

2 The PAC Learning Framework

Several fundamental questions arise when designing and analyzing algorithms that
learn from examples: What can be learned efficiently? What is inherently hard to
learn? How many examples are needed to learn successfully? Is there a general model
of learning? In this chapter, we begin to formalize and address these questions by
introducing the Probably Approximately Correct (PAC) learning framework. The
PAC framework helps define the class of learnable concepts in terms of the number
of sample points needed to achieve an approximate solution, sample complexity , and
the time and space complexity of the learning algorithm, which depends on the cost
of the computational representation of the concepts.

We first describe the PAC framework and illustrate it, then present some general
learning guarantees within this framework when the hypothesis set used is finite,
both for the consistent case where the hypothesis set used contains the concept to
learn and for the opposite inconsistent case.

2.1 The PAC learning model

We first introduce several definitions and the notation needed to present the PAC
model, which will also be used throughout much of this book.

We denote by X the set of all possible examples or instances. X is also sometimes
referred to as the input space. The set of all possible labels or target values is denoted
by Y. For the purpose of this introductory chapter, we will limit ourselves to the
case where Y is reduced to two labels, Y = {0, 1}, so-called binary classification.
Later chapters will extend these results to more general settings.

A concept c : X → Y is a mapping from X to Y. Since Y = {0, 1}, we can identify
c with the subset of X over which it takes the value 1. Thus, in the following, we
equivalently refer to a concept to learn as a mapping from X to {0, 1}, or to a
subset of X . As an example, a concept may be the set of points inside a triangle or
the indicator function of these points. In such cases, we will say in short that the
concept to learn is a triangle. A concept class is a set of concepts we may wish to
learn and is denoted by C. This could, for example, be the set of all triangles in the

12 The PAC Learning Framework

plane.
We assume that examples are independently and identically distributed (i.i.d.)

according to some fixed but unknown distribution D. The learning problem is then
formulated as follows. The learner considers a fixed set of possible concepts H,
called a hypothesis set , which may not coincide with C. He receives a sample
S = (x1, . . . , xm) drawn i.i.d. according to D as well as the labels (c(x1), . . . , c(xm)),
which are based on a specific target concept c ∈ C to learn. His task is to use the
labeled sample S to select a hypothesis hS ∈ H that has a small generalization
error with respect to the concept c. The generalization error of a hypothesis h ∈ H,
also referred to as the true error or just error of h is denoted by R(h) and defined
as follows.1

Definition 2.1 Generalization error
Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying distribution
D, the generalization error or risk of h is defined by

R(h) = Pr
x∼D

[h(x) �= c(x)] = E
x∼D

[
1h(x) �=c(x)

]
, (2.1)

where 1ω is the indicator function of the event ω.2

The generalization error of a hypothesis is not directly accessible to the learner
since both the distribution D and the target concept c are unknown. However, the
learner can measure the empirical error of a hypothesis on the labeled sample S.

Definition 2.2 Empirical error
Given a hypothesis h ∈ H, a target concept c ∈ C, and a sample S = (x1, . . . , xm),
the empirical error or empirical risk of h is defined by

R̂(h) =
1
m

m∑
i=1

1h(xi) �=c(xi). (2.2)

Thus, the empirical error of h ∈ H is its average error over the sample S, while the
generalization error is its expected error based on the distribution D. We will see in
this chapter and the following chapters a number of guarantees relating to these two
quantities with high probability, under some general assumptions. We can already
note that for a fixed h ∈ H, the expectation of the empirical error based on an i.i.d.

1. The choice of R instead of E to denote an error avoids possible confusions with the
notation for expectations and is further justified by the fact that the term risk is also used
in machine learning and statistics to refer to an error.
2. For this and other related definitions, the family of functions H and the target concept
c must be measurable. The function classes we consider in this book all have this property.

2.1 The PAC learning model 13

sample S is equal to the generalization error:

E[R̂(h)] = R(h). (2.3)

Indeed, by the linearity of the expectation and the fact that the sample is drawn
i.i.d., we can write

E
S∼Dm

[R̂(h)] =
1
m

m∑
i=1

E
S∼Dm

[1h(xi) �=c(xi)] =
1
m

m∑
i=1

E
S∼Dm

[1h(x) �=c(x)],

for any x in sample S. Thus,

E
S∼Dm

[R̂(h)] = E
S∼Dm

[1{h(x) �=c(x)}] = E
x∼D

[1{h(x) �=c(x)}] = R(h).

The following introduces the Probably Approximately Correct (PAC) learning
framework. We denote by O(n) an upper bound on the cost of the computational
representation of any element x ∈ X and by size(c) the maximal cost of the
computational representation of c ∈ C. For example, x may be a vector in R

n,
for which the cost of an array-based representation would be in O(n).

Definition 2.3 PAC-learning
A concept class C is said to be PAC-learnable if there exists an algorithm A and
a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0, for all
distributions D on X and for any target concept c ∈ C, the following holds for any
sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

Pr
S∼Dm

[R(hS) ≤ ε] ≥ 1 − δ. (2.4)

If A further runs in poly(1/ε, 1/δ, n, size(c)), then C is said to be efficiently PAC-
learnable. When such an algorithm A exists, it is called a PAC-learning algorithm
for C.

A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm
after observing a number of points polynomial in 1/ε and 1/δ is approximately
correct (error at most ε) with high probability (at least 1 − δ), which justifies the
PAC terminology. δ > 0 is used to define the confidence 1−δ and ε > 0 the accuracy
1 − ε. Note that if the running time of the algorithm is polynomial in 1/ε and 1/δ,
then the sample size m must also be polynomial if the full sample is received by the
algorithm.

Several key points of the PAC definition are worth emphasizing. First, the PAC
framework is a distribution-free model : no particular assumption is made about the
distribution D from which examples are drawn. Second, the training sample and the
test examples used to define the error are drawn according to the same distribution
D. This is a necessary assumption for generalization to be possible in most cases.

14 The PAC Learning Framework

R

R’

Figure 2.1 Target concept R and possible hypothesis R′. Circles represent training
instances. A blue circle is a point labeled with 1, since it falls within the rectangle
R. Others are red and labeled with 0.

Finally, the PAC framework deals with the question of learnability for a concept
class C and not a particular concept. Note that the concept class C is known to the
algorithm, but of course target concept c ∈ C is unknown.

In many cases, in particular when the computational representation of the con-
cepts is not explicitly discussed or is straightforward, we may omit the polynomial
dependency on n and size(c) in the PAC definition and focus only on the sample
complexity.

We now illustrate PAC-learning with a specific learning problem.

Example 2.1 Learning axis-aligned rectangles

Consider the case where the set of instances are points in the plane, X = R
2, and

the concept class C is the set of all axis-aligned rectangles lying in R
2. Thus, each

concept c is the set of points inside a particular axis-aligned rectangle. The learning
problem consists of determining with small error a target axis-aligned rectangle
using the labeled training sample. We will show that the concept class of axis-
aligned rectangles is PAC-learnable.

Figure 2.1 illustrates the problem. R represents a target axis-aligned rectangle
and R′ a hypothesis. As can be seen from the figure, the error regions of R′ are
formed by the area within the rectangle R but outside the rectangle R′ and the area
within R′ but outside the rectangle R. The first area corresponds to false negatives,
that is, points that are labeled as 0 or negatively by R′, which are in fact positive
or labeled with 1. The second area corresponds to false positives, that is, points
labeled positively by R′ which are in fact negatively labeled.

To show that the concept class is PAC-learnable, we describe a simple PAC-
learning algorithm A. Given a labeled sample S, the algorithm consists of returning
the tightest axis-aligned rectangle R′ = RS containing the points labeled with 1.
Figure 2.2 illustrates the hypothesis returned by the algorithm. By definition, RS

does not produce any false positive, since its points must be included in the target
concept R. Thus, the error region of RS is included in R.

2.1 The PAC learning model 15

R

R’

Figure 2.2 Illustration of the hypothesis R′ = RS returned by the algorithm.

Let R ∈ C be a target concept. Fix ε > 0. Let Pr[RS] denote the probability mass
of the region defined by RS, that is the probability that a point randomly drawn
according to D falls within RS. Since errors made by our algorithm can be due only
to points falling inside RS, we can assume that Pr[RS] > ε; otherwise, the error of
RS is less than or equal to ε regardless of the training sample S received.

Now, since Pr[RS] > ε, we can define four rectangular regions r1, r2, r3, and r4

along the sides of RS, each with probability at least ε/4. These regions can be
constructed by starting with the empty rectangle along a side and increasing its
size until its distribution mass is at least ε/4. Figure 2.3 illustrates the definition of
these regions.

Observe that if RS meets all of these four regions, then, because it is a rectangle,
it will have one side in each of these four regions (geometric argument). Its error
area, which is the part of R that it does not cover, is thus included in these regions
and cannot have probability mass more than ε. By contraposition, if R(RS) > ε,
then RS must miss at least one of the regions ri, i ∈ [1, 4]. As a result, we can write

Pr
S∼Dm

[R(RS) > ε] ≤ Pr
S∼Dm

[∪4
i=1{RS ∩ ri = ∅}] (2.5)

≤
4∑

i=1

Pr
S∼Dm

[{RS ∩ ri = ∅}] (by the union bound)

≤ 4(1 − ε/4)m (since Pr[ri] > ε/4)

≤ 4 exp(−mε/4),

where for the last step we used the general identity 1 − x ≤ e−x valid for all x ∈ R.
For any δ > 0, to ensure that PrS∼Dm [R(RS) > ε] ≤ δ, we can impose

4 exp(−εm/4) ≤ δ ⇔ m ≥ 4
ε

log
4
δ
. (2.6)

Thus, for any ε > 0 and δ > 0, if the sample size m is greater than 4
ε log 4

δ ,
then PrS∼Dm [R(RS) > ε] ≤ 1 − δ. Furthermore, the computational cost of the

16 The PAC Learning Framework

R

R’

r1

r2

r3

r4

Figure 2.3 Illustration of the regions r1, . . . , r4.

representation of points in R
2 and axis-aligned rectangles, which can be defined by

their four corners, is constant. This proves that the concept class of axis-aligned
rectangles is PAC-learnable and that the sample complexity of PAC-learning axis-
aligned rectangles is in O(1

ε log 1
δ).

An equivalent way to present sample complexity results like (2.6), which we will
often see throughout this book, is to give a generalization bound . It states that with
probability at least 1 − δ, R(RS) is upper bounded by some quantity that depends
on the sample size m and δ. To obtain this, if suffices to set δ to be equal to the
upper bound derived in (2.5), that is δ = 4 exp(−mε/4) and solve for ε. This yields
that with probability at least 1 − δ, the error of the algorithm is bounded as:

R(RS) ≤ 4
m

log
4
δ
. (2.7)

Other PAC-learning algorithms could be considered for this example. One alterna-
tive is to return the largest axis-aligned rectangle not containing the negative points,
for example. The proof of PAC-learning just presented for the tightest axis-aligned
rectangle can be easily adapted to the analysis of other such algorithms.

Note that the hypothesis set H we considered in this example coincided with the
concept class C and that its cardinality was infinite. Nevertheless, the problem
admitted a simple proof of PAC-learning. We may then ask if a similar proof
can readily apply to other similar concept classes. This is not as straightforward
because the specific geometric argument used in the proof is key. It is non-trivial
to extend the proof to other concept classes such as that of non-concentric circles
(see exercise 2.4). Thus, we need a more general proof technique and more general
results. The next two sections provide us with such tools in the case of a finite
hypothesis set.

2.2 Guarantees for finite hypothesis sets — consistent case 17

2.2 Guarantees for finite hypothesis sets — consistent case

In the example of axis-aligned rectangles that we examined, the hypothesis hS

returned by the algorithm was always consistent , that is, it admitted no error on
the training sample S. In this section, we present a general sample complexity
bound, or equivalently, a generalization bound, for consistent hypotheses, in the
case where the cardinality |H| of the hypothesis set is finite. Since we consider
consistent hypotheses, we will assume that the target concept c is in H.

Theorem 2.1 Learning bounds — finite H, consistent case
Let H be a finite set of functions mapping from X to Y. Let A be an algorithm that
for any target concept c ∈ H and i.i.d. sample S returns a consistent hypothesis hS:
R̂(hS) = 0. Then, for any ε, δ > 0, the inequality PrS∼Dm [R(hS) ≤ ε] ≥ 1 − δ holds
if

m ≥ 1
ε

(
log |H| + log

1
δ

)
. (2.8)

This sample complexity result admits the following equivalent statement as a gener-
alization bound: for any ε, δ > 0, with probability at least 1 − δ,

R(hS) ≤ 1
m

(
log |H| + log

1
δ

)
. (2.9)

Proof Fix ε > 0. We do not know which consistent hypothesis hS ∈ H is selected
by the algorithm A. This hypothesis further depends on the training sample S.
Therefore, we need to give a uniform convergence bound , that is, a bound that
holds for the set of all consistent hypotheses, which a fortiori includes hS . Thus,
we will bound the probability that some h ∈ H would be consistent and have error
more than ε:

Pr[∃h ∈ H : R̂(h) = 0 ∧ R(h) > ε]

= Pr[(h1 ∈ H, R̂(h1) = 0 ∧ R(h1) > ε) ∨ (h2 ∈ H, R̂(h2) = 0 ∧ R(h2) > ε) ∨ · · ·]
≤
∑
h∈H

Pr[R̂(h) = 0 ∧ R(h) > ε] (union bound)

≤
∑
h∈H

Pr[R̂(h) = 0 | R(h) > ε]. (definition of conditional probability)

Now, consider any hypothesis h ∈ H with R(h) > ε. Then, the probability that h

would be consistent on a training sample S drawn i.i.d., that is, that it would have
no error on any point in S, can be bounded as:

Pr[R̂(h) = 0 | R(h) > ε] ≤ (1 − ε)m.

18 The PAC Learning Framework

The previous inequality implies

Pr[∃h ∈ H : R̂(h) = 0 ∧ R(h) > ε] ≤ |H|(1 − ε)m.

Setting the right-hand side to be equal to δ and solving for ε concludes the proof.

The theorem shows that when the hypothesis set H is finite, a consistent algorithm
A is a PAC-learning algorithm, since the sample complexity given by (2.8) is
dominated by a polynomial in 1/ε and 1/δ. As shown by (2.9), the generalization
error of consistent hypotheses is upper bounded by a term that decreases as
a function of the sample size m. This is a general fact: as expected, learning
algorithms benefit from larger labeled training samples. The decrease rate of O(1/m)
guaranteed by this theorem, however, is particularly favorable.

The price to pay for coming up with a consistent algorithm is the use of a
larger hypothesis set H containing target concepts. Of course, the upper bound
(2.9) increases with |H|. However, that dependency is only logarithmic. Note that
the term log |H|, or the related term log2 |H| from which it differs by a constant
factor, can be interpreted as the number of bits needed to represent H. Thus, the
generalization guarantee of the theorem is controlled by the ratio of this number of
bits, log2 |H|, and the sample size m.

We now use theorem 2.1 to analyze PAC-learning with various concept classes.

Example 2.2 Conjunction of Boolean literals

Consider learning the concept class Cn of conjunctions of at most n Boolean literals
x1, . . . , xn. A Boolean literal is either a variable xi, i ∈ [1, n], or its negation xi. For
n = 4, an example is the conjunction: x1 ∧ x2 ∧ x4, where x2 denotes the negation
of the Boolean literal x2. (1, 0, 0, 1) is a positive example for this concept while
(1, 0, 0, 0) is a negative example.

Observe that for n = 4, a positive example (1, 0, 1, 0) implies that the target
concept cannot contain the literals x1 and x3 and that it cannot contain the literals
x2 and x4. In contrast, a negative example is not as informative since it is not
known which of its n bits are incorrect. A simple algorithm for finding a consistent
hypothesis is thus based on positive examples and consists of the following: for each
positive example (b1, . . . , bn) and i ∈ [1, n], if bi = 1 then xi is ruled out as a possible
literal in the concept class and if bi = 0 then xi is ruled out. The conjunction of all
the literals not ruled out is thus a hypothesis consistent with the target. Figure 2.4
shows an example training sample as well as a consistent hypothesis for the case
n = 6.

We have |H| = |Cn| = 3n, since each literal can be included positively, with
negation, or not included. Plugging this into the sample complexity bound for
consistent hypotheses yields the following sample complexity bound for any ε > 0

2.2 Guarantees for finite hypothesis sets — consistent case 19

0 1 1 0 1 1 +

0 1 1 1 1 1 +

0 0 1 1 0 1 -

0 1 1 1 1 1 +

1 0 0 1 1 0 -

0 1 0 0 1 1 +

0 1 ? ? 1 1

Figure 2.4 Each of the first six rows of the table represents a training example with
its label, + or −, indicated in the last column. The last row contains 0 (respectively
1) in column i ∈ [1, 6] if the ith entry is 0 (respectively 1) for all the positive examples.
It contains “?” if both 0 and 1 appear as an ith entry for some positive example.
Thus, for this training sample, the hypothesis returned by the consistent algorithm
described in the text is x1 ∧ x2 ∧ x5 ∧ x6.

and δ > 0:

m ≥ 1
ε

(
(log 3)n + log

1
δ

)
. (2.10)

Thus, the class of conjunctions of at most n Boolean literals is PAC-learnable. Note
that the computational complexity is also polynomial, since the training cost per
example is in O(n). For δ = 0.02, ε = 0.1, and n = 10, the bound becomes m ≥ 149.
Thus, for a labeled sample of at least 149 examples, the bound guarantees 99%
accuracy with a confidence of at least 98%.

Example 2.3 Universal concept class

Consider the set X = {0, 1}n of all Boolean vectors with n components, and let Un

be the concept class formed by all subsets of X . Is this concept class PAC-learnable?
To guarantee a consistent hypothesis the hypothesis class must include the concept
class, thus |H| ≥ |Un| = 2(2n). Theorem 2.1 gives the following sample complexity
bound:

m ≥ 1
ε

(
(log 2)2n + log

1
δ

)
. (2.11)

Here, the number of training samples required is exponential in n, which is the cost
of the representation of a point in X . Thus, PAC-learning is not guaranteed by
the theorem. In fact, it is not hard to show that this universal concept class is not
PAC-learnable.

20 The PAC Learning Framework

Example 2.4 k-term DNF formulae

A disjunctive normal form (DNF) formula is a formula written as the disjunction of
several terms, each term being a conjunction of Boolean literals. A k-term DNF is a
DNF formula defined by the disjunction of k terms, each term being a conjunction
of at most n Boolean literals. Thus, for k = 2 and n = 3, an example of a k-term
DNF is (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3).

Is the class C of k-term DNF formulae is PAC-learnable? The cardinality of the
class is 3nk, since each term is a conjunction of at most n variables and there are
3n such conjunctions, as seen previously. The hypothesis set H must contain C for
consistency to be possible, thus |H| ≥ 3nk. Theorem 2.1 gives the following sample
complexity bound:

m ≥ 1
ε

(
(log 3)nk + log

1
δ

)
, (2.12)

which is polynomial. However, it can be shown that the problem of learning k-
term DNF is in RP, the complexity class of problems that admit a randomized
polynomial-time decision solution. The problem is therefore computationally in-
tractable unless RP = NP, which is commonly conjectured not to be the case. Thus,
while the sample size needed for learning k-term DNF formulae is only polynomial,
efficient PAC-learning of this class is not possible unless RP = NP.

Example 2.5 k-CNF formulae

A conjunctive normal form (CNF) formula is a conjunction of disjunctions. A k-
CNF formula is an expression of the form T1 ∧ . . . ∧ Tj with arbitrary length j ∈ N

and with each term Ti being a disjunction of at most k Boolean attributes.
The problem of learning k-CNF formulae can be reduced to that of learning

conjunctions of Boolean literals, which, as seen previously, is a PAC-learnable
concept class. To do so, it suffices to associate to each term Ti a new variable.
Then, this can be done with the following bijection:

ai(x1) ∨ · · · ∨ ai(xn) → Yai(x1),...,ai(xn), (2.13)

where ai(xj) denotes the assignment to xj in term Ti. This reduction to PAC-
learning of conjunctions of Boolean literals may affect the original distribution, but
this is not an issue since in the PAC framework no assumption is made about the
distribution. Thus, the PAC-learnability of conjunctions of Boolean literals implies
that of k-CNF formulae.

This is a surprising result, however, since any k-term DNF formula can be written
as a k-CNF formula. Indeed, using associativity, a k-term DNF can be rewritten as

2.3 Guarantees for finite hypothesis sets — inconsistent case 21

a k-CNF formula via
k∨

i=1

ai(x1) ∧ · · · ∧ ai(xn) =
n∧

i1,...,ik=1

a1(xi1) ∨ · · · ∨ ak(xik
).

To illustrate this rewriting in a specific case, observe, for example, that

(u1 ∧ u2 ∧ u3) ∨ (v1 ∧ v2 ∧ v3) =
3∧

i,j=1

(ui ∧ vj).

But, as we previously saw, k-term DNF formulae are not efficiently PAC-learnable!
What can explain this apparent inconsistency? Observe that the number of new
variables needed to write a k-term DNF as a k-CNF formula via the transformation
just described is exponential in k, it is in O(nk). The discrepancy comes from the size
of the representation of a concept. A k-term DNF formula can be an exponentially
more compact representation, and efficient PAC-learning is intractable if a time-
complexity polynomial in that size is required. Thus, this apparent paradox deals
with key aspects of PAC-learning, which include the cost of the representation of a
concept and the choice of the hypothesis set.

2.3 Guarantees for finite hypothesis sets — inconsistent case

In the most general case, there may be no hypothesis in H consistent with the
labeled training sample. This, in fact, is the typical case in practice, where the
learning problems may be somewhat difficult or the concept classes more complex
than the hypothesis set used by the learning algorithm. However, inconsistent
hypotheses with a small number of errors on the training sample can be useful and,
as we shall see, can benefit from favorable guarantees under some assumptions. This
section presents learning guarantees precisely for this inconsistent case and finite
hypothesis sets.

To derive learning guarantees in this more general setting, we will use Hoeffding’s
inequality (theorem D.1) or the following corollary, which relates the generalization
error and empirical error of a single hypothesis.

22 The PAC Learning Framework

Corollary 2.1

Fix ε > 0 and let S denote an i.i.d. sample of size m. Then, for any hypothesis
h : X → {0, 1}, the following inequalities hold:

Pr
S∼Dm

[R̂(h) − R(h) ≥ ε] ≤ exp(−2mε2) (2.14)

Pr
S∼Dm

[R̂(h) − R(h) ≤ −ε] ≤ exp(−2mε2). (2.15)

By the union bound, this implies the following two-sided inequality:

Pr
S∼Dm

[|R̂(h) − R(h)| ≥ ε
] ≤ 2 exp(−2mε2). (2.16)

Proof The result follows immediately theorem D.1.

Setting the right-hand side of (2.16) to be equal to δ and solving for ε yields
immediately the following bound for a single hypothesis.

Corollary 2.2 Generalization bound — single hypothesis
Fix a hypothesis h : X → {0, 1}. Then, for any δ > 0, the following inequality holds
with probability at least 1 − δ:

R(h) ≤ R̂(h) +

√
log 2

δ

2m
. (2.17)

The following example illustrates this corollary in a simple case.

Example 2.6 Tossing a coin

Imagine tossing a biased coin that lands heads with probability p, and let our
hypothesis be the one that always guesses heads. Then the true error rate is R(h) = p

and the empirical error rate R̂(h) = p̂, where p̂ is the empirical probability of
heads based on the training sample drawn i.i.d. Thus, corollary 2.2 guarantees with
probability at least 1 − δ that

|p − p̂| ≤
√

log 2
δ

2m
. (2.18)

Therefore, if we choose δ = 0.02 and use a sample of size 500, with probability at
least 98%, the following approximation quality is guaranteed for p̂:

|p − p̂| ≤
√

log(10)
1000

≈ 0.048. (2.19)

Can we readily apply corollary 2.2 to bound the generalization error of the
hypothesis hS returned by a learning algorithm when training on a sample S? No,
since hS is not a fixed hypothesis, but a random variable depending on the training
sample S drawn. Note also that unlike the case of a fixed hypothesis for which

2.3 Guarantees for finite hypothesis sets — inconsistent case 23

the expectation of the empirical error is the generalization error (equation 2.3), the
generalization error R(hS) is a random variable and in general distinct from the
expectation E[R̂(hS)], which is a constant.

Thus, as in the proof for the consistent case, we need to derive a uniform con-
vergence bound, that is a bound that holds with high probability for all hypotheses
h ∈ H.

Theorem 2.2 Learning bound — finite H, inconsistent case
Let H be a finite hypothesis set. Then, for any δ > 0, with probability at least 1− δ,
the following inequality holds:

∀h ∈ H, R(h) ≤ R̂(h) +

√
log |H| + log 2

δ

2m
. (2.20)

Proof Let h1, . . . , h|H| be the elements of H. Using the union bound and applying
corollary 2.2 to each hypothesis yield:

Pr
[
∃h ∈ H

∣∣R̂(h) − R(h)
∣∣ > ε

]
= Pr

[(∣∣R̂(h1) − R(h1)
∣∣ > ε

) ∨ . . . ∨ (∣∣R̂(h|H|) − R(h|H|)
∣∣ > ε

)]
≤
∑
h∈H

Pr
[∣∣R̂(h) − R(h)

∣∣ > ε
]

≤ 2|H| exp(−2mε2).

Setting the right-hand side to be equal to δ completes the proof.

Thus, for a finite hypothesis set H,

R(h) ≤ R̂(h) + O

(√
log2 |H|

m

)
.

As already pointed out, log2 |H| can be interpreted as the number of bits needed
to represent H. Several other remarks similar to those made on the generalization
bound in the consistent case can be made here: a larger sample size m guarantees
better generalization, and the bound increases with |H|, but only logarithmically.
But, here, the bound is a less favorable function of log2 |H|

m ; it varies as the square
root of this term. This is not a minor price to pay: for a fixed |H|, to attain the
same guarantee as in the consistent case, a quadratically larger labeled sample is
needed.

Note that the bound suggests seeking a trade-off between reducing the empirical
error versus controlling the size of the hypothesis set: a larger hypothesis set is
penalized by the second term but could help reduce the empirical error, that is the
first term. But, for a similar empirical error, it suggests using a smaller hypothesis

24 The PAC Learning Framework

set. This can be viewed as an instance of the so-called Occam’s Razor principle
named after the theologian William of Occam: Plurality should not be posited without
necessity, also rephrased as, the simplest explanation is best. In this context, it could
be expressed as follows: All other things being equal, a simpler (smaller) hypothesis
set is better.

2.4 Generalities

In this section we will consider several important questions related to the learning
scenario, which we left out of the discussion of the earlier sections for simplicity.

2.4.1 Deterministic versus stochastic scenarios

In the most general scenario of supervised learning, the distribution D is defined
over X × Y, and the training data is a labeled sample S drawn i.i.d. according to
D:

S = ((x1, y1), . . . , (xm, ym)).

The learning problem is to find a hypothesis h ∈ H with small generalization error

R(h) = Pr
(x,y)∼D

[h(x) �= y] = E
(x,y)∼D

[1h(x) �=y].

This more general scenario is referred to as the stochastic scenario. Within this
setting, the output label is a probabilistic function of the input. The stochastic
scenario captures many real-world problems where the label of an input point is not
unique. For example, if we seek to predict gender based on input pairs formed by
the height and weight of a person, then the label will typically not be unique. For
most pairs, both male and female are possible genders. For each fixed pair, there
would be a probability distribution of the label being male.

The natural extension of the PAC-learning framework to this setting is known as
the agnostic PAC-learning .

Definition 2.4 Agnostic PAC-learning
Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if there
exists a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0,
for all distributions D over X × Y, the following holds for any sample size m ≥
poly(1/ε, 1/δ, n, size(c)):

Pr
S∼Dm

[R(hS) − min
h∈H

R(h) ≤ ε] ≥ 1 − δ. (2.21)

2.4 Generalities 25

If A further runs in poly(1/ε, 1/δ, n, size(c)), then it is said to be an efficient agnostic
PAC-learning algorithm.

When the label of a point can be uniquely determined by some measurable func-
tion f : X → Y (with probability one), then the scenario is said to be deterministic.
In that case, it suffices to consider a distribution D over the input space. The
training sample is obtained by drawing (x1, . . . , xm) according to D and the labels
are obtained via f : yi = f(xi) for all i ∈ [1,m]. Many learning problems can be
formulated within this deterministic scenario.

In the previous sections, as well as in most of the material presented in this book,
we have restricted our presentation to the deterministic scenario in the interest of
simplicity. However, for all of this material, the extension to the stochastic scenario
should be straightforward for the reader.

2.4.2 Bayes error and noise

In the deterministic case, by definition, there exists a target function f with no
generalization error: R(h) = 0. In the stochastic case, there is a minimal non-zero
error for any hypothesis.

Definition 2.5 Bayes error
Given a distribution D over X × Y, the Bayes error R∗ is defined as the infimum
of the errors achieved by measurable functions h : X → Y:

R� = inf
h

h measurable

R(h). (2.22)

A hypothesis h with R(h) = R∗ is called a Bayes hypothesis or Bayes classifier.

By definition, in the deterministic case, we have R∗ = 0, but, in the stochastic case,
R∗ �= 0. Clearly, the Bayes classifier hBayes can be defined in terms of the conditional
probabilities as:

∀x ∈ X , hBayes(x) = argmax
y∈{0,1}

Pr[y|x]. (2.23)

The average error made by hBayes on x ∈ X is thus min{Pr[0|x], Pr[1|x]}, and this
is the minimum possible error. This leads to the following definition of noise.

Definition 2.6 Noise
Given a distribution D over X × Y, the noise at point x ∈ X is defined by

noise(x) = min{Pr[1|x], Pr[0|x]}. (2.24)

The average noise or the noise associated to D is E[noise(x)].

26 The PAC Learning Framework

Thus, the average noise is precisely the Bayes error: noise = E[noise(x)] = R∗. The
noise is a characteristic of the learning task indicative of its level of difficulty. A
point x ∈ X , for which noise(x) is close to 1/2, is sometimes referred to as noisy
and is of course a challenge for accurate prediction.

2.4.3 Estimation and approximation errors

The difference between the error of a hypothesis h ∈ H and the Bayes error can be
decomposed as:

R(h) − R∗ = (R(h) − R(h∗))︸ ︷︷ ︸
estimation

+ (R(h∗) − R∗)︸ ︷︷ ︸
approximation

, (2.25)

where h∗ is a hypothesis in H with minimal error, or a best-in-class hypothesis.3

The second term is referred to as the approximation error , since it measures how
well the Bayes error can be approximated using H. It is a property of the hypothesis
set H, a measure of its richness. The approximation error is not accessible, since
in general the underlying distribution D is not known. Even with various noise
assumptions, estimating the approximation error is difficult.

The first term is the estimation error , and it depends on the hypothesis h

selected. It measures the quality of the hypothesis h with respect to the best-in-class
hypothesis. The definition of agnostic PAC-learning is also based on the estimation
error. The estimation error of an algorithm A, that is, the estimation error of the
hypothesis hS returned after training on a sample S, can sometimes be bounded in
terms of the generalization error.

For example, let hERM
S denote the hypothesis returned by the empirical risk

minimization algorithm, that is the algorithm that returns a hypothesis hERM
S with

the smallest empirical error. Then, the generalization bound given by theorem 2.2,
or any other bound on suph∈H |R(h) − R̂(h)|, can be used to bound the estimation
error of the empirical risk minimization algorithm. Indeed, rewriting the estimation
error to make R̂(hERM

S) appear and using R̂(hERM
S) ≤ R̂(h∗), which holds by the

definition of the algorithm, we can write

R(hERM
S) − R(h∗) = R(hERM

S) − R̂(hERM
S) + R̂(hERM

S) − R(h∗)

≤ R(hERM
S) − R̂(hERM

S) + R̂(h∗) − R(h∗)

≤ 2 sup
h∈H

|R(h) − R̂(h)|. (2.26)

3. When H is a finite hypothesis set, h∗ necessarily exists; otherwise, in this discussion
R(h∗) can be replaced by infh∈H R(h).

2.4 Generalities 27

measure of capacity

training error

complexity term

bound on generalization errorerror

Figure 2.5 Illustration of structural risk minimization. The plots of three errors
are shown as a function of a measure of capacity. Clearly, as the size or capacity of
the hypothesis set increases, the training error decreases, while the complexity term
increases. SRM selects the hypothesis minimizing a bound on the generalization
error, which is a sum of the empirical error, and the complexity term is shown in
red.

The right-hand side of (2.26) can be bounded by theorem 2.2 and increases with
the size of the hypothesis set, while R(h∗) decreases with |H|.

2.4.4 Model selection

Here, we discuss some broad model selection and algorithmic ideas based on the
theoretical results presented in the previous sections. We assume an i.i.d. labeled
training sample S of size m and denote the error of a hypothesis h on S by R̂S(h)
to explicitly indicate its dependency on S.

While the guarantee of theorem 2.2 holds only for finite hypothesis sets, it already
provides us with some useful insights for the design of algorithms and, as we will see
in the next chapters, similar guarantees hold in the case of infinite hypothesis sets.
Such results invite us to consider two terms: the empirical error and a complexity
term, which here is a function of |H| and the sample size m.

In view of that, the ERM algorithm , which only seeks to minimize the error on
the training sample

hERM
S = argmin

h∈H
R̂S(h), (2.27)

might not be successful, since it disregards the complexity term. In fact, the
performance of the ERM algorithm is typically very poor in practice. Additionally,
in many cases, determining the ERM solution is computationally intractable. For
example, finding a linear hypothesis with the smallest error on the training sample
is NP-hard (as a function of the dimension of the space).

Another method known as structural risk minimization (SRM) consists of con-

28 The PAC Learning Framework

sidering instead an infinite sequence of hypothesis sets with increasing sizes

H0 ⊂ H1 ⊂ · · · ⊂ Hn · · · (2.28)

and to find the ERM solution hERM
n for each Hn. The hypothesis selected is the

one among the hERM
n solutions with the smallest sum of the empirical error and

a complexity term complexity(Hn,m) that depends on the size (or more generally
the capacity, that is, another measure of the richness of H) of Hn, and the sample
size m:

hSRM
S = argmin

h∈Hn
n∈N

R̂S(h) + complexity(Hn,m). (2.29)

Figure 2.5 illustrates the SRM method. While SRM benefits from strong theoretical
guarantees, it is typically computationally very expensive, since it requires deter-
mining the solution of multiple ERM problems. Note that the number of ERM
problems is not infinite if for some n the minimum empirical error is zero: The
objective function can only be larger for n′ ≥ n.

An alternative family of algorithms is based on a more straightforward optimiza-
tion that consists of minimizing the sum of the empirical error and a regularization
term that penalizes more complex hypotheses. The regularization term is typically
defined as ‖h‖2 for some norm ‖ · ‖ when H is a vector space:

hREG
S = argmin

h∈H
R̂S(h) + λ‖h‖2. (2.30)

λ ≥ 0 is a regularization parameter , which can be used to determine the trade-off
between empirical error minimization and control of the complexity. In practice, λ

is typically selected using n-fold cross-validation. In the next chapters, we will see
a number of different instances of such regularization-based algorithms.

2.5 Chapter notes

The PAC learning framework was introduced by Valiant [1984]. The book of Kearns
and Vazirani [1994] is an excellent reference dealing with most aspects of PAC-
learning and several other foundational questions in machine learning. Our example
of learning axis-aligned rectangles is based on that reference.

The PAC learning framework is a computational framework since it takes into
account the cost of the computational representations and the time complexity of
the learning algorithm. If we omit the computational aspects, it is similar to the
learning framework considered earlier by Vapnik and Chervonenkis [see Vapnik,
2000].

2.6 Exercises 29

Occam’s razor principle is invoked in a variety of contexts, such as in linguistics to
justify the superiority of a set of rules or syntax. The Kolmogorov complexity can be
viewed as the corresponding framework in information theory. In the context of the
learning guarantees presented in this chapter, the principle suggests selecting the
most parsimonious explanation (the hypothesis set with the smallest cardinality).
We will see in the next sections other applications of this principle with different
notions of simplicity or complexity. The idea of structural risk minimization (SRM)
is due to Vapnik [1998].

2.6 Exercises

2.1 Two-oracle variant of the PAC model. Assume that positive and negative
examples are now drawn from two separate distributions D+ and D−. For an
accuracy (1 − ε), the learning algorithm must find a hypothesis h such that:

Pr
x∼D+

[h(x) = 0] ≤ ε and Pr
x∼D−

[h(x) = 1] ≤ ε . (2.31)

Thus, the hypothesis must have a small error on both distributions. Let C be any
concept class and H be any hypothesis space. Let h0 and h1 represent the identically
0 and identically 1 functions, respectively. Prove that C is efficiently PAC-learnable
using H in the standard (one-oracle) PAC model if and only if it is efficiently PAC-
learnable using H ∪ {h0, h1} in this two-oracle PAC model.

2.2 PAC learning of hyper-rectangles. An axis-aligned hyper-rectangle in R
n is a

set of the form [a1, b1] × . . . × [an, bn]. Show that axis-aligned hyper-rectangles are
PAC-learnable by extending the proof given in Example 2.1 for the case n = 2.

2.3 Concentric circles. Let X = R
2 and consider the set of concepts of the form

c = {(x, y) : x2 + y2 ≤ r2} for some real number r. Show that this class can be
(ε, δ)-PAC-learned from training data of size m ≥ (1/ε) log(1/δ).

2.4 Non-concentric circles. Let X = R
2 and consider the set of concepts of the form

c = {x ∈ R
2 : ||x−x0|| ≤ r} for some point x0 ∈ R

2 and real number r. Gertrude, an
aspiring machine learning researcher, attempts to show that this class of concepts
may be (ε, δ)-PAC-learned with sample complexity m ≥ (3/ε) log(3/δ), but she is
having trouble with her proof. Her idea is that the learning algorithm would select
the smallest circle consistent with the training data. She has drawn three regions
r1, r2, r3 around the edge of concept c, with each region having probability ε/3 (see
figure 2.6). She wants to argue that if the generalization error is greater than or
equal to ε, then one of these regions must have been missed by the training data,

30 The PAC Learning Framework

r1

r2

r3

Figure 2.6 Gertrude’s regions r1, r2, r3.

and hence this event will occur with probability at most δ. Can you tell Gertrude
if her approach works?

2.5 Triangles. Let X = R
2 with orthonormal basis (e1, e2), and consider the set of

concepts defined by the area inside a right triangle ABC with two sides parallel to
the axes, with

−−→
AB/‖−−→AB‖ = e1 and

−→
AC/‖−→AC‖ = e2, and ‖−−→AB‖/‖−→AC‖ = α for some

positive real α ∈ R+. Show, using similar methods to those used in the chapter for
the axis-aligned rectangles, that this class can be (ε, δ)-PAC-learned from training
data of size m ≥ (3/ε) log(3/δ).

2.6 Learning in the presence of noise — rectangles. In example 2.1, we showed that
the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case
where the training points received by the learner are subject to the following noise:
points negatively labeled are unaffected by noise but the label of a positive training
point is randomly flipped to negative with probability η ∈ (0, 1

2). The exact value of
the noise rate η is not known to the learner but an upper bound η′ is supplied to him
with η ≤ η′ < 1/2. Show that the algorithm described in class returning the tightest
rectangle containing positive points can still PAC-learn axis-aligned rectangles in
the presence of this noise. To do so, you can proceed using the following steps:

(a) Using the same notation as in example 2.1, assume that Pr[R] > ε. Suppose
that R(R′) > ε. Give an upper bound on the probability that R′ misses a region
rj , j ∈ [1, 4] in terms of ε and η′?

(b) Use that to give an upper bound on Pr[R(R′) > ε] in terms of ε and η′ and
conclude by giving a sample complexity bound.

2.7 Learning in the presence of noise — general case. In this question, we will seek
a result that is more general than in the previous question. We consider a finite
hypothesis set H, assume that the target concept is in H, and adopt the following

2.6 Exercises 31

noise model: the label of a training point received by the learner is randomly changed
with probability η ∈ (0, 1

2). The exact value of the noise rate η is not known to the
learner but an upper bound η′ is supplied to him with η ≤ η′ < 1/2.

(a) For any h ∈ H, let d(h) denote the probability that the label of a training
point received by the learner disagrees with the one given by h. Let h∗ be the
target hypothesis, show that d(h∗) = η.

(b) More generally, show that for any h ∈ H, d(h) = η + (1 − 2η) R(h), where
R(h) denotes the generalization error of h.

(c) Fix ε > 0 for this and all the following questions. Use the previous questions
to show that if R(h) > ε, then d(h) − d(h∗) ≥ ε′, where ε′ = ε(1 − 2η′).

(d) For any hypothesis h ∈ H and sample S of size m, let d̂(h) denote the
fraction of the points in S whose labels disagree with those given by h. We will
consider the algorithm L which, after receiving S, returns the hypothesis hS

with the smallest number of disagreements (thus d̂(hS) is minimal). To show
PAC-learning for L, we will show that for any h, if R(h) > ε, then with high
probability d̂(h) ≥ d̂(h∗). First, show that for any δ > 0, with probability at
least 1 − δ/2, for m ≥ 2

ε′2 log 2
δ , the following holds:

d̂(h∗) − d(h∗) ≤ ε′/2

(e) Second, show that for any δ > 0, with probability at least 1 − δ/2, for
m ≥ 2

ε′2 (log |H| + log 2
δ), the following holds for all h ∈ H:

d(h) − d̂(h) ≤ ε′/2

(f) Finally, show that for any δ > 0, with probability at least 1 − δ, for
m ≥ 2

ε2(1−2η′)2 (log |H|+log 2
δ), the following holds for all h ∈ H with R(h) > ε:

d̂(h) − d̂(h∗) ≥ 0.

(Hint : use d̂(h) − d̂(h∗) = [d̂(h) − d(h)] + [d(h) − d(h∗)] + [d(h∗) − d̂(h∗)] and
use previous questions to lower bound each of these three terms).

2.8 Learning union of intervals. Let [a, b] and [c, d] be two intervals of the real line
with a ≤ b ≤ c ≤ d. Let ε > 0, and assume that PrD((b, c)) > ε, where D is the
distribution according to which points are drawn.

(a) Show that the probability that m points are drawn i.i.d. without any of
them falling in the interval (b, c) is at most e−mε.

(b) Show that the concept class formed by the union of two closed intervals

32 The PAC Learning Framework

in R, e.g., [a, b] ∪ [c, d], is PAC-learnable by giving a proof similar to the one
given in Example 2.1 for axis-aligned rectangles. (Hint : your algorithm might
not return a hypothesis consistent with future negative points in this case.)

2.9 Consistent hypotheses. In this chapter, we showed that for a finite hypothesis
set H, a consistent learning algorithm A is a PAC-learning algorithm. Here, we
consider a converse question. Let Z be a finite set of m labeled points. Suppose that
you are given a PAC-learning algorithm A. Show that you can use A and a finite
training sample S to find in polynomial time a hypothesis h ∈ H that is consistent
with Z, with high probability. (Hint : you can select an appropriate distribution D

over Z and give a condition on R(h) for h to be consistent.)

2.10 Senate laws. For important questions, President Mouth relies on expert advice.
He selects an appropriate advisor from a collection of H = 2,800 experts.

(a) Assume that laws are proposed in a random fashion independently and
identically according to some distribution D determined by an unknown group
of senators. Assume that President Mouth can find and select an expert senator
out of H who has consistently voted with the majority for the last m = 200
laws. Give a bound on the probability that such a senator incorrectly predicts
the global vote for a future law. What is the value of the bound with 95%
confidence?

(b) Assume now that President Mouth can find and select an expert senator
out of H who has consistently voted with the majority for all but m′ = 20 of
the last m = 200 laws. What is the value of the new bound?

