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Preface

This book is a general introduction to machine learning that can serve as a textbook
for students and researchers in the field. It covers fundamental modern topics in
machine learning while providing the theoretical basis and conceptual tools needed
for the discussion and justification of algorithms. It also describes several key aspects
of the application of these algorithms.

We have aimed to present the most novel theoretical tools and concepts while
giving concise proofs, even for relatively advanced results. In general, whenever
possible, we have chosen to favor succinctness. Nevertheless, we discuss some crucial
complex topics arising in machine learning and highlight several open research
questions. Certain topics often merged with others or treated with insufficient
attention are discussed separately here and with more emphasis: for example, a
different chapter is reserved for multi-class classification, ranking, and regression.

Although we cover a very wide variety of important topics in machine learning, we
have chosen to omit a few important ones, including graphical models and neural
networks, both for the sake of brevity and because of the current lack of solid
theoretical guarantees for some methods.

The book is intended for students and researchers in machine learning, statistics
and other related areas. It can be used as a textbook for both graduate and advanced
undergraduate classes in machine learning or as a reference text for a research
seminar. The first three chapters of the book lay the theoretical foundation for the
subsequent material. Other chapters are mostly self-contained, with the exception
of chapter 5 which introduces some concepts that are extensively used in later
ones. Each chapter concludes with a series of exercises, with full solutions presented
separately.

The reader is assumed to be familiar with basic concepts in linear algebra,
probability, and analysis of algorithms. However, to further help him, we present
in the appendix a concise linear algebra and a probability review, and a short
introduction to convex optimization. We have also collected in the appendix a
number of useful tools for concentration bounds used in this book.

To our knowledge, there is no single textbook covering all of the material
presented here. The need for a unified presentation has been pointed out to us
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every year by our machine learning students. There are several good books for
various specialized areas, but these books do not include a discussion of other
fundamental topics in a general manner. For example, books about kernel methods
do not include a discussion of other fundamental topics such as boosting, ranking,
reinforcement learning, learning automata or online learning. There also exist more
general machine learning books, but the theoretical foundation of our book and our
emphasis on proofs make our presentation quite distinct.

Most of the material presented here takes its origins in a machine learning
graduate course (Foundations of Machine Learning) taught by the first author
at the Courant Institute of Mathematical Sciences in New York University over
the last seven years. This book has considerably benefited from the comments
and suggestions from students in these classes, along with those of many friends,
colleagues and researchers to whom we are deeply indebted.

We are particularly grateful to Corinna Cortes and Yishay Mansour who have
both made a number of key suggestions for the design and organization of the
material presented with detailed comments that we have fully taken into account
and that have greatly improved the presentation. We are also grateful to Yishay
Mansour for using a preliminary version of the book for teaching and for reporting
his feedback to us.

We also thank for discussions, suggested improvement, and contributions of many
kinds the following colleagues and friends from academic and corporate research lab-
oratories: Cyril Allauzen, Stephen Boyd, Spencer Greenberg, Lisa Hellerstein, Sanjiv
Kumar, Ryan McDonald, Andres Muñoz Medina, Tyler Neylon, Peter Norvig, Fer-
nando Pereira, Maria Pershina, Ashish Rastogi, Michael Riley, Umar Syed, Csaba
Szepesvári, Eugene Weinstein, and Jason Weston.

Finally, we thank the MIT Press publication team for their help and support in
the development of this text.



1 Introduction

Machine learning can be broadly defined as computational methods using experience
to improve performance or to make accurate predictions. Here, experience refers to
the past information available to the learner, which typically takes the form of
electronic data collected and made available for analysis. This data could be in the
form of digitized human-labeled training sets, or other types of information obtained
via interaction with the environment. In all cases, its quality and size are crucial to
the success of the predictions made by the learner.

Machine learning consists of designing efficient and accurate prediction algo-
rithms. As in other areas of computer science, some critical measures of the quality
of these algorithms are their time and space complexity. But, in machine learning,
we will need additionally a notion of sample complexity to evaluate the sample size
required for the algorithm to learn a family of concepts. More generally, theoreti-
cal learning guarantees for an algorithm depend on the complexity of the concept
classes considered and the size of the training sample.

Since the success of a learning algorithm depends on the data used, machine
learning is inherently related to data analysis and statistics. More generally, learning
techniques are data-driven methods combining fundamental concepts in computer
science with ideas from statistics, probability and optimization.

1.1 Applications and problems

Learning algorithms have been successfully deployed in a variety of applications,
including

Text or document classification, e.g., spam detection;

Natural language processing, e.g., morphological analysis, part-of-speech tagging,
statistical parsing, named-entity recognition;

Speech recognition, speech synthesis, speaker verification;

Optical character recognition (OCR);

Computational biology applications, e.g., protein function or structured predic-
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tion;

Computer vision tasks, e.g., image recognition, face detection;

Fraud detection (credit card, telephone) and network intrusion;

Games, e.g., chess, backgammon;

Unassisted vehicle control (robots, navigation);

Medical diagnosis;

Recommendation systems, search engines, information extraction systems.

This list is by no means comprehensive, and learning algorithms are applied to new
applications every day. Moreover, such applications correspond to a wide variety of
learning problems. Some major classes of learning problems are:

Classification: Assign a category to each item. For example, document classifica-
tion may assign items with categories such as politics, business, sports, or weather
while image classification may assign items with categories such as landscape, por-
trait, or animal. The number of categories in such tasks is often relatively small,
but can be large in some difficult tasks and even unbounded as in OCR, text clas-
sification, or speech recognition.

Regression: Predict a real value for each item. Examples of regression include
prediction of stock values or variations of economic variables. In this problem, the
penalty for an incorrect prediction depends on the magnitude of the difference
between the true and predicted values, in contrast with the classification problem,
where there is typically no notion of closeness between various categories.

Ranking : Order items according to some criterion. Web search, e.g., returning
web pages relevant to a search query, is the canonical ranking example. Many other
similar ranking problems arise in the context of the design of information extraction
or natural language processing systems.

Clustering : Partition items into homogeneous regions. Clustering is often per-
formed to analyze very large data sets. For example, in the context of social net-
work analysis, clustering algorithms attempt to identify “communities” within large
groups of people.

Dimensionality reduction or manifold learning : Transform an initial representa-
tion of items into a lower-dimensional representation of these items while preserving
some properties of the initial representation. A common example involves prepro-
cessing digital images in computer vision tasks.

The main practical objectives of machine learning consist of generating accurate
predictions for unseen items and of designing efficient and robust algorithms to
produce these predictions, even for large-scale problems. To do so, a number of
algorithmic and theoretical questions arise. Some fundamental questions include:
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Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam

categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for different learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm
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when working with labeled data. Learning algorithms typically have one or more
free parameters, and the validation sample is used to select appropriate values for
these model parameters.

Test sample: Examples used to evaluate the performance of a learning algorithm.
The test sample is separate from the training and validation data and is not made
available in the learning stage. In the spam problem, the test sample consists of a
collection of email examples for which the learning algorithm must predict labels
based on features. These predictions are then compared with the labels of the test
sample to measure the performance of the algorithm.

Loss function: A function that measures the difference, or loss, between a pre-
dicted label and a true label. Denoting the set of all labels as Y and the set of
possible predictions as Y ′, a loss function L is a mapping L : Y ×Y ′ → R+. In most
cases, Y ′ = Y and the loss function is bounded, but these conditions do not always
hold. Common examples of loss functions include the zero-one (or misclassification)
loss defined over {−1, +1} × {−1, +1} by L(y, y′) = 1y′ �=y and the squared loss
defined over I × I by L(y, y′) = (y′ − y)2, where I ⊆ R is typically a bounded
interval.

Hypothesis set : A set of functions mapping features (feature vectors) to the set of
labels Y. In our example, these may be a set of functions mapping email features
to Y = {spam, non-spam}. More generally, hypotheses may be functions mapping
features to a different set Y ′. They could be linear functions mapping email feature
vectors to real numbers interpreted as scores (Y ′ = R), with higher score values
more indicative of spam than lower ones.

We now define the learning stages of our spam problem. We start with a given
collection of labeled examples. We first randomly partition the data into a training
sample, a validation sample, and a test sample. The size of each of these samples
depends on a number of different considerations. For example, the amount of data
reserved for validation depends on the number of free parameters of the algorithm.
Also, when the labeled sample is relatively small, the amount of training data is
often chosen to be larger than that of test data since the learning performance
directly depends on the training sample.

Next, we associate relevant features to the examples. This is a critical step in
the design of machine learning solutions. Useful features can effectively guide the
learning algorithm, while poor or uninformative ones can be misleading. Although
it is critical, to a large extent, the choice of the features is left to the user. This
choice reflects the user’s prior knowledge about the learning task which in practice
can have a dramatic effect on the performance results.

Now, we use the features selected to train our learning algorithm by fixing different
values of its free parameters. For each value of these parameters, the algorithm
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selects a different hypothesis out of the hypothesis set. We choose among them
the hypothesis resulting in the best performance on the validation sample. Finally,
using that hypothesis, we predict the labels of the examples in the test sample. The
performance of the algorithm is evaluated by using the loss function associated to
the task, e.g., the zero-one loss in our spam detection task, to compare the predicted
and true labels.

Thus, the performance of an algorithm is of course evaluated based on its test error
and not its error on the training sample. A learning algorithm may be consistent ,
that is it may commit no error on the examples of the training data, and yet
have a poor performance on the test data. This occurs for consistent learners
defined by very complex decision surfaces, as illustrated in figure 1.1, which tend
to memorize a relatively small training sample instead of seeking to generalize well.
This highlights the key distinction between memorization and generalization, which
is the fundamental property sought for an accurate learning algorithm. Theoretical
guarantees for consistent learners will be discussed with great detail in chapter 2.

1.3 Cross-validation

In practice, the amount of labeled data available is often too small to set aside
a validation sample since that would leave an insufficient amount of training data.
Instead, a widely adopted method known as n-fold cross-validation is used to exploit
the labeled data both for model selection (selection of the free parameters of the
algorithm) and for training.

Let θ denote the vector of free parameters of the algorithm. For a fixed value
of θ, the method consists of first randomly partitioning a given sample S of
m labeled examples into n subsamples, or folds. The ith fold is thus a labeled
sample ((xi1, yi1), . . . , (ximi , yimi)) of size mi. Then, for any i ∈ [1, n], the learning
algorithm is trained on all but the ith fold to generate a hypothesis hi, and the
performance of hi is tested on the ith fold, as illustrated in figure 1.2a. The
parameter value θ is evaluated based on the average error of the hypotheses hi,
which is called the cross-validation error . This quantity is denoted by R̂CV(θ) and
defined by

R̂CV(θ) =
1
n

n∑
i=1

1
mi

mi∑
j=1

L(hi(xij), yij)︸ ︷︷ ︸
error of hi on the ith fold

.

The folds are generally chosen to have equal size, that is mi = m/n for all i ∈ [1, n].
How should n be chosen? The appropriate choice is subject to a trade-off and the
topic of much learning theory research that we cannot address in this introductory
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Figure 1.2 n-fold cross validation. (a) Illustration of the partitioning of the
training data into 5 folds. (b) Typical plot of a classifier’s prediction error as a
function of the size of the training sample: the error decreases as a function of the
number of training points.

chapter. For a large n, each training sample used in n-fold cross-validation has size
m−m/n = m(1−1/n) (illustrated by the right vertical red line in figure 1.2b), which
is close to m, the size of the full sample, but the training samples are quite similar.
Thus, the method tends to have a small bias but a large variance. In contrast,
smaller values of n lead to more diverse training samples but their size (shown by
the left vertical red line in figure 1.2b) is significantly less than m, thus the method
tends to have a smaller variance but a larger bias.

In machine learning applications, n is typically chosen to be 5 or 10. n-fold cross
validation is used as follows in model selection. The full labeled data is first split
into a training and a test sample. The training sample of size m is then used to
compute the n-fold cross-validation error R̂CV(θ) for a small number of possible
values of θ. θ is next set to the value θ0 for which R̂CV(θ) is smallest and the
algorithm is trained with the parameter setting θ0 over the full training sample of
size m. Its performance is evaluated on the test sample as already described in the
previous section.

The special case of n-fold cross validation where n = m is called leave-one-out
cross-validation, since at each iteration exactly one instance is left out of the training
sample. As shown in chapter 4, the average leave-one-out error is an approximately
unbiased estimate of the average error of an algorithm and can be used to derive
simple guarantees for some algorithms. In general, the leave-one-out error is very
costly to compute, since it requires training n times on samples of size m − 1, but
for some algorithms it admits a very efficient computation (see exercise 10.9).

In addition to model selection, n-fold cross validation is also commonly used for
performance evaluation. In that case, for a fixed parameter setting θ, the full labeled
sample is divided into n random folds with no distinction between training and test
samples. The performance reported is the n-fold cross-validation on the full sample
as well as the standard deviation of the errors measured on each fold.
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1.4 Learning scenarios

We next briefly describe common machine learning scenarios. These scenarios differ
in the types of training data available to the learner, the order and method by which
training data is received and the test data used to evaluate the learning algorithm.

Supervised learning : The learner receives a set of labeled examples as training
data and makes predictions for all unseen points. This is the most common scenario
associated with classification, regression, and ranking problems. The spam detection
problem discussed in the previous section is an instance of supervised learning.

Unsupervised learning : The learner exclusively receives unlabeled training data,
and makes predictions for all unseen points. Since in general no labeled exam-
ple is available in that setting, it can be difficult to quantitatively evaluate the
performance of a learner. Clustering and dimensionality reduction are example of
unsupervised learning problems.

Semi-supervised learning : The learner receives a training sample consisting of
both labeled and unlabeled data, and makes predictions for all unseen points. Semi-
supervised learning is common in settings where unlabeled data is easily accessible
but labels are expensive to obtain. Various types of problems arising in applications,
including classification, regression, or ranking tasks, can be framed as instances
of semi-supervised learning. The hope is that the distribution of unlabeled data
accessible to the learner can help him achieve a better performance than in the
supervised setting. The analysis of the conditions under which this can indeed
be realized is the topic of much modern theoretical and applied machine learning
research.

Transductive inference: As in the semi-supervised scenario, the learner receives
a labeled training sample along with a set of unlabeled test points. However, the
objective of transductive inference is to predict labels only for these particular test
points. Transductive inference appears to be an easier task and matches the scenario
encountered in a variety of modern applications. However, as in the semi-supervised
setting, the assumptions under which a better performance can be achieved in this
setting are research questions that have not been fully resolved.

On-line learning : In contrast with the previous scenarios, the online scenario
involves multiple rounds and training and testing phases are intermixed. At each
round, the learner receives an unlabeled training point, makes a prediction, receives
the true label, and incurs a loss. The objective in the on-line setting is to minimize
the cumulative loss over all rounds. Unlike the previous settings just discussed, no
distributional assumption is made in on-line learning. In fact, instances and their
labels may be chosen adversarially within this scenario.
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Reinforcement learning : The training and testing phases are also intermixed in
reinforcement learning. To collect information, the learner actively interacts with the
environment and in some cases affects the environment, and receives an immediate
reward for each action. The object of the learner is to maximize his reward over
a course of actions and iterations with the environment. However, no long-term
reward feedback is provided by the environment, and the learner is faced with the
exploration versus exploitation dilemma, since he must choose between exploring
unknown actions to gain more information versus exploiting the information already
collected.

Active learning : The learner adaptively or interactively collects training examples,
typically by querying an oracle to request labels for new points. The goal in
active learning is to achieve a performance comparable to the standard supervised
learning scenario, but with fewer labeled examples. Active learning is often used
in applications where labels are expensive to obtain, for example computational
biology applications.

In practice, many other intermediate and somewhat more complex learning scenarios
may be encountered.

1.5 Outline

This book presents several fundamental and mathematically well-studied algo-
rithms. It discusses in depth their theoretical foundations as well as their practical
applications. The topics covered include:

Probably approximately correct (PAC) learning framework; learning guarantees
for finite hypothesis sets;

Learning guarantees for infinite hypothesis sets, Rademacher complexity, VC-
dimension;

Support vector machines (SVMs), margin theory;

Kernel methods, positive definite symmetric kernels, representer theorem, rational
kernels;

Boosting, analysis of empirical error, generalization error, margin bounds;

Online learning, mistake bounds, the weighted majority algorithm, the exponen-
tial weighted average algorithm, the Perceptron and Winnow algorithms;

Multi-class classification, multi-class SVMs, multi-class boosting, one-versus-all,
one-versus-one, error-correction methods;

Ranking, ranking with SVMs, RankBoost, bipartite ranking, preference-based
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ranking;

Regression, linear regression, kernel ridge regression, support vector regression,
Lasso;

Stability-based analysis, applications to classification and regression;

Dimensionality reduction, principal component analysis (PCA), kernel PCA,
Johnson-Lindenstrauss lemma;

Learning automata and languages;

Reinforcement learning, Markov decision processes, planning and learning prob-
lems.

The analyses in this book are self-contained, with relevant mathematical concepts
related to linear algebra, convex optimization, probability and statistics included in
the appendix.


