maliciously chosen.

In selecting the replacement, the ANP adversary may have knowledge of
the target L*, the entire past history of the run, and all parameters (c, 8,
n, nb, etc.), but it has the chance to do so only a fraction n) of the time.

For the hapless customs official still trying to identify smugglers, an
adversarial band of smugglers will sometimes intentionally pass through
customs without carrying contraband, or will plant contraband among the
possessions of a non-smuggler, with the fiendish purpose of confusing the
official during his or her training period. The question, then, is how much
more difficult the learner's task becomes in such cases.

Our approach is to distinguish by sampling the correct hypothesis L*

from an e-bad hypothesis Lt. We require that the expected rate of dis-
agreement with the sample for L* be smaller than for Lt. With the ANP
the expected rate of disagreement for L* is at most n, while the expected
rate of disagreement for Lf is at least e(l — n ) . Thus, provided n < e(l — n),
or equivalently, n < e/(l+e), L* and Lt will be statistically distinguishable.
Kearns and Li (1987) have shown this bound is tight. (Compare n < 1/2
for the CNP.)

As another example, consider the problem of identifying CNF(n, k) rules
from positive examples that are subject to adversarial noise - a problem
first solved by Valiant (1985). Using the ideas developed in this paper, we
give a simpler analysis.

Let M be the number of clauses. For a given target formula >* the
examples oracle EX0( ) selects satisfying assignments of 0* from some dis-
tribution D+. Before presentation, the example is subjected to an ANP
that, with probability n may replace the positive example by another as-
signment. Clauses in >* can thus be falsified on average by at most a frac-
tion n of the examples. By contrast, we denounce as harmful any clause
C for which p01(C) > e/M, as measured by the distribution D+. Despite
the best efforts of an adversary, a harmful clause must fail at a rate of at
least e(l — n ) / M . Our approach is to eliminate all harmful clauses while
including all correct ones. Clearly the error in the resulting formula will
then be at most e.
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Provided n < e(1 — n) /M (or, equivalently, n < [(M/e) + 1] -1), there is a
separation of at least sb = e/M — nb(l + e/M) between the rate at which a
harmful clause is falsified and this rate for a correct clause. Also, harmful
clauses are falsified on average by a proportion of at least e(l —n b ) /M of
the examples. Therefore we use the following algorithm, V":

1. Obtain a sample of m — (2/sb2) In(M/<$) positive examples.

2. Output the conjunction of all clauses falsified by no more than (nb +
sb /2}m examples.

To see that this works, consider first errors of omission (discarding a correct
clause). For this to occur, the proportion of examples falsifying a correct
clause must exceed its expected value (n) by at least sb/2; but m has been
chosen so that (Lemma 8) the likelihood of this is at most 6/M.

Similarly, errors of commission (including a harmful clause) occur only
when a harmful clause is falsified less than expected, by a deviation of at
least sb/2. The chances of this are less than 8/M. Summing the probabil-
ities of both types of errors over at most M clauses gives a probability for
error of at most 8. Thus we have shown the following theorem.

Theorem 6 There is an algorithm that runs in time polynomial in 1/e,
logl/5, nk, and 1/(1 — 2nb) and pac-identifies CNF(n,k) formulas from
positive examples subject to adversarial noise, provided the rate n of noise
satisfies

where M is the number of clauses. •

We direct the reader to Laird (1987) for further results on pac-identifica-
tion with other noise processes.

5. Remarks

Summarizing, the basic idea of this paper is that algorithms for pac-
identification can often be generalized to handle a certain amount of ran-
dom noise in the data. A feasible increase in the amount of data suffices
to separate acceptable rules from ones with too much error, provided the
rate of noise is within certain bounds that depend on the noise process.
As with pae-identification from noise-free data, a direct search for the best
rule may not be computationally tractable for many domains of interest,
but specially chosen algorithms may be found for some domains, as we
illustrated for CNF(n,k).
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A major open question is whether there exists any domain in which pac-
identification is computationally feasible with no noise but computationally
infeasible with some "reasonable" level of noise. It would be interesting
to explore the effect of noise in a situation that calls for queries as well
as random sampling. For example, could Angluin's (1987) polynomial-
time procedure for identifying regular sets given a sampling oracle and
membership queries be modified to compensate for random errors in the
sampling and query responses? Other interesting directions include models
of non-random noise and problems of approximate identification when none
of the rules in the space are exactly equivalent to the rule being presented
- a circumstance that somewhat resembles noisy data for a correct rule.
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Appendix: Bounding lemmas

We establish some simple tools for bounding the accuracy of estimates of
Bernoulli variables. For p and r between 0 and 1 and any positive integer m,
let LE(p, m, r) denote the probability of at most rm successes in m independent
trials of a Bernoulli variable with probability of success p, and GE(p, m, r) the
probability of at least rm successes. Thus,

and

It is not difficult to show that for p increasing, GE(p,m,r) is nondecreasing and
LE(p,m,r) is nonincreasing. We extend LE to have the value 0 if its third
argument is less than 0, and similarly GE has the value 0 if its third argument is
greater than 1.

The basic lemma we use is Hoeffding's Inequality (Hoeffding, 1963).

Lemma 8 If 0 < p < l , 0 < s < l , and m is any positive integer then

and

We apply this to obtain a simple bound on the number of samples required to
assure that an estimate of p is within a distance s of the correct value with
probability at least 1-6.
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Lemma 9 Let and

then

and

PROOF: This follows directly from Lemma 8 by setting e-2s2 m < S and solving
for m. •

Among the various bounds in this paper derived from the basic lemma is the
following:

Lemma 10 Let N be a positive integer, 0 < e < l , 0 < < 5 < 1 , and 0 < n <nb <
1/2. Define s - e(l - 2nb) so that 0 < s < 1. If

then

and

PROOF: We apply Lemma 9 with s/2 in place of s and 6/2N in place of 6 to find
the indicated lower bound on m. •


